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On the (n-th year of the) eve of LHC

turn-on, it may be useful to ask: what

do we expect to find, and can string

theory possibly provide useful help

for particle theorists?



In various frameworks, this question has 

actually been studied since the mid 1980s.  I 

will not try to review the rich set of ideas 

that emerged over two decades.  These 

include numerous constructions in the 

heterotic string, intersecting brane models, 

etc; and in each of these, different features 

of the physics are beautifully geometrized.

But to me, very broadly speaking, it seems 

that there are two circumstances where it is 

reasonable to try and apply string theory to 

particle phenomenology.



*  The phenomenon under study is 

ultraviolet sensitive.  This could include 

cases where phenomenology crucially 

depends on higher-dimension, Planck-

suppressed operators (gravity mediation, 

inflation), or more subtle cases.

*   The system under study is inherently 

strongly coupled.  Then, quantitative 

calculations are difficult without importing 

new and powerful tools.  Duality in field 

theory and string theory (notably, gauge/

gravity duality) are two such tools.



1.  Non-supersymmetric models, with the 

hierarchy protected by strong coupling 

effects (which give large anomalous 

dimensions to dangerous operators that 

could ruin the hierarchy).

2.  Supersymmetric models, which are even 

more direct in their mediation than direct 

gauge mediation (“single-sector”-like 

models)

Due to my parochial nature, I’ll focus on 

two examples of the latter that I’ve thought 

about recently:



I.  Non-supersymmetric models that solve the 

hierarchy problem via strong coupling

This is in one sense an old idea, going back 

to theories of technicolor.  Here, we want 

to explore a more recent idea, growing out 

of the work of Randall and Sundrum and 

Strassler.

Basic Idea:  Consider a non-supersymmetric 

field theory governed by some fixed point 

Lagrangian at high energies:

L = LCFT (φi, ψn, Aa
µ)



Suppose there is a finite list of relevant 

operators in the sense of the 

renormalisation group:

O1
∆1

,O2
∆2

, ....,OK
∆K

∆i < 4

And suppose further that the field theory 

has a global symmetry group G, and these 

operators all transform in non-trivial 

representations.

Then, it would be reasonable to think that:



* Starting with this theory at a high energy 

scale          , and preserving G symmetry, one 

has RG flow until some marginal operators 

which grow marginally relevant along the 

flow, become strong.

ΛUV

* These operators cause new behavior 

(confinement? flow to new different fixed 

point?) which could include generation of 

composite Higgs-like scalars, at 

exponentially small energy.

∆(O) = 4− ε → ΛIR ∼ ΛUV e−
1
ε



Problem:  In simple non-supersymmetric 

theories with scalar fields in the UV, the 

operator

O = φ†φ

is invariant under all (linearly realized) 

symmetries G, and is very relevant!

So instead of a long RG flow to generate an 

exponentially low scale before new 

phenomena occur, the RG flow “ends” right 

at the UV cutoff.



Observation of Strassler (2003):

In many known large N theories at large ‘t 

Hooft coupling, the global singlet 

operators 

O ∼ φ†φ → ∆(O) ∼ (g2
Y MN)1/4

The most obvious, dangerous global singlet 

is dual to a string state and becomes very 

irrelevant at large ‘t Hooft coupling!



This gives us a good reason to work at large 

‘t Hooft coupling.  Then, given a large N 

theory with no Global Singlet Relevant 

Operators (GSROs), we could make a field 

theory whose dual gravity description (via 

AdS/CFT) looks like:



So at zeroth order, we need to find AdS/CFT 

dual pairs where:

1.  There is a global symmetry G under which 

all relevant operators are charged.

2.  We can preserve a sufficiently large 

subgroup of G when we “compactify the 

throat” that all relevant operators are 

still forbidden:

While the precise duality applies to the noncompact
Calabi-Yau with flux, one can also construct string solutions 

where the extra dimensions are compact, but are well 
modeled in some neighborhood by the noncompact “warped 

conifold” solution.     Giddings, Kachru, Polchinski

In such models, the flux-generated potential on the
moduli space, allows one to give the Calabi-Yau moduli

a large mass  -- roughly l2s/R3



With Simic and Trivedi (0905.2970), we 

recently found:

1.  A simple, infinite class of AdS/CFT pairs 

which have no global singlet relevant 

perturbations.

2.  One case in which we can explicitly 

describe the IR physics, see ways of getting 

emergent scalars which Higgs a low-energy 

gauge group (though the structure is not at 

all Standard Model like), and compactify the 

theory preserving (a large enough subgroup 

of) the relevant symmetries.



A simple infinite class of such non-

supersymmetric theories arises from 

orbifolds of the N=4 field theory.

Consider orbifolding the three complex 

planes transverse to N D3-branes by the 

group with generator:

In the small radius regime of freely-acting orbifolds, the story is different. The field theory

at weak ’t Hooft coupling and large-N is not at a fixed point (even at the planar level), due

to the generation of double-trace couplings [13,14].

A more subtle issue in these examples is possible non-perturbative instabilities at strong ’t

Hooft coupling. Horowitz, Orgera and Polchinski [11] analyzed non-perturbative decay chan-

nels of precisely the orbifolds we consider. We summarize their analysis, and its implications

for our constructions, in appendix B.

2.1 Constructing the field theories

The metric of AdS5 × S5 spacetime is,

ds2 =
r2

L2
Ads

(−dt2 + dx2
i ) +

L2
AdS

r2
dr2 + L2

AdS dΩ2
5. (2.1)

Here dΩ2
5 is the volume element of a unit S5, and LAdS is the common radius of the AdS5 and

the S5. This geometry is obtained as the near-horizon geometry of D3-branes which extend

along, t, xi, i = 1, · · · 3, and are transverse to the six coordinates y1, · · · y6 [6].

The orbifold we consider is obtained by identifying configurations in IIB string theory

related by the action of the Zk generator:

α = R( 2π
k

)(−1)F . (2.2)

Here,

R( 2π
k

) = exp[
2πi

k
(J12 + J34 + J56)], (2.3)

is a simultaneous rotation by the angle 2π
k in the y1 − y2, y3 − y4, and y5 − y6, planes. This

rotation acts on the S5 and leaves the AdS5 invariant. The second factor in eq.(2.2), (−1)F ,

weights spacetime fermions and bosons with opposite signs. We only consider the case where

k is an odd integer. In this case, due to the presence of the (−1)F factor, αk is unity on both

spacetime fermions and bosons.3

The orbifold has no fixed points. If Z1 = y1 + iy2, Z2 = y3 + iy4, Z4 = y5 + iy6 are the

three complex coordinates transverse to the D3 branes, then under the action of α,

(Z1, Z2, Z3) → (exp[
2πi

k
]Z1, exp[

2πi

k
]Z2, exp[

2πi

k
]Z3). (2.4)

The only fixed point would be at Z1 = Z2 = Z3 = 0 but this point is not present in the

near horizon geometry, where the flux blows up the S5 to non-zero radius. This makes it

relatively easy to determine the spectrum of light states. In the supergravity approximation,

these states are simply those KK modes of the AdS5 × S5 background which are invariant

under the orbifold symmetry. The masses of these modes (and the dimensions of the dual

operators) are the same as in the N = 4 theory.

3If k is even the orbifold would project out all spacetime fermions and correspond to an orbifold of Type 0

string theory, as described in e.g., [11]. We do not consider this case here.
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*  For k even, this orbifold actually takes 

the Type IIB string theory to a Type O string 

theory.  We will not consider these cases.

* For k = 3, the resulting theory is an N=1 

supersymmetric conformal field theory that 

has already been well studied.

* For k odd and k > 3, we obtain in this way 

candidate large N non-supersymmetric 

conformal field theories (at the planar 

level!  But non-planar corrections are 

irrelevant for our purposes).  We discuss 

only these cases.



This orbifold maps to a freely-acting 

orbifold on the near-horizon geometry (the 

fixed point at the origin is no longer 

present).  The light states on the gravity 

side are then just the invariant KK modes in

AdS5 × S5
.

Example: k=5

Figure 1: Quiver diagram of the k = 5 case. White arrows denote fermions, and black arrows denote
scalars. We thank the authors of [13] for permission to reproduce this figure.

For this purpose it is useful to examine first how the relevant operators in the N = 4

theory transform under the SU(3) × U(1)R symmetry. Let us start with single trace gauge

invariant operators.

The N = 4 theory has three kinds of operators which are bilinears in the scalar:

1) Tr(ZiZj) : These have dimension 2. They transform like a 6 of SU(3) and carry

charge 4/3 under U(1)R. Thus they are not singlets under SU(3) × U(1)R. The operators,

Tr(Z̄iZ̄j), which are complex conjugates transform in the complex conjugate representation

under the global symmetries and are also not singlets.

2) Tr(ZiZ̄j) −
1
3δi

jTr(ZiZ̄i): These also have dimension 2. They are singlets under the

U(1)R but transform like an 8 of SU(3) and are therefore not singlets under the global

symmetry.

3)Tr(ZiZ̄i): This operator is a singlet. However it has an anomalous dimension which

goes like ∆ ∼ (gsN)1/4 and thus is much bigger than unity in the large ’t Hooft coupling

limit. It is therefore not relevant.

In the orbifold theory there are also scalar bilinears which arise from the Qi
m fields and

their complex conjugates. However these operators inherit their SU(3) × U(1) quantum

numbers and also their anomalous dimensions (to leading order in N) from the N = 4 theory.
5 Thus we conclude that there are no scalar bilinears in the orbifold theory which are global

singlet relevant operators (GSROs).

The discussion above brings out one of the central points of the paper, so it is worth

emphasising in more general terms. At strong coupling (large ’t Hooft coupling) in the

supersymmetric parent theory, only protected operators have anomalous dimensions of order

unity; these operators are charged under the global symmetries of the parent theory and thus

are not GSROs. If we can arrange for a sufficiently big subgroup of the global symmetry

group to be preserved by the daughter orbifold theory, it too will not contain any GSROs. In

5This is consistent with the fact that in the sugra approximation the mass of invariant KK modes is left

unchanged by the orbifolding procedure.
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This theory has global symmetry group 

G = SU(3)× U(1)
It is easy to argue that there are no GSROs.

For instance, just in the scalar bilinear 

sector of the N=4 theory:

 Operator ∆ SU(3)× U(1)
Tr(ZiZj) 2 64/3

Tr(ZiZ j̄)− 1
3Tr(ZiZ ī) 2 80

Tr(ZiZ ī) (g2
Y MN)1/4 10

brief inspection shows that all scalar 

bilinears in the orbifold theory inherit 

these sets of quantum numbers. 



Similarly, one can see (by starting with the 

N=4 theory) that there are no GSROs in the 

fermion bilinear sector, the scalar 

trilinear sector, or the multi-trace 

operators.

This kind of argument shows that all of the 

odd k > 3 non-supersymmetric orbifolds 

satisfy our zeroth order criterion: they 

have scalars but no GSROs!

We don’t yet have a good picture of what 

happens to these theories in the deep IR, 

when the (existing) singlet marginally 

relevant operators grow  strong.



However, we can develop a picture also for 

the IR physics in examples based on the 

(deformed) conifold.  The dual gauge theory 

is an N=1 susy theory with quiver:

in the discussion of the KW theory continues to be non-anomalous in this theory. The

U(1)R symmetry is now anomalous but a Z2M subgroup survives as a non-anomalous discrete

symmetry of the Lagrangian. The theory has an SU(2)×SU(2) global symmetry which acts

on the Ai, Bj fields as in the KW case. Also the Z2exchange discrete symmetry continues to be

a symmetry in the KS case. The theory undergoes a duality cascade under RG flow. At each

step in the cascade, the rank N changes by N → N − M . In the deep infrared the Z2M R

symmetry is broken spontaneously to a Z2 subgroup. In the far ultraviolet the rank N → ∞,

and the theory approaches the KW case.

NN+M

A1,2

B1,2

Figure 2: Quiver diagram for the KS theory.

In the gravity description, the parameter M corresponds to Ramond-Ramond three-form

flux F3 which is turned on along a non-trivial 3-cycle. The 3-form flux results in the U(1)R
symmetry being broken to Z2M [17]. Since this flux is invariant under the Z2exchange discrete

symmetry which acts as a reflection combined with Ω(−1)FL , the symmetry remains unbroken.

The back-reaction due to the additional three-form fluxes (SUSY requires that NS-NS flux H3

is also turned on) grows in strength in the infrared and results in a deformation of the conifold.

This deformation of the conifold breaks the Z2M symmetry to a Z2 subgroup in the infrared.

In the far ultra-violet the effects of the three-form flux are negligible compared to that of the

5-form and the geometry approaches that of the AdS5 ×T 1,1 case, with logarithmically small

corrections.

Next, we turn to a discussion of operators with dimension < 4 in the KS theory. Since,

as was mentioned above, this theory approaches the KW theory in the ultra-violet up to

logarithmic corrections, the dimension of operators in the UV in the KS case can be obtained

directly from our earlier discussion of the KW case, up to small corrections. There is one

important difference: while the SU(2) × SU(2) and the Z2exchange symmetry are preserved

in the KS case, the U(1)R symmetry is broken to a Z2M subgroup in the KS theory.9 Thus

the global symmetry group available to us in the KS case is smaller. Operators which are

of dimension < 4 and which are not singlets under this smaller global symmetry group can

destabilise the hirarchy. Note that the breaking of U(1)R symmetry to Z2M occurs due to

9It is further broken spontaneously from Z2M to Z2 in the deep infrared. The spontaneous breaking of

Z2M → Z2 is not a worry in the context of perturbations that can destroy the throat. Operators protected by

the Z2M symmetry might be induced in the IR once the symmetry breaks to Z2, but this will not destabilize

the hierarchy.
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Field SU(2)× SU(2) U(1)R U(1)B

Ai (2,1) 1/2 1
Bj (1,2) 1/2 −1

At finite M, anomalies lead to a breaking 

U(1)R → Z2M

W = εεABAB



Z2,exchange

There is also a symmetry which exchanges 

A,B accompanied by complex conjugation:

So, what is the situation with GSROs in the 

supersymmetric parent theory?  Happily, 

Ceresole et al classified all operators in 

1999 (via brute force dimensional 

reduction).  Only a few low dimension SU(2) 

x SU(2) neutral operators exist:

Operator U(1)R U(1)B

Tr(|A|2 − |B|2) 0 0
Tr(λλ) 2 0

Tr(εijεklAiBkAjBl) 2 0
Tr(AB)Tr(AB) 0 0



Two of those guys look dangerous:

Tr(|A|2 − |B|2) is protected - it is the lowest

component of the baryon current 

supermultiplet.  Fortunately, it is odd under 

Z2,exchange !

has dimension 3 at leadingTr(AB)Tr(AB)
order in the 1/N expansion.  It is a singlet 

under the entire group of global 

symmetries.

So the SUSY theory has GSROs.



We will see, however, that obvious non-

supersymmetric daughters do not.

Consider, for instance, the quotient of the 

conifold theory by:

an anomaly, and is supressed in M/N . However, in realistic compactifications, one does not

expect (due to tadpole cancellation conditions etc.) that exponentially large values of N are

allowed (even if they were aesthetically tenable); thus this supression by itself is not enough

to ensure the stability of an exponentially large hierarchy.

Looking through the list of operators of dimension < 4 discussed above in the KW theory

again, we see that among the single trace operators the U(1)R symmetry was important in

protecting the hierarchy from the three dimension 3 operators, all of which have R-charge 2.

While the U(1)R symmetry is broken to a Z2M subgroup in the KS case, for M > 1 this is

still a big enough residual symmetry to prevent these operators from being induced. Among

the double trace operators the U(1)R symmetry was important for operators of the form,

Tr(AB)Tr(AB). These have R charge 2 also and therefore they will also be forbidden by

the surviving Z2M symmetry. This only leaves the double trace non-holomorphic operator of

the form, Tr(AB)Tr(AB), which is a singlet under all the global symmetries. It is a GSRO

in the KS theory as well. Thus, we see that in the KS case, as in the KW theory, the only

global singlet operator with dimension < 4 is the double trace operator Tr(AB)Tr(AB).

4. The Non-SUSY Orbifold

We are now ready to consider the breaking of SUSY. This will be accomplished by constructing

an orbifold. Our real interest is in the KS theory, but as in the discussion above it will also

be useful to discuss the KW theory as we proceed.

The orbifold group must involve the unbroken symmetries of the KS solution. Since we

want the resulting orbifold to break SUSY, it must involve the R symmetry group. We have

seen above that the KS theory only preserves an unbroken Z2 subgroup of the underlying

non-anomalous Z2M R-symmetry group.10 The simplest possibility, then, which leaves the

SU(2)2 symmetry untouched, is to consider the orbifold group to be this Z2 subgroup, possibly

combined with discrete subgroups of the U(1)B symmetry.

We will choose to accompany the Z2 R-transformation above with an action of U(1)B
which rotates the A fields by i and the B fields by −i. The result is that we quotient by a

Z2 R-symmetry under which the scalar components of the chiral fields transform as:

A → −A,B → B . (4.1)

This means the fermionic partners transform by:

ψA → ψA,ψB → −ψB . (4.2)

The gauginos of the two gauge groups transform, as usual under a Z2 R symmetry, as

λ → −λ . (4.3)

10Note that on the Ai, Bj fields, which carry R-charge 1/2, the generator of this subgroup acts with a phase

of i. This is consistent with the symmetries of the deformed conifold, since the zi variables appearing in (4.4)

are bilinears in A,B, and taking zi → −zi is a symmetry even after deforming the conifold.
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The resulting gauge theory (in the m=0 case) 

has the following spectrum.

as follows:
SU(n)1 SU(n)2 SU(n)3 SU(n)4

Q1 1 1

Q2 1 1

Q3 1 1

Q4 1 1

(4.6)

Here Q1, Q3 arise from the field A1 and Q2, Q4 from the field B1. Similarly there are scalars

which arise from A2, B2 as well, giving rise to two copies of this scalar spectrum.

The fermionic fields transform as follows:

SU(n)1 SU(n)2 SU(n)3 SU(n)4
ψ1 1 1

ψ2 1 1

ψ3 1 1

ψ4 1 1

(4.7)

Here ψ1,ψ3 descend from the fermionic partner of B1, and ψ2,ψ4 descend from the fermionic

partner of A1 in the parent theory. Similarly there are fermions that descend from the

fermionic partners of B2, A2. So again, we get two copies of this fermionic spectrum.
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All of the symmetries of the conifold 

theory descend to this theory.  In the case 

M=0, the only change is that two of the 

gauge groups become SU(N+M), and the

anomaly now breaks:

U(1)R → ZM

* Descendants of operators we discussed 

before are projected out exactly as before.

* What about the fearful Tr(AB)Tr(AB) ?



The single trace operator Tr(AB)
in the parent theory, is not invariant under 

the orbifold group!  As a result, there is no 

gauge invariant operator in the daughter 

theory which is bilinear with one 

descendant of the A and one descendant of 

the B fields.  To get a gauge invariant single 

trace operator then involves a string of 4 

As and Bs (and yields no GSRO); the double-

trace global singlet operator one can make 

from this is then highly irrelevant!

Simple orbifolds of the deformed conifold 

theory, then yield AdS/CFT duals which have 

all of the properties we require:



1)  The field theory has no GSROs.

2)  The theory has a marginal operator which 

grows marginally relevant, and smoothly 

ends the geometry in a tip which is well 

described by supergravity.

3)  One can embed the dual throat geometry 

in an (orbifold of a) compact Calabi-Yau 

space, preserving large enough subgroups 

of G to forbid GSROs.

4) With a bit more work, one can show that 

one can get an IR field theory with emergent 

scalars and gauge fields, with the Higgs 

phenomenon occurring at the IR scale.



It is far from clear that one can make 

realistic models in this framework.  One 

would likely want to add bulk gauge fields 

(flavor branes) to the throat, and localized 

fermions, all without destroying the 

protection from GSROs.

But as such models would be a completely 

different solution to the hierarchy problem 

than SUSY, that would also work up to very 

high energy scales (not just a decade in 

energy), they seem like an interesting idea 

to pursue.



II.  Supersymmetric models with composite 

quarks and leptons

The existing paradigm of supersymmetric 

model building always starts with a picture 

of the form:

A standard paradigm for SUSY model 

building involves a “hidden sector” where

SUSY breaks, and then messenger fields

which transmit this breaking to the 

Standard Model:

I.  Introduction



Are there ways to build SUSY models which 

appear less modular?  While such 

modularity does not appear unnatural in 

top-down constructions, it would be perhaps 

more elegant to have a more closely 

integrated structure, where the SM fields 

themselves are “closer to” the SUSY 

breaking dynamics.

Dimopoulos and Georgi argued that if:

1) The gauge group is that of the SM

2) No higher dimension operators appear in K

3) Tree approximation is reliable



then there will always be a colored scalar 

sparticle ligher than the down quark.

* Gravity mediation violates assumption 2)

* Gauge mediation violates assumption 3)

Could there be other ways to circumvent 

their theorem, which involve more closely 

integrated SM and SUSY breaking dynamics?

Why not make the observable fields 

composite?  As we’ll see, this would also 

have the advantage of (partially) explaining 

mysterious facts about flavor physics.



  

 examples (Non-Calculable) were provided by 

Arkani-Hamed, Luty and terning (1998), and 

Luty and Terning (1999).

* SUSY broken by strong dynamics at scale Λ

* SUSY breaking theory has an unbroken 

global symmetry group G

* G has cubic anomalies, and one has 

composite fermions in the IR via ‘t Hooft 

anomaly matching

* The SM gauge group arises as a subgroup 

of G which is anomaly free (or whose 

anomaly is cancelled by “elementary” 

states)



Of course, it would be nice if there were 

simple, calculable examples of this 

phenomenon.

Two approaches to making such models:

* Work directly in supersymmetric field 

theory, using techniques of holomorphy and 

duality.  This seems to work very well!

* Use gauge/gravity duality to geometrize 

the strong coupling dynamics, and build 

composite models in warped geometries.

S. Franco,

SK to appear

Gabella, Gherghetta, Giedt (2007);

Benini, Dymarsky, Franco,

SK, Simic, Verlinde, 0903.0619 

and to appear

we’ll talk about this...



To start with, we need a strongly coupled 

hidden sector that has a low-scale SUSY-

breaking state.

A good string toy model for this arises in 

the deformed conifold geometry, again.  Lets 

go into more detail this time:

II. Basic Setup

Our starting point will be the canonical 

example of gauge/gravity duality for a 

confining theory.  Start with the conifold 

geometry:

x2 + y2 + z2 + w2 = 0

These states can decay by a tunneling process to
supersymmetric states in the same geometry, but

the rate is exponentially suppressed when the
gravity solution is weakly curved.

Similar metastable states have recently been found
in simple supersymmetric quantum field
theories (like supersymmetric QCD).  Intriligator,

Seiberg,
Shih

One can obtain these field theories on the 
worldvolumes of D-branes at simple Calabi-Yau

singularities, providing another source of
metastable SUSY breaking in string theory.

Ooguri, Ookouchi; Franco, Uranga;
Argurio, Bertolini, Franco, Kachru
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Now place N D3s at the tip (and wrap M D5s 

on the small sphere there):

This is the (undeformed) conifold.  Now, add 

N D3 branes at the tip, and wrap M D5 branes 

on the small sphere at the tip:

II. Basic Setup

Our starting point will be the canonical 

example of gauge/gravity duality for a 

confining theory.  Start with the conifold 

geometry:

x2 + y2 + z2 + w2 = 0

These states can decay by a tunneling process to
supersymmetric states in the same geometry, but

the rate is exponentially suppressed when the
gravity solution is weakly curved.

Similar metastable states have recently been found
in simple supersymmetric quantum field
theories (like supersymmetric QCD).  Intriligator,

Seiberg,
Shih

One can obtain these field theories on the 
worldvolumes of D-branes at simple Calabi-Yau

singularities, providing another source of
metastable SUSY breaking in string theory.

Ooguri, Ookouchi; Franco, Uranga;
Argurio, Bertolini, Franco, Kachru
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Now place N D3s at the tip (and wrap M D5s 

on the small sphere there):



The dual gauge theory is:

13 

we want to study a strongly coupled hidden sector with a 

SUSY breaking metastable state at an exponentially small 

scale  

Building the model: Hidden Sector 

!! Dual to the following gauge theory: 

!! Constructed from N D3-branes and M wrapped D5-branes at the conifold 

!! Fortunately, there is an example of such a theory with a well understood 

gravity dual 

This theory undergoes a cascade of

Seiberg dualities, as one gauge factor and 

then the other becomes strongly coupled:

14 

!! Each step in the duality cascade reduces N (the effective number of colors) 

by M units 

!! The difference of ranks due to the D5-branes breaks conformal invariance 

and the theory undergoes a cascade of Seiberg dualities Klebanov,Strassler 

Move beyond infinite coupling by switching to an 

 alternative Seiberg dual description 

!! This QFT interpretation of the RG flow is supported by the existence of gravity 

duals reproducing this kind of behavior in a variety of theories 

Klebanov,Strassler 

Franco, He, Herzog, Walcher Ejaz, Herzog, Klebanov 

Klebanov, Witten;

Klebanov, Strassler



The rank of the groups successively shifts 

down by M units, while leaving a self-

similar superpotential.  For N = KM, this 

continues (on one branch) until the IR 

dynamics confines and produces a gap.  The

gravity dual of the IR is a geometric 

transition: 

It is useful to think of this modified solution as being related 
to the  “deformed” conifold geometry:

x2 + y2 + z2 + w2 = ε2

This geometry has two 3-cycles, a so-called A-cycle
which is the three-cycle generated by real choices
of x,y,z,w, and a B-cycle which is swept out by the

2-sphere and the radial directon of the cone.

For N = KM, we can think of this geometry being sourced
by fluxes: ∫

A
FRR

3 = M

∫

B
HNS

3 = −K

This gives rise to some SU(M+N) x SU(N) 

gauge theory with matter.  The IR dynamics 

confines and has a mass gap; there is then a 

“gravity dual” description via geometric 

transition.

down the resulting structure of the partition function for genus g in the next section, when

we make a detailed comparison. The other feature of the topological A-model that we will

need is that it is independent of the complex structure deformations of M and depends

only on the kahler ones. The particular Calabi-Yau M that we are proposing in our dual

is the local geometry near a conifold singularity which has been resolved by an S2. We

will be led to the identification of λ with the B-field flux through the S2 and gs = iλ
N .

As we mentioned earlier, the SU(N) Chern-Simons theory itself arises from the open

string version of the topological A-model in the presence of D-branes. In fact, the A-model

open string theory on the Calabi-Yau T ∗S3 with Dirichlet boundary conditions on the S3

gives rise to the SU(N) gauge theory on S3 in the manner outlined below Eq.(2.1). The

T ∗S3 geometry happens to be the other side of the conifold. In other words when the

singularity has been resolved by an S3. So we see that, just as in the AdS/CFT cases,

summing over holes has made the original T ∗S3 undergo the conifold transition to the

resolved geometry with no branes. (See Fig.1)

S

S

S

S

3

2

3

2

Fig.1: The geometry of T ∗S3 with an S3 of finite size goes into an S2 resolved geometry after

the conifold transition.

As the figure indicates, the geometry of the conifold is essentially like a cone with a

base which is topologically S2×S3. In the S2 resolved geometry on the right, the space at

infinity is S2×S3 with the S2 of finite size. This is like the analogous S5 of the Maldacena

conjecture. The gauge theory itself can be thought of as living on the large S3. In fact

one can push the analogy even further: In the AdS5×S5 description of N = 4 Yang-Mills,

(in Euclidean version) the boundary is S4 × S5 with the radial direction of AdS5 filling

in the S4. In the weak coupling regime, the boundary is still S4 × S5 but the difference

is that now it is the S5 that gets filled. So in some sense there is already a conifold like

transition in the N = 4 Yang-Mills as well, when we go from weak to strong coupling. In

fact, Fig.1 for the conifold is topologically also accurate for this case if we replace S3 → S4

and S2 → S5.

5

(D-brane side)
(Pure geometry

with fluxes)

Vafa;

Klebanov, Strassler



The geometry becomes:

x2 + y2 + z2 + w2 = ε2, ε ∼ Exp(−4πK/3gsM)

If instead N = KM - p (p << M,N), on one 

branch we are left with (M-p) probe D3-

branes at the tip. There is a metastable 

SUSY-breaking state in this theory:

15 

!! The cascade terminates in confinement in the IR. Dual to a deformation of 

the conifold. At the bottom (IR) of the throat there is a finite 3-sphere of size: 

We are left with (M-p) probe D3-branes at the S3 at the tip of the deformed 

conifold  

!! What happens if there is a mismatch? N = K M – p             p << M 

!! The theory admits a metastable state with p anti D3-branes 
Kachru, Pearson and Verlinde Argurio, Bertolini, Franco, Kachru 

SK, Pearson, Verlinde



In the limit of large distance from the tip, 

the metastable state is characterized by 

normalizable perturbations to the 

supersymmetric background:

16 

!! Normalizable perturbation spontaneous SUSY breaking 

!! There is a supergravity dual for this non-SUSY states (DKM): 

DeWolfe, Kachru and Mulligan 

DeWolfe, SK, 

Mulligan



On top of this SUSY-breaking background, 

we can build a theory which incorporates a 

toy composite Standard Model in the 

following way.

17 

global symmetry in 4d gauge symmetry in the bulk 

!! The next step is to endow the hidden sector with a global symmetry. The 

SM gauge symmetry is a gauged subgroup of it 

Adding the ‘‘SM” gauge symmetry in the bulk 

!! In type IIB, this is achieved with a stack of D7-branes extending radially 

breaks R-symmetry 

mass of! "!

confinement scale of H.S.!

Kuperstein 

We add (supersymmetric) Ouyang-embedded 

D7-branes:

z1z2 − z3z4 = ε2, z4 = µ



And to get the “right” charged matter, e.g. 

5s of SU(5), we intersect them with “flavor” 

D7s: 

And in fact, to get the right charged matter 

(in this case, say, 5s of SU(5)), we add 

“flavor branes” which intersect the SM D7 

on curves:

Comments:

Gaugino mediation ↔ Gauge mediation w/ many mes-
sengers. Landau pole problem is also present in our
model: the D7 can not extend far inside the KS throat.

So far, we imagined that the Higgs and charged MSSM
fields reside inside the CY. However, we can also place
the light generations in the IR. In 4-d, they become
composite, and feel the SUSY breaking more strongly.

D3

D7

CY

15

To get charged matter with quantum numbers of the
light quarks, we place another set of D7s in the coni-
fold, that intersect with the K D7s. The intersection
extends radially, but there exists an open string zero
mode that is localized in the IR. Its fermionic compo-
nent is massless, the scalar acquires a non-zero mass.

D3

D7s

D7

D7

2D  INTERSECTION

16

We’ll argue that the compositeness or 

elementarity of a given matter multiplet, 

depends on the minimal radial location of 

the intersection.  (Note that one must turn 

on gauge field strengths to get chiral 

matter).

flavor D7 : z1 = µ̃



The number of chiral matter fields 

localized on the intersection curve C is:

n =
∫

C (FSM − Fflavor)

There is a supersymmetric flux:

P of hodge type (1, 1), P ∧ J = 0

that we can place on the flavor brane, and 

that reduces on the intersection curve to:

P
2iµ̃2 =

(
3
2 + |z3|2

µ̃2

)
dz3∧dz̄3

(|z3|2+µ̃2)2

Chen, Ouyang,

Shiu



For a given radial (UV) cut-off, by scaling P 

appropriately we can localize any number of 

chiral zero modes.

We’ll argue now that the degree of 

compositeness of matter added in this way, 

depends on the minimal radial location of 

the intersection.

It will be easier for these purposes to 

truncate to a toy 5D model, to avoid overly 

complicated formulae.



5D Toy Models

The basic strategy to make a toy model of 

our setup, is to take a slice of AdS with IR 

boundary conditions that break SUSY.  The 

matter fields are in bulk 5D N=1 SUSY 

multiplets.  For fermions, these are 

labelled by the bulk mass m (or 

equivalently c, the mass in units of the AdS 

curvature scale):

Gherghetta,

Pomarol



Planck
brane IR brane

c > 1/2 c < 1/2 H
Yukawa

couplings

Figure 20: Fermion zero-mode profiles for different 5D fermion masses

Thus even without large hierarchies at the 5D level, hierarchical effective
Yukawa couplings are naturally generated. In the real world, we can identify
light fermions as chiral modes arising from bulk fermions with c > 1/2,
and heavy fermions with chiral modes arising from bulk fermions with c <
1/2. Therefore light fermion profiles are suppressed at the IR brane. This
suppresses their wave-function overlap with low-lying KK excitations of all
bulk fields, thereby suppressing a host of dangerous KK-mediated effects.
This is the central part of an automatic GIM mechanism suppressing flavor-
changing neutral currents. On the other hand one can predict that the heavy
top quark in this scenario should display significant non-standard corrections
to its couplings.
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This picture (Sundrum TASI lectures) 

shows how, depending on “c”, the matter 

fields are either IR or UV localized.  In a 

model where the Higgs is also localized, 

large Yukawas occur for modes localized 

near the Higgs, and small Yukawas for 

those which are distant.  (The picture is 

of an RS scenario where H is IR 

localized).



Quantitatively, in the warped metric:

is not really cheating, such a mass term can be thought of as arising from a
Yukawa coupling to a orbifold-parity-odd 5D scalar field, whose fluctuations
are very massive but whose VEV is non-zero and proportional to sgn(y). The
curved space ΓN are given in terms of the usual flat space Dirac matrices by
Γµ = e−k|y|γµ, Γ5 = −iγ5, Γµ = e+k|y|γµ, Γ5 = iγ5.

Decomposing the action in 4D notation, and making the convenient field
redefinition, Ψ ≡ e+3/2k|y|Ψ̂,

SΨ =

∫
d4x

∫
dy Ψ̂

{
i #∂ + e−k|y|

[
k

2
sgn(y)γ5 − γ5∂y − m sgn(y)

]}
Ψ̂ . (14.4)

Despite the 5D mass parameter, which we will from now on dimensionlessly
parametrize as

c ≡
m

k
, (14.5)

there are 4D massless chiral fermion zero-modes. We clearly get a zero-mode
from the equation of motion if the mode is annihilated by the 4D Dirac
operator, so that

[
k

(γ5

2
− c

)
sgn(y) − γ5∂y

]
Ψ̂ = 0 . (14.6)

We see two possible chiral solutions to this equation. The left-handed one,

Ψ̂L(x, y) = Ψ̂L
(0)(x) e( 1

2−c)k|y| , (14.7)

satisfies the orbifold parity condition and is therefore physical. The right-
handed one,

Ψ̂R(x, y) = Ψ̂R
(0)(x) e( 1

2+c)k|y| , (14.8)

does not satisfy being parity-odd, and therefore is inadmissible. The parity
therefore gives us a chiral 4D massless left-handed zero-mode.

While the 5D mass parameter, c, does not affect the existence of 4D
chiral modes, they clearly influence their profile in the extra dimension, as
illustrated in Fig. 20. If the Higgs is considered to be localized on the
IR brane still, 4D Yukawa couplings with two species of chiral zero modes
coming from bulk fermions with mass parameters ca, cb will be given by

4D Yukawa
couplings

∼ e(
1
2 − ca)kπR e(

1
2 − cb)kπR × 5D Yukawa

couplings
. (14.9)
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and the T (i) are constant tensions. The induced 4D metrics define distances
along the branes, for example,

ds 2
(1) = Gµν(x, φ = 0)dxµdxν , (11.4)

since dφ = 0 along the brane.
Since we are looking for solutions to Einstein’s equations that might fit

the vacuum of the real world, let us try the ansatz that the 5D metric should
respect at least 4D Poincare invariance,

ds 2 = e−2σ(φ)ηµνdxµdxν − R2dφ2 . (11.5)

Here, ηµν is the 4D Minkowski metric, and we have chosen the extra-dimen-
sional coordinate to be proportional to proper distance. The prefactor to
ηµν is written as an exponential as a convenient convention and is called the
“warp factor”. Its potential φ-dependence means that the higher-dimensional
geometry cannot be defined as a product geometry of 4D Minkowski space
and some purely extra-dimensional geometry, but rather all the dimensions
are entangled. Plugging this ansatz into the equations of motion following
from our bulk plus brane actions, one finds

6 σ′ 2 = −
Λ

4M3
5

≡ 6k2

3 σ′′ =
T (1)

4M3
5

δ(Rφ) +
T (2)

4M3
5

δ(R(φ − π)) , (11.6)

where we define a 5D Planck scale,

M3
5 ≡

1

2 G5D
N

. (11.7)

The only consistent solution to these equations, satisfying periodicity in φ
and the orbifold parity is illustrated in Fig. 16. But even this solution only
exists if the kinks have the right size to reproduce the δ-functions in the
equations of motion. This requires the relationships between brane tensions
and bulk cosmological constant given by

T (1) = −T (2) = 24kM3
5 . (11.8)

Thus the vacuum metric solution is given by

ds 2 = e−2kRφηµνdxµdxν − R2dφ2, 0 ≤ φ ≤ π

=
y ≡Rφ

e−2kyηµνdxµdxν − dy2, 0 ≤ y ≤ πR . (11.9)
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these wavefunctions take the form:

explaining the sharp localization as c moves 

from less than to more than 1/2. 



The fermions with small c (and their bosonic 

partners) are naturally called composite. 

This has a natural explanation via the AdS/

CFT correspondence.  Consider a fermion 

with a given value of c.  It is dual to an 

operator in the dual CFT, with conformal 

dimension:

dim (O) = 3
2 + |c + 1

2 |

Therefore if we start by assuming the 4D 

fermion to have canonical dimension, the 

boundary coupling:

L = ...−ΨO + ...

is RELEVANT for c < 1/2.  The fermion mixes 

in an important way with CFT d.o.f.



For us it will be natural to take the Higgs 

to be UV localized; its small mass is 

explained by the small SUSY breaking scale, 

which has been geometrized via warping.

Then one can easily imagine two scenarios.

1.  Holographic gauge mediation

“Planck” brane

Q, U, D
L, E

λq̃

q̃

q

(321) gauge field

“TeV” brane

SUSY

Figure 3: The overall picture for the higher dimensional description of the theory.

(typically a factor of a few) larger than k. With this choice of scales, the characteristic mass

scale for the KK towers is given by πke−πkR ∼ Λ ≈ (10∼100) TeV.

The theories described below [6, 7, 8, 9] are thus formulated in 5D supersymmetric warped

space truncated by two branes. The structure of Fig. 1 then corresponds to breaking supersym-

metry on the IR brane (also called the TeV brane) and localizing quark and lepton superfields,

Q, U , D, L and E, to the UV brane (also called the Planck brane). The standard-model gauge

fields propagate in the bulk. The overall picture is depicted in Fig. 3 (we can even see the

similarity between the two pictures in Fig. 1 and Fig. 3). Supersymmetry breaking on the

TeV brane in this picture does not have to be suppressed — it can be an O(1) breaking when

measured in terms of the 5D metric of Eq. (3). Although supersymmetry breaking is directly

transmitted to the 321 gauginos, the generated gaugino masses are of order TeV, because of the

exponential warp factor. The squark and slepton masses are also generated through 321 gauge

loops, which are flavor universal and thus do not introduce the supersymmetric flavor problem.

This setup was first considered in Ref. [13]. We will see that in our theories this picture coexists

with most of the successes of the conventional weak-scale supersymmetry paradigm.

Here I want to emphasize that we should not take the view that our theory has solved the

hierarchy problem twice by introducing both supersymmetry and a warped extra dimension.

Rather, the picture of a supersymmetric warped extra dimension arises if the DSB sector,

which is necessarily present in any supersymmetric theory, satisfies certain conditions, e.g.

g̃2Ñ/16π2 # 1 and Ñ # 1. A virtue of the higher dimensional construction is then that we do

not need to know the gauge group or the matter content of the DSB sector explicitly. In fact,
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all matter fields UV localized; the bulk 

gaugino feels and transmits SUSY breaking.

Benini, Dymarsky, 

Franco, SK, Simic, 

Verlinde



2. Composite Models

Here, we spread the matter fields around

 in the microscopic 10D theory, by choosing 

different flavor-brane embeddings:

zi
1 = µ̃i, µ̃3 >> µ̃1,2

In terms of pictures, the two scenarios 

then look like:

21 

Other scenarios: Compositeness 

!! Natural extension allow the position of matter to vary 

SM matter emerging as composite of 

the SUSY-breaking field theory Arkani-Hamed, Luty and Terning 

Gabella, Gherghetta and Giedt 

!! Known field theory examples are non-calculable  

e.g.: SU(4)!SU(18) ![SU(18)] 

!! Compositeness can (partially) explain some issues about flavor physics 

composite 



Note that in the SUSY composite models, one 

imagines opposite higher-dimensional 

geography, as compared to the RS models:
So while in the RS scenarios one imagines 

pictures like:

in the supersymmetric models, the more 

natural picture is:

So while in the RS scenarios one imagines 

pictures like:

in the supersymmetric models, the more 

natural picture is:

RS

Single

Sector



Let us momentarily consider a 5D truncation 

of a non-supersymmetric AdS solution of 

string theory, following Gabella, 

Gherghetta and Giedt.  

The AdS is deformed to a slightly different 

geometry, by the SUSY-breaking 

perturbation:

ds2 = A2(z)
(
−dt2 + dx2 + dz2

)

A2(z) =
1

(kz)2

(
1− ε(

z

z1
)4

)

z0 ≤ z ≤ z1

(intuitively, z_0 is UV and z_1 is IR).



This perturbation to the metric backreacts 

on the 5D fermionic and bosonic 

wavefunctions.

Now, the bosonic wavefunctions are 

characterized by a power-law behavior

φ(z) ∼ zb−1

b =
3
2
− c

i.e., partners of UV localized fermions (c > 

1/2) are also UV localized, while partners of 

IR localized fermions (c < 1/2) are also IR 

localized.



The SUSY-breaking perturbation of the 5D 

warp factor, induces a shift to the boson 

masses.  For the UV localized modes, it is a 

very small effect:

∆m =
√

ε(1− b)(b + 10)(kz1)b−1z−1
1

But for the IR-localized bosons, the mass 

shift is of order the scale of IR SUSY 

breaking:

∆m =
√

ε(b− 1)(b + 10)z−1
1



RESULT:  in the models where the first two 

generations are composite, the spectrum is 

quite distinctive.

* The Stop gets its mass through gaugino 

mediation, and is the lightest matter 

sparticle.

* The first two generation sparticles are 

very heavy, receiving large “compositeness 

contributions” to their masses, in typical 

models.

* The Gauginos are much lighter than the 

first two generation sparticles.

So there is a direct correlation: small 

Yukawas -> large sparticle masses!



FIG. 1: The generic mass spectrum of the 5D gravity model showing the heavy first and second

generation scalars and lighter third generation scalars, gluinos, neutralinos and charginos. The LSP

is the gravitino (not shown).

that the Higgs fields obtain the necessary soft masses from this effect, rendering electroweak

symmetry-breaking viable.

Consequently the particle spectrum in our model has very distinctive features and a

generic spectrum is shown in Fig. 1. The first and second generation of scalar partners are

very heavy. These large masses do not destabilize the Higgs mass via radiative corrections

because of (1) small Yukawa couplings and (2) degeneracies at the messenger scale that

prevent large one-loop hypercharge Fayet-Iliopoulos (FI) terms.2 As will be discussed, these

degeneracies are also necessary in order to satisfy flavor changing neutral current (FCNC)

constraints. This spectrum is similar to that considered in Refs. [21, 22] and is also rem-

iniscent of the “more minimal” supersymmetric standard model [6], for which heavy first

two generation scalar fields were considered to ameliorate flavor problems. The LSP is the

gravitino, which means that in our model the lightest neutralino, χ̃0
1, is the NLSP. Because

the messenger scale is relatively low, the decay length of χ̃0
1 is less than 1 mm. This leads to

a 2γ + !ET (two hard photons and missing transverse energy) signal at the LHC. Although

2 Here it is important that the messenger scale M in our model is O(100) TeV, so that splittings that would

disturb the degeneracies are not introduced under renormalization group evolution to the electroweak

scale.

4

(From GGG)

Note that it is an old idea (Dimopoulos and 

Giudice 95; Cohen, Kaplan, Nelson 96) that if 

the squarks in the first two generations are 

quite heavy, flavor problems can be vitiated.



So why not push up the first two generation 

masses even more (make them “more 

composite”)?

basic problem (Arkani-hamed, Murayama 97):

to be heavy enough to sufficiently suppress 

FCNCs, the first two generation sparticles 

must have masses > 22 TeV.  But a two-loop 

contribution to the stop mass running then 

makes the stop tachyonic unless it is heavier 

than 4 TeV -->  tuning in the Higgs sector.



this problem is model-dependent, and there 

are ways around it by clever model building.

But the upshot is that we probably want to 

limit the size of the first two generation 

sparticle  masses, and impose a flavor 

symmetry.   

Hisano, Kurosawa,

Nomura (1999)

In any case, there is much work to do to get 

these models on solid footing like their 

gauge-mediated cousins; and string theory 

provides a useful tool for calculating in 

these intrinsically strongly-coupled 

systems!


