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Low temperature and finite density

• Effective field theories in condensed matter physics often have a finite
charge density.

• Finite density: huge effect on the zero temperature ground state.

• Most commonly encountered states:

• Charged fermions: Fermi surface is built up.
• Charged bosons: condensation instabilities (e.g. superconductivity).

• The low energy excitations about a condensate or Fermi surface are
very well characterised. It is a weak coupling description.

• There seem to be materials where these descriptions do not work.

• Perspective of this talk: AdS/CFT gives a tractable theory with an
exotic finite density ground state.
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Two uses of magnetic fields

• de Haas - van Alphen effect: a Fermi surface leads to oscillations in
the magnetic susceptibility as a function of 1/B.

• In a magnetic field

[Px ,Py ] ∼ iB ⇒
∮

PxdPy ∼ 2π(`+ 1
2 )B .

• When the area of the orbit is a cross section of the Fermi surface there
is a sharp response. I.e. at 1/B ∼ `/AF ∼ `/k2

F ∼ `/µ2.

• Large magnetic field will suppress superconducting instabilities.
• Energy cost of expelling magnetic field becomes too large, or
• Vortices sufficiently dense to prevent superconductivity.
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Application to High - Tc superconductors
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Quantum oscillations in High - Tc superconductors
Doiron-Leyraud et al. 2007 (Nature), Vignolle et al. 2008 (Nature).

• de Haas - van Alphen oscillations in underdoped and overdoped
cuprates.

• In underdoped region, carrier density much lower than näıve
expectation: “small Fermi surface”.
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Criticality under the dome in High - Tc superconductors
Daou et al. 2008 (Nature Physics)

• Resistivity in ‘normal phase’ linear in temperature (anomalous).

• Applying a large magnetic field shows persistance down to T = 0 at
critical doping.
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Holographic superconductors

1 Ingredients for a holographic superconductor

2 Black hole instabilities

3 Hairy black holes
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Minimal ingredients for a holographic superconductor

• Minimal ingredients
• Continuum theory ⇒ have Tµν ⇒ need bulk gab.
• Conserved charge ⇒ have Jµ ⇒ need bulk Aa.
• ‘Cooper pair’ operator ⇒ have O ⇒ need bulk φ.

• Write a minimal ‘phenomenological’ bulk Lagrangian

L1+3 =
1

2κ2
R +

3

L2κ2
− 1

4g2
FabF

ab − |∇φ− iqAφ|2 −m2 |φ|2 .

There are four dimensionless quantities in this action.
• The central charge of the CFT is c = 192L2/κ2.
• DC conductivity σxx = 1

g2 .

• ∆(∆− 3) = (mL)2 . Either root admissible if ∆ ≥ 1
2 .

• The charge q is the charge of the dual operator O.

Sean Hartnoll (Harvard U) Quantum bosons & superconductors June 09 – Paris 10 / 20



Two instabilities of a charged AdS black hole

• By dimensional analysis Tc ∝ µ.

• The dual geometry is therefore Reissner-Nordstrom-AdS.

• RN-AdS can be unstable against a (charged) scalar for two reasons.

• Reason 1 [Gubser ’08]: Background charge shifts mass:

m2
eff. ∼ m2 − q2A2

t .

• Reason 2 [SAH-Herzog-Horowitz ’08]: Near extremality AdS2 throat
with

m2
BF-2 = − 1

4L2
2

= − 3

2L2
> − 9

4L2
= m2

BF−4 .

• Precise criterion for instability at T = 0 [Denef-SAH ’09, Gubser ’08]

q2γ2 ≥ 3 + 2∆(∆− 3) , γ2 =
2g2L2

κ2
.
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Endpoint – hairy black holes
SAH-Herzog-Horowitz 2008

• Endpoint of instability is a hairy black hole:

ds2 = −g(r)e−χ(r)dt2 +
dr2

g(r)
+

L2

r2

(
dx2 + dy2

)
,

A = At(r)dt , φ = φ(r) .

• Solve numerically (take m2 = −2/L2). Can obtain 〈O〉:

0.0 0.2 0.4 0.6 0.8 1.0
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q È<O2>È

Tc

• Compare 8 to ∼ 3.5 for BCS and ∼ 5− 8 for High-TC .
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Quantum bosons and magnetic fields

1 Quantum bosons and fermions in free field theories

2 Quantum bosons in strongly coupled field theories

3 The free energy and quasinormal modes

4 Charged quasinormal modes of dyonic black holes

5 Towards quantum oscillations from bosons
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Quantum bosons and fermions in free field theories

• Free bosons or fermions in magnetic fields have Landau levels

ε` =
√

2|qB|(`+ 1
2 ) .

• Free energy for fermions

Ω = −|qB|AT

4π

∑
`

∑
±

log
(

1 + e(−qµ±ε`)/T
)
.

• Zero temperature limit

lim
T→0

Ω = −|qB|A
4π

∑
`

(qµ− ε`)θ(qµ− ε`) .

• Free energy for bosons – unstable at low temperatures

Ω = −|qB|A
4π

∑
`

[
log
(
e(ε`−qµ)/T − 1

)
+ log

(
e(ε`+qµ)/T − 1

)]
.
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Quantum bosons in strongly coupled field theories

• AdS/CFT: classical description for large N strongly coupled theories.

• Magnetic field and charge density ⇒ dyonic black hole
⇒ unexciting free energy:

Ω = − L2

2κ2r3
+

(
1 +

r2
+µ

2

γ2
−

3r4
+B2

γ2

)
with r+(T ,B, µ) .

• Nontrivial Landau-level structure subleading in 1/N?
⇒ Quantum contribution from a charged scalar:

Ω1-loop =
T

2
tr log

[
−∇̂2 + m2

]
+ · · ·

with ∇̂ = ∇− iqA.
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The free energy and quasinormal modes

• We derived a (new to my knowledge) formula for the determinant as
a sum over quasinormal modes z?(`) of the black hole

Ω1-loop = −|qB|AT

4π

∑
`

∑
z?(`)

log

(
|z?(`)|
2πT

∣∣∣∣Γ( iz?(`)

2πT

)∣∣∣∣2
)
.

• For the BTZ black hole we did the sum explicitly and checked
agreement with the known result.

• Objective: (numerically) compute quasinormal modes for charged
scalar in dyonic AdS black hole and do this sum!
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Charged quasinormal modes of dyonic black holes

• The most common methods for computing quasinormal modes don’t
work for low/zero temperature Reissner-Nordstrom-AdS black holes.

• We used a matrix method proposed by Leaver in 1990.

• Some typical results – modes as a function of scalar field charge
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Towards quantum oscillations from bosons

• The magnetic susceptibility d2Ω/dB2 has better convergence
properties than Ω.

• Take the lowest 18 poles for a given ` and compute their contribution
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• A quantum oscillation? (above plot is preliminary)
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Conclusions

• There exist systems with finite charge density that are described as
neither conventional Fermi liquids or superfluids.

• AdS/CFT provides model exotic stable finite density systems.

• Magnetic fields are an essential experimental and theoretical tool for
probing such systems.

• There may be interesting structure at 1/N in AdS/CFT related to
Landau levels for fermions and bosons.

• Found a method for computing determinants about black holes using
quasinormal modes.

• Initial studies of RN-ADS quasinormal modes may suggest an
analogue of quantum oscillations for strongly coupled bosons at finite
chemical potential.
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