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Why study D>4 gravity?

• Main motivation (at least for me!): 
– better understanding of gravity (i.e. of 

what spacetime can do)

• In General Relativity in vacuum
Rµν=0

∃   only one parameter for tuning: D

– BHs exhibit novel behavior for D>4



Why study D>4 gravity?
• Also, for applications to:

– String/M-theory
– AdS/CFT 

(+its derivatives: AdS/QGP, AdS/cond-mat etc)

– Math
– TeV Gravity (bh’s @ colliders…)
– etc

• When first found, black hole solutions have 
always been "answers waiting for a question"



4D vs hi-D Black Holes: Size matters

• Main novel feature of D>4 BHs: in some 
regimes they're characterized by two widely 
separate scales:

ℓM ∼(GM )
1/(D−3) , ℓJ ∼J/M

– No upper bound on J for given M in D> 4

⇒ Length scales ℓM , ℓJ   can differ arbitrarily

• 4D BHs: single scale: r0∼GM
– true even if rotating: Kerr bound J/M b GM

– no small parameter



• Ultra-spinning regime a ∼J/M ≫ (GM)1/(D−3)

• Limit a →∞, r0 finite:

⇒ black 2-brane along rotation plane

Myers-Perry bhs in Dr6:
Two scales and black brane limit 
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r0

• Ultra-spinning regime R ∼J/M ≫ (GM)1/(D−3)

• Limit R →∞, r0 finite:

⇒ black string along rotation direction

Black Ring in D=5
Two scales and black brane limit

J
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• Gregory-Laflamme instability of black brane 
when the two scales r0, L begin to differ

L>r0

r0

Also: 

λGL ≃ r0



⇒ Hi-D bhs have qualitatively new dynamics

unsuspected from experience with 4D bhs

• 4D bhs only possess short-scale (∼r0) dynamics

• Hi-D bhs: need new tools to deal with long-
distance (∼R ≫ r0, ℓJ≫ ℓM) dynamics

• Natural approach: integrate out short-distance 
physics, find long-distance effective theory



• Separate long- and short-wavelength d.o.f.'s

• Replace short-distance d.o.f.'s with effective 
theory 

• What kind of effective theory? 
– Hint: limit ℓM/ℓJ → 0 yields a black brane

⇒Ieff is a worldvolume theory for the "collective 

coordinates" φ(σ) of a black brane

Effective theory at large length scales

IEH =

∫ √
−gR ≈

∫

λ≫r0

√
−g(long)R(long) + Ieff [g(long), φ(σ)]



locally (r ≪ R) 
equivalent to
Lorentz-transformed
black p-brane

r0

Blackfolds: long-distance effective 
dynamics of hi-d black holes
• BlackBlackBlackBlack p-branes w/ worldvolume = curved submanifoldfoldfoldfold of 

spacetime

Mpsn

Horizon: Mp x sn

R



• Worldvolume fields (collective coords):

– D−p−1 transverse coordinates X⊥(σα)

– Up to p boosts Λ0
ν(σα) (black brane is not boost-invt) 

– 1 thickness r0(σα)

• Equations: 

• Global blackness condition (stationary, regular 
horizon):
– Uniform surf gravity κ & angular velocities Ωi
� eliminate thickness and boost parameters

transverse index: 0,…,D−p−1

Tµν =
2√
−g

δIeff
δgµν

→ ∇µT µν = 0



• General Classical Brane Dynamics : Carter

Given any worldvolume source of energy-momentum, in 

probe approx,

– Newton's force law:   F=ma

– Nambu-Goto-Dirac eqns: Tµν = Tgµν  �K
ρ=0: minimal 

surface

extrinsic curvature

or, with external force: F ρ = TµνKµν
ρ

∇µT µρ = 0 ⇒ T µνKµν
ρ = 0



• What is Tµν for a blackfold?

• Short-distance physics determines 
effective stress-energy tensor:

– blackfold locally Lorentz-equivalent to    
black p-brane of thickness (sn -size) r0

– In region r0 ≪ r field linearizes
⇒ approximate brane by equivalent 

distributional source Tµν(σα)



• Black p-brane

Boost:

r0

zi

ds2 = −
(
1− rn0

rn

)
dt2 +

p∑

i=1

dz2i +
dr2

1− rn
0

rn

+ r2dΩ2n+1

Ttt = rn0 (n+ 1)

Tii = −rn0

(t, zi) = σµ , σµ → Λµνσ
ν , Λµν ∈ O(1, p)

Tµν → Tµν = rn0
[
(n+ 1)ΛtµΛ

t
ν −

∑p

i=1 Λ
i
µΛ

i
ν

]

Make r0(σα), Λµ
ν(σα) position-dept, and solve for 

them w/ blackness conds 



• Blackness ⇒ Tµν(X(σα),κ,Ωi))

• Kµν
ρ(X(σα))Tµν(X(σα),κ,Ωi))=0

2nd order diff eqs for wv geometry X(σα;κ,Ωi)

• This is a theory of how black branes can bend

• Similar to Nambu-Goto for cosmic strings, or DBI 
for D-branes. But:
– Short-wavelength d.o.f's are gravitational
– Brane has a horizon. If compact � black hole



Blackfold Bestiary



Tune boost to equilibrium

Horizon S 1 x sD−3

"small" transverse sphere ∼ r0

• Simplest example: black rings in Dr5

Kµν
ρTµν = 0

T11
R

= 0

R

r0

(in D=5 reproduces value from exact soln) 

⇒ sinh2 σ =
1

D − 4

T11 = rD−40

[
(D − 4) sinh2 σ − 1

]



• Axisymmetric blackfolds

• Simple analytic solutions:
– even p : ultraspinning MP bh, with p/2 ultraspins

– odd p : round Sp, with all (p+1)/2 rotations equal

• I'll illustrate two simple cases of each

(possibly rotations along all axes)



• S3 xsn+1 black hole as blackfold      
(n r 1)

• Embed three-brane in a space containing

ds2=dr2+r2dΩ2(3)

as r =R

• Solution exists if |Ω1|=|Ω2|=(3/(3+n))
1/2R−1

size of sn+1 r0= const

• If |Ω1|>|Ω2| then numerical solution for 
r =R(θ) : non-round S3 

φ1

φ2
S3



• Ultra-spinning 6D MP bh as blackfold

• Black two-brane along a plane

ds2=dρ2+ρ2dφ2

to obtain planar blackfold P2 xs2

• Find size r0(ρ) of s2 & boost α(ρ) of locally-equiv 2-brane:
– Soln: α(ρ)→∞,  r0(ρ)→ 0 at ρmax=1/Ω

– Disk D2 fibered by s 2 : topology S 4: like 6D MP bh!

• All physical magnitudes match those of the ultraspinning 
6D MP bh

ρ

φ

locally equiv to boosted black 2boosted black 2boosted black 2boosted black 2----branebranebranebrane

=



• Solving a conjecture on horizon 
symmetries

• Rigidity of horizons: How many spatial U(1)
isometries must a bh horizon have? 

• Hollands+Ishibashi+Wald : at least one

• But MP bhs and black rings have much more: all 
the Cartan subgroup of O(D−1)V U(1)⌊(D−1)/2⌋

– e.g. 5D bhs have isometry  Rt xU(1)φ1 xU(1)φ2

• Reall conj. (2002): ∃ hi-d bhs w/ only Rt xU(1)φ



The solution: Helical blackfolds

• Place a boosted black string along an isometry ζ
of background

black string black ring

z

φζ = ∂z ζ = ∂φ



The solution: Helical blackfolds

• Place a boosted black string along an isometry ζ

of background (D r 5)

• The orthogonal background isometry is broken: 
– horizon has only one spatial U(1) (D=5,6)

– but bh has two angular momenta (from boost of string)

φ

zHelical 
black string

Helical 
black ring

(n.b: profile is static!)

ζ = k∂z + ∂φ ζ = n∂φ1 +m∂φ2



• We don't know the landscape of hi-d bhs 
in detail yet, but now we have a mapwe have a mapwe have a mapwe have a map

• Black hole dynamics splits into three 
regimes according to the relative size of 
scales ℓM ∼(GM )

1/(D−3) , ℓJ ∼J/M

1: ℓJ < ℓM 2: ℓJ ∼ℓM 3: ℓJ≫ℓM

A programme framework for 
investigating hi-d black holes

∼



• ℓJ < ℓM : single scale, Kerr-like – not much new 

expected: uniqueness, stability (classical, linear)

• ℓJ ∼ℓM : threshold of separating scales: GL-like 

instabilities, inhomogeneous ("pinched") phases, 
mergers – this is the most difficult to study analytically, 
but better for numerics

• ℓJ≫ℓM: separated scales: blackfold dynamics – we 

have the tools to study it

A programme framework for 
investigating hi-d black holes

∼



• Change focus: 
– less emphasis on exact solutions

– search for all Dr6 black hole solutions in closed analytic form is 
futile (some may still show up: p=D−4)

– classificationclassificationclassificationclassification becomes increasingly harder at higher D, but 
maybe also less interesting

• Black branes are very elastic!
� Investigate what hi-d black holes and branes can do 
in specific situations and their novel dynamical 
possibilities

A programme framework for 
investigating hi-d black holes





Ultra-spinning black holes in Dr6

gravitational
centrifugal

∆

r2
− 1 = − µ

rD−3
+
a2

r2

ds2 = −dt2 + µ

rD−5Σ

(
dt+ a sin2 θ dφ

)2
+
Σ

∆
dr2 +Σdθ2 + (r2 + a2) sin2 θ dφ2

+r2 cos2 θ dΩ2(D−4)

Σ = r2 + a2 cos2 θ , ∆ = r2 + a2 − µ

rD−5
,

Myers+Perry 1986

µ ∝ GM

a ∝ J

M



Quadratic equation: fix µ, then a
can't be too large for real root

4D: 2a b µ

5D: a 2 b µ

⇒ upper bound on J for givenM

Horizon: ∆=0 ∆ = r2 + a2 − µ

rD−5

D=4, 5:

∆

r

a

r0



r

∼ r 2

Dr6:

For fixed µ there is an outer event 
horizon for any value of a

⇒⇒⇒⇒No upper bound on J for given M

⇒⇒⇒⇒∃ ultra-spinning black holes

must have a zero  ∀a

∼ −r−(D−5)

Horizon: ∆=0 ∆ = r2 + a2 − µ

rD−5

∆



Blackfold dynamics as 1st Law
• For stationary blackfolds, compute M, Ji , AH , by 

integrating stress-energy tensor Ttt , Tti , and horizon 
area element

• Consider M [x µ], Ji [x
µ], AH [x

µ] as functionals of 
embedding x µ(σα;κ, Ωi)

• Then eqs of motion Kµν 
ρT µν=0 are equivalent to

⇒    Stationary blackfold eqs = 1st Law

δM

δxµ
− κ

8πG

δAH
δxµ

−Ωi
δJi
δxµ

= 0



• Stability of blackfolds for long wavelength
(λ p r0) perturbations can be analyzed within 

blackfold approximation

• But black branes have short-wavelength G-L 
instabilities

• Expect blackfolds to be unstable – on quick time 
scales, Γ∼1/r0

Instabilities and non-uniform phases

λGL ≃ r0/.88

r0



• Non-uniform static black branes exist:
• Expected to also be unstable below D*  (∼13)

but stable above D*

• Use stable non-uniform branes as basis for 
blackfolds (~ wiggly cosmic strings)

• These would emit grav waves, but in a much 
longer time-scale than GL-instability
⇒      long-lived wiggly blackfolds

~ effective Tµν

~


