Blackfolds

Roberto Emparan ICREA & U. Barcelona

RE, T. Harmark, V. Niarchos, N. Obers 0902.0427 (PRL May 09) + *to appear*

Why study D>4 gravity?

- Main motivation (at least for me!):
 - better understanding of gravity (i.e. of what spacetime can do)
- In General Relativity in vacuum
 - \exists only one parameter for tuning: D

 $R_{\mu\nu}=0$

– BHs exhibit novel behavior for $D\!>\!4$

Why study D>4 gravity?

- Also, for applications to:
 - String/M-theory
 - AdS/CFT

(+its derivatives: AdS/QGP, AdS/cond-mat etc)

- Math
- TeV Gravity (bh's @ colliders...)
- etc
- When first found, black hole solutions have always been "answers waiting for a question"

4D vs hi-D Black Holes: Size matters

 Main novel feature of D>4 BHs: in some regimes they're characterized by two widely separate scales:

 $\ell_M \sim (GM)^{1/(D-3)}, \qquad \ell_J \sim J/M$

- No upper bound on J for given M in D > 4 \Rightarrow Length scales ℓ_M , ℓ_J can differ arbitrarily
- 4D BHs: single scale: $r_0 \sim GM$
 - true even if rotating: Kerr bound $J/M \leq GM$
 - no small parameter

Myers-Perry bhs in D \ge 6: Two scales and black brane limit

• Ultra-spinning regime $a \sim J/M \gg (GM)^{1/(D-3)}$

• Limit $a \rightarrow \infty$, r_0 finite:

\Rightarrow black 2-brane along rotation plane

Black Ring in D=5 Two scales and black brane limit

• Ultra-spinning regime $R \sim J/M \gg (GM)^{1/(D-3)}$

• Limit $R \rightarrow \infty$, r_0 finite:

\Rightarrow black string along rotation direction

Also:

• Gregory-Laflamme instability of black brane when the two scales r_0 , L begin to differ

 \Rightarrow Hi-D bhs have qualitatively new dynamics unsuspected from experience with 4D bhs

• 4D bhs only possess short-scale ($\sim r_0$) dynamics

- Hi-D bhs: need new tools to deal with longdistance ($\sim R \gg r_0$, $\ell_J \gg \ell_M$) dynamics
- Natural approach: integrate out short-distance physics, find long-distance effective theory

Effective theory at large length scales

- Separate long- and short-wavelength d.o.f.'s
- Replace short-distance d.o.f.'s with effective theory

$$I_{\rm EH} = \int \sqrt{-g} R \approx \int_{\lambda \gg r_0} \sqrt{-g_{\rm (long)}} R_{\rm (long)} + I_{\rm eff}[g_{\rm (long)}, \phi(\sigma)]$$

• What kind of effective theory? – Hint: limit $\ell_M / \ell_I \rightarrow 0$ yields a black brane

 \Rightarrow $I_{\rm eff}$ is a worldvolume theory for the "collective coordinates" $\phi(\sigma)$ of a black brane

Blackfolds: long-distance effective dynamics of hi-d black holes

Black p-branes w/ worldvolume = curved submanifold of spacetime

• Worldvolume fields (collective coords):

-D-p-1 transverse coordinates $X^{\perp}(\sigma^{\alpha})$

- Up to p boosts $\Lambda^0_{\mu}(\sigma^{\alpha})$ (black brane is not boost-invt)

-1 thickness $r_0(\sigma^{\alpha})$

• Equations:
$$T_{\mu\nu} = \frac{2}{\sqrt{-g}} \frac{\delta I_{\text{eff}}}{\delta g^{\mu\nu}} \rightarrow \nabla_{\mu} T^{\mu\nu} = 0$$

transverse index: $0, ..., D-p-1$

- Global *blackness* condition (stationary, regular) horizon):
 - Uniform surf gravity κ & angular velocities Ω_i
 - \rightarrow eliminate thickness and boost parameters

• General *Classical Brane Dynamics*: *Carter*

Given any worldvolume source of energy-momentum, in probe approx,

$$\nabla_{\mu}T^{\mu\rho} = 0 \quad \Rightarrow \quad T^{\mu\nu}K_{\mu\nu}{}^{\rho} = 0$$

$$\stackrel{\checkmark}{\searrow} \text{ extrinsic curvature}$$

or, with external force: $F^{
ho} = T^{\mu
u} K_{\mu
u}{}^{
ho}$

- Newton's force law: F=ma
- Nambu-Goto-Dirac eqns: $T_{\mu\nu} = T g_{\mu\nu} \rightarrow K^{\rho} = 0$: minimal surface

- What is $T_{\mu\nu}$ for a blackfold?
- Short-distance physics determines effective stress-energy tensor:
 - blackfold locally Lorentz-equivalent to black p-brane of thickness (s^n -size) r_0
 - In region $r_0 \ll r$ field linearizes \Rightarrow approximate brane by equivalent distributional source $T_{\mu\nu}(\sigma^{\alpha})$

• Black p-brane

$$ds^{2} = -\left(1 - \frac{r_{0}^{n}}{r^{n}}\right) dt^{2} + \sum_{i=1}^{p} dz_{i}^{2} + \frac{dr^{2}}{1 - \frac{r_{0}^{n}}{r^{n}}} + r^{2} d\Omega_{n+1}^{2}$$

$$T_{tt} = r_{0}^{n} (n+1)$$

$$T_{ii} = -r_{0}^{n}$$

$$r_{0} \downarrow$$

Boost:

$$(t, z_i) = \sigma^{\mu}, \quad \sigma^{\mu} \to \Lambda^{\mu}_{\nu} \sigma^{\nu}, \quad \Lambda^{\mu}_{\nu} \in O(1, p)$$
$$T_{\mu\nu} \to T_{\mu\nu} = r_0^n \left[(n+1)\Lambda^t_{\mu}\Lambda^t_{\nu} - \sum_{i=1}^p \Lambda^i_{\mu}\Lambda^i_{\nu} \right]$$

Make $r_0(\sigma^{\alpha})$, $\Lambda^{\mu}_{\nu}(\sigma^{\alpha})$ position-dept, and solve for them w/ blackness conds

- Blackness $\Rightarrow T_{\mu\nu}(X(\sigma^{\alpha}),\kappa,\Omega_i))$
- $K_{\mu\nu}^{\ \rho}(X(\sigma^{\alpha}))T_{\mu\nu}(X(\sigma^{\alpha}),\kappa,\Omega_{i}))=0$ 2nd order diff eqs for wv geometry $X(\sigma^{\alpha};\kappa,\Omega_{i})$
- This is a theory of how black branes can bend
- Similar to Nambu-Goto for cosmic strings, or DBI for D-branes. But:
 - Short-wavelength d.o.f's are gravitational
 - Brane has a horizon. If compact \rightarrow black hole

Blackfold Bestiary

• Simplest example: black rings in $D \ge 5$

$$T_{11} = r_0^{D-4} \left[(D-4) \sinh^2 \sigma - 1 \right]$$

Tune boost to equilibrium $\Rightarrow \sinh^2 \sigma = \frac{1}{D-4}$

(in D=5 reproduces value from exact soln)

Horizon
$$S^1 \ge s^{D-3}$$

small" transverse sphere $\sim r_0$

Axisymmetric blackfolds

(possibly rotations along all axes)

- Simple analytic solutions:
 - even p: ultraspinning MP bh, with p/2 ultraspins
 - odd p: round S^p , with all (p+1)/2 rotations equal
- I'll illustrate two simple cases of each

- $S^3 \ge s^{n+1}$ black hole as blackfold $(n \ge 1)$
- Embed three-brane in a space containing

$$ds^2 = dr^2 + r^2 d\Omega^2_{(3)}$$

as r = R

- Solution exists if $|\Omega_1| = |\Omega_2| = (3/(3+n))^{1/2}R^{-1}$ size of s^{n+1} $r_0 = \text{const}$
- If $|\Omega_1|\!>\!|\Omega_2|$ then numerical solution for $r\!=\!R(\theta) \text{ : non-round }S^3$

• Ultra-spinning 6D MP bh as blackfold

• Black two-brane along a plane $ds^2 = d\rho^2 + \rho^2 d\phi^2$

to obtain planar blackfold $\mathcal{P}_2 \ge s^2$

locally equiv to boosted black 2-brane

- Find size $r_0(\rho)$ of s^2 & boost $\alpha(\rho)$ of locally-equiv 2-brane:
 - Soln: $\alpha(\rho) \rightarrow \infty$, $r_0(\rho) \rightarrow 0$ at $\rho_{max} = 1/\Omega$
 - Disk D_2 fibered by s^2 : topology S^4 : like 6D MP bh!

 All physical magnitudes match those of the ultraspinning 6D MP bh

- Solving a conjecture on horizon symmetries
- Rigidity of horizons: How many spatial U(1) isometries must a bh horizon have?
- Hollands+Ishibashi+Wald: at least one
- But MP bhs and black rings have much more: all the Cartan subgroup of $O(D-1) \supset U(1)^{\lfloor (D-1)/2 \rfloor}$

- e.g. 5D bhs have isometry $\mathbb{R}_t \times U(1)_{\phi_1} \times U(1)_{\phi_2}$

• *Reall* conj. (2002): \exists hi-d bhs w/ only $\mathbb{R}_t \times U(1)_\phi$

The solution: Helical blackfolds

• Place a boosted black string along an isometry $\boldsymbol{\zeta}$ of background

The solution: Helical blackfolds

• Place a boosted black string along an isometry ζ of background ($D \ge 5$)

- The orthogonal background isometry is broken:
 - horizon has only one spatial U(1) (D=5,6)
 - but bh has two angular momenta (from boost of string)

A programme framework for investigating hi-d black holes

- We don't know the landscape of hi-d bhs in detail yet, but now we have a map
- Black hole dynamics splits into three regimes according to the relative size of scales $\ell_M \sim (GM)^{1/(D-3)}$, $\ell_J \sim J/M$

$$\mathbf{1}: \boldsymbol{\ell}_J \lesssim \boldsymbol{\ell}_M \qquad \mathbf{2}: \boldsymbol{\ell}_J \sim \boldsymbol{\ell}_M \qquad \mathbf{3}: \boldsymbol{\ell}_J \gg \boldsymbol{\ell}_M$$

A programme framework for investigating hi-d black holes

- $\ell_J \leq \ell_M$: single scale, Kerr-like not much new expected: uniqueness, stability (classical, linear)
- $\ell_J \sim \ell_M$: threshold of separating scales: GL-like instabilities, inhomogeneous ("pinched") phases, mergers this is the most difficult to study analytically, but better for numerics
- $\ell_J \gg \ell_M$: separated scales: blackfold dynamics we have the tools to study it

A programme framework for investigating hi-d black holes

- Change focus:
 - less emphasis on exact solutions
 - search for all D≥6 black hole solutions in closed analytic form is futile
 (some may still show up: p=D-4)
 - *classification* becomes increasingly harder at higher D, but maybe also less interesting
- Black branes are very elastic!

Investigate what hi-d black holes and branes can do in specific situations and their novel dynamical possibilities

Ultra-spinning black holes in $D \ge 6$

$$ds^2 = -dt^2 + \frac{\mu}{r^{D-5}\Sigma} \left(dt + a\sin^2\theta \, d\phi \right)^2 + \frac{\Sigma}{\Delta} dr^2 + \Sigma d\theta^2 + (r^2 + a^2)\sin^2\theta \, d\phi^2$$

 $+r^2\cos^2\theta\,d\Omega^2_{(D-4)}$ Myers+Perry 1986

D=4, 5:

Horizon:
$$\Delta = 0$$
 $\Delta = r^2 + a^2 - \frac{\mu}{r^{D-5}}$

Quadratic equation: fix μ , then a can't be too large for real root

4D: $2a \le \mu$ **5D:** $a^2 \le \mu$

 \Rightarrow upper bound on J for given M

D≽6:

Horizon:
$$\Delta = 0$$
 $\Delta = r^2 + a^2 - \frac{\mu}{r^{D-5}}$

For fixed μ there is an outer event horizon for *any* value of *a*

 \Rightarrow No upper bound on J for given M

 $\Rightarrow \exists$ ultra-spinning black holes

Blackfold dynamics as 1st Law

- For stationary blackfolds, compute M, J_i , A_H , by integrating stress-energy tensor T_{tt} , T_{ti} , and horizon area element
- Consider $M[x^{\mu}], J_i[x^{\mu}], A_H[x^{\mu}]$ as functionals of embedding $x^{\mu}(\sigma^{\alpha};\kappa, \Omega_i)$
- Then eqs of motion $K_{\mu\nu}^{\rho} T^{\mu\nu} = 0$ are equivalent to

$$\frac{\delta M}{\delta x^{\mu}} - \frac{\kappa}{8\pi G} \frac{\delta A_H}{\delta x^{\mu}} - \Omega_i \frac{\delta J_i}{\delta x^{\mu}} = 0$$

$$\Rightarrow$$
 Stationary blackfold eqs = 1st Law

Instabilities and non-uniform phases

- Stability of blackfolds for long wavelength $(\lambda \gg r_0)$ perturbations can be analyzed within blackfold approximation
- But black branes have short-wavelength G-L instabilities $r_0 + r_0 + r_0 = r_0 + r_0 +$
- Expect blackfolds to be unstable on quick time scales, $\Gamma{\sim}1/r_0$

- Non-uniform static black branes exist:
- Expected to also be unstable below D_* (~13) but stable above D_*
- Use stable non-uniform branes as basis for blackfolds (~ wiggly cosmic strings)

 These would emit grav waves, but in a much longer time-scale than GL-instability
 ⇒ long-lived wiggly blackfolds