

Results from the T2K experiment

Sandrine Emery-Schrenk

9^{ème} rencontre IPhT - SPP

24/01/2012

Outline :

- Neutrino oscillation
- The T2K experiment
- v_e appearance analysis
- v_u disappearance analysis
- T2K near future

More details

- Michael Macaire, apéro du SPP, 25/11/2011 (v_{μ} disappearance)
- Marco Zito, apéro du SPP, 24/06/2011 (v_e appearance)
- Marco Zito, séminaire du SPP, 21/03/2011

« Premiers resultats d'oscillation des neutrinos avec T2K »

- Public T2K web page : http://t2k-experiment.org
- Papers:
 - T2K experiment : NIM-A 659, issue 1, pages 106–135 (December 2011)
 - —
 - v_{e} appearance : Phys. Rev. Lett. 107, 041801 (2011)
 - v_{μ} disappearance: arXiv:1201.1386 submitted to PRL

About neutrinos

• Neutrinos are neutral leptons in three families and they only interact through weak interaction

• In 1998, observation of neutrino oscillation (by the Super-Kamiokande detector) gave an experimental proof that neutrinos are massive particles – indication of physics beyond the standard model

 Oscillations come from : flavor eigenstates (e, μ, τ) ≠ mass eigenstates (1, 2, 3) How these eigenstates mix is given by the PMNS matrix

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = U_{PMNS} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$
 Pontecorvo-Maki-Nakagawa-Sakata matrix

• Neutrinos raise many other questions : What is their absolute mass ? Are they Dirac or Majorana particles ? CP leptonic violation ? Faster than light ?

Neutrino mixing

• The PMNS matrix can be parameterized as follow :

$$U_{PMNS} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & +C_{23} & +S_{23} \\ 0 & -S_{23} & +C_{23} \end{pmatrix} \cdot \begin{pmatrix} +C_{13} & 0 & S_{13} \cdot e^{-i\delta} \\ 0 & 1 & 0 \\ -S_{13} \cdot e^{-i\delta} & 0 & +C_{23} \end{pmatrix} \cdot \begin{pmatrix} +C_{12} & +S_{12} & 0 \\ -S_{12} & +C_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

"Atmospheric"
Can be studied with accelerator experiments
"Solar"
Where $C_{ij} = \cos \theta_{ij}$
and $S_{ij} = \sin \theta_{ij}$

• 6 parameters govern the oscillations :

 $\theta_{12}, \theta_{23}, \theta_{13}, \delta$ (CP violation) and $\Delta m_{12}^2, \Delta m_{23}^2$ (mass differences : $\Delta m_{ij}^2 = m_j^2 - m_i^2$)

 $\begin{array}{l} 2.3 \mathrm{x10^{-3}\ eV^2} < |\Delta m^2_{23}| < 7.8 \mathrm{x10^{-3}\ eV^2} \\ 0.92 < \sin^2(2\theta_{23}) \leq 1.0 \ (90\%\ CL) \\ (SK,\ K2K,\ MINOS) \end{array}$

 $7.38 \times 10^{-5} \text{ eV}^2 < \Delta m_{12}^2 < 7.8 \times 10^{-5} \text{ eV}^2$ $0.84 < \sin^2(2\theta_{12}) < 0.89 \ (90\% \ CL)$ $(SNO, \ KAMLAND)$

For $\Delta m_{23}^2 = 2.4 \times 10^{-3} \text{ eV}^2$ and $\sin^2(2 \theta_{23}) = 1$: normal (inverted) mass hierarchy $\sin^2(2\theta_{13}) < 0.15 \quad (90\% \ CL \ CHOOZ \ 1999); < 0.12 \quad (0.20) \quad (90\% \ CL \ MINOS \ 2010)$ $\sin^2(2\theta_{13}) = 0.085 \pm 0.029 \text{ (stat)} \pm 0.042 \text{ (syst)} \quad (68\% \ CL \ DOUBLE \ CHOOZ \ 2011)$ $\sin^2(2\theta_{13}) > 0.03 \quad (0.04) \quad (at \ 2.5\sigma \ T2K \ 2011)$

Mass hierarchy

T2K physics

Neutrino oscillation with the T2K v_{μ} beam, from Tokai to Kamiokande (295 km) (Presented results with only 2% of the statistics for T2K proposal goal)

□ Search for $v_{\mu} \rightarrow v_{e}$ oscillations (measurement of θ_{13}) □ v_{e} appearance analysis

$$P_{\nu_{\mu} \rightarrow \nu_{e}} \approx \sin^{2}(\theta_{23}) \sin^{2}(2\theta_{13}) \sin^{2}\left(1.27 \frac{\Delta m_{31}^{2}L}{E}\right)$$

• **T2K publication** : Abe et al. , PRL, 107 041801 (2011)

- 6 v_e events observed from v_{μ} beam (1.5 bkg expected)
 - \rightarrow Null oscillation excluded at 2.5σ
- Non null $\theta^{}_{13}$ opens research for leptonic CP violation

□ Precise measurement of Δm_{23}^2 and $\sin^2(2\theta_{23})$ via ν_{μ} disappearance analysis □ Most $\nu_{\mu} \rightarrow \nu_{\tau}$, but τ (m~1.8 GeV/c²) not produced at $E(\nu_{\tau}) \sim 600$ MeV, so ν_{τ} are not detected

$$P_{\nu_{\mu} \to \nu_{\mu}} \approx 1 - \sin^2 \left(2\theta_{23} \right) \sin^2 \left(1.27 \frac{\Delta m_{23}^2 L}{E} \right)$$

T2K publication : arXiv:1201.1386 submitted to PRL

The T2K collaboration

Tokai-to-Kamioka

An off-axis experiment

- The T2K detectors are not located on the beam axis but shifted by 2.5° (first off-axis long baseline experiment)
- Off-axis technique gives a narrow measured spectrum peaked at ~600 MeV (and reduces $\nu_{\rm e}$ background in the beam)
- Optimized spectrum for maximal oscillation probability

• At the T2K energy, charged current interactions are dominated by quasi-elastic processes (CCQE)

 $v_{\mu} + n \rightarrow p + \mu^{-}$ $(v_{e} + n \rightarrow p + e^{-})$

Muons (electrons) from neutrino interaction are detected

• With CCQE, the neutrino energy can be reconstructed

$$E_{\nu}^{CCQE} = \frac{m_p^2 - m_{\mu}^2 - m_n^2 + 2m_n E_{\mu}}{2(m_n - E_{\mu} + p_{\mu} \cos \theta)}$$

The near detector

•The off-axis near detector (ND280)'s goal is to characterize the beam before oscillation, to reduce the beam uncertainty at the far detector

- ND280 ν_µ measurement is made with the tracker
 TPCs (time projection chambers) : with bulk
 MicroMegas technology from Saclay for tracking and PID
- FGDs (fine grained detectors) : 1 ton of scintillators layers
- >Ecal : Donwstream and Barrel calorimeters are surrounding the inner detectors

- Other detectors : (not used in this analysis)
 POD (π0 detector)
 SMRD (side muon range detectors)
- All detectors embedded in the refurbished UA1 magnet

The Super-Kamiokande detector

- Located 295km away from Tokai in the Kamioka mine (1000m underground)
- 50 kT water Cherenkov detector
 (22.5 kT of fiducial volume) w/ ~11000 PMTs
- \bullet Very good μ/e separation because of shape and opening angle of the cherenkov ring

The μ /e misidentification probability is less than 1%

Data taking

- Physics data taking started in January 2010 ended on March 11th 2011
- At the end of Run 2, stable operation at 145 kW was achieved
- Run1 + Run 2 total dataset : 1.43x10²⁰ POT (protons on target) This amount of data represents 2% of T2K's proposal goal
- All physics dataset is used in ν_e appearance and ν_μ disappearance analyses

Oscillation analysis strategy

Compute the number of expected events at the far detector

SK events by MC simulation

Calculated based on flux prediction
 From simulation tuned using NA61 (Shine) data

• Depends on the cross sections predictions, detector efficiencies, and given oscillation parameters

Normalization by ND

 \bullet Data/MC ratio evaluated on the measurement of ν_{μ} inclusive CC interactions in ND280 tracker

```
\frac{N_{ND}^{\mu,data}}{N_{ND}^{\mu,MC}} = 1.036 \pm 0.028(stat)^{+0.044}_{-0.037}(syst) \pm 0.038(phys.model)
```

Normalization reduces uncertainties on the far detector expectations

$v_{\mu,e}$ event selection at Super Kamiokande

T2K selection cuts were predefined before the analysis using MC and atmospheric data

- Timing selection : -2 +10 μ s window on GPS time, synchronized between J-PARC and SK
- Select fully contained (FC) events in the fiducial volume (FV)

41 Single Ring events

v_e appearance

Ring e_like + additional cuts to reduce bacgrounds

<u>6 /41 candidate events</u> <u>pass cuts</u>

1/2 intrinsic ν_e in beam 1/2 ν_μ neutral current interaction with π^0

Expected number of events for $sin^2 2\theta_{13} = 0$ $N_{SK} = 1.5 \pm 0.3$ (syst) events

16

v_e appearance results

- Results on appearance published in Phys. Rev. Lett. : PRL, 107 041801 (2011)
- 6 v_e events were observed when null oscillation ($\theta_{13} = 0$) gives 1.5±0.3 expected events
- Fluctuation probability p-value = 0.7% , null oscillation disfavored at 2.5σ

90% C.L. (Feldman-Cousins method) intervals and best fit values (for $\Delta m_{23}^2 = 2.4 \times 10^{-3} \text{ eV}^2$, $\sin^2(2\theta_{23}) = 1$ and $\delta_{CP} = 0$)

```
0.03 < \sin^2(2\theta_{13}) < 0.28
\sin^2(2\theta_{13}) = 0.11
```

 $0.04 < \sin^2(2\theta_{13}) < 0.34$ $\sin^2(2\theta_{13}) = 0.14$

v_{μ} disappearance

 v_{μ} selection

 $N_{SK} = 103.6 \pm 10.2 \text{ (stat)} + 13.8 \text{ -13.4} \text{ (syst) events}$ expected without oscillation

No oscillation excluded at 4.5σ

Disappearance results

The two methods are consistent with SK (atmospheric) and MINOS (accelerator – 7.25x10²⁰ POT) results

Paper arXiv:1201.1386 submitted to PRL

Near future

- The March 11th earthquake didn't cause strong damages on the accelerator
- Accelerator status :

Magnets and monitors are re-aligned
 Accelerator commissioned in December

- Near detector : all subdetectors tested successfully
- SK was not damaged by the earthquake

- Beginning of january : problem with the horn power supply (magnetic horns focus charged pions produced from the proton beam interaction on the target. Pions then decay yielding v_{μ}) =>Neutrino beam not focused.
- Restart of physics data taking scheduled around march 2nd (instead of end of january)

Exclusion of θ_{13} = 0 at 5 σ with the T2K best fit value of sin²(2 θ_{13}) = 0.11

The main goal remains the discovery of a non-zero θ_{13} !

Also improve accuracy on so-called « atmospheric » parameters

• Expected sensitivity with full T2K proposal statistics (3,75 MW x 10⁷ s)

 $\delta(\Delta m^{2}_{23}) \simeq 1 \times 10^{-4} \text{ eV}^{2}$ and $\delta(\sin^{2}2\theta_{23}) \simeq 1\%$

Thank you for your attention

Back-up slides

After several month of recovery work since the earthquake we succeeded to take the proton beam from Dec.24,2011 as scheduled and confirmed the functionality of the beam line components and the reproducibility of the neutrino production, successfully.

However, on Dec.22, during the final operation test, switching devices called IGBTs in the horn power supply were broken. The cause is being identified in detail.

Therefore, the beam operation during December was made without horn operation.

We are working to recover the power supply and aim to restart the full experiment with the horn operation from March.

During January we plan to take beam with the horn off in order to make beam studies for high power operation and various systematic studies using near neutrino detectors.

Beam prediction

- The beam prediction is based on the FLUKA MC simulation package
- This model is tuned with **NA61** experiment (CERN) results for pions and kaons production. NA61 operates p+C collisions at the same proton energy as T2K and with a T2K target replica
- Horn focusing, secondary interactions and particles decay are then simulated by GEANT3
- The beam is not completely pure in ν_{μ} but is composed of an intrinsic ν_{e} component, expected to be below 2%

26

Near detector v_{μ} measurement

- Inclusive CC v_{μ} selection for 2.9x10¹⁹ POT (Run1) with major contribution from the Saclay group
- Selection : Interaction in a FGD with a muon track observed in a TPC (TPC PID) -38% efficiency, 90% purity are reached
- Consistency between data and MC based on NA61+FLUKA+NEUT (neutrino interactions)

$$\frac{N_{ND}^{\mu,data}}{N_{ND}^{\mu,MC}} = 1.036 \pm 0.028(stat)^{+0.044}_{-0.037}(syst) \pm 0.038(phys.\,model)$$

- This normalization factor is used to reduce the uncertainty on the beam flux to extrapolate the number of events expected in SK
- The intrinsic v_e contamination is also analyzed and measured to be < 2% at 90% C.L.

v_e selection

		Expected N_{SK} for $sin^2 2\theta_{13} = 0.1$				
	Data		Signal			
		Total BG	$v_{\mu}CC$	v _e CC	NC	$V_{\mu} \rightarrow V_{e}$
Interaction in FV	-	141.3	67.2	3.1	71.0	6.2
FCFV	88	73.6	52.4	2.9	18.3	6.0
Single-ring	41	38.3	30.8	1.8	5.7	5.2
e-like	8	6.6	1.0	1.8	3.7	5.2
E _{vis} > 100 MeV	7	5.7	0.7	1.8	3.2	5.1
No decay-e	6	4.4	0.1	1.5	2.8	4.6
M _{inv} < 105 MeV/c ²	6	1.9	0.04	1.1	0.8	4.2
E _v ^{rec} < 1250 MeV	6	1.3	0.03	0.7	0.6	4.1

<u>6 candidate events</u> pass all cuts

Expected number of events for $sin^2 2\theta_{13} = 0$ $N_{SK} = 1.5 \pm 0.3$ (syst) events

v_{μ} selection

	MC w/ 2-flavor oscillation			n	MC			MC w/o oscillation						
	Data	Total	ν_{μ} CCQE	ν _μ CC non-QE	v_{e} CC	NC	w/o osc.		Data	Total	ν_{μ} CCQE	ν _μ CC non-QE	v_e CC	NC
Interaction in FV	-	141	24.0	43.7	3.2	71.0	243	Interaction in FV		243.0	96.5	72.3	3.2	71.0
FCFV	88	74.1	19.0	33.8	3.0	18.3	166	FCFV	88	165.8	88.9	55.5	3.0	18.3
Single-ring	41	38.7	17.9	13.1	1.9	5.7	120	Single-ring	41	120.5	86.3	26.6	1.9	5.7
μ-like	33	32.0	17.6	12.4	< 0.1	1.9	112	μ-like	33	111.9	85.2	24.7	< 0.1	1.9
P _u > 200 MeV/c	33	31.8	17.5	12.4	< 0.1	1.9	111	$P_{\mu} > 200 \text{ MeV/c}$	33	111.3	84.9	24.5	< 0.1	1.9
N(decay-e) ≤ 1	31	28.4	17.3	9.2	< 0,1	1.8	104	$N(decay-e) \leq 1$	31	103.6	84.6	17.2	< 0.1	1.8

N^{SK}_{exp.} error table

Error source	$\sin^2 2\theta = 1.0, \Delta m^2 = 2.4$	Null Oscillation
SK Efficiency	$+10.3\% \ 10.3\%$	+5.1% $-5.1%$
Cross section and FSI	+8.3% $-8.1%$	+7.8% -7.3%
Beam Flux	+4.8% -4.8%	+6.9% $-5.9%$
ND Efficiency and Overall Norm.	+6.2% $-5.9%$	+6.2% -5.9%
Total	+15.4% $-15.1%$	+13.2% -12.7%

v_{μ} event selection at SK (2)

Additionnal cuts	:		•
Cut	Events in data	vents 40	-
FCFV	88	I er of ev	
Only 1 ring	41	- 9qmny 20	-
µ-like	33	_	а. В
P _μ > 200 MeV	33	- 0	1
Nb decay e- < 2	31	- în [
Final v _µ CCQE p Final v _µ CCQE e	urity = 61% fficiency = 72%	of events /(100 MeV/ 2.2 0	
31 events rema	ain after all cuts	2.5 and the second	

v_{μ} selected events distribution

Far detector expectation

v_e event distribution

T2K v_{μ} disappearance analysis methods

- Fit with 2 flavor oscillation scenario $P_{\nu_{\mu} \to \nu_{\mu}} = 1 - \sin^2 \left(2\theta_{23} \right) \sin^2 \left(1.27 \frac{\Delta m_{23}^2 L}{E} \right)$
- Two independent methods to extract oscillation parameters
- Feldman-Cousins method to produce confidence intervals
- Method A maximum likelihood $L(\sin^2 2\theta, \Delta m^2, \vec{f}) = L_{norm}(\sin^2 2\theta, \Delta m^2, \vec{f})L_{shape}(\sin^2 2\theta, \Delta m^2, \vec{f})L_{syst} (\vec{f})$
 - L_{norm} number of the observed events (Poisson distributed) - L_{shape} - unbinned energy spectrum shape - $f = f(f_{F/ux}, f_{Xsec}, f_{ND}, f_{SK})$ - parameter representing systematic errors
- Method B likelihood ratio

$$\chi^{2} = 2 \sum_{i=1}^{N_{\text{bin}}} \left[n_{i}^{obs} \cdot \ln(\frac{n_{i}^{obs}}{n_{i}^{\exp}}) + n_{i}^{\exp} - n_{i}^{obs} \right]$$

- i SK energy bin
- $n_i^{obs(exp)}$ number of observed (expected) events in particular SK energy bin
- Main difference: systematic parameters fitting in A, no fitting in B

Disappearance analysis

• With a null oscillation hypothesis

103.6 events expected No oscillation hypothesis excluded at 4.5 σ

For sin²(2θ₂₃)=1 and Δm²₂₃ = 2.4x10⁻³ eV²
 28.3 events expected

$N_{exp.}^{SK}$ error table					
Error source	$\sin^2 2\theta = 1.0, \Delta m^2 = 2.4$	Null Oscillation			
SK Efficiency	$+10.3\% \ 10.3\%$	+5.1% $-5.1%$			
Cross section and FSI	+8.3% -8.1%	+7.8% -7.3%			
Beam Flux	+4.8% -4.8%	+6.9% $-5.9%$			
ND Efficiency and Overall Norm.	+6.2% $-5.9%$	+6.2% -5.9%			
Total	+15.4% $-15.1%$	+13.2% $-12.7%$			

Clear disappearance in the energy spectrum

Shows power of off-axis technique!

 $sin^{2}(2\theta_{23})$ contours

v_e at the near detector

Distribution of v_e events

- → Perform several checks. for example
 - * Check distribution of events outside FV → no indication of BG contamination
 - * Check distribution of OD events → no indication of BG contamination
 - * K.S. test on the R² distribution yields a p-value of 0.03

Distribution of v_e events

v_e events – what it means for θ_{13} ?

Observed 6 Events, with 1.5 ± 0.3 events background at $\theta_{13} = 0$

Allowed region of $sin^2(2\theta_{13})$ as a function of Δm^2_{23}

Feldman-Cousins method was used

Allowed region of sin²($2\theta_{13}$) as a function of δ_{CP}

42

Expected sensitivity

earthquake

Areas affected by the quake

 $\Delta T_0 = T_{GPS} @SK - T_{GPS} @J-PARC - TOF(~985 \mu sec)$

1) Based on our initial assessment of our capability, at the moment T2K cannot make any definitive statement to verify the Opera measurement of the speed of neutrino (Opera Anomaly).

2) We will assess a possibility to improve our experimental sensitivity for a measurement to cross-check the OPERA anomaly in the future. Such a measurement with an improved system, however, could take a while to achieve.

Spill timing information, synchronized by the Global Positioning System (GPS) with < 150 ns precision, is transferred from J-PARC to SK and triggers the recording of photomultiplier (PMT) hits within 500 µs of the expected neutrino arrival time.