

Axion searches with the EDELWEISS Ge bolometers

Rencontres IphT/SPP Les Axions Jeudi 6 décembre 2012

Eric Armengaud (SPP)

Thibault de Boissière (SPP)

Outline

- Edelweiss : a presentation
- WIMP search with Edelweiss
- Axions: recap & possible detection channels in Edelweiss
- Primakoff detection of axions with Edelweiss
- Other channels (work in progress)

Edelweiss primary goal: WIMP direct detection

 $R = \sigma \Phi N$

 σ = Cross section (Spin independent part dominates with Ge target nuclei)

 Φ = Incoming WIMP flux

N= Target nuclei

Weak scale

Edelweiss setup

- In LSM underground laboratory
- Cryogenics at 18 mK
- Various shieldings: muon veto, lead and PE shield, clean room and deradonized air

Edelweiss Ge detectors

2nd Generation Ge detector. Concentric electrodes

Electric field in the detector

- Simultaneous measurement of Heat (NTD thermometer) and Ionization (Al electrodes)
- Select events in fiducial volume from ionization.
- Reconstruct the recoil energy
- Discriminate events with Q= Eionization / Erecoil
- **Q=1** for electron recoils (mostly due to gammas)
- **Q=0.3** for nuclear recoils (due to neutrons and possible WIMP candidates)

Edelweiss II WIMP search (2011)

WIMP mass ~ 10 GeV to 1TeV

Axion recap

 Axions are elementary particles theorized by Peccei and Quinn to solve the strong CP problem

- Axions, being charge-neutral and weakly interacting, are a prime candidate to explain dark matter in the Universe
- The sun should be an intense source of axions through various processes:
 - Reactions of the main solar cycle e.g. : $p + d \rightarrow 3He + A$ (5.5 MeV) (gAN)
 - Production in low lying (eg Fe at 14.4 keV) magnetic transitions (gAN)
 - Primakoff effect: photon axion conversion $\gamma + \gamma \rightarrow A$ (gA γ)
 - Axion Bremsstrahlung e- + Z \rightarrow e- + Z + A (gAe)
 - Axion Compton scattering process $\gamma + e \rightarrow e \rightarrow + A$ (gAe)

Axion recap

Couplings involved:

- Coupling to electrons : gAe
- Coupling to nucleons : gAN
- Coupling to photons : gAγ

Couplings involved in detection in Ge detectors:

gAe: conversion of the incoming axion into electrons **gAγ**: conversion of the incoming axion into photons

Question: How can we combine these production channels to the detection channels in the Ge detectors in the most efficient/model independent way?

axion x-ray
b-field
$$L = -g_{a\gamma\gamma} \psi_a B \cdot E$$
 [1]

The incoming solar axion can be converted into a photon through interaction with the electromagnetic field of the **Ge** detectors.

The aim is to get a limit on $gA\gamma$ (the only coupling we consider in this case)

Typical transferred momentum has wavelength close to interatomic spacing.

A Bragg pattern arises \Rightarrow strong enhancement of the signal.

CDMS, SOLAX, COSME have already published results on axion Primakoff conversion in Ge crystals.

Preliminary Ge detectors parameters

- Detector resolution: FWHM ~ 0.5 keVee
- Detector exposure ~ 50kg.d (only one detector was studied here)
- Detector threshold: ~ 3 keVee
- Background: cst+peaks due to natural decays/Auger electrons...

Expected count rate during 1 day

EventRate(event/kg.d.keV)

Preliminary results

Future Prospects

Possible improvements using EDW III upcoming data:

background, resolution, exposure and knowledge of the orientation of the crystal

$$g_{a\gamma\gamma} \sim \left(\frac{b}{M_d T}\right)^{1/8}$$

But the margin is tiny due to the power of 1/8

Axion detection with Axio-Electric effect

gae: Axio-electric effect: equivalent of photoelectric effect

A **positive axion** signal would be seen as a peak at the axion mass, spread by the energy resolution.

In the **absence of peaks**, statistical limits can be placed

on the number of axion events

in the DFSZ and KSVZ (E/N = 8/3) models.

Conclusion

- EDW can analyse a wide variety of channels. Limits are not as good as astrophysical boundaries but usually much safer.
- Primakoff production and detection: results so far competitive with other experiments (COSME, CDMS...) and will be improved with EDW III.
- Other channels are currently under investigation and we are working to find the best way to combine them.

Preliminary results on gAe

Galactic (DM) axions through axioelectric effect

