Axion search with the CAST experiment

Esther Ferrer Ribas, Yannis Giomataris, Thomas Papaevangelou (IRFU/SEDI)

Motivation for Axions

- CP violation is necessary in the SM→matter-antimatter asymmetry
- CP violation observed in the weak interactions
- QCD predicts violation in the strong interactions

 $\mathcal{L}_{\theta} = \frac{g^2 \overline{\theta}}{32\pi^2} G^{\alpha}_{\mu\nu} \widetilde{G}^{\alpha\mu\nu} \quad with \quad \overline{\theta} = \theta + Arg(\det M)$

 However no experiment has observed this violation of CP in QCD! •A possible solution to the strong CPproblem

•Elimination of CP-violating term in QCD Lagrangian by introduction of new additional global U(1) symmetry

$$\mathcal{L}_{a} = \left(\overline{\boldsymbol{\theta}} - \frac{\boldsymbol{a}(\boldsymbol{x})}{\boldsymbol{f}_{a}}\right) \frac{1}{\boldsymbol{f}_{a}} \frac{\boldsymbol{g}}{8\pi} \boldsymbol{G}_{a}^{\mu\nu} \widetilde{\boldsymbol{G}}_{a\mu\nu}$$

- New pseudo-scalar field : **AXION**
- First proposed by Peccei & Quinn (1977)
- Particle interpretation by Weinberg, Wilczek (1978)

2013 SAKURAI PRIZE

Roberto Peccei

Helen Quinn

"For their proposal of the elegant mechanism to resolve the famous problem of strong-CP violation which, in turn, led to the invention of axions, a subject of intense experimental and theoretical investigation for more than three decades."

2013 J.J. Sakurai Prize for Theoretical Particle Physics Recipient

Axion properties

- Neutral Pseudoscalar
- Pratically stable
- Very low mass $m_a \simeq 0.6 \text{ eV} \frac{10^7 \text{GeV}}{f_a}$
- Very low cross-section
- Coupling to photons

$$L_{a\gamma\gamma} = g_{a\gamma\gamma} (\vec{E} \cdot \vec{B}) a$$

• Possible dark matter candidates

Search strategies

- Relic Axions
 - Axions that are part of galactic dark matter halo:
 - Axion Haloscopes (ADMX)
- Solar Axions
 - Emitted by the solar core.
 - Axion Helioscopes (CAST → IAXO)
 - Crystals (Edelweiss Thibault's talk)
- Axions in the laboratory
 - "Light shinning through wall" experiments
 - Vacuum birefringence experiments

Haloscope : ADMX

•Due to their small mass cold dark matter axions/ALPS can not be detected by recoil techniques

•The mass of the dark matter particle determines the energy to be detected. For axions is in the microwave range

Tunable resonant cavity in magnetic field coupled to an ultra low noise microwave receiver

Signal: microwave photons With a frequency proportional to m_a

Microwaves picked up by an antenna, amplified, and seen as an excess of power at a frequency corresponding to the mass of the Axion.

Sensitive to low mass axions: $m_a \sim 1-1000 \ \mu eV$,

Light shining through a wall: ALPS

Any Light Particle Search @ DESY: ALPS-I concluded in 2010

"Light-shining-through-a-wall" (LSW)

Upgrades for ALPS-II:

- 12+12 magnets HERA dipoles (instead of 1/2 + 1/2 used for ALPS-1
- Increase power of the laser
- Regeneration cavity to increase photon conversions

Helioscopes

- Brookhaven (a few hours of data): Lazarus et al. PRL 69 (92)
- Tokyo Helioscope (SUMICO): 2.3 m long 4 T magnet

No Liq. He B=4T, L=2.3m 268A persistent current 16 PIN photodiodes Altazimuth:Horiz. 360°, vert.±28°

Inoue et al. Phys.Lett.B668:93-97,2008.

Presently running: CERN Axion Solar Telescope (CAST)

CAST Physics

Production in the Sun

Conversion of thermal photons into axions via Primakoff effect in the solar core

Conversion of axions into photons via the inverse Primakoff effect in a strong magnetic field

Expected number of photons:

$$\mathbf{N}_{\gamma} = \mathbf{\Phi}_{a} \cdot \mathbf{A} \cdot \mathbf{P}_{a \to \gamma}$$
$$\mathbf{P}_{a \to \gamma} = 1.7 \times 10^{-17} \left(\frac{\mathbf{B} \cdot \mathbf{L}}{9.0T \cdot 9.3m}\right)^{2} \left(\frac{\mathbf{g}_{a\gamma}}{10^{-10} \,\mathrm{GeV^{-1}}}\right)^{2}$$

 $\approx 0.3 \ evts/hour$ with $\ g_{a\gamma} = 10^{\text{-}10} \ GeV^{\text{-}1}$ and A = 14 cm^2

CAST: CERN Axion Solar Telescope

LHC dipole : L = 9.3 m, B = 9 T Rotating platform : vertical movement 16° horizontal movement 100° Solar « Tracking » ~3 h/day, background data rest of the day 4 X-rays detectors

Collaboration CAST

Originalities of CAST

 Use of X-ray telescope → increase S/B noise→ sensitivity improved by a factor 150 by focusing a Ø43 mm x-ray beam to Ø3mm

• Low background techniques → shieldings, low radioactive materials, simulation and modeling of backgrounds....

Detectors

Before 2007	Typical rates
ТРС	17 ×10 ⁻⁴ c KeV ⁻¹ cm ⁻² s ⁻¹ (2-10 keV)
MM	5 ×10 ⁻⁴ c KeV ⁻¹ cm ⁻² s ⁻¹ (2-10 keV)
CCD+telescope	8 ×10 ⁻⁵ c KeV ⁻¹ cm ⁻² s ⁻¹ (1-7 keV)

UNRISE SIDE
hielded Micromegas last generation-Microbulk type

	1

CCD +telescope

After 2007	Typical rates
2 MM	6 ×10 ⁻⁵ c KeV ⁻¹ cm ⁻² s ⁻¹ (2-10 keV)
CCD+telescope	8 ×10 ⁻⁵ c KeV ⁻¹ cm ⁻² s ⁻¹ (1-7 keV)

SUNSET SIDE: two shielded Micromegas last generation-Microbulk type

CAST PROGRAM AND SENSITIVITY

CAST Phase I: (vacuum operation 2003-2004)

completed (2003 - 2004), m_a < 0.02 eV JCAP 0704(2007) 010, CAST Coll. PRL (2005) 94, 121301, CAST Coll.

CAST Phase II: (buffer gas operation 2005-2011)

⁴He completed (2005 -2006) , 0.02 eV < m_a < 0.39 eV JCAP 0902 (2009) 008, CAST Coll.

³He run completed (2007-2011),0.39 eV < m_a < 1.18 eV First part ³He run analysis PRL (2011) 107 261302. **Original aims of CAST reached!**

CAST Phase III: (buffer gas ⁴He 2012)

CAST Phase IV: (vacuum operation 2013-2014)

CAST byproducts:

High Energy Axions: Data taking with a HE calorimeter JCAP 1003:032,2010

14.4 keV Axions: TPC data (before 2006) JCAP 0912:002,2009

Low Energy (visible) Axions: Data taking with a PMT/APD arXiv:0809.4581

Extending sensitivity to higher masses

Axion to photon conversion probability:

$$\left| P_{a \to \gamma} = \left(\frac{Bg_{a\gamma}}{2} \right)^2 \frac{1}{q^2 + \Gamma^2/4} \left[1 + e^{-\Gamma L} - 2e^{-\Gamma L/2} \cos(qL) \right] \qquad \text{Vacuum:} \\ \Gamma = 0, \ m_{\gamma} = 0$$

with
$$q = \left| \frac{m_{\gamma}^2 - m_a^2}{2E_a} \right| \quad m_{\gamma}(\text{eV}) = \sqrt{\frac{4\pi\alpha N_e}{m_e}} \approx 28.9 \sqrt{\frac{Z}{A}\rho\left(\frac{\text{kg}}{\text{m}^3}\right)}$$

Coherence condition: $qL < \pi$

For CAST phase I conditions (vacuum), coherence is lost for m_a > 0.02 eV

With the presence of a **buffer gas** it can be **restored** for a narrow mass range:

$$qL < \pi \Rightarrow \sqrt{m_{\gamma}^2 - \frac{2\pi E_a}{L}} < m_a < \sqrt{m_{\gamma}^2 + \frac{2\pi E_a}{L}}$$

e.g. for 50 mbar $\Delta m_a \simeq 10^{-3} \text{ eV}$

Recent results

 Data taken in 2008 (published) covered axion mass interval:

 $0.39 \le m_{\rm a} \le 0.64~eV$ M. Arik et al. (CAST collaboration) PRL 107 (2011) 261302 arXiv:1106.3919.

Data taken during 2009 – 2011 covered axion mass interval:

 $0.64 \le m_a \le 1.18 \text{ eV}$

→ Lower detector backgrounds

➔ Lower exposure times per m_a

Preliminary exclusion plot. Analysis to be completed

CAST is the first helioscope to have crossed the KSVZ line

2012 phase III ⁴He

- Data taking period: 22nd June 7th October
 2012
 (axion masses: 0.39 0.42 eV)
- ~ 5 solar trackings per detector & per pressure setting
 (17 settings covered)
- → Improved Sunset Micromegas background
- Analysis in a similar manner like 3He data
- Preliminary results from 3 out of 4 detectors

The close future 2013-2104 phase IV vacuum

New design for the Micromegas detectors

o Upgraded shielding
o Improvement on the radiopurity of the construction materials
o New readout electronics
o Improve the E threshold → chameleons

New telescope for the Micromegas Sunrise line

O Construction of new optics using the tooling of theNuSTAR telescope (thermally formed glass substrates)(LLNL, U. Columbia, DTU)o Operational mid 2013

Expected sensitivity phase IV vacuum

Expected sensitivity with the setup proposed in vacuum conditions 9 calendar months assuming 75% data taking efficiency. Two assumptions for the Micromegas background: 1.5×10^{-6} (black line) and 8×10^{-7} counts keV⁻¹ cm⁻² s⁻¹ (red line)

Physics motivation for the sub KeV range: chameleons

- Chameleons are **Dark Energy** candidates to explain the accelerated expansion of the Universe
- Chameleon mass depends on the ambient energy density
- Chameleon particles can be created by the **Primakoff effect** in a strong magnetic field. For example in the Sun.
- Like axions, in CAST they can be back converted to X-ray photons and be detected. Similar phenomenology. Energy threshold needs to be improved.

Detection prospects for solar and terrestrial chameleons Phys. Rev. D 85, 043014 (2012)

→ Test in laboratory shows that with appropriate electronics and detector operation conditions the E threshold can be decreased easily to ~500 eV

Background evolution of Micromegas detectors in CAST

AFTER CAST: IAXO (International Axion Observatory)

CAST is established as a reference result in experimental axion physics CAST PRL2004 most cited experimental paper in axion physics

No other technique can realistically improve CAST in such wide mass range.

Future helioscope generation: improve the sensibility by 1 order of magnitude

ournal of Cosmology and Astroparticle Physics

JCAP 06 (2011) 013

Towards a new generation axion helioscope

I.G. Irastorza,^a F.T. Avignone,^b S. Caspi,^e J.M. Carmona,^a
T. Dafni,^a M. Davenport,^d A. Dudarev,^d G. Fanourakis,^e
E. Ferrer-Ribas,^f J. Galán,^{a,f} J.A. García,^a T. Geralis,^e
I. Giomataris,^f H. Gómez,^a D.H.H. Hoffmann,^g F.J. Iguaz,^f
K. Jakovčić,^h M. Krčmar,^h B. Lakić,^h G. Luzón,^a M. Pivovaroff,^j
T. Papaevangelou,^f G. Raffelt,^k J. Redondo,^k A. Rodríguez,^a
S. Russenschuck,^d J. Ruz,^d I. Shilon,^{d,i} H. Ten Kate,^d A. Tomás,^a
S. Troitsky,^l K. van Bibber,^m J.A. Villar,^a J. Vogel,^j L. Walckiers^d

IAXO (International Axion Observatory)

DEDICATED MAGNET

Best option toroidal configuration:

- \circ Much bigger aperture than CAST: ~0.5-1 m per bore
- \circ Relatively Light (no iron yoke)

X-RAY OPTICS

Thermally-formed glass substrates optics Successfully used in NUSTAR, Leverage existing infrastructure. Minimize costs & risks

ULTRA LOW BACKGROUND DETECTORS Goal: 10⁻⁷ c/keV/s/cm2 or better Apply what have been learned in CAST: compactness, radiopurity, better shielding

IAXO (International Axion Observatory)

IAXO SENSITIVTY PROSPECTS

Lol to CERN in preparation

CONCLUSIONS & PERSPECTIVES

•CAST extension 2012-2014 is preparing the new generation of helioscopes. The new Micromegas design+ optics for 2013-2014 data taking is a pathfinder for IAXO as it uses the same technological choices chosen for IAXO

•The CERN SPSC approved end of October the 2013-2014 extension of CAST and congratulated the detector achievements

•The last version of ASPERA roadmap includes IAXO and CAST

•Axion physics (in particular CAST and IAXO) present in Europe and USA roadmaps : European Strategy for Paritcles Physics (Krakow) and Vistas in Axion Physics (Seattle) and Intensity Frontier (Rockville)

BACK UP

PERFORMANCE OF NEW SUNSET MICROMEGAS

2012 Upgrade: new Microbulk detectors and new radiopure shielding (thicker and better solid angle closure)

All stainless steel pieces were replaced by copper to prevent [5-7] keV fluorescences.

Background level around 4.5 times lower than previous SSMM

EFFECT OF MUON VETO

Underground vs surface tests: the dominant contribution to background is cosmic rays

Confirmed by simulation: simulation of gamma radiation reproduces well the drop in background level as a function of shielding thickness

CAST constraint on axion-electron coupling

CAST has mainly focused on hadronic (KSVZ) axions:

- **no** coupling of axions to electrons at tree level
- dominant production process in the Sun is the Primakoff process
 - γ + Z \rightarrow a + Z (two-photon coupling)

Non-hadronic (DFSZ) axions:

- coupling of axions to electrons at tree level
- additional axion-production channels in stars (BCA reactions):
 - ✓ electron nucleus and electron electron bremsstrahlung ($e + Z \rightarrow e + Z + a, e + e \rightarrow e + e + a$)
 - ✓ Compton process (γ + e → e + a)
 - ✓ axio recombination (e + I → I⁻ + a)
- astrophysical constraint (evolution of red giants): $g_{ae} \le 2.5 \times 10^{-13}$
- couplings of $g_{ae} \le$ few 10⁻¹³ might explain the anomaly in the cooling of white dwarfs (WD)
- corresponding axion mass is $m_a \sim meV \Rightarrow$ other interesting phenomenological implications in the context of astrophysics and cosmology

CAST constraint on axion-electron coupling

Preliminary limits on the product of the axion – electron & axion – photon coupling constants for $m_a \le 0.02$ eV using CAST phase I data (vacuum phase): $g_{ae} \times g_{a\gamma} \le 0.9 \times 10^{-22}$ GeV⁻¹ at 95% CL

1 hour run and zero background Detector efficiency not taken into account

Upgrades: new X-Ray optics

- Build a single optic to be coupled to a Micromegas detector on the existing Sunrise Micromegas line (Columbia University, the Danish Technical University-Space & LLNL)
- Similar properties similar to the ABRIXAS X-ray telescope
- "easy to build"
 - 15 nested shells
 - build 1/6th of a normal X-ray telescope, (1 of 6 mirror sectors)
- Focal length ~1.5 m
- Efficiency estimation according to NuSTAR data: 4-arcmin radius extraction region would contain ~80% of the encircled energy

Schedule

- ✓ Construct the optic in quarter 1 (Q1) 2013
- ✓ Calibration at the PANTER X-ray facility Q2
- ✓ implementation and alignment in CAST in Q3
- ✓ Ready for science at CAST in Q4 of 2013

IAXO SENSITIVITY SCENARIOS

Parameter	\mathbf{Unit}	CAST-I	Scenario 1	Scenario 2	Scenario 3	Scenario 4
В	Т	9	3	3	4	5
L	m	9.26	12	15	15	20
A	m^2	2×0.0015	1.7	2.6	2.6	4.0
f_M^*		1	100	260	450	1900
b	$\frac{10^{-5} \text{ c}}{\text{keV cm}^2 \text{ s}}$	~ 4	$3 imes 10^{-2}$	10^{-2}	$3 imes 10^{-3}$	10^{-3}
ϵ_d		0.5 - 0.9	0.7	0.7	0.7	0.7
ϵ_o		0.3	0.3	0.3	0.6	0.6
a	cm^2	0.15	3	2	1	1
f_{DO}^*		1	6	14	40	40
ϵ_t		0.12	0.3	0.3	0.5	0.5
t	year	~ 1	3	3	3	3
f_T^*		1	2.7	2.7	3.5	3.5
f^*		1	$1.6 imes 10^3$	9.8×10^3	$6.3 imes 10^4$	$2.7 imes 10^5$

No major changes to the system compared to 2011 telesc

- Reliable operation of CCD during 2012 (84 trackings - efficiency 92%)
- 3 additional noisy pixels on the CCD: removed by analysis
- Alignment of telescope and detector has been checked before the current run
- Long term stability of the detector is good (checked with ⁵⁵Fe calibration source)
- 123.2 hours of axion sensitive time (first 82 trackings)
- Rates:
 - 8.2×10⁻⁵ s⁻¹ keV⁻¹ cm⁻² (whole chip)
 - 8.9×10⁻⁵ s⁻¹ keV⁻¹ cm⁻² (signal region)
 - 22 events in the signal region
- ~ 0.3 counts / tracking

