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1 Lecture 1

1.1 Introduction

Let the Hamiltonian of a particle be

Hr = ǫ(−i∇r) + Ur (1)

Here ǫ is a function, for instance ǫ(p) = p2

2m
−ǫF where ǫF is the Fermi energy.

And Ur is a random potential. As we are looking for universal results, we
may as well assume that Ur has a Gaussian law

〈Ur〉 = 0 , 〈UrUs〉 = γδrs (2)

1



Classically, if the disorder is weak, i.e. Ur is smaller than the energy of
particles, then the conductivity behaves as

σ =
e2nτ

m
(3)

where n is the density and τ the scattering time (related to the mean free
path ℓ by ℓ = τvF where vF is the Fermi velocity, and to the constant γ by
γ = 1

2πντ
where ν is the density of states). This formula is not dependent

on the lattice spacing a. This formula will also describe the behaviour of
quantum systems in situations where the quantum coherence is destroyed,
for instance by heating the sample. But we will assume the temperature to
be zero in the following, i.e. we neglect inelastic scattering.

According to Anderson, if τ becomes small enough so that ℓ ∼ a, then
we have localization and σ = 0 in contradiction with the classical formula.
So σ will vanish if γ exceeds a critical value γc. The transition to σ = 0 is
continuous according to Anderson, and discontinuous according to a scenario
by Mott, which is now disbelieved.

In our system we can have extended states with wavefunctions of the type
eikr, and localized states. Energy levels of localized states differ by ∆E ∼ e−L

while for extended states we have ∆E ∼ 1

L
, where L is the size of the sample.

In the presence of disorder, two localized eigenstates with very close energies
may well be localized at very different positions.

1.2 Renormalization group argument

Anderson localization is the statement that in 3d, if γ is large enough, then
states will be localized. Mott has shown that in an 1d disordered system all
states are localized. The difficult case of 2d was studied in 1979 by Abra-
hams, Anderson, Licciardello and Ramakrishnan, who showed that all states
are localized. They studied the conductance g = σLd−2, and its behaviour
under renormalization. (A more accurate description shoud not use just con-
ductances, but distributions of conductances, and their momenta 〈g〉, 〈g2〉,
etc.) The basic assumption is that its behaviour under a rescaling by a factor
b is g(bL) = f(b, g(L)) for some function f , which leads for values close to
b = 1 to the equation

d log g(L)

d logL
= β(g(L)) (4)
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for some function β. If the conductance is large, we expect that it behaves
as g = g0L

d−2 so that

lim
g→∞

β(g) = d− 2 (5)

On the other hand, localization occurs for small g. In the presence of localiza-
tion, the conductance decreases exponentially with sample size, g = g0e

−αL,
and we have

lim
g→0

β(g) = log
g

g0
(6)

Conversely, if we know β we can detect localization by just looking as its
sign, with β ≤ 0 indicating localization, as it means larger samples have
lower conductances.

The next assumption is that β(g) is a monotonously increasing function.
(This assumption can be violated in the presence of spin-orbit impurities.)
This assumption allows us to determine the sign of β. If d ≤ 2 then β ≤ 0
and we have localization. On the other hand, if d = 3, then we have an
unstable renormalization group fixed point gc such that β(gc) = 0.

1.3 Relation with random walks

It is not a coincidence that the critical dimension d = 2 for localization
coincides with the critical dimension of a random walk. Consider indeed the
probability PR that a random walker visits again his point of origin. To
compute PR, remember that the probability to be at distance r after a time
t is

P (r, t) =
1

(4πDt)
d
2

e−
r2

Dt (7)

Then we have

PR ∼

∫ t

t0

P (0, t)dt (8)

which diverges at large t for d ≤ 2, indicating an almost certain return to
the origin.

A quantum diffusion process will differ from classical diffusion if pro-
nounced interferences occur. A possible source of such interferences is a path
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which crosses itself. This is because the loop which is part of such a path
can be followed in two possible directions, which however produce the same
phase for the amplitude ψ = ei

pr

h̄ , and interfere constructively. It is possi-
ble to detect this effect experimentally, as it can be destroyed by adding a
magnetic field. In the presence of such a field the phase around a loop if
ϕ =

∮

(p − e
c
A)dr, and the phase difference between two orientations of the

same loop is ∆ϕ = 2π φ
φ0

where φ is the magnetic flux in the loop. This
leads to the phenomenon of negative magnetic resistance, i.e. the growth
of conductivity when a magnetic field is applied. This is because conduc-
tivity is diminished by localization, and our constructive interferences tend
to produce localization (a phenomenon called weak localization). Indeed,
these interferences lead to quantum corrections to σ, and the first quantum
correction diverges if d = 2.

Of course, the interferences can be destroyed in the presence not only of a
magnetic field, but also of temperature, as nonzero T implies a cutoff (called
decoherence time) in the integral (8) over t. Actually, the magnetic field
destroys the interferences in the first quantum correction, but not necessarily
in the following corrections, whereas nonzero T destroys the interferences at
all orders.

2 Lecture 2: Perturbation theory

We want to treat the Hamiltonian (1) perturbatively, where of course the
random potential Ur will be the perturbation. We are looking for universal
results, so we assume the law of Ur to be Gaussian as in eq. (2). Of course,
the results will be different for different universality classes specified by the
symmetries that are broken by the impurities or external fields: for example,
a magnetic field or magnetic impurities break the time reversal invariance
while spin-orbit impurities break the spin rotation symmetry.1

2.1 Green’s functions

The basic function which characterizes the system is the Green’s function,
which comes in two varieties: retarded (R) or advanced (A), corresponding

1This chapter has been written by S. Ribault and H. Meier
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to two independent solutions of the second-order equation

(ǫ−H)GR/A(ǫ, r, r′) = δ(r − r′). (9)

(If the equation was first-order, its solution would be simple, which would be
a problem for the employment of theoretical physicists.) The solutions can
be written in terms of eigenfunctions φn,

Hφn = ǫnφn ⇒ GR/A(ǫ, r, r′) =
∑

n

φn(r)φ
∗
n(r

′)

ǫ− ǫn ± iδ
. (10)

Here δ is an infinitesimal positive number. It is easy to compute the Green’s
function if we neglect the random potential and keep only the term H =
H0 = ǫ(−i∇). After a Fourier transformation, we find the function of the
momenta p, p′:

G
R/A
0

(ǫ; p, p′) = δ(p+ p′)G
R/A
0

(ǫ, p) with G
R/A
0

(ǫ, p) =
1

ǫ− ǫ(p)± iδ
. (11)

The full Green’s function G can be computed recursively from the leading-
order term G0 and the potential Ur as

G(r, r′) = G0(r, r
′)−

∫

G0(r, r
′′)Ur′′G(r

′′, r′)dr′′ (12)

where we omit the variable ǫ and the index {R/A}, which are spectators in
this formula. Schematically, the Green’s function can be represented as

G = G0 +
∫

G0UG0 +
∫∫

G0UG0UG0 + · · · .
× × × (13)

2.2 Averaging over disorder

Let us compute averaged Green’s functions. Since the law (2) of the potential
Ur is Gaussian, only even terms in the expansion (13) are nonzero. Averaging
is done diagramatically by connecting pairs of crosses (i.e. the insertions of
Ur) with so-called impurity lines. For instance, at order two, there is only
one diagram,

×× . (14)
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At order four, we have to consider a priori three diagrams,

× ××× + × ××× + × ××× . (15)

In dimensions d ≥ 2, the third diagram, which contains crossed impurity
lines, is of order 1/(τǫ0).

2 If the scattering time τ is large compared to
the inverse of the Fermi energy ǫ0 or: if 1/(τǫ0) ≪ 1, the third diagram
is negligible. In general: All diagrams that contain crossed impurities may
in the leading order in 1/(τǫ0) be neglected (“non-crossing approximation”).
Note, however, that in one dimension, this approximation is not justified and
localization is observed while in dimensions d ≥ 2 the smallness in 1/(τǫ0)
will prevent localization to show up in this approach.

This diagrammatic exercise can be understood as a first hint of the inter-
est of supersymmetry for such systems. This is because our diagrams cannot
contain any loops of the type

×× . (16)

If we wanted to interpret our diagrams as Feynman diagrams of some effective
field theory with the impurity lines representing the interaction between the
fields, such loop diagrams would in general contribute. They would however
be absent in the special case of a supersymmetric theory. In such a theory,
we will not only have the same numbers of bosons and fermions, so that we
have bosonic and fermionic loops with opposite signs, but we also have the
same interactions for bosons and fermions so that eventually the bosonic and
fermionic loops cancel each other.

2.3 Detecting localization

In order to study localization and to show universality (i.e. the independence
of the results from the details of the spectrum ǫ(p)), we will have to compute
fairly complicated correlation functions. As a warm-up exercise, let us start
with the average density of states, a quantity that however does not allow to
detect localization.

2Note that the Planck constant h̄ has been set to one.
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The disorder-averaged density of states at the point r is given by

〈ρ(ǫ, r)〉 =

〈

∑

n

φn(r)φ
∗
n(r)δ(ǫ− ǫn)

〉

= −
1

π
ℑ[
〈

GR(ǫ, r, r)
〉

]

= −
1

2πi

〈

GR(ǫ, r, r)−GA(ǫ, r, r)
〉

(17)

(After averaging, we expect this quantity to be independent from r.) We thus
need to find the disorder-averaged Green’s functions by summing the series
of all non-crossing diagrams that begins with the diagrams in (14) and (15).
Equivalently, we can calculate the self-energy due to diagram (14) in a self-
consistent way 3 and arrive at the Green’s function in the self-consistent Born
approximation,

〈

GR/A(ǫ, p)
〉

=
1

ǫ− ǫ(p)± i
2τ

. (18)

As expected, G
R/A
0

is diagonal in momentum space as the translational sym-
metry has been restored by the disorder-averaging.

In order to calculate the density of states 〈ρ(ǫ, r)〉, eq. (17), it remains
to perform a last momentum integration to find the Green’s function at
coinciding points. Doing so, we find

〈ρ(ǫ, r)〉 = −
1

π
ℑ
[

∫

ddp

(2π)d
〈

GR(ǫ, p)
〉

]

= −
1

π
ℑ
[

ν

∫

dξ

ǫ− ξ + i
2τ

]

= ν. (19)

This result coincides with the density of states in the absence of disorder and
thus the density of states does — as expected — not allow to detect effects
of localization.

If we wish to detect localization effects, we need to consider less trivial
correlation functions. Among the functions of physical relevance, there are
the correlation functions

Xab(r, r′, t) = iθ(−t)
〈[

ja(r, t), jb(r′, 0)
]〉

(20)

3In these calculations, integrals over the momentum reduce as usual to integrals over
ξ = ǫ(p)− ǫ0 while transforming the measure as ddp/(2π)d = νdξ with ν being the density
of states for the spectrum ǫ(p) at the Fermi edge.
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where θ(t) is the step function4 and the ja denotes for a = 0 the operator for
the charge density,

j0(r) = e
∑

kk′,σ

φ∗
k(r)φk′(r)a

†
kσak′σ, (21)

and for α = 1, 2, 3 the operator for the current density,

jα(r) =
∑

kk′,σ

{ ie

2m

(

[

∇αφ∗
k(r)

]

φk′(r)− φ∗
k(r)∇

αφk′(r)
)

−
e2

mc
Aαφ∗

k(r)φk′(r)
}

a†kσak′σ. (22)

a†kσ and ak′σ are election creation and annihilation operators for the state k.
The angular brackets in eq. (20) stand for quantum-thermal averaging.

Clearly, when calculating a physical quantity, one should finally average also
over disorder. The correlation function X00 is the density-density correlation
function while the components Xαβ are related to the conductivity of the
sample.

Another quantity of interest is the level-level-correlation function,

R(ω) =

〈

1

4ων2V 2

∑

kl

[

n(ǫk)− n(ǫl)
]

δ(ω − ǫm + ǫk)

〉

. (23)

Herein, n(ǫ) is the Fermi distribution function.
Rewriting either the correlation functions of eq. (20) or the one in eq. (23)

in terms of retarded and advanced Green’s function, one finds expressions of
the form

Y (ǫ, ω, r, r′) = GR(ǫ− ω, r′, r)
[

GA(ǫ, r, r′)−GR(ǫ, r, r′)
]

. (24)

For instance,

X00(r, r′, t) =
e2

(2π)2i

∑

σσ′

∫

exp
{

− iωt
}

n(ǫ)

×
[

Y 00(ǫ, ω, r, r′)− Y 00(ǫ,−ω, r, r′)
]

dǫdω. (25)

4In this lecture, we use the convention that

θ(t) =

{

0 , t > 0
1 , t < 0

.
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In the case of a localized state, the density-density correlation function will
have a simple dependence on ω,

Y (ǫ, ω, r, r′) =
localized

2π

−iω

∑

n

|φn(r)|
2|φn(r

′)|2δ(ǫ− ǫn) (26)

On the other hand, in the case of non-localized states (for example a metal),
we have in Fourier representation

Y (ǫ, ω, k) =
non−localized

2π

D0k2 − iω
. (27)

A localized state is therefore characterized by the vanishing of the diffusion
coefficient D0.

To find eq. (27), we have to compute

〈Y (ǫ, ω, k)〉 =

∫

dp
〈

GR(ǫ− ω, p)GA(ǫ, p + k)
〉

(28)

where we neglect the GRGR term, which yields a trivial contribution. Dia-
grammatically, we have to take into account besides the impurity lines con-
necting GR with itself and GA with itself those that connect GR with GA.
In the non-crossing approximation, this amounts to summing over “ladder”
diagrams of the type

×

×

××

×× . (29)

Diagrams where impurity lines connect a Green’s function with itself are
taken into account by the self-energy term in the Green’s function as in
eq. (18).

Each “rung” in (29) yields the factor

Π(k, ω) =

∫

ddp

(2π)d
〈GR(ǫ, p)〉〈GA(ǫ− ω, p− k)〉 (30)

and then the whole ladder series

〈Y (ǫ, ω, k) =
Π(k, ω)

1− (2πντ)−1Π(k, ω)
. (31)
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For small ω and k, one obtains eq. (27).
For the conductivity, there are no corrections due to the ladder and from

the integral
∫

〈GR(ǫ− ω, p)〉〈GA(ǫ, p)〉(ddp/(2πd)), we find

σ(ω) =
σ0

1− iω
(32)

where σ0 = 2e2νD0 with the diffusion coefficient D0 = v2
0
τ/d is the classical

Drude conductivity.
While such calculations can be useful for certain systems (like supercon-

ductors), they fail to show localization. In 1979, after Anderson et al. conjec-
tured localization using the renormalization group argument, Gorkov, Larkin
and Khmenitskii found what perturbation theory missed: These are the di-
agrams where impurity lines cross maximally. While individually negligible,
the resummation of these diagrams results in a significant contribution. Lo-
calization corrections are indeed found by taking into account the diagrams
of the type

×

×

××

×× . (33)

Ladder diagrams with no crossed impurity lines like describe (clas-
sical) diffusive motion and thus the mode obtained by resumming the series
is called ”diffuson”. The maximally crossed diagrams can be rewritten in the

form . The mode due to these ladders are called ”cooperon” prop-
agators. The evaluation of the cooperon loops is analogous to those loops
appearing in the diffusons. The cooperons correspond to diffusive motion
along those paths which produced constructive interferences in the quantum
diffusion process of Section 1.3. They lead to corrections to the conductivity
σ of the type

σ

σ0
= 1−

1

πν

∫

1

Dq2 − iω

ddq

(2π)d
(34)

which are infrared-divergent if d ≤ 2, showing localization.
Since it is clearly not satisfactory to just see localization effects in terms

of some divergences, we will want to actually sum the corrections to σ in a
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systematic way. This is what the supersymmetric effective field theory will
be derived for.
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