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Abstract

We conjecture that meanders are governed by the gravitational version of a csy4 two-di-
mensional conformal field theory, allowing for exact predictions for the meander configuration

' ' ' ' 'Ž . Žexponent a s 29 29 q 5 r12, and the semi-meander exponent a s 1 q 11 29
' .q 5 r24. This result follows from an interpretation of meanders as pairs of fully packed loops

on a random surface, described by two csy2 free fields. The above values agree with recent
numerical estimates. We generalize these results to a score of meandric numbers with various
geometries and arbitrary loop fugacities. q 2000 Elsevier Science B.V. All rights reserved.

PACS: 05.20.-y; 02.10.Eb; 04.60.Nc
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1. Introduction

Meanders are a simply stated combinatorial problem consisting in counting the
number M of configurations of a closed self-avoiding road crossing an infinite rivern

through a given number 2n of bridges. Meanders appear in several domains of science
w xincluding computer science 1 , mathematics in connection with both Hilbert’s 16th

w xproblem and the enumeration of ovals of planar algebraic curves 2 and the classifica-
w xtion of 3-manifolds 3 . Meanders also appear in physics as a particular example of

critical phenomena: indeed, meanders also count a particular class of Self-Avoiding
Walks describing the compact foldings of a linear chain.

Ž . ŽE-mail addresses: philippe@spht.saclay.cea.fr P. Di Francesco , golinelli@spht.saclay.cea.fr O. Go-
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Among the various techniques used to attack the problem we can mention direct
w x w xenumerations 4–7 , whose most recent one 8 enumerates up to 2ns48 bridges with a

w xnew transfer matrix method. Other approaches use random matrices 9–13 , or algebraic
w xtechniques based on the Temperley–Lieb algebra 14 . Several exact results have been

w xobtained for meander-related issues, such as exact sum rules for meandric numbers 11 ,
w xand the calculation of a meander-related determinant 3,14 , but despite many efforts, no

explicit formula for M has been found so far for arbitrary n.n

As a critical phenomenon, meanders are characterized by critical exponents describ-
ing the asymptotic behavior of M for large n. We expect a behaviorn

R2 n

M ; , 1.1Ž .n ann™`

where log R is the entropy per bridge and a the configuration exponent. The best
2 Ž .estimates extracted from extrapolation of finite n exact results read R s12.262874 15

Ž . w xand as3.4206 4 8 .
In this paper, we present explicit formulas for the asymptotics of meanders based on

a conjecture stating that meanders are governed by a two-dimensional conformal field
theory with central charge csy4 coupled to gravity. In particular, we obtain

' '29 q 5'as 29 s3.42013288... , 1.2Ž .
12

w xin agreement with 8 and

' '29 q 5'as1q 11 s2.05319873... , 1.3Ž .
24

where a is the configuration exponent describing the asymptotics for the semi-meander
numbers M counting configurations of a closed self-avoiding road crossing a semi-in-n

Ž .finite river i.e. a river with a source around which the road may wind through n
Ž .bridges. Again this value is in agreement with the best estimate as2.056 10 found in

w xRef. 7 .
Our conjecture is based on an interpretation of the meander problem as a pair of two

fully packed loop models on a random surface, whose counterpart on a flat surface is a
two-dimensional Coulomb gas whose critical behaviour is described by two decoupled
csy2 free fields.

Ž .The paper is organized as follows: in Section 2, we recall the O n ,n matrix model1 2

describing the generating function for meanders and semi-meanders with possibly
several connected components of road and river, with a fugacity n per river and n per1 2

road. Section 3 identifies the matrix model as a fully packed loop problem on a random
surface and discusses its flat counterpart, thus obtaining the central charge for arbitrary
fugacities. In Section 4, we extract the critical exponents a and a for meanders and

Ž . w xsemi-meanders n ,n ™0 thanks to the KPZ formula 15–17 relating flat to random1 2

geometry. Section 5 presents several extensions of the configuration exponents corre-
sponding to more involved river geometries. We conclude with more prospective results
for arbitrary fugacities.
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( )2. Meanders and the O n ,n matrix model1 2

w xAs shown in Ref. 11 , the meander problem can be formulated as a Hermitian matrix
Ž .model, hereafter referred to as the O n ,n model, with n black matrices B ,.., B and1 2 1 1 n1

n white ones W , . . . , W , all of size N=N, with partition function2 1 n2

n n1 2

yN Tr V Ž�B 4 ,�W 4.i jZ N ; x s dB dW e ,Ž . Ł ŁHn ,n i j1 2
is1 js1

n n n n1 2 1 21
2 2� 4V B , W s B q W yx B W B W . 2.1� 4 Ž .Ž . Ý Ý Ý Ýi j i j i j i jž /2 is1 js1 is1 js1

Expanding the planar free energy, we get
`1

nF x s lim log Z N ; x s x n n f n ,n , 2.2Ž . Ž . Ž . Ž .Ýn ,n n ,n 1 2 n 1 221 2 1 2NN™` ns1

Ž . Ž .where n n f n ,n counts the total number of planar genus 0 connected self-avoid-1 2 n 1 2

ing but mutually intersecting black and white loop configurations with n intersections,
weighted by their inverse symmetry factor and by a factor n per black loop and n per1 2

white one. Due to planarity, f s0 for odd n.n

The meander numbers M readn

M s4nf 0,0 , 2.3Ž . Ž .n 2 n

where the factor 4n accounts for the 2n positions between bridges on the black loop
Ž .where to open it and 2 for the east-west orientation of the meander see Fig. 1a and 1b .

In this language, rivers correspond to black loops, while roads correspond to white ones,
and the limit n ,n ™0 simply eliminates the configurations with more than one loop of1 2

each color.
A semi-meander is nothing but a configuration of a black open segment and a white

Žclosed loop, in which one of the extremities of the black segment is sent to infinity this

Ž . Ž . Ž . Ž . Ž .Fig. 1. Typical planar i.e. drawn on a sphere diagrams contributing to a f 0,0 and c f 0,0 , and one of8 7
Ž . Ž . Ž .their respective semi- meander pictures b and d .
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is always possible in the planar case, where configurations are drawn on a sphere, as
.illustrated in Fig. 1c and 1d . In the matrix language, it corresponds to a large N

correlation function of the operator
n11

f s lim Tr B 2.4Ž . Ž .Ý1 iNN™` is1

that creates a black endpoint, namely
`

n² :f f s n n f n ,n x , 2.5Ž . Ž .Ý1 1 1 2 n 1 2
ns1

Ž .where n n f n ,n counts the number of configurations of rivers made of one1 2 n 1 2

segment and a number of loops, intersecting closed roads. Again the semi-meander
numbers simply read

M s2 f 0,0 , 2.6Ž . Ž .n n

Žas we have picked one endpoint of the segment to send it to the infinity on the left see
.Fig. 1d .

3. Meanders as a height model: fully packed loop model

Ž . Ž .The O n ,n model above is a particular version of a fully-packed loop FPL model1 2

on a random surface. The random surface is dual to the graphs occurring in the Feynman
Ž .expansion of the free energy 2.2 . By full packing, we mean that the loops visit all the

vertices of the graph. Moreover, each edge is visited by either a black or a white loop.
2Ž .On the regular square lattice, these two properties are characteristic of the FPL n ,n1 2

w xloop model of 18,19 . A configuration of this model is characterized by a set of fully
packed black loops visiting all the vertices and half of the edges, the other half of the

Ž .edges forming fully packed white loops. Each black resp. white loop receives a weight
Ž .n resp. n . For n sn s2, the loop fugacities are realized by assigning independent1 2 1 2

orientations to all the loops. An oriented black and white fully packed loop configuration
may be equivalently translated into a three-dimensional height configuration on the faces
of the lattice as follows. We first bicolor the vertices of the lattice, by letting vertices
marked with v and with O alternate around each face. Next we define a vector variable
on each edge according to the rule

Ž .3.1

Ž 3.where A, B,C, D are four fixed vectors with vanishing sum hence generically in R .
ŽTo determine the height h on each face, we use the Ampere rule, that h increases resp.`

. Ž .decreases by the edge vector crossed, if it points to the left resp. right . This is well
defined thanks to the relation AqBqCqDs0. Note in this formulation that

Ž .exchanging AlyB resp. ClyD along a loop amounts to reversing the orientation
Ž . 2Ž .of the corresponding black resp. white loop. This defines the FPL n s2,n s21 2
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model, which is critical. In terms of the height variable, this model is described in the
Ž .continuum limit by three free fields one for each component of the height vector ,

hence a conformal theory with central charge cs3. This model can be modified by
introducing local Boltzmann weights that assign a weight n resp. n per loop of either1 2

2Ž . 2Ž .kind: this is the FPL n ,n model. Remarkably, the FPL n ,n model remains1 2 1 2

critical for n ,n F2. It is still described by a 3-dimensional Coulomb gas, but with two1 2
w xadditional electric charges at infinity, resulting in a central charge 18,19

e2 e2
1 2

c n ,n s3y6 q , n s2cos p e , is1,2 . 3.2Ž . Ž . Ž .FPL 1 2 i iž /1ye 1ye1 2

We may now define this model on a random surface, by representing its configura-
Ž .tions as graphs made of white and black edges for the two types of loops , and vertices

of the form

Ž .3.3

and weighting each black, resp. white, loop with a factor n , resp. n . Moreover, as we1 2

have seen above, the vertices of the graph must be bicolored with alternating marks v

and O, and the white and black loops oriented, in order to define a unique three-dimen-
Ž .sional edge configuration, using 3.1 . On planar graphs the bicolorability of the vertices

ensures that the tessellation dual to the graph is Eulerian.
If we relax this constraint of bicolorability, it is no longer possible to define

three-dimensional edge variables, but it is actually easy to see that the black and white
loop configurations are now faithfully reproduced by considering only two edge
variables, say A for black edges and C for white ones, which in turn amounts to setting
AqBsCqDs0. With the same Ampere rule across oriented black or white edges,`
we see that the height h becomes two-dimensional, as it takes only values of the form
h qmAqpC, m, p two integers. The net effect has therefore been, by lack of0

bicolorability of the graphs, to reduce the height variable to a two-dimensional space,
resulting in

e2 e2
1 2

c n ,n s2y6 y6 sc n qc n ,Ž . Ž . Ž .1 2 1 21ye 1ye1 2

e2

c n s1y6 , ns2cos p e . 3.4Ž . Ž . Ž .
1ye

This shift by y1 in the central charge when going from Eulerian to unconstrained
w xtessellations has already been observed in Ref. 20,21 . Note also that the central charge
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2Ž .Fig. 2. Height configurations around a vertex of the FPL n ,n model on a non-bicolorable graph. Black1 2

edges correspond to the values Asy B, while white edges correspond to Csy D. In the b vertex, the
height on the two opposite SW and NE faces is the same, hence the vertex may be undone as shown.

Ž . Ž . Ž .c n ,n sc n qc n is that of two decoupled free fields. In flat space, such an1 2 1 2

effective decoupling of the two a priori coupled free fields describing the FPL model has
w xalready been observed in Ref. 18,19 .

Ž . Ž .The O n ,n model is a special version of this in which the type b vertex of 3.31 2

and Fig. 2 is forbidden. As shown in Fig. 2, this vertex is expected to be irrelevant
anyway, as the height h takes the same value in the SW and NE faces, so that the
vertex can be ‘‘undone’’ to let these two faces communicate without altering the height
configuration.

Ž .It is interesting to note that for this particular case without b vertex the bidimen-
sionality of the height variable can be recovered in a slightly different way. Indeed, in
the absence of the type b vertex, the graphs are automatically bicolorable, hence
allowing a priori for the construction of a three-dimensional height. But it turns out that
the heights on two opposite faces around a vertex of type a may only differ by the

Ž . Ž .quantities " AqC , " AqD , as illustrated in Fig. 3, whereas the differences
Ž . Ž ." AqB s. CqD are forbidden. This means that the graph, whose faces can be

Ž .naturally bicolored say black and white , must have all the heights on white faces in the
same plane generated by AqC, and AqD, and all the heights on the black faces on a
parallel plane, distant by C or D. For the sake of simplicity, we may take BsyA and

Ž .DsyC as above, without altering the model since the differences " AqB and
Ž ." CqD never appear here, and the heights all lie in the same plane generated by A

and C.
Ž .In conclusion, we are led to the natural conjecture that the O n ,n model is the1 2

random surface version of a critical fully packed loop model described on the square
Ž .lattice by two free fields, and with central charge 3.4 above. In the particular case of

1meanders when n sn s0, i.e. e se s , we find csy2y2sy4 as announced.1 2 1 2 2

Ž .Fig. 3. Height configurations around a vertex of the O n ,n model. Black edges correspond to the values A1 2

or y B, while white edges correspond to C or y D. The height difference between two opposite faces may
Ž . Ž .only take the values AqC, Aq D, BqCsy Aq D and Bq Dsy AqC .
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4. Exact exponents from Quantum Gravity at n sn s01 2

The above identification of the meander problem as a csy4 field theory on a
random sphere can be confirmed by computing various exact critical exponents of the
csy4 conformal theory coupled to two-dimensional gravity, as expressed through the

w xcelebrated KPZ formula 15–17 , relating the anomalous dimensions of operators in the
lattice and random surface versions of the theory.

Defining a conformal theory on a random surface, one is led to introduce a new
parameter, the cosmological constant, coupled to the area of the surfaces. In our matrix

Ž . nlanguage, its role is played by the parameter x in 2.1 , through the weight x , where n
is the total number of vertices of the random graph, as well as the total area of its dual,
made of squares of unit area. Criticality is reached when x™x , such that the freec

energy’s behavior becomes singular, with a power law

2yg strF x ; x yx , 4.1Ž . Ž . Ž .c

where g stands for the string susceptibility exponent, related to the central charge cstr
w xthrough 15–17

(cy1y 25yc 1ycŽ . Ž .
g c s , 4.2Ž . Ž .str 12

valid for all cF1. This is immediately translated into the asymptotic behavior of the
Ž . ncoefficients F in the expansion F x sÝ f x asn n

yn
xŽ .c

f ; . 4.3Ž .n 3yg strn

In the case of meanders, we have csy4, and

R2 n

M ; , 4.4Ž .n an

where R s1rx , andc c

'29q 145
as2yg csy4 s s3.42013288... . 4.5Ž . Ž .str 12

Ž .This value is in agreement with the recent improved numerical estimate as3.4206 4
w x8 .

As mentioned above, the semi-meander numbers involve the computation of a
correlation function of operators inserting black endpoints. The operators of a conformal
theory are known to be dressed when the theory is coupled to gravity, and their
correlations have the following behavior when the cosmological constant x approaches
its critical value x :c

k

Ž .D yg y ky2m strÝ i

is1² :f f ...f ; x yx , 4.6Ž . Ž .m m m c1 2 k
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Ž .where D is the anomalous dimension of the dressed operator f , and g is as in 4.2 .m m str

Furthermore, the dressed dimension D is related to the conformal dimension h of the
Ž . w xundressed operator of the conformal theory through the relation 15–17

' '1ycq24h y 1yc
Ds . 4.7Ž .' '25yc y 1yc

Ž . Ž .Let us now return to the case of semi-meander numbers, given by 2.5 , 2.6 . The
operator f creating black endpoints actually pertains to the gravitational version of the1

csy2 free field theory describing the black loops. At this stage, we can keep an
Ž . Ž .arbitrary weight n for the black loops, i.e. consider the O n theory with c n s1y1 1 1

2 Ž . Ž .6e r 1ye , n s2cos p e . In the corresponding Coulomb gas language, the correla-1 1 1 1
² : ² Ž . Ž .:tor f f corresponds to a correlation c z c z of a conformal operator that1 1 1 1 y1 2

creates an oriented dislocation line in the height picture between two magnetic monopoles
at z and z . The corresponding magnetic charges "m must be corrected by an electric1 2

charge ese to restore the correct weight n for the segment joining two such insertion1 1

points when this segment winds around a cylinder. In general, electro-magnetic opera-
tors with electric charge e and magnetic charge m have conformal dimension

e ey2 e gŽ .1 2h s q m , 4.8Ž .e ,m 4 g 4

Ž . Ž .provided eye ms0, where g is the coupling of the free field, with n sy2cos p g ,1 1

i.e. gs1ye . In our case, the operator of insertion of 1 line originating from one1
Ž w x.endpoint corresponds to having ms1r2 and ese see for instance 22 . Taking now1

n s0, i.e. e s1r2, we identify for c the conformal dimension1 1 "1

e2 1ye 31 1
h sh sy q sy 4.9Ž .1 e ,1r21 4 1ye 16 32Ž .1

Ž .and its gravitationally dressed counterpart through 4.7 ,

1 ' '11 y 5
2

D s . 4.10Ž .1 ' '29 y 5

Ž . 1The semi-meander generating function 2.5 then reads

2 D yg1 str² :f f ; x yx 4.11Ž . Ž .1 1 c

Ž .as a particular case of 4.6 and gives the semi-meander asymptotics

Rn

M ; , 4.12Ž .n an

1 ² :When n ,n ™0, we have to pick the term proportional to n n in f f , namely compute1 2 1 2 1 1
² : Ž . ² :lim f f r n n . By a slight abuse of notation, we still write the result as f f .n ,n ™ 0 1 1 1 2 1 11 2
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where

1 ' ' 'as1yg y4 q2 D s1q 11 29 q 5 s2.05319873... . 4.13Ž . Ž .Ž .str 1 24

Ž .This value again is in agreement with the recent numerical estimate as2.056 10 of
w x7 .

5. More river geometries

The above picture leads to many interesting results for n sn s0 using operators of1 2

insertion of more lines. In the matrix model formalism, we introduce

n11
kf s lim Tr B , 5.1Ž .Ž .Ýk iNN™` is1

creating k black lines from a point. The magnetic analogue of this operator has
dimension

k 2 y4
h sh s 5.2Ž .k e s1r2,k r21 32

and we get the dressed dimension

1
2' '8q3k y 5

2
D s . 5.3Ž .k ' '29 y 5

We may use the operators f to compute a class of generalized meandric numbers,k

corresponding to situations when the river is made of several connected segments
andror loops, for instance in the cases of the river configurations depicted in Fig. 4,

k a y1k - star² :‘‘k-star’’: f f ; x yx ´ a skD qD yg q2yk ,Ž . Ž .1 k c k - star 1 k str

pqky2 a y1p ,k - star² :‘‘p,k-star’’: f f f ; x yxŽ . Ž .1 p k c

´ a s pqky2 D qD qD yg q3ypyk ,Ž .p ,k - star 1 p k str

3 5 a y1pentagon² :‘‘pentagon’’: f f ; x yxŽ . Ž . Ž .3 1 c

´ a s5D q3D yg y5 ,pentagon 1 3 str

a y1cherry² :‘‘cherry’’: f f ; x yx ´ a sD qD yg q1 ,Ž .1 3 c cherry 1 3 str

a y1eight² :‘‘eight’’: f ; x yx ´ a sD yg q2 , 5.4Ž . Ž .4 c eight 4 str
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Fig. 4. Meandric numbers with particular river configurations: ‘‘k-star’’s the river is a star with k branches,
with k univalent vertices and one k-valent one; ‘‘p,k-star’’s the river is made of two stars with respectively p
and k branches one of which is common to both, i.e. with one p-valent, one k-valent and pq ky2 univalent
vertices; ‘‘pentagon’’s the river is a tree with three trivalent vertices and five univalent ones; ‘‘cherry’’s the
river is made of a loop connected to a segment, with one tri-valent and one univalent vertices; ‘‘eight’’s the
river is made of two loops connected at one point. On the sphere, we may send the central vertex of the river
of the ‘‘k-star’’ graphs to infinity, yielding k parallel semi-infinite rivers connected at infinity. Moreover, the
‘‘cherry’’ configuration is equivalent to that of one loop including one segment, and the connection point may
be sent to infinity, yielding a semi-infinite river parallel to an infinite one. Similarly, the ‘‘eight’’ configuration
can be transformed into that of two included loops, and the connection point may be again sent to infinity,

Ž .yielding two parallel rivers with all their ends connected at infinity .

² : ² : Ž .where again PPP stands for lim PPP r n n . In all these cases, then ,n ™ 0 1 21 2

corresponding meandric numbers count the configurations of a single road crossing the
connected river graph, one vertex of which we have sent to infinity. As illustrated in Fig.
4, we have chosen to send the central k-valent vertex of the k-star to infinity say on the

Ž .left, leaving us with a river formed of k parallel half-lines connected at infinity ; in that
² k:case, the counting function for theses configurations is k f f , to account for thek 1

k-fold degeneracy. Note also that the ‘‘cherry’’ river configuration equivalently corre-
sponds to a segment included in a loop, and that the connecting point can be sent to
infinity, leaving us with a configuration of a semi-infinite river parallel to an infinite
one, as shown in Fig. 4. Similarly, the ‘‘eight’’ configuration corresponds to two parallel
infinite rivers.
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Ž .In particular, Eq. 5.4 yields for the ‘‘3-star’’, ‘‘pentagon’’, ‘‘cherry’’ and ‘‘eight’’
Ž .configurations of river, corresponding respectively to ks3 in the first case of 5.4 , and

the three last ones,

' ' ' '1 3 11 q 35 y8 5 5q 145
a s q y13-star ' '2 1229 y 5

1 ' ' ' ' 'sy1q 5 q 29 3 11 q 35 y4 5 s0.09899483... ,Ž . Ž .48

' ' ' '1 5 11 q3 35 y16 5 5q 145
a s q y5pentagon ' '2 1229 y 5

1 ' ' ' ' 'sy5q 5 q 29 5 11 q3 35 y12 5 sy3.80941298... ,Ž . Ž .48

' ' ' '1 11 q 35 y4 5 5q 145
a s q q1cherry ' '2 1229 y 5

1 ' ' ' 's1q 5 q 29 11 q 35 s2.46592898... ,Ž . Ž .48

' ' '14 y 5 5q 145
a s q q2eight ' ' 1229 y 5

1 ' ' ' 's2q 5 q 29 14 q 5 s3.89823486... . 5.5Ž .Ž . Ž .24

In addition to the cases of Fig. 4, we may also allow for disconnected rivers. For
instance, we may realize a river made of k distinct segments by considering, for
n ,n ™0,1 2

1 2 k a y1k - segments² :lim f ; x yxŽ . Ž .1 ckn nn ,n ™01 2 1 2

´ a s2kD yg q3y2k , 5.6Ž .k - segments 1 str

whereas we may get a river made of k distinct segments, plus a p-star by considering

1 2 kqp a y1k - segmentsqp - star² :lim f f ; x yxŽ . Ž .1 p ckq1n nn ,n ™01 2 1 2

´ a s 2kqp D qD yg q3y2kyp . 5.7Ž . Ž .k - segmentsqp - star 1 p str

Ž . Ž .In both cases 5.6 , 5.7 , and contrary to the situations of Fig. 4 where the river is
Ž .connected possibly through the point at infinity , the road must visit all the connected

components of river, to ensure that the meandric black and white graph is globally
connected.

Ž . ŽNote finally that for ks2 in 5.3 we get D s0 this is no surprise, as h s0 and2 2
.f is the dressed identity operator, also called puncture operator in gravity . This means2

that the insertion of any number of f in a correlation has the same effect as the same2
dnumber of applications of x on the critical asymptotics. More precisely, we havedx

p² :X fŽ .2 yp
; x yx 5.8Ž . Ž .c² :X
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for any combination of operators X. The puncture operator f can therefore be viewed2

as that of marking a point on the river. In particular, we have

1yg2 n str² :f A M x ; x yx , 5.9Ž . Ž .Ý2 n c
nG1

in agreement with as2yg .str

6. Discussion

Ž . Ž .The value 3.4 of the central charge c n ,n allows us to extend the meander results1 2

to arbitrary values of n ,n . Defining the multi-river and multi-road meander polyno-1 2

mial

m n ,n s4nf n ,n , 6.1Ž . Ž . Ž .n 1 2 2 n 1 2

we have the following prediction for its large n asymptotics:

2 nR n ,nŽ .1 2
m n ,n ; ,Ž .n 1 2 a Žn ,n .1 2n

1
a n ,n s2y c n ,n y1y 25yc n ,n 1yc n ,n . 6.2(Ž . Ž . Ž . Ž . Ž .Ž . Ž .ž /1 2 1 2 1 2 1 212

w xThis can be checked against the exact result 23 in the case n s1 and n arbitrary,2 1
Ž .where e s1r3, obtained from the solution of the O n ,n s1 matrix model in the2 1 2

w xlimit of large size N. The result of 23 reads

e12sin p ež / 12R n ,1 s2 , a n ,1 s2q , 6.3Ž . Ž . Ž .1 12 1yee 11

Ž .and this value agrees with our general prediction 6.2 .
Ž .Note that we have no definite answer for R n ,n , as the critical value x of the1 2 c

cosmological constant is a non-universal quantity, expected to depend on n and n1 2
Ž . Ž .explicitly, and not just on c n ,n . We expect 6.2 to hold only if1 2

c n F1 , c n F1 and c n ,n F1 . 6.4Ž . Ž . Ž . Ž .1 2 1 2

Ž . Ž Ž . .Indeed, the O n model is no longer critical for n)2 c n F1 for nF2 , therefore we
expect a different phase whenever n )2 or n )2. This phase has been investigated in1 2

Ž . w xthe case of the gravitational O n model 24 and found to have g sq1r2 uniformly.str
Ž .Moreover, the relation 4.2 breaks down when c)1, and the gravity is then known

w x Ž25,26 to degenerate in such a way that surfaces with long fingers dominate branched
.polymer phase , and throughout this phase one has g sq1r2. The correspondingstr

value of the meander exponent is therefore as2yg s3r2. This is in agreementstr
Žwith the results for the exact large n expansion of the meander polynomial n m n s2 2 n 1

. Ž . w x0,n denoted by m n in Ref. 6 .2 n 2



[ ] ( )P. Di Francesco et al.rNuclear Physics B 570 FS 2000 699–712 711

The operator of insertion of one black line is still well defined and has conformal
Ž .dimension h given in 4.9 , and dressed counterpart1

3
1ye yc n y 1yc n ,n(Ž . Ž . Ž .( 1 2 1 22

D n ,n s . 6.5Ž . Ž .1 1 2
25yc n ,n y 1yc n ,n( (Ž . Ž .1 2 1 2

This leads to the asymptotics of the multi-river and multi-road semi-meander polynomial
Ž . Ž .m n ,n s f n ,n in which the river is made of one segment and a number of loops.n 1 2 n 1 2

Ž . ² :Recalling that the numbers m n ,n are generated by the correlation function f fn 1 2 1 1
Ž .of the O n ,n model, we find1 2

n
R n ,nŽ .1 2

m n ,n ; ,Ž .n 1 2 a Žn ,n .1 2n

a n ,n sa n ,n y1q2 D n ,nŽ . Ž . Ž .1 2 1 2 1 1 2

1s1q 25yc n ,n q 1yc n ,n 6 1ye y4c n .( ( (Ž . Ž . Ž . Ž .ž /1 2 1 2 1 224

6.6Ž .
Ž Ž . .In the particular case n s1 with c n s0 , we have2 2

1 6 6 3
a n ,1 s1q 2ye qe 6 1ye s ,(Ž . Ž . Ž .1 1 1 1( (ž /24 1ye 1ye 21 1

6.7Ž .

independent of the value of n . This agrees with the known result for n s0, where1 1
n 3r2Ž . Ž . ŽŽ . .m 0,1 sc s 2n !r nq1 !n! ;4 rn , in terms of the Catalan numbers c .n n n

Ž .We expect the formula 6.6 to hold only if
3c n ,n F1 , c n F1 and c n F 1ye . 6.8Ž . Ž . Ž . Ž . Ž .1 2 1 2 12

Ž . Ž .The last bound corresponds to a n ,n s1 in 6.6 , and actually corresponds to a1 2

‘‘winding transition’’ beyond which semi-meander configurations with large numbers of
Ž .circles with only one intersection with the river dominate.

Note added in proof

Since we implicitly use magnetic operators in our derivation of the exponents a for
the various geometries, the edges of the corresponding graphs are implicitly oriented.
These orientations must be such that all the edges meeting at a given vertex have the
same inwards or outwards orientation. All the graphs we considered here can be
equipped with such orientations except for the geometry of the ‘‘eight’’ and that of the
‘‘cherry’’. For these two cases, the apparent problem can be bypassed by marking a
point on each closed loop, thus adding a bivalent vertex across which the orientation

Ž .is reversed. Strictly speaking, the values of a and a of Eq. 5.5 thuseight cherry

correspond to a sa marked q2 and a sa marked q1, where the superscript indi-eight eight cherry cherry

cates that configurations are counted with a marked point on each loop. It is easy to
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Ž .prove that, without these marked points, the exponent for the ‘‘eight’’ resp. ‘‘cherry’’
Ž . unmarkedgeometry simply reduces to the meander resp. semi-meander exponent, hence aeight

unmarkedŽ . Ž .sa given by Eq. 1.2 and a sa given by Eq. 1.3 .cherry
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