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We introduce a matrix model describing the fully packed O(n) model on random
Eulerian triangulations (i.e. triangulations with all vertices of even valency). For n = 1
the model is mapped onto a particular gravitational 6-vertex model with central charge
¢ = 1, hence displaying the expected shift ¢ — ¢ 4+ 1 when going from ordinary random

triangulations to Eulerian ones. The case of arbitrary n is also discussed.
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1. Introduction

Loop models are a general class of statistical problems where the elementary statistical
objects are loops drawn on a two-dimensional lattice (for a review see for instance [1]).
Loop models arise naturally in the high temperature expansion of lattice statistical models
but also as the description of one-dimensional lattice objects, like self-avoiding polygons.
An interesting limiting case in that of fully packed loop models where the set of loops is
required to cover the entire lattice, without vacancies. By assigning an activity n per loop,
such models can be thought of as the zero temperature limit of O(n) models, more simply
referred to as fully packed O(n) models. In the following, we shall restrict our discussion
to triangular lattices, be it the flat regular triangular lattice or random triangulations.
The loops are understood here as being self-avoiding and non-intersecting. Furthermore,
all the triangles of the lattice are assumed to be visited by a loop. For n = 1, the fully
packed O(n) model describes for instance configurations of dimers drawn on the dual of the
(regular or random) lattice, the dimers occupying the edges dual to those not traversed
by a loop (each triangle has exactly one such edge). The model describes equivalently
the ground states of an anti-ferromagnetic Ising model. In the limit n — 0, the model
describes Hamiltonian cycles on the lattice, which are the compact conformations of a
polymer ring. At n = 2, the model defined on the regular triangular lattice is equivalent
to a three-coloring problem, namely the problem of coloring the edges of the lattice with
three colors in such a way that the three edges adjacent to any triangle are of different
color [2]. Alternatively, it describes the possible folded states of the regular triangular
lattice onto itself [3]. On random triangulations, this equivalence with three-coloring and
folding problems remains valid only for a restricted class of triangulations [4,5]. We shall
return to this below.

A remarkable prediction for the fully packed O(n) model on the regular two-
dimensional triangular lattice is that it is not in the same universality class as the usual low
temperature dense phase of the O(n) model in which vacancies are allowed. If we denote
by cq(n) the central charge of the dense phase fixed point, that of the fully packed phase
is expected to present a shift by one, namely c¢(n) = c¢q(n) + 1. This remarkable fact was
first conjectured in [6] on the basis of transfer matrix studies, and then confirmed in [7] on
the grounds of a nested Bethe Ansatz solution. As explained in [6], the shift by one in the
central charge can be given a nice heuristic interpretation. Indeed, by marking those edges

of the triangular lattice which are traversed by the loops, any set of fully packed loops
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can be viewed as a two-dimensional picture of a three-dimensional piling of cubes, whose
surface defines a one-dimensional SOS height variable on the triangular lattice. This SOS
degree of freedom, which emerges only if the loops are fully packed, is responsible for the
shift in the central charge.

Unfortunately, the above geometrical picture breaks down when going to ordinary
random triangulations. Indeed, the local rules which would define a height variable out of
the loops in general lead to frustrations. In this case, the SOS variable cannot be properly
defined anymore and the shift in the central charge does not occur. In other words, for
ordinary random triangulations, the fully packed O(n) model is again described by the
dense phase fixed point.

Recently, in [8], it was conjectured that the shift by one in the central charge can
be reinstated in the random case if the triangulations are restricted to the class of so-
called Eulerian triangulations. An Eulerian triangulation is a triangulation where an even
number of triangles meet at any given vertex. Eulerian triangulations arise naturally in
the context of folding problems involving random lattices. Indeed, in genus zero, Eulerian
triangulations are the vertex-tricolorable triangulations, namely those for which each vertex
can be assigned one of three colors in such a way that any two neighbors have distinct
colors [9]. This latter condition ensures the possibility of folding the triangulation in
two dimensions, as explained in [8]. For Eulerian triangulations, the different possible
folded states can then be mapped onto edge-three-colored states, or equivalently onto
configurations of fully packed loops with a weight n = 2 per loop. The fully packed
O(n = 2) model on random Eulerian triangulations thus provides a natural description
of the folding of fluid membranes. As explained in [8], for Eulerian triangulations, the
construction of the SOS variable again becomes possible without frustrations, and a shift
by one in the central charge should then be observed. This phenomenon was moreover
confirmed numerically in [8] in the limit n — 0 by a direct counting of Hamiltonian
cycles on random Eulerian triangulations with up to 40 triangles. The string susceptibility
exponent was found to be compatible with the value v = (—1 — v/13)/6 expected for a
central charge ¢ = —1, instead of the value v = —1 found for ordinary triangulations,
corresponding to ¢q(n = 0) = —2 [10-12].

The purpose of this paper is to confirm this shift phenomenon in the case n = 1 by
showing that the fully packed O(n = 1) model has ¢ = 1 when defined on random Eulerian
triangulations, as opposed to the usual result ¢ = 0 for the (dense or fully packed) O(n = 1)

model on ordinary random triangulations [13,14].
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The paper is organized as follows: in Sect.2, we present a matrix model formulation
for the O(n = 1) model on random Eulerian triangulations. This model is shown in Sect.3
to be equivalent to a particular gravitational 6-vertex model, described at criticality by a
¢ = 1 conformal field theory coupled to gravity. In Sect.4, we extend our matrix model
formulation to arbitrary values of n. We focus in particular on the limit n — 0 describing

Hamiltonian cycles. A few concluding remarks are gathered in Sect.5.

2. Matrix Model for the Fully Packed O(n = 1) Model on Random Eulerian

triangulations

As mentioned in the introduction, an Eulerian triangulation is a closed random trian-
gulation of arbitrary genus, for which each vertex has an even number of adjacent triangles.
Alternatively, an Eulerian triangulation can be defined as a triangulation where one may
assoclate a sign 4 or — to each triangle in such a way that any two adjacent triangles have
opposite signs.

Here we consider random FEulerian triangulations equipped with fully packed self-
avoiding loops of adjacent triangles, i.e., triangulations covered by a set of loops such that
each triangle belongs to exactly one loop. In this section and in Sect.3, we address the
case of an activity n = 1 per loop; the case of general n (including the Hamiltonian cycle
limit n — 0) will be discussed in Sect.4. As opposed to the usual O(n) model coupled to
gravity [13], we insist on imposing here the two crucial restrictions: (1) the loops must
be fully packed (no vacancies) and (2) the triangulations must be Eulerian. Ounly in this
particular case is the model expected to be described by a different universality class than
the usual O(n) model, with the ¢ — ¢ + 1 shift in the central charge.

Our model is best expressed in the dual picture as that of a three-coordinate (¢*)
lattice with bi-colored vertices (corresponding to the above-mentioned + and — signs),
equipped with loops visiting all vertices. In particular, the signs of the vertices visited
by a given loop alternate along the loop. The corresponding graphs are the Feynman
diagrams of the following simple matrix model. We consider a pair of complex N x N
matrices (X, L), where (X, L) will correspond to the + vertices of the dual graph, whereas
(X1, L7) will correspond to the — vertices. As usual, Feynman diagrams for such objects

are obtained by joining pairs of double-edges, each pair corresponding to a matrix element
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M;; (resp. 1\42}), where the two lines carry the matrix indices ¢ and j, and the double-edge

is oriented away from (resp. towards) a vertex. We need the following interactions

Te(XL?) : @

Te(XH(L')) - e

N N o)
and propagators
1 x X
(X)ij (X)) = ~oidin = [ S
1 L v
(L) (LYr) = N(Sil(sjk: J' :(
(2.2)

The latter form the edges of the ¢*-diagram, and are of two types: those visited by the
loops (LLT), and those not visited by loops (XXT). The mixed nature (MMT) of the
propagators guarantees the Eulerian structure. The interaction terms (2.1) describe the
three-coordinate vertices with the corresponding signs and exactly two occupied (L) and
one empty (X) incoming edges. The diagrams with vertices (2.1) and propagators (2.2)
arise in the Feynman expansion of the following four-matrix integral

Z(g;N) = /dXdXTdeLTe_NTr(V(X’L))
’ ’ (2.3)

V(X,L) = XX+ LL" — g(XL* + XT(L")?),

where the standard measure over N x N complex matrices reads dMdM' HlSiJSN
dRe(M;;) dIm(M;;), and is normalized in such a way that Z(g = 0; N) = 1.

As usual, the free energy f(g; N) = Log Z(g; N) = 3,50 N2 72" fn(g) is expressed as
a sum over the contributions of the connected Eulerian tri_angulations of genus h. The
genus zero limit is therefore obtained by taking N — co. We have represented in fig.1 an

example of a connected genus zero diagram with eight triangles and two loops.
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Fig. 1: A typical genus zero configuration involving two loops (solid double-
lines) fully packed on an Eulerian triangulation made of 8 triangles. We have
represented by dashed double-lines the un-occupied edges of the dual lattice.
The orientation of the double-lines reflects the Eulerian constraint (all arrows
point towards triangles with + signs, and away from those with — signs, hence
the orientation alternates along each loop).

3. Mapping to a critical point of the gravitational 6-vertex model

The integral (2.3) is Gaussian in all matrices. Let us first integrate over X by setting
X = %(P +iQ), where P and @ are two N x N Hermitian matrices, and the measure is
transformed into dXdX ' o« dPdQ, where dP and dQ stand for the standard Haar measure
for Hermitian matrices, normalized in such a way that Z(¢g = 0; N) = 1. Similarly, we set
L= %(A +¢B), with A and B Hermitian, so that the potential becomes

Tr(V(X,L)) = Tr(%(A2+B2)+%(p2+Q2)

g 2 2
- E(P(A ~ B?) -~ Q(AB + BA)))

= Tr(%(Az—I—BZ) (3.1)
1 g 2 2112 g 2 242
+§(P_E(A - B%)) _Z(A - B7)
1 g 2 92 2
+5(Q+ AB + BAP - (4B + BAP)
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Performing the Gaussian integrals over the shifted matrices P and @), we are left with

Z(g;N) = /dAdBe_NTrW(A’B),
1 ) ) (3.2)
W(A,B) = (4’ +B%) = L-(A' + B') - -(4AB)".

This is nothing but the partition function of the gravitational 6-vertex model solved in
the large-N limit by Kazakov and Zinn-Justin [16] (with the parameters o = 3 = ¢?),
whose critical point ¢ = g, = 1/(2/7) corresponds to a compactified boson with radius
R=1/(2v2).

The crucial outcome of this equivalence is that the conformal field theory underlying
our problem has central charge ¢ = 1, which precisely corresponds to a shift by one
of the central charge ¢ = 0 of the ordinary (fully packed or not) dense phase of the
O(n = 1) model on arbitrary (i.e. non-necessarily Eulerian) triangulations. This proves in
the particular case n = 1 the claim of [8] that the central charge increases by one when the
fully packed model is defined on random Eulerian triangulations as opposed to ordinary
random triangulations.

Two remarks are in order. From the critical value g. = 1/(2y/7), we deduce that the
number of genus zero Eulerian triangulations with 27" triangles and equipped with fully

packed loops behaves for large T' as
E(n=1) ~ (4m)7, (33)

to be compared with zi%. ~ 8T for pure Eulerian triangulations [5], to zi.(n = 0) ~
(10.10...)T for Eulerian triangulations equipped with Hamiltonian cycles [8], and finally to
zor(n = 1) ~ (24)T for ordinary random triangulations equipped with fully packed loops.

H [t N
L

:Lfi\\}(\ L — i j:
L

L

Fig. 2: Shrinking the (X XT) propagators (dashed double-edges) produces a
particular 4-valent vertex of the 6-vertex model.
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Secondly, let us note that the 6-vertex correspondence is best seen by shrinking the

(X XT) propagators so as to form four-valent vertices with oriented edges (cf. fig.2).

4. The O(n) model on random Eulerian triangulations
4.1. Matriz model for arbitrary n

The fully packed O(n) model must incorporate a weight n per loop, obtained for
integer n by replicating n times the N x N matrix L of (2.3). Beside the complex matrix
X, we therefore introduce n complex matrices L,, o = 1,2, ..., n, with the following vertex

interactions

Tr(XL%) and Tr(XT(LI)?), fora=1,2,...,n, (4.1)

and propagators

()i (XTt) = — b,
v (4.2)
<(La)ij(L£)kl> = N5aﬂ5i15jk-

This allows only L,-matrices of the same color a to form loops. The corresponding matrix

model partition function reads

Z(n,g;N) = /dXdXT [I dLadL], e NTr VX Erkod),

a=1
V(X,Ly,...L,) = XX'4+ ) L.I] (4.3)
a=1
—g(X ) (L) + XY (L))
a=1 a=1

Here again, the integration measure is normalized in such a way that Z(n,g =0; N) =1,
and the net result in the perturbative expansion of Z(n,g; N) is to attach a weight n per

loop of L-matrices.

Contrary to the n = 1 case, let us first integrate over the n matrices L, = (Aq +

iBa)/V?2, where A, and B,, a = 1,2,...,n are n Hermitian matrices of size N x N. To
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do this integration, we note that the potential V' of (4.3) takes the form

1
V(X,Ly,..,L,) = XX 4 —Z (A% + B?)

XZ — B2 +i(AaBa + BaAs))
- 5X za: (A2 — B2 — i(Ao B, + BoAy))
1< A
— . a
= XXT+ 3 Z:I(AQ,BQ)Q (Ba> ;
where the quadratic form Q reads
Q = (I®NI - 5((}( RI+IX)K+ (XTol+I0XNK). (4.5)

Here we have denoted by I (resp. I;) the N x N (resp. 2 x 2) identity matrix, and K, K

are the following 2 x 2 matrices

K = (1 _@1> K = <_1@ :i) (4.6)

Performing the Gaussian integration over the A’s and B’s, we finally get
Z(n,g;N) = /dXdXT det(Q) /2 NTr(XXT) (4.7)
We may further expand

det(Q)_"/2 = exp[—gTr Log Q]

o0 (4.8)
= expln Y 9" i i
= = X I+IX)(X'"@I4+1®X
exp nm:1 2m QI+IX)X"QI+1I® )} )]
where we have used the fact that K? = K2 = 0, hence only the terms of the form

Tr[(KK)™] = 2?™ or Tr[(KK)™] = 2*™ contribute, which cancel the 1/22™*! pre-factor.
Alternatively, we may rephrase the result (4.7)-(4.8) into

—n/2

Z(n,g;N) = /dXdXTe_NTr(XXT) det I@T-FA(X@I+IX)(XTol+IoXT))

(4.9)
This reduces the O(n) model partition function on Eulerian triangulations to a Gaus-
sian complex one-matrix model with some specific integrand. Note that in eqn. (4.9) the

parameter n can now take any real value.



4.2. The n — 0 limit: Gaussian matriz model

The result (4.7) yields in particular in the limit n — 0 the partition function for

Hamiltonian cycles on Eulerian triangulations, expressed as a complex one-matrix integral

Zu(g;N) = 0n Z(n g N)|._,

lQ

([(XoIl+IoX)(Xtel+Ioxh]™)

—

MLQ,M
3|3

3

Z (Tr(X7 (X T2 X" ) Te(X 7 (X)X =),

Vi, ung{O 1}

3

(4.10)
where the bracket stands for the Gaussian integration over the complex matrix X, namely
(f(X)) = [dXdXTf(X)exp(—NTr(X X)), and is normalized in such a way that (1) = 1.
Moreover, the large-N limit of (4.10), zx(g) = limy 00 52 Zr(g; N) yields the generating
function for genus zero Eulerian triangulations equipped with Hamiltonian cycles. Due to
the known large-N factorization property (Tr(f(X)g(X))) ~ (Tr(f(X)))(Tr(g(X))), we

also have

> om
>, 92_m Y U X)X ) (Te(X 7 (X 72 X)),
m=1 V1o vom €10,1}
(4.11)
where the double bracket is defined as ((Trf(X))) = limy_ o0 %<Trf(X)>
The formula (4.10) can be interpreted pictorially as follows. The quantity [(X I+
I® X)(XT RI+I® XT)] "™ can be represented as a succession of 2m points along a line,
from which oriented bonds originate, alternately oriented away from and towards the line
to account for the alternation of X and X, and going above (resp. below) the line if a
term M @ I (resp. I ® M), M = X, X" is selected i.e. according to whether v; = 1 (resp.
v; = 0) at the i-th point in (4.11). This gives rise to simple diagrams like that of fig.3,
where the 2m points are connected pairwise by oriented arches either above or below the
line, such that arrows inwards and outwards alternate along the line. This alternation can
be replaced by a sequence of alternating + and — signs, each arch connecting a + to a —
as in [8].
In (4.11), we see that the knowledge of all Gaussian averages of traces of words in X

and Xt would immediately give access to zg(g). Such objects have been considered in [15],

as Gaussian averages of traces of words involving Hermitian matrices, for which a complete
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XX'® | X® X* /;\ />\

N
78

1 X Xt XT® X

(a) (b)

Fig. 3: (a): rules for representing a term in the expansion (4.11). The four
cases correspond respectively to the values (v1,v2) = (11),(10),(00),(01),
namely to the selection of X (XT)”2 QX1 (XT)I_”2 in the product (X ®
I+ 1I® X)(XT QI+ I® XT). It is understood that the line representing
X should be drawn to the left of the line representing X'. In the figure
(b), we have represented a typical term, with 2m = 14 points, and a choice
(v1...r14) = (10011110011001). The value v = 1 (resp. 0) corresponds to an
arch going above (resp. below) the line. The Eulerian condition imposes that
orientations alternate between successive points.

set of recursion relations has been found, solving in principle (but unfortunately not in
practice) our problem. These were studied in the context of meander enumeration, namely
the enumeration of possibly interlocking loops (roads) crossing a line (river) through 2m
given points (bridges). The generating function for meanders with a weight 2 per connected

component of the road can actually be recast in a way very similar to (4.10), namely

Mg = g—Tl (X o Xt +XTeXx)™)). (4.12)
m
m=1

This corresponds precisely to retaining in (4.10) only the sets of v’s that satisfy vy =
1—wg9;_q fores =1,2,...,m which again corresponds to retaining only the two configurations
on the right hand side of fig.3-(a). These two can both be recombined into a single oriented
bond crossing the line (with a weight g* per intersection), leading to the usual picture

of a multi-component meander with two possible orientations per connected component,

10



accounting for the factor of 2. In the planar (N — oo) limit, this yields

mi®) = 2N (I (X)X (X))

m=1 Vl,....,VQmE{Ovl}
% <<T1‘(X1_V1 (XT)Vle—VQ (XT)V2)>>
(4.13)

5. Conclusion

In this paper, we have considered some fully packed loop models on Eulerian tri-
angulations. In the case of the O(n = 1) model, we have shown that taking Eulerian
triangulations rather than arbitrary ones leads to a shift ¢ — ¢+ 1 in the central charge of
the conformal theory coupled to gravity describing the corresponding critical point. More
generally, given any matrix model describing random triangulations, typically defined by

a Hermitian multi-matrix integral with a potential of the form
1
V(Ay,..,Ay) = §ZA? ) cijpAiAj A, (5.1)
i=1 ijk

we can restrict ourselves to the class of Eulerian triangulations by replacing the Hermitian

matrices A; by complex matrices X;, governed by the potential

P
V(X100 Xp) = Y XX =) (e XiX; Xp + i X XTXT). (5.2)
=1

ijk

It would be interesting to investigate how this restriction affects the critical properties of

the original model.
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