
PHYSICAL REVIEW E DECEMBER 1997VOLUME 56, NUMBER 6
Effects of self-avoidance on the tubular phase of anisotropic membranes
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We study the tubular phase of self-avoiding anisotropic membranes. We discuss the renormalizability of the
model Hamiltonian describing this phase, and from a renormalization group equation derive some general
scaling relations for the exponents of the model. We show how particular choices of renormalization factors
reproduce the Gaussian result, the Flory theory, and the Gaussian variational treatment of the problem. We then
study the perturbative renormalization to one loop in the self-avoiding parameter using dimensional regular-
ization and ane expansion about the upper critical dimension, and determine the critical exponents to first
order ine. @S1063-651X~97!07512-0#

PACS number~s!: 64.60.Fr, 05.40.1j, 82.65.Dp
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I. INTRODUCTION

The statistical mechanics of isotropic tethered membra
has been extensively studied@1,2#. In a recent paper Radzi
hovsky and Toner~RT! @3# showed that intrinsically aniso
tropic tethered membranes are surprisingly rich systems
particular, they exhibit an intermediate tubular phase
tween the crumpled and flat phases typical of isotropic te
ered membranes@4–9#. The tubular phase is characterized
being extended in one direction and crumpled in the oth
Furthermore, any degree of anisotropy is expected to be
evant, so such systems could be widespread in nature
very important. It is not hard to imagine many situations
which the polymerization of a fluid membrane occurs ani
tropically.

Recently, the existence of this tubular phase for phys
anisotropic membranes has been confirmed by large-s
Monte Carlo simulations@10# and the crumpled-to-tubula
and tubular-to-flat phase transitions both observed. In
case of self-avoiding tethered membranes, current nume
evidence suggests that the crumpled phase is destroye
physical dimensions@11#. This enhances the possible signi
cance of an ordered tubular phase for self-avoiding an
tropic physical membranes—the only transition left in th
case may be the tubular-to-flat transition.

In this paper we study the effects of self-avoidance in
tubule model of a self-avoiding tubule, previously introduc
and analyzed by RT@3#. This model may be considered a
the analog of the Edwards model of self-avoiding me
branes@12–14#, appropriately adapted to the tubular geo
etry, with bending rigidity in the extended direction of th
tubule and self-avoidance in its crumpled direction.

In Sec. II we use a renormalization group equation
reproduce some of the critical exponent scaling relations
RT, and derive some new ones. These relations hold
vided that the bending energy term is not renormalized,
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imply that there is only one independent exponent in
model. Special cases of this treatment reproduce the tri
Gaussian model as well as the Flory theory and the Gaus
variational approximation results of RT. In Sec. III we esta
lish the perturbative renormalizability of the model, an
prove that the bending energy term is indeed not renorm
ized.

In Sec. IV we calculate the critical exponents to first ord
in an e expansion about the upper critical dimension for t
relevance of self-avoidance. We use the techniques of
mensional regularization and the multilocal operator prod
expansion of Ref.@15#. We give the corresponding predic
tions of all relevant critical exponents for the case of a phy
cal membrane in the tubular phase.

II. SCALING RELATIONS

We start by reviewing RT’s model and scaling results
the tubular phase of self-avoiding anisotropic membra
@3#. We consider the generalized case ofD-dimensional ob-
jects ~D52 corresponding to membranes! with one stiff di-
rectiony and (D21) soft directionsx' @see Fig. 1~a!#. In the
tubular phase, such an object will be extended in they di-
rection and crumpled in the transverse direction. Using
Monge-like representation, the point with coordinat
(x' ,y) in the membrane will occupy a position@h(x' ,y),y#
in the d-dimensional embedding space, withh a
(d21)-dimensional vector field perpendicular to they direc-
tion. Adapting the Edwards model for self-avoiding mem
branes to the geometry of the tubular phase, RT obtained
Hamiltonian@3#

H5 1
2 E dD21x'dy$@]y

2h~x' ,y!#21@]'h~x' ,y!#2%

1
b

2 E dD21x'dD21x'8 dyd~d21!@h~x' ,y!2h~x'8 ,y!#.

~2.1!
7023 © 1997 The American Physical Society
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The first two terms describe the elastic properties of
membrane in the absence of self-avoidance, and repres
bending energy term in the extended stiffy direction and an
effective entropically generated elastic term in the crump
direction. The third term is a two-body contact interacti
with excluded volume~or self-avoiding! parameterb. Due to
the extended nature of the tubule in they direction, the self-
avoiding interaction involves only points which have t
samey coordinate along the membrane@3#.

The engineering dimensions of the fields and coordina
are @y#51, @x'#52 and

z0[@h#5 5
2 2D. ~2.2!

This implies@b#52e with @3#

e53D2
1

2
2S 5

2
2D Dd. ~2.3!

We consider the model for32 ,D, 5
2 only, where the bare

roughness exponentz0 , Eq. ~2.2!, satisfies 0,z0,1. Setting
e50 fixes the upper critical dimension for the relevance
the self-avoiding interaction to be@3#

duc~D !5
6D21

522D
, ~2.4!

with, in particular,duc(2)511.
In Sec. III we will show that the Hamiltonian~2.1! renor-

malizes onto itself. In other words, one can find renormali
tion factorsZ, Z' , andZb such that the renormalized theor
using the renormalized Hamiltonian

HR5
1

2 E dD21x'
Rdy$Z@]y

2hR~x'
R ,y!#21Z'@]'

RhR~x'
R ,y!#2%

1
ZbbRme

2 E dD21x'
RdD21x'8

Rdyd~d21!

3@hR~x'
R ,y!2hR~x'8

R ,y!#, ~2.5!

FIG. 1. ~a! An anisotropic membrane with a stiffy direction and
a soft x' direction; ~b! after embedding, the membrane forms
tubule, extended in the stiffy direction and crumpled in the sof
direction.
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gives finite results ate50 when expressed in terms of th
renormalized self-avoiding parameterbR. We will moreover
show that the bending energy term is not renormalized;
is,

Z51. ~2.6!

This assumption is crucial in the derivation of the scali
laws below. The bare@Eq. ~2.1!# and renormalized@Eq.
~2.5!# and renormalized@Eq. ~2.5!# Hamiltonians can be
made identical by appropriate rescalings of the height fi
hR, transverse coordinatex'

R , and self-avoiding couplingbR

in the following way:

hR~x'
R ,y!5Z'

~12D !/4h~x' ,y!,

x'
R5Z'

1/2x' , ~2.7!

bR5bm2eZb
21Z'

~12D !~d13!/4 .

Consider now the height fluctuations in the bare model
determined by the correlation function

G~x' ,y![2
1

2~d21!
^@h~x' ,y!2h~0,0!#2&. ~2.8!

From Eq.~2.7! the renormalized version of this correlatio
function satisfies

GR~x'
R ,y![2

1

2~d21!
^@hR~x'

R ,y!2hR~0,0!#2&R

5Z'
~12D !/2G~x' ,y!. ~2.9!

Writing md/dmu0@Z'
(D21)/2GR(x'

R ,y)#50, where the deriva-
tive is taken at fixed bare parameterb, we obtain the renor-
malization group equation

m
]

]m
GR1 1

2 dx'

]

]x'

GR1
D21

2
dGR50, ~2.10!

whered5md/dmu0lnZ' . We suppose here that an infrare
stable fixed point is reached, describing the large scale p
erties of the membrane. Equation~2.10! holds precisely at
this fixed point. On the other hand, simple scaling gives
homogeneity equation

m
]

]m
GR2y

]

]y
GR22x'

]

]x'

GR1~522D !GR50.

~2.11!

We thus obtain the fixed point renormalization group eq
tion

y
]

]y
GR1

1

z
x'

]

]x'

GR22zGR50, ~2.12!

where the anisotropy exponentz and the roughness expone
z are given by

z5
2

41d
,
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56 7025EFFECTS OF SELF-AVOIDANCE ON THE TUBULAR . . .
z5z01
12D

4
d, ~2.13!

with the bare roughness exponentz0 given by Eq. ~2.2!.
Equation~2.12! implies the scaling

GR~x'
R ,y!;y2zF1@y/~x'

R!z#;~x'
R!2nF2@y/~x'

R!z#,
~2.14!

where the size exponentn and roughness exponentz are
related byn5zz. Eliminating d in Eq. ~2.13!, we thus find
the very general scaling relations

z5
3

2
1

12D

2z
,

~2.15!

n5
3z

2
1

~12D !

2
.

Rewriting Eq.~2.14! in momentum space, and using the d
rived scaling relations, one finds that the inverse of
height field propagatorG̃21(q,p') scales asG̃21(q,p')
5q4f (q/p'

z ). Thus the anomalous dimensionh for the bend-
ing rigidity vanishes, as required by the nonrenormalizat
theorem Z51. Similarly it is simple to show tha
G̃21(q,p')5p

'

21h'g(q/p'
z ), with h'54z22. Since the

size exponentn must exceed its phantom valuez0/2, one has
z.1/2 and thereforeh'.0.

From the above scaling relations, we end up with o
one independent exponent in the theory, depending on
precise value ofd. This value, and the subsequent predictio
for all exponents, may be fixed by imposing one more c
straint on the renormalization factors of our model Ham
tonian. At this stage, this extra imposed constraint is tota
arbitrary, and different constraints lead to different values
the exponents. It is interesting nevertheless to explore lim
ing cases where scaling is dominated by one componen
the Hamiltonian only, either the elastic term or the se
avoiding interaction. The corresponding limiting values
the exponents indeed define the range of values in which
exact exponents are expected to fall. One can fix the sca
from the elastic terms only by assuming the absence
renormalization for theh field, i.e., by imposingZ'51,
yielding d50. One then recovers the bare valuesz5z0 , z
5 1

2 , and n5z0/2 of the Gaussian theory without sel
avoidance. On the other hand, we can consider the st
coupling limit where scaling is fixed by the self-avoidin
term only. This yields the Gaussian variational result, as
cussed in Sec. II B below and also treated in Ref.@3#. A
third, intermediate, estimate of the exponents is the Fl
result, obtained by balancing the elastic and self-avoid
contributions in the Hamiltonian, as discussed in Sec. I
and in Ref.@3#. Notice finally that these different estimate
become exact and identical on thee50 line, and can be use
as starting points for a systematic expansion in the (D,d)
plane around this line. This idea was used in Ref.@16# for the
self-avoiding isotropic membrane Edwards model. In S
IV, we will calculate the correction to the Gaussian, Flo
and variational estimates of the roughness exponentz, at first
order ine and for fixedD52.
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A. Flory theory

In Flory theory one assumes that elastic energies are c
parable to self-avoiding energies. If this is to remain tr
under renormalization, one should require that both ter
renormalize in the same way, viz.,Z'5Zb . Given this as-
sumption, one finds from Eq.~2.7! that

bR5bm2eZ'
~12D !~d13!/421. ~2.16!

In this case the fixed point condition directly determinesd in
terms ofe to be

dF5
24e

$41~D21!~d13!%
, ~2.17!

with e as in Eq.~2.3!. Using Eqs.~2.13! and~2.15!, the size
exponentn is then found to be

nF5
~D11!

~d11!
, ~2.18!

which coincides with the Flory prediction found in Ref.@3#.
This is nothing but the usual Flory result for
(D21)-dimensional self-avoiding object in
(d21)-dimensional embedding space, and correspond
treating the different transverse slices of the tubule as in
pendent@3#. The other exponents are likewise determined
this approximation to be

zF5
41~D21!~d13!

3~d11!
,

zF5
3~D11!

41~D21!~d13!
. ~2.19!

The corresponding values for the physical tubule~D52 and
d53! aredF52 8

5 , nF5 3
4 , zF5 5

6 , andzF5 9
10 .

B. Gaussian variational approximation

A different approximation one can make is to assume t
the self-avoiding term is not renormalized viz.Zb51. This is
exactly the approximation which is made in a Gauss
variational treatment of the problem, where the exact den
functional is approximated by the best possible Gauss
weight for the fieldh, using a variational principle@3#. In this
case the fieldh is renormalized, but the self-avoiding inte
action term is not. Repeating the above analysis in the c
Zb51, one finds easily from the fixed point condition tha

dvar5
24e

~D21!~d13!
. ~2.20!

The size exponentn in this approximation, first obtained b
RT, is

nvar5
7~D21!

~3d25!
, ~2.21!

and the other exponents are likewise determined to be
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zvar5
~D21!~d13!

~3d25!
,

~2.22!

zvar5
7

~d13!
.

The corresponding values for the physical tubule aredvar5
2 2

3 , nvar5
7
4 , zvar5

3
2 , andzvar5

7
6 . The unphysical nature o

these values~n andz cannot exceed 1! indicates that, in this
approximation, the tubular phase is unstable. ForD52, in
fact, one sees from Eq.~2.21! that the tubular phase is un
stable belowd54. It is known, however, that the Gaussia
variational method is a strong coupling method which u
ally overestimates the size exponent.

III. RENORMALIZABILITY

We now turn to the issue of the perturbative renorma
ability of the theory fore>0. We rely on the general formal
ism introduced in Ref.@15# for the treatment of nonloca
interactions. In the diagrams of the perturbative expansio
b, we first identify the singular configurations of interactin
points which contain possible divergences. We then us
short distance multilocal operator product expans
~MOPE! to analyze these singularities, and show that th
are proportional to the insertion of multilocal operators.
simple power counting argument allows us to extract fr
all singular configurations those which give rise to act
divergences. This, together with some symmetry argume
singles out all the operators which require renormalizati
From this analysis, we deduce that the Hamiltonian~2.1!
renormalizes onto itself, according to Eq.~2.5! and more-
over, Z51, i.e., there is no renormalization of the bendi
energy term. Our analysis will be presented forD52, but it
could be extended easily to the range3

2 ,D, 5
2 , where the

roughness exponentz05(522D)/2 satisfies 0,z0,1.
Let us concentrate on the partition functionZ associated

with the Hamiltonian~2.1! at D52:

Zb5E D@h~x,y!#exp~2H@h# !. ~3.1!

It can be expanded in powers ofb according to

Zb5Z0 (
N50

`
~2b/2!N

N! E )
i 51

N

dxidxi8dyi

3K )
i 51

N

d~d21!@h~xi ,yi !2h~xi8 ,yi !#L
0

, ~3.2!

whereZ0 is the partition function of the non-self-avoidin
(b50) theory and̂ ( )&0 denotes the corresponding Gaus
ian average

^~••• !&05
1

Z0
E D@h~x,y!#expS 2 1

2 E dx dy$@]y
2h~x,y!#2

1@]xh~x,y!#2% D ~••• !. ~3.3!

Eachd function in Eq.~3.2! can be written as
-

-

in

a
n
y

l
ts,
.

-

d~d21!@h~xi ,yi !2h~xi8 ,yi !#

5E dd21k i

~2p!d21 eiki•@h~xi ,yi !2h~xi8 ,yi !#, ~3.4!

and one is led to evaluate the Gaussian average

K )
i 51

N

eiki•@h~xi ,yi !2h~xi8 ,yi !#L
0

5expS 2 1
2 (

i , j 51

N

k i•k j$G0~xi2xj ,yi2yj !

2G0~xi82xj ,yi2yj !2G0~xi2xj8 ,yi2yj !

1G0~xi82xj8 ,yi2yj !% D , ~3.5!

whereG0 is the two-point function

G0~x,y![2
1

2~d21!
^@h~x,y!2h~0,0!#2&0

52
1

2Ap
uxu1/2 expS 2

y2

4uxu D2 1
4 y erfS y

2uxu1/2D .

~3.6!

Here erf(u) denotes the usual error function erf(u)
[(2/Ap)*0

udt exp(2t2).
The term of orderN in the perturbative expansion~3.2! is

therefore naturally represented by a diagram ofN ‘‘dipoles’’
of interacting points located at (xi ,yi ;xi8 ,yi) with ‘‘charge’’
6k i , as depicted in Fig. 2. Note that the two end points o
given dipolei are located at the same positionyi in the y
direction, but at different positionsxi andxi8 in the x direc-
tion. A singular configuration of interacting points is foun
when the quadratic form

FIG. 2. The diagram of orderN in Eq. ~3.2! is made ofN
dipoles. The two end points of a given dipole are located at
same positionyi in the y direction but at different positionsxi and
xi8 in the x direction.
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Q~$k i%!5(
i , j

k i•k j$G0~xi2xj ,yi2yj !2G0~xi82xj ,yi2yj !

2G0~xi2xj8 ,yi2yj !1G0~xi82xj8 ,yi2yj !% ~3.7!

appearing in Eq.~3.5! is not positive definite. Using the in
tegral representation of the two-point function

G0~x,y!5E dp

2p

dq

2p

ei ~px1qy!21

q41p2 , ~3.8!

we obtain

Q~$k i%!5E dp

2p

dq

2p

U(
i

k ie
iqyi~eipxi2eipxi8!U2

q41p2 .

~3.9!

The quadratic formQ is thus positive definite except fo
those configurations of end points$xi ,xi8 ,yi% for which one
can find a set of charges$k i%, not all zero, satisfying

(
i

k ie
iqyi~eipxi2eipxi8!50, ;~p,q!

⇔r~x,y![(
i

k id~y2yi !@d~x2xi !2d~x2xi8!#

50, ;~x,y!. ~3.10!

This latter condition is the requirement that the charge d
sity r(x,y) vanishes identically, while some of the charg
k i remain nonzero. This is possible if some of theN dipoles
arrange to form a so-called ‘‘molecule,’’ i.e., attach their e
points and assemble into a connected diagram with at l
one loop, such as in Fig. 3. A set of end points in cont
form what is called an ‘‘atom,’’ and their common positio
is the position of the atom. A zero ofQ is obtained by an
appropriate choice of nonzero charges, keeping all the at
neutral, which is possible in the presence of a loop. Note

FIG. 3. A molecule with two loops made of a connected asse
bly of four dipoles. This molecule has three atoms located at
ferent values ofx but at the same value ofy.
-

st
t

s
at

all the atoms of a molecule have the same position in thy
direction. Note also that singularities coming from disco
nected molecules can be treated separately, and that dip
in the molecule which do not belong to a loop~dead
branches! do not contribute to the singularity and can b
ignored.

The construction above identifies the singular configu
tions of end points which give rise to possible divergenc
Such a configuration is characterized by a set ofM atoms
labeled byp, and with position (xp ,y), with the samey
coordinate for all the atoms. For each atomp, we denote by
I p the set of dipolesi which attach their first end point at th
atomp @i.e., (xi ,yi)5(xp ,y)#, and byJp the set of dipolesj
which attach their second end point at the atomp @i.e.,
(xj8 ,yj )5(xp ,y)#. The singularity can be analyzed by use
the general short distance MOPE introduced in Ref.@15#. In
practice, one can return to the operator level@the left hand
side of Eq.~3.5!# and write the contribution of the atomp in
Eq. ~3.5!

)
i PI p

eiki•h~xi ,yi ! )
j PJp

e2 ik j •h~xj8 ,yj !

5K )
i PI p

eiki•h~xi ,yi ! )
j PJp

e2 ik j •h~xj8yj !L
0

: )
i PI p

eiki•h~xi ,yi !

3 )
j PJp

e2 ik j •h~xj8 ,yj !:, ~3.11!

i.e., separate in the right hand side of Eq.~3.5! the propaga-
tors G0 which involve only points inside the atomp, and
which reconstruct precisely the Gaussian average ab
from those involving at least one end point not in the atomp,
corresponding to a normal product prescription. This sepa
tion allows us to isolate the singularity in the factorize
Gaussian average, while the normal product has a reg
expansion inxi2xp ( i PI p), xj82xp ( j PJp) and yk2y(k
PI pøJp)

:eikp•h~xp ,y!S 11 i (
i PI p

@~xi2xp!k i•]xh~xp ,y!1~yi

2y!k i•]yh~xp ,y!#2 i (
j PJp

@~xj82xp!k j•]xh~xp ,y!

1~yj2y!k j•]yh~xp ,y!#1••• D :, ~3.12!

with kp5(( i PI p
k i2( j PJp

k j ) being the total charge of the

atomp. The same treatment can be applied to all the ato
of the molecule, creating for each atomp an exponential
factor eikp•h(xp ,y), together with insertions of various]x
and/or]y derivatives of the fieldh at the point (xp ,y). As in
Ref. @15#, the MOPE is obtained by performing the integr
tion over the chargesk i for the dipolesi forming the mol-
ecule. This expands the corresponding product of bilocal
erators P id

(d21)@h(xi ,yi)2h(xi8 ,yi)# around the chosen
singular configuration in terms of generalM -body operators
of the form

-
f-
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F~x1 ,...,xM !5E dd21h)
p51

M

Ap~xp ,y!

3¹h
mpd~d21!@h2h~xp ,y!#, ~3.13!

multiplied by singular coefficients~see Ref.@15# for details!.
HereAp(xp ,y) denotes either the unity operator 1 or a loc
operator in the derivatives of the fieldh at point (xp ,y) and
¹h

m is a shorthand notation forPa51
d21]ha

ma. The above opera

tors are multilocal in thex direction, but local in they direc-
tion. This is because all the atoms in the molecule have
samey position. We will see two explicit examples of th
MOPE in Sec. IV, where explicit one-loop calculations a
presented.

At this stage, let us mention the following important res
concerning the case where one inserted operator involve]y

derivatives only@such as (]y
2h)2#. Indeed, such a term come

from the expansion of some operatoreiki•h(xi ,yi ) taken atxi
5xp exactly ~we suppose here thati PI p rather thani PJp!.
However, in contrast with the coordinatexi (xi8), which ap-
pears only in the atomp, the coordinateyi appears in a
second atomp8 ~such thati PJp8!, which is in general dis-
tinct from p. The expansion inyi2y can be done simulta
neously on the operatoreiki•h(xi ,yi ) above forxi5xp , and for

the operatore2 iki•h(xi8 ,yi ) for xi85xp8 , in which case the op-
erator to be expanded inyi2y is eiki•@h(xp ,yi )2h(xp8 ,yi )#. We
thus obtain the important result that those operators w
only partial derivatives in they direction can be regrouped s
that they involve the difference of theh field at two ~in
general different! points of the molecule. An example o
such operator is the two-body operator

$]y@h~x1 ,y!2h~x2 ,y!#%2d~d21!@h~x1 ,y!2h~x2 ,y!#.
~3.14!

If the two end points of the dipolei happen to belong to the
same atomp, then the operator to be expanded is 1, wh
means that this dipole cannot give rise to insertions of lo
operators with only]y derivatives.

This latter remark has an important implication for t
renormalization of local operators, coming from the partic
lar case of singular configurations where the molecule
only one atom. In this case, each dipole in the molecule f
automatically in the class just described of dipoles with th
two end points in the same, unique, atom. We thus obtain
important result that local operators with only]y derivatives
are not created by renormalization. Such terms, when ab
from the original Hamiltonian~2.1!, never appear, and th
only such operator present in Eq.~2.1! @namely, (]y

2h)2# is
not renormalized, that is

Z51. ~3.15!

Having identified the singular configurations and the c
responding general multilocal operators to which their sin
larities are proportional, it remains to identify those sing
larities which are not integrable and give rise to act
divergences. If the molecule is made ofK dipoles, the op-
erator which is expanded via the MOPE is the product
l

e

t

h

l

-
s

ls
ir
e

nt

-
-
-
l

f

Kd (d21) factors, with canonical dimension2Kz0(d21) in
units ofy. The dimension of the multilocal operatorF in Eq.
~3.13! is

~d21!z01 (
p51

M

$dim@Ap#2@ umpu1~d21!#z0%, ~3.16!

with the notationumu5(a51
d21ma . The corresponding singu

lar coefficient in the MOPE has thus the dimension

2~K11!~d21!z02 (
p51

M

$dim@Ap#2@ umpu1~d21!#z0%.

~3.17!

This coefficient has to be integrated over the 2K2M relative
x coordinates and theK21 relativey coordinates of the 2K
end points of the dipoles approaching the positions of theM
atoms. This gives a superficial degree of convergence for
corresponding integral

v52~2K2M !1~K21!1@M2~K11!#~d21!z0

1 (
p51

M

~ umpuz02dim@Ap# !53~M22!1e~K2M11!

1 (
p51

M

~ umpuz02dim@Ap# !, ~3.18!

with e552(d21)z0 . Note thatK2M11 is nothing but
the number of loops in the molecule. A divergence is fou
wheneverv<0. It is easy to check that all the local operato
A but the unit operator have a strictly negative dimension
units of y, as a consequence of the relationz0,1. At e50,
v<0 requires eitherM52, m15m250, and A15A251,
which is nothing but the original contact interaction in E
~2.1!, or M51, in which caseF is either the unity operator 1
or a local operatorA(x,y) which moreover must satisfy
dim@A#>23. We already know from the previous discu
sion that A must contain at least one]x derivative since
terms with only]y derivatives are not created. Due to th
x→2x symmetry, the coefficient of a term with only one]x
vanishes, and one thus needs at least two]x derivatives. The
term with largest dimension satisfying this criterion is t
original elastic term in Eq.~2.1! (]xh)2 which already has
dimension23. It is thus, together with the unity operato
the only renormalized local operator in the theory. T
renormalization of the unity operator is simply a shift in th
free energy of the system. In particular, it disappears in
computation of average values of physical observables,
can simply be ignored.

In conclusion, we have shown that the Hamiltonian~2.1!
renormalizes onto itself, withZ51, as announced. Fore.0,
the theory is super-renormalizable, sincev in Eq. ~3.18! in-
creases with the number of loops of the molecule.

IV. ONE-LOOP CALCULATIONS

Let us now present one-loop calculations, which give c
rections at first order ine for the critical exponentsz, n, and



th
rs

e

E
: t
n

th
-
r
r-

-

g

the
ce.

56 7029EFFECTS OF SELF-AVOIDANCE ON THE TUBULAR . . .
z. Here we use dimensional regularization by considering
theory ate.0, and by calculating the renormalization facto
Z' and Zb needed to make the theory finite fore50 at
one-loop order inbR . We use a minimal subtraction schem
where we keep for the first order correction inZ' and Zb
only the corresponding pole ine.

We obtain our results in the framework of the MOP
described above, which we use here in two simple cases
one-atom molecule made of a single dipole with its two e
points approaching each other@see Fig. 4~a!# and the two-
atom molecule made of two dipoles approaching each o
@see Fig. 4~b!#. The first situation will give us a renormaliza
tion of the local operator (]xh)2, and hence a first orde
correction toZ' . The second situation will give us a reno
malization of the bilocal operatord (d21) @h(x,y)
2h(x8,y)#, and hence a first order correction toZb .

To analyze the divergence for Fig. 4~a!, we use the opera
tor product expansion~OPE!:

eik•@h~x,y!2h~x8,y!#5ek2G0~x2x8,0!$11 i ~x2x8!k•:]xh~x0 ,y!:

2 1
2 ~x2x8!2kakb :]xha~x0 ,y!]x

3hb~x0 ,y!:1•••%, ~4.1!

wherex05(x1x8)/2, and

G0~x2x8,0!52
1

2Ap
ux2x8u1/2. ~4.2!

When integrated overk this gives the MOPE:

FIG. 4. The two singular configurations leading to~a! a one-
loop renormalization of (]xh)2 and ~b! a one-loop renormalization
of d (d21)@h(x,y)2h(x8,y)#.
e

he
d

er

d~d21!@h~x,y!2h~x8,y!#

5
1

~4p!~d21!/2 H 1

@2G0~x2x8,0!#~d21!/2

312
1

4

~x2x8!2

~2G0~x2x8,0!!~d11!/23:@]xh~x0 ,y!#2:

1•••J . ~4.3!

We use the above formula for the renormalized theory~2.5!,
expanded to first order inbR. As in Eq. ~3.2!, the bilocald
interaction comes with a factor2bRme/2, and the singularity
in ~4.3! proportional to (]xh

R)2 will be canceled by the cor-
responding counterterm, appearing with a factor2(Z'

21)/2, provided we choose

~Z'21!

2
5bR

me

2 E
uXu<m22

dX
1

4

~2Ap!6

~4p!5

X2

~ uXu1/2!62e

~4.4!

where X5xR2x8R, and where we used Eq.~4.2! and d
51122e. This leads to

Z'511
bR

16p2

1

e
. ~4.5!

Let us now analyze the divergence for Fig. 4~b!. We now
use the OPE for the first atom,

ei @k1•h~x1 ,y1!1k2•h~x2 ,y2!#

5e2k1•k2G0~x12x2 ,y12y2!:ei ~k11k2!•h~x0 ,y0!$11•••%:,

~4.6!

wherex05(x11x2)/2 and y05(y11y2)/2, and the similar
OPE for the second atom,

e2 i @k1•h~x18 ,y1!1k2•h~x28 ,y2!#

5e2k1•k2G0~x182x28 ,y12y2!:e2 i ~k11k2!•h~x08 ,y0!$11•••%:,

~4.7!

wherex085(x181x28)/2. The MOPE is obtained by integratin
over k1 and k2 . More precisely, we definek5k11k2 and
q5(k12k2)/2, so that k1•k252q21O(k2). This latter
O(k2) term can be set to zero if we are interested in
leading singularity, which is responsible for the divergen
Integrating overk reconstructs a bilocald operator, and we
obtain the following MOPE:
d~d21!@h~x1 ,y1!2h~x18 ,y1!#d~d21!@h~x2 ,y2!2h~x28 ,y2!#

5
1

~4p!~d21!/2

1

@2G0~x12x2 ,y12y2!2G0~x182x28 ,y12y2!#~d21!/2 d~d21!@h~x0 ,y0!2h~x08 ,y0!#1••• .

~4.8!
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We are interested in the pole ine obtained when integrating
the coefficient of thed term on the right hand side of Eq
~4.8! over the relative coordinatesx12x2 , x182x28 and y1

2y2 . Defining Y5uy12y2u1ux12x2u1/21ux182x28u
1/2, u

5ux12x2u1/2/uy12y2u, andv5ux182x28u
1/2/uy12y2u, and us-

ing again the explicit formula~3.6! for G0 andd51122e,
we obtain a pole ine equal to

32
~2Ap!5

~4p!5 E
0

m21

dY
Y4

Y52e 3E
0

`

duE
0

`

dv
uv

@ f ~u!1 f ~v !#5 ,

~4.9!

where f (u)5u exp(21/4u2)1(Ap/2)erf(1/2u). The inte-
gral overY gives a polem2e/e. The integral overu andv is
convergent, and will be denoted by

I[E
0

`

duE
0

`

dv
uv

@ f ~u!1 f ~v !#5 5 1
24 E

0

`

da@F~a!#2,

~4.10!

whereF(a)[a2*0
`du ue2a f(u). The functionF(a) satisfies

F(a) →
a→0

1 andF(a) ;
a→`

exp(2aAp/2). The integralI can
be estimated numerically toI 50.068 373 636(1).

Applying, as before, the MOPE of Eq.~4.8! to therenor-
malizedtheory, now expanded as in Eq.~3.2! to second order
in bR, the N52 diagram gives twod interactions with a
factor (bRme)2/8, leading to a divergence equal to

23
~bRme!2

8

1

p5/2

m2eI

e
~4.11!

with a factor of 2 coming from the two ways of assembli
the two dipoles of the diagram into a one-loop molecu
This divergence will be canceled by thed interaction coun-
terterm in the renormalized Hamiltonian, which comes in
expansion with a factor2(Zb21)bRme/2, provided

Zb511
bR

2p5/2

I

e
. ~4.12!

Using Eqs.~4.5! and~4.12!, we relate the bare and renorma
ized coupling constants as in Eq.~2.7! for D52 andd511
22e:

b5mebRS 11
I

2p5/2

bR

e D S 11
1

16p2

bR

e D ~72e!/2

1O„~bR!3
…,

~4.13!

leading, after differentiation with respect tom at fixedb, to
the one-loop Wilson function

b~bR![m
d

dmU
0

bR52ebR1S I

2p5/21
72e

2

1

16p2D ~bR!2

1O„~bR!3
…. ~4.14!

We thus obtain an infrared stable fixed point at

bR!5
e

I

2p5/21
7

2

1

16p2

1O~e2!. ~4.15!
.

e

This fixes the value of the anomalous dimensiond through

d~bR![m
d

dmU
0

lnZ'5b~bR!
d

dbR ln Z'

5@2ebR1O„~bR!2
…#S 1

16p2

1

e
1O~bR! D

52
bR

16p2 1O„~bR!2
… ~4.16!

and

d[d~bR!!52
e

8I

Ap
1

7

2

1O~e2!. ~4.17!

Numerical values for the exponents atD52 andd53 are
obtained by settinge54 in the above formula, giving

d521.050, ~4.18!

and thus the estimates

z50.678,

n50.517,

z50.762. ~4.19!

To understand the values we obtain for these exponents m
clearly, notice that the factor72 in the denominator of Eq.

~4.17! is actually the factor (d13)/45( 7
2 )2(e/2), appear-

ing in the exponent ofZ' in Eq. ~2.7!, to first order ine. It is
therefore legitimate, at first order, to replace this factor7

2 by
the factor 3

2 obtained by settingd53 directly. This in prac-
tice amounts to making a partial two-loop correction. Th
leads to new estimatesd522.212 andz51.053, well above
the original estimate~4.19!, and actually even unphysica
since larger than 1. We see here that, due to the large v
of e54 at the physical dimensiond53, the first order esti-
mates~4.19! are not robust with respect to second order c
rections and cannot be reliable.

It is also interesting to develop alternative expressions
the roughness exponentz, as was done for the isotropi
membrane Edwards model in Ref.@16#. Indeed, the above
estimate ofz relies on expression~2.13!, expressing the de
viation of z from its Gaussian valuez0 at e50, in terms of
the anomalous exponentd5m(d/dm)u0 lnZ' , which we es-
timated to first order ine in Eq. ~4.17!. Using relation~2.7!
between the bare and renormalized coupling constants, h
ever, we can write, at the fixed point, the two followin
equivalent definitions ofd :

d5dF2
4

$41~D21!~d13!%
m

d

dmU
0

ln
Zb

Z'

5dvar2
4

~D21!~d13!
m

d

dmU
0

lnZb , ~4.20!

leading directly to the two identities
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z5zF1
D21

$41~D21!~d13!%
m

d

dmU
0

ln
Zb

Z'

5zvar1
1

d13
m

d

dmU
0

lnZb . ~4.21!

These relations express the deviation ofz from its Flory
value and its variational value, respectively. As we did fod
in Eqs. ~4.16! and ~4.17!, we can obtain forD52 and d
51122e the estimates to first order ine:

m
d

dmU
0

ln
Zb

Z'

5

12
8I

Ap

8I

Ap
1

7

2

e1O~e2!,

~4.22!

m
d

dmU
0

lnZb52

8I

Ap

8I

Ap
1

7

2

e1O~e2!.

One can easily check that the two Eqs.~4.21! give exactly
the same estimate as before forz at first order ine, provided
that the quantitieszF andzvar, and the different factors ap
pearing in Eq.~4.21!, which involved, are themselves ex
panded to first order ine.

On the other hand, one could also decide not to exp
any of these factors and imposed53 directly. If one more-
over restores the factor (d13)/4 instead of72 , as discussed
above, all the various expressions reproduce the unphy
estimatez51.053. If only some of the terms are expanded
e, we obtain lower values ofz. We thus expect that the origi
nal estimatez50.762, obtained by expanding all terms
first order ine, is actually a lower bound on the exact valu
of z.

V. CONCLUSIONS

In this paper we studied, within thee expansion, the ef-
fects of self-avoidance in the tubule model introduced
RT, going beyond their variational and Flory theory tre
ments of self-avoidance. We first show that the mode
renormalizable and, furthermore, that the bending ene
term is not renormalized. We then derive very general s
ing relations for the critical exponents of the model at
infrared stable fixed point. These relations imply there
only one independent exponent. For special choices of
re
n-

ld
e

d

al

y
-
s
y
l-

s
e

renormalization factors we are able to reproduce three dif
ent limits of the model, viz. the trivial Gaussian model, t
Flory approximation and the Gaussian variational appro
mation@3#. This shows the power of this approach. We th
treat the fluctuations of the model to one loop in the se
avoiding parameter in ane expansion about the upper critica
dimension. This yields predictions for all the critical exp
nents to first order ine.

One should notice that our results have been obtained
an infinitely large membrane. For a finite membrane w
extensionLy in the y direction andL' in the transverse
direction, finite size scaling laws can be derived in the abo
renormalization group framework@3#. Due to the anisotropic
nature of the tubular phase, however, there are many dif
ent scaling regimes, depending in particular on the rela
scaling ofLy andL' .

Finally, let us stress that the above analysis of renorm
izability does not depend on the precise form of the Gauss
elastic term in they direction. One could imagine replacin
the bending energy term by a tension term (]yh)2, describ-
ing for instance a tubule under longitudinal tension. T
theory would then also be renormalizable in ane52D21
2(d21)(22D)/2 expansion, with again no renormalizatio
of this tension term and only one independent exponen
the theory. In this case, however, the calculation cannot
performed atD52 directly, where the upper critical dimen
sion is infinite. As for self-avoiding isotropic membranes,
complete study of the problem forD,2 is required.

After this paper was completed we were informed by R
that the Hamiltonian equation~2.1! is not sufficient for a
complete description of polymerized tubules ind53. RT
argued that a more involved Hamiltonian, including the a
harmonic elastic terms of RT, Eq.~5!, in addition to the
self-avoiding interaction, is needed. Since the present pa
is rigorous and self-consistent, we feel that it neverthel
makes a vital contribution to our present understanding
tubules. The analysis of the fuller model suggested by
remarks above presents a very definite challenge—to
knowledge there does not exist in the literature any pro
renormalization group treatment of a theory with both no
linear elasticity and two-body self-avoidance.
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