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We compute the damping rates of one-particle excitations in a cold ultrarelativistic plasma to leading order
in the coupling constante for three types of interaction: Yukawa coupling to a massless scalar boson, QED,
and QCD. Damping rates of charged particles in QED and QCD are of ordere3m, while the damping rates of
other particles are of ordere4m or e4m log(1/e). We find that the damping rate of an electron or of a quark is
constant far from the Fermi surface, and decreases linearly with the excitation energy close to the Fermi
surface. This unusual behavior is attributed to the long-range magnetic interactions.@S0556-2821~97!07920-4#

PACS number~s!: 11.10.Wx, 52.60.1h, 71.10.2w

I. INTRODUCTION

The quasiparticle concept is a powerful tool for studying
the dynamical properties of ultrarelativistic plasmas; it has
been widely used in the recent literature@1#. Weakly excited
states of a plasma can be described as superpositions of qua-
siparticle states, which behave, at least in a first approxima-
tion, as free, noninteracting particles. These elementary ex-
citations undergo damping through their mutual coupling,
which gives their energy spectrum a finite width. The quasi-
particle concept holds only if this energy spread, or equiva-
lently the damping rate, is negligible with respect to the
mean energy of their wave packet.

In this paper, we compute damping rates in plasmas at
high density and zero temperature,T50. While the thermo-
dynamic properties of ultrarelativistic degenerate plasmas are
well known @2#, little work has been devoted so far to their
dynamical properties@3,4#. Most works on damping rates
have been focusing on plasmas at high temperature with van-
ishing chemical potential,m50. However, plasmas with fi-
nite chemical potential are also relevant in view of phenom-
enological applications: first, degenerate quark systems~with
m!T! might exist in the cores of neutron stars@5#; second,
the state of the hadronic matter~possibly a quark-gluon
plasma! temporarily formed in an ultrarelativistic nucleus-
nucleus collision corresponds to values ofm and T of the
same order of magnitude at the presently available energies
@6#.

From a theoretical point of view, the zero temperature
case owes its interest to the basic difference, compared to the
high temperature limit, in the infrared divergences which
plague perturbative calculations in gauge theories. Naive
perturbation theory leads to two levels of infrared diver-
gences@7,8#. Those appearing in the calculation of transport
coefficients@9# and collisional energy loss@10# are cured by
taking into account screening effects at the one-loop level:
propagators and vertices must be corrected at long wave-
lengths, according to the resummation scheme developed by
Braaten and Pisarski@11#. The momentum and energy de-
pendence of these medium effects is the same for hot (m
50) and cold (T50) relativistic plasmas, and is character-

ized by a scale of ordereT for a hot plasma, andem for a
cold plasma@4#. At high temperature, the lack of static
screening of the transverse part of the interaction is respon-
sible for a logarithmic divergence in the perturbative calcu-
lation of the fermion damping rate@12–14#. This problem
has been recently solved in hot QED@15#. By contrast, this
second level of divergence does not appear at zero tempera-
ture because of Pauli blocking. This allows us to obtain fi-
nite, most often analytical expressions for the damping rates
G(p) of all one-particle excitations, as a function of their
momentump.

Three types of interactions are discussed and compared.
~1! Electromagnetic interaction~QED!: this corresponds to a
degenerate electron gas.~2! Non-Abelian SU(Nc) interaction
~QCD!: for Nc53, this corresponds to degenerate quark mat-
ter. ~3! In addition, we consider a toy model where the fer-
mion field c(x) is coupled to a massless scalar fieldf(x),
with the Yukawa interactionLY5ec̄cf. These theories
share several features. The resummed fermion propagator is
the same for the three theories. The resummed boson propa-
gator is the same for the two gauge theories, QED and QCD,
while screening corrections reduce to a medium-induced
mass term for the Yukawa interaction@16#. The coupling
constant, notede for all theories, will be assumed to be much
smaller than unity,e!1, to ensure that a perturbative expan-
sion is reliable. It has been shown that perturbation theory
can be used to study the properties of the QCD phase if the
temperature and/or the chemical potential is much larger
thanLQCD @2#.

We are considering degenerate Fermi systems in their
ground state. Single particle excitations are obtained by add-
ing or removing one particle from the ground state, and
damping of these excitations results from collisions with the
fermions of the Fermi sea. Two types of excitations compose
the quasiparticle spectrum. At large~‘‘hard’’ ! momentap,
p;m@em, the elementary modes correspond to single par-
ticles slightly perturbed by the medium. Their damping pro-
cesses are the object of this paper. For hard fermion or hole
excitations, the only collisional process to leading order ine
is elastic ~Mo” ller! scatteringf f→ f f . @We use the generic
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names bosons (b), fermions (f ), and antifermions (f̄ ).#
For an antifermion, two processes may contribute, namely
elastic ~Bhabha! scattering f̄ f→ f̄ f and pair annihilation
f̄ f→bb. For a boson, the only process is elastic~Compton!
scattering b f→b f . On the other hand, long wavelength
~‘‘soft’’ ! modes, of momentump of orderem, correspond to
collective oscillations in the medium. Their damping pro-
cesses are more complex: to leading order ine, bremsstrah-
lung contributes:f f→ f f b for a soft hole, orf̄ f f→b f for a
soft antifermion. A discussion of these calculations will be
presented in a forthcoming publication@17#.

Depending on the interaction and on the type of excitation
considered, the dominant contribution to the damping rate
may come either from processes with large scattering angles
(u;1), from processes with small scattering angles (u
;e), or from both. Large scattering angles correspond to
hard exchanged quanta, for which medium effects are small:
then, the amplitudes are the same as in the vacuum. On the
other hand, if a hard particle of momentump;m is deflected
by an angle of ordere, the exchanged quantum has a soft
momentum of orderem, for which medium effects become
important. In Sec. II, we estimate the orders of magnitude of
both hard and soft contributions to the damping rates. We
show how they can be calculated, in a kinetic approach, as
phase space integrals of elementary scattering processes.

Our results in QED and QCD are gauge invariant. First,
all the square matrix elements we use in computing the hard
sector contributions are averaged over polarization states.
Second, in evaluating the soft sector contributions, we
choose the strict Coulomb gauge because it describes in the
simplest way the polarization properties of the medium by
explicitly separating the electric and magnetic pieces of the
interaction. Furthermore, we always take matrix elements be-
tween physical polarization states, thus securing a gauge in-
variant result.

The equivalence with field theoretical methods is recalled
in Appendix B. Section III presents the calculations of damp-
ing rates for the various excitations considered, while Sec.
IV is devoted to a discussion of the results along with a
comparison between damping rates in cold and hot plasmas.

II. GENERAL ANALYSIS

A. Orders of magnitude

The damping rateG, the number of collisions per unit
time, is of orderG;snv where s is the scattering cross
section,n the density of scatterers, andv the relative veloc-
ity. In this paper, we assume that all particles are massless,
which impliesv51 (\5c51). We consider 2→2 elemen-
tary processes in which an incoming particle of four-
momentumP5(p,p) ~fermion above the Fermi level, anti-
fermion, or boson! is added to the system and scatters on a
particle of the Fermi sea with four-momentumK5(k,k), k
,m. We denote byP85(p8,p8) andK85(k8,k8) the four-
momenta of outgoing particles. If the excitation under study
is a hole in the Fermi sea, incoming and outgoing particles
must be interchanged. The differential cross section for un-
polarized particles can generally be written as

ds

dt
5

1

32ps2uM u2, ~1!

where uM u2 denotes the scattering matrix element squared,
averaged over the helicity states of the incoming particle
with momentump, and summed over the helicity states of
the other particles.~Note that we do a sum, rather than an
average, over the two helicity states of the scatterer. This
unusual convention will turn out to be convenient in the
following sections.! A factor 1/2 is included inuM u2 if the
outgoing particles are identical. The variabless5(P1K)2,
t5(P2P8)2, andu5(P2K8)252s2t are the usual Man-
delstam variables. In the center-of-mass frame,t is related to
the momentum transferq by t52q2 and to the scattering
angleu by t52s sin2(u/2). In order to obtain the total cross
section, one must integrate Eq.~1! over t betweent52s and
t50.

For a given scattering process in the plasma, the squared
matrix elementuM u2 is deduced from the usual Feynman
rules with appropriate corrections taking into account me-
dium polarization effects. We distinguish three cases, de-
pending on the behavior ofuM u2 at smallt:

~1! The tree matrix elementuM u2 is finite at small mo-
mentum transfers: one example is fermion-fermion scattering
in a Yukawa theory, for which the tree matrix element is

uM u253e4. ~2!

The total cross section is therefore finite and of orders
;e4/m2, sinces is of orderm2. The density of particles per
unit volume in the Fermi sea is of ordern;m3, which gives
G;e4m. This case applies to the processes considered in
Sec. III A.

~2! uM u2 is proportional to 1/t2 at smallt: the differential
cross section grows like 1/u4 at small scattering angleu,
which makes the total cross section diverge. This occurs in
collisions between charged particles~Rutherford diver-
gence!. For electron-electron scattering in QED~Mo” ller scat-
tering!,

uM u254e4S u

t
1

t

u
11D 2

, ~3!

so that the total cross section diverges linearly in the infra-
red: ds;e4dt/t2. However, in a plasma, due to the screen-
ing of the electric charge, the interaction potential decreases
exponentially for distances larger than the Debye screening
length r D;1/(em). This causes a saturation of the differen-
tial cross section for momentum transfersq,r D

21;em, i.e.,
for scattering anglesu,e, or equivalently for t,tmin
5e2m2. The total cross section is therefore of orders
;e4/tmin;e2/m2. Note that this argument is not completely
valid for the transverse part of the interaction, which is
screened dynamically only~i.e., at finite energy transfer!.
However, as we shall show in detail later, dynamical screen-
ing is sufficient at zero temperature to saturate the damping
rate at small momentum transfer. Now, for small momentum
transfers of orderem, the density of scatterers is no longer
n;m3: because of Pauli blocking, the outgoing electron
must have an energy larger than the Fermi energym, and
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only the electrons just below the Fermi surface can contrib-
ute, within an interval of orderem. Their density isn
;em3, and one finally obtainsG;sn;e3m. This case ap-
plies to the processes considered in Secs. III C and III E.

~3! uM u2 is proportional to 1/t at smallt. This happens in
processes where the exchanged particle is a massless fer-
mion, such as pair annihilation and Compton scattering. For
instance, in the Yukawa theory, the square tree matrix ele-
ment for pair annihilation into two massless Yukawa bosons
( f f̄→bb) is

uM u25
e4

2 S u

t
1

t

u
22D , ~4!

and the total cross section diverges logarithmically in the
infrared, rather than linearly in the previous case. This diver-
gence is also cured by collective effects, which become im-
portant when the momentum transfer is of orderem. Note
that these medium effects are taken into account in the fer-
mion propagator, instead of the boson propagator in the pre-
vious case. Following the same reasoning, the total cross
section is thus of orders5e4ln(1/e)/m2. For an annihilation
process, there is no Pauli blocking in the final state, and the
density of scatterers is of ordern;m3, hence the damping
rate is of orderG;e4 ln(1/e)m. In the case of Compton
scattering, this last remark applies only for a boson whose
energy is larger than the Fermi energy, so that it can turn into
a fermion with almost the same momentum. Otherwise, Pauli
blocking alone inhibits the infrared divergence and the
damping rate is of ordere4m ~Sec. III D!. This case applies
to the processes considered in Secs. III B and III D.

These considerations on orders of magnitude allow us to
simplify the damping rate calculation. In case~1!, kinematics
is dominated by hard momentum transfer~the ‘‘hard sector
contribution’’!: the phase space for soft momentum transfer
~the ‘‘soft sector contribution’’! is smaller by a factore. On
the other hand, soft momentum transfer dominates in case
~2!; the differential cross section integrated over momentum
transfer of orderem is larger by a factor 1/e2 than the con-
tribution from hard momentum transfer, while the phase
space is smaller by only a factore. Finally, in case~3!, both
hard and soft sector contributions are of equal magnitude.

We separate the hard and soft scales by introducing an
arbitrary IR ~UV! momentum cutoffq* in the hard~soft!
contribution. The cutoffq* is chosen at an intermediate
scale,em!q* !m. The hard and soft sector contributions to
the damping rate are both computed in the framework of
kinetic theory. Forq.q* ~hard contribution!, collective ef-
fects are negligible sinceq@em, and the damping rate can
be calculated from the vacuum scattering amplitudes, inte-
grated over phase space with an appropriate choice of vari-
ables, described in Sec. II B. Forq,q* ~soft contribution!,
medium effects must be taken into account, but the kinemat-
ics is simplified by the fact that the exchanged particle is
much softer than the external ones. The damping rate is most
simply calculated as the emission probability of a soft, off-
shell quantum, as developed in Sec. II C. In case~3!, both
approximations are compatible in the region of the cutoff, so
that the total damping rate, which is the sum of the two
contributions, does not depend on the cutoffq* @18#.

Note that processes involving soft external particles, ei-
ther incoming or outgoing, are subleading because the asso-
ciated phase space is small. Thus, the external legs in the
processes considered in this paper will always be hard. The
situation is different, of course, when studying the damping
of soft excitations@17#, where at least the incoming particle
is soft.

B. Hard sector contribution

The hard sector contribution is calculated as the total tran-
sition rate, integrated over the available phase space:

Gh~p!5
1

2p E dtp8dtkdtk8uM u2~2p!4

3d4~P1K2P82K8!. ~5!

Here, dtk5d3k/2k(2p)3 is the Lorentz invariant phase
space volume. When all the particles involved in the scatter-
ing process are hard, including the exchanged one, medium
effects can be ignored to leading order, and the matrix ele-
ment is computed with the usual Feynman rules. If the out-
going particles are electrons, the phase space is limited by
the Pauli exclusion principle: their energy must be larger
than the Fermi energym.

Alternatively, we could have chosen to compute the
damping rate in a field theoretical approach, as the imaginary
part of the self-energy. Generally, the leading hard sector
contribution corresponds to the imaginary part of two-loop
energy diagrams, as illustrated in Fig. 1 in the case of
fermion-fermion scattering. This equivalence is proven ex-
plicitly in Appendix B.

The phase space integration in Eq.~5! is easily carried out
if an appropriate choice of kinematic variables is made: there
are nine integration variables, and four constraints, hence
five degrees of freedom. Since the transition probability is
invariant under a simultaneous rotation ofp8, k, and k8
about the direction ofp, by integrating over this angle only
four degrees of freedom remain. At this point, it is conve-
nient to introduce the four-momentumQ5(v,q) transferred
by the incoming particle to the plasma:

Q5~v,q![P2P85K82K. ~6!

We choose three variables ask, v, andq[uqu. Note thatk
andv fix the energy of the incoming and outgoing particles,
while q fixes the angle betweenk andk8. The fourth degree
of freedom corresponds to the angle between the plane
spanned by (p,p8) and the plane spanned by (k,k8) or,
equivalently, to the azimuthal anglef of k aroundq. With
these variables, Eq.~5! becomes

FIG. 1. Left: Tree diagram fore2e2 scattering. Right: Two-
loop self-energy diagram. The imaginary part, obtained by cutting
the diagram through the fermion loop, corresponds to the amplitude
on the left, squared and integrated over phase space.
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Gh~p!5
1

128p3p2 E dk dv dq^uM u2& ~7!

where the brackets denote an average over the azimuthal
anglef.

The integration limits onq are easily derived from the
definitions in Eq.~6!:

uvu,q,min~k81k,p81p!5min~2k1v,2p2v!. ~8!

Since the scattered fermion belongs to the Fermi sea, we
have the constraintk,m. Depending on whether or not the
outgoing particles are fermions, additional constraints onk
andv may result from the Pauli blocking conditions:k85k
1v.m and/or p85p2v.m. Finally, the momentum
transfer is kept hard by imposingq.q* with em!q* !m.
Together with Eq.~8!, these conditions completely specify
the integration domain in Eq.~7!.

C. Soft sector contribution

When the momentum transfer of a scattering process is of
orderem, one must correct the bare interaction for medium
~screening! effects, whose contribution in the propagator is
of the same order as the bare propagator itself. This is
achieved by replacing the bare propagator by the resummed
propagator given in Appendix A. The damping rate is then
evaluated as a collision integral similar to Eq.~5!, however
with a screened interaction, as illustrated in Fig. 2~left! for
electron-electron scattering.

The soft contribution to the damping rate can in fact be
cast into a much simpler form, as the transition rate of a
process where the incoming hard particle, with four-
momentumP5(p,p), emits a virtual~spacelike! soft par-
ticle with four-momentumQ5(v,q) and scatters into a hard
particle with four-momentumP85(p8,p8) ~Fig. 2, right!.
We show in Appendix B that both approaches~Fig. 2, left,
and Fig. 2, right! are equivalent and amount to evaluate the
imaginary part of a~resummed! one-loop self-energy dia-
gram~Fig. 2, middle!. However, one must be aware that the
actual physical process is the one depicted in Fig. 2 left, i.e.,
electron-electron scattering. The diagram shown in Fig. 2,
right, provides a simple way of doing the calculation.

The damping rateG(p), for the process in Fig. 2~right!,
can be evaluated from Fermi’s ‘‘golden rule,’’ as in Eq.~5!,
with an important modification: the soft energyv and mo-
mentumq5uqu are no longer related by a dispersion relation.
Instead, a whole range of values are allowed according to a
spectral distribution whose actual form is derived from the
screening corrections. The damping rate then takes the fol-
lowing form:

Gs~p!5
1

2p E d4Q

~2p!4 r~Q!2pd„~P2Q!2
…uM u2. ~9!

In this expression,r(Q) denotes the spectral function of the
soft particle. The spectral function of the outgoing hard par-
ticle is simply 2pd„(P2Q)2

…. uM u2 denotes the matrix
element of the transition on the right of Fig. 2, squared and
summed over final spins, and averaged over the spin states of
the incoming particle.

In the limit whereq is much softer thanp, (P2Q)25
22p(v2q cosu), whereu is the angle betweenq and p.
Thus the condition that the outgoing hard particle is on its
mass shell, (P2Q)250 reduces to cosu5v/q. Integrating
over u, the previous equation becomes

Gs~p!5
1

16p2p2 E
0

q
* q dqE

2q

q

dv r~v,q!uM u2. ~10!

Note thatv.0 (v,0) corresponds to the emission~absorp-
tion! of a soft particle.

The phase space is further restricted by the Fermi-Dirac
and Bose-Einstein distributions, Eqs.~B5!. If the outgoing
hard particle is a fermion, it must be above the Fermi level,
which impliesv,p2m. If the soft particle is a boson, the
only possibility isv.0 because there is no boson initially
present atT50. If the soft particle is a fermion, both signs
are possible:v,0 corresponds to the absorption of a soft
fermion, andv.0 to the emission of a soft antifermion.
Note that the phase space for the soft virtual particle is lim-
ited by the same statistical constraints as if it were a real,
on-shell, particle.

It turns out that the matrix element squareduM u2 always
takes a very simple form, as we shall see in the next section.

III. RESULTS

We now compute explicitly the damping rates of one-
particle excitations to leading order ine for the three theories
~Yukawa, QED, and QCD!. We first study the fermionic ex-
citations, in Secs. III A to III C, then the bosonic excitations,
in Secs. III D and III E. For each type of excitation, we show
the self-energy diagrams whose imaginary part corresponds
to the elementary process under consideration.

A. Fermion in Yukawa’s theory

We consider an incoming fermion of momentump above
the Fermi level:p>m. In the Yukawa theory, the fermion-
fermion scattering matrix element squared, corresponding to
the Feynman diagrams depicted in Fig. 3, is a constant given
by Eq.~2!. Collisions are thus dominated by hard momentum
transfers, as discussed in Sec. II A. The rateG is given by
Eq. ~7!, where Fermi statistics imposes the conditions

FIG. 2. Left: Diagram fore2e2 scattering with a screened in-
teraction. The resummed photon propagator is indicated by a blob.
Middle: One-loop self-energy diagram with a resummed photon
propagator. Right: Emission of a virtual soft photon by a hard elec-
tron, corresponding to small anglee2e2 scattering.

FIG. 3. Tree diagrams for Mo” ller scattering.
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0,m2k,v,p2m. ~11!

Using Eq.~11!, the limits onq given by Eq.~8! reduce to
v,q,2k1v. The integration is straightforward and leads
to the expressions

G~p!5H e4

128p3

m2~3p24m!

p2 , for p.2m,

e4

128p3

~p2m!2~4m2p!

p2 , for m,p,2m.

~12!

This damping rate corresponds to the imaginary part of the
two-loop diagrams displayed in Fig. 4. The third two-loop
diagram, the rainbow diagram~see Fig. 7! does not contrib-
ute at zero temperature: its imaginary part corresponds to
Compton scattering or pair annihilation.

We now consider a hole state~of momentump, p,m!.
The scattering process is now described in two steps: first an
initial vacancy in the Fermi sea is filled by a fermion of
momentump8; next the energy differencep82p is trans-
ferred to a fermion of momentumk8, which is then extracted
out of the Fermi sea. Hence, Fermi statistics imposes for this
process the conditions 0,k8,p8,m,k. We definev andq
as in Eq.~6!. Thus Eqs.~7! and~8! are still valid. However,
Eq. ~11! is now replaced by

p2m,v,m2k,0. ~13!

With these conditions, Eq.~8! reduces to2v,q,2p2v.
The phase space integration of Eq.~7! then gives

G~p!5
3e4

128p3

~m2p!2

p
. ~14!

Near the Fermi surface, the damping rate of fermions and
holes vanishes quadratically with the excitation energy
up2mu. We shall come back to this in Sec. IV.

Note that the damping rate diverges for smallp. Extrapo-
lating the above formula to the soft domainp;em ~where
our calculation does not apply!, one guesses thatG is of
order e3m for a soft excitation, instead ofe4m for a hard
excitation. A correct calculation shows that it is indeed the
case@17#.

B. Antifermion in Yukawa’s theory

Two collision processes contribute to leading order:
Bhabha scattering@Fig. 5~a!# and pair annihilation@Fig.
5~b!#.

The first one gives no difficulty. Its matrix element is

uM u252e4, ~15!

and the phase space integration goes along the same lines as
in Sec. III A, except for the fact that no restriction applies on
the final state energyp8. Equation~11! is therefore replaced
by

0,m2k,v. ~16!

The contribution of Bhabha scattering to the damping rate is
then obtained by integrating Eq.~7! using Eqs.~8! and~16!:

G1~p!5H e4

192p3 p, for p,m,

e4

192p3

m2

p2 ~3p22m!, for p.m.
~17!

For pair annihilation, the tree matrix element is given by
Eq. ~4!, and we need to include both hard and soft momen-
tum transfers, according to the discussion following this
equation. The hard sector contribution is given by Eq.~7!. To
use this equation, we must average the matrix element over
f, the azimuthal angle ofk with respect toq. We first note
that exchangingt andu in Eq. ~4! amounts to exchanging the
two outgoing photons, thus theu/t and t/u terms give iden-
tical contributions anduM u2 can be replaced bye4(u/t
21). From the definition oft and Eq. ~6!, t5Q25v2

2q2. The variableu is given byu52(p•k82pk8). Decom-
posingp andk8 into longitudinal and transverse components
with respect toq, and averaging overf, one getŝ p•k8&
5(p•q)(k8•q)/q2. From Eq. ~6!, one obtainsp•q5vp
1(q22v2)/2 and k8•q5vk1(q21v2)/2. The average
over f gives thereforê uM u2&5e4(^u/t&21), with

K u

t L 5
1

2q2 @~2k1v!~2p2v!2q2#. ~18!

Notice that the collinear divergence~atv;6q! canceled out
of the ratio.

FIG. 4. Two-loop self-energy diagrams corresponding to the
scattering processes depicted in Fig. 3. The diagram on the left
gives the direct and exchange contribution while the diagram on the
right is the interference term.

FIG. 5. Tree diagrams for~a! Bhabha scattering and~b! pair
annihilation.
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The limits onq are given by Eq.~8!, and the only addi-
tional restriction from Fermi statistics isk,m. The integral
is logarithmically divergent:

G2h~p!5
e4m2

128p3p S ln
mp

q
*
2 2

3

2D , ~19!

whereq* is an IR cutoff for theq integral.
The soft sector contribution corresponds to pair annihila-

tion ‘‘at low angles,’’ in the sense that the outgoing photons
have momenta very close to those of the incoming electron
and positron~Fig. 6, left!. This can be viewed as a process
where a hard antifermion ‘‘turns’’ into a hard boson~see Fig.
6, right! by absorbing a soft fermion (v,0) or emitting a
soft antifermion (v.0). The spectral function of a soft fer-
mion receives contributions from two channels which are
labeled by ‘‘plus’’ and ‘‘minus’’ in Appendix A. We denote
by M 1 andM 2 the corresponding matrix elements

M 65eū~p,l!u~6q,l8!. ~20!

Only states with opposite chiralities have nonvanishing ma-
trix elements, which impliesl852l. Using Eq.~A7! and
the property thatuf p̂

†f q̂u5cos(u/2), u denoting the angle be-
tweenp andq, one easily obtains the result

(
l8

uM 6u252e2p~q7v!, ~21!

where we have used the relation cosu5v/q. From Eqs.~10!
and ~21!, the soft contribution to the damping rate becomes

Gs~p!5
e2

8p2p E
0

q
* q dqE

2q

q

dv@~q2v!r1~v,q!

1~q1v!r2~v,q!#, ~22!

or, by using the relationshipr1(v,q)5r2(2v,q),

G2s~p!5
e2

4p2p E
0

q
* q dqE

2q

q

dv~q2v!r1~q,v!.

~23!

To integrate overv, we first show the following sum rule:

E
2`

`

dv~q2v!r1~q,v!50. ~24!

Sincer1 is the discontinuity of the Green functionG1 on
the real axis, the contour integral in Eq.~24! is simply the

integral of (q2z)G1(q,z), with z on a contour going par-
allel and right above the real axis from2` to 1`, and
coming back right below it from1` to 2`. Deforming the
contour into a circle of infinite radius, on whichG1(q,z)
reduces to the free propagator@2q(z2q)#21, one easily sees
that the integral vanishes. With the help of the sum rule of
Eq. ~24!, one can then express the contribution from the cut
piece (2q,v,q) of the densityr1 in Eq. ~23! in terms of
the pole piece (uvu.q) of the densityr1 . The pole contri-
bution to the spectral density isr152pd(G1

21). Using Eqs.
~A8! and ~A9!, we obtain

G2s~p!5
e2

4p2p E
0

q
* q dqE

uvu.q
dv~v2q!2pd„2q~v2q!

2S1~q,v!…. ~25!

Since the mass operatorS1(q,v), given by Eq.~A10!, de-
pends only onv/q, it is convenient to change variables from
q,v to x5v/q andy52q(v2q), which gives

G2s~p!5
e2

16pp E y dx dy

ux21u
d„y2S1~x!…. ~26!

This can be readily integrated overy and then overx. The
integration limits are derived from the dispersion relation
Eq. ~A11!. For q@mf , one branch is atx.11mf

2/q2 and
the other is atx.21. Thus the integral onx extends from
2` to 21 and from 11mf

2/q
*
2 to 1`. One obtains

G2s~p!5
e2mf

2

8pp F lnS 2q
*
2

mf
2 D 22G . ~27!

Replacingmf by its value given in Appendix A and adding
Eqs.~19! and ~27!, the cutoffq* cancels out. The contribu-
tion of pair annihilation to the damping rate is thus

G2~p!5G2h~p!1G2s~p!5
e4m2

128p3p F lnS 2mp

mf
2 D 2

7

2G .
~28!

The total damping rate to ordere4 is the sum ofG1 and
G2 given by Eqs.~17! and~28!. It corresponds to the imagi-
nary part of the self-energy diagrams displayed in Fig. 7. The
two-loop diagrams give the hard contribution, while the~re-
summed! one-loop diagram gives the soft contribution.

FIG. 6. Left: Tree diagram fore1e2 annihilation. As in Fig. 2
~left!, the exchange diagram is negligible when the momentum car-
ried by the internal propagator is soft. Right: Emission of a soft
virtual positron~or absorption of a soft electron! by a hard positron,
representing the contribution of soft momentum transfers to the
process on the left.

FIG. 7. Self-energy diagrams corresponding to positron scatter-
ing and annihilation. The three two-loop diagrams correspond to the
hard contribution: the first diagram corresponds to direct and ex-
change terms in Bhabha scattering@Fig. 5~a!#, the second to direct
and exchange terms in pair annihilation@Fig. 5~b!#, while the third
diagram, which can be cut in two different ways, gives the interfer-
ence terms of both processes; finally, the one-loop diagram on the
right corresponds to the soft contribution to pair annihilation.
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C. Fermion and antifermion in QED and QCD

We turn now to studying the fermion lifetime in relativ-
istic QED and QCD plasmas. The damping process is
fermion-fermion scattering and is dominated by soft momen-
tum transfers, as explained in Sec. II B. In QED, we compute
this process as the emission of an off-shell soft photon by a
hard electron~Fig. 2!. The matrix element of the transition is
M5eū(p8,l8)gmu(p,l)em(q), whereem(q) is the polariza-
tion of the photon. Sinceq!p, one can replacep85p2q by
p in the matrix element. Then, the first factor inM is simply
the electric current associated with the incoming electron,
which reduces toJm5eū(p,l8)gmu(p,l)52ePmdl,l8 , the
Kronecker symbol reflecting the fact that helicity is con-
served in the process. We thus obtainM52eP•e. Now, in
the Coulomb gauge, the spectral function of the soft photon
receives a contribution from longitudinal and transverse
modes, which are denoted byrL(q,v) andrT(q,v), respec-
tively ~see Appendix A!. The longitudinal polarization
vector gives a matrix elementuMLu254e2p2. The two
transverse polarization vectors eT

m(q,l) satisfy
(l51,2eT

i (q,l)eT
j (q,l)5d i j 2qiqj /q2 which gives, upon us-

ing v5q cosu, uMTu254e2p2(12v2/q2). The soft contri-
bution to the damping rate is given by Eq.~10! and the
condition 0,v,p2m:

Gs~p!5
e2

4p2 E
0

q
* q dqE

0

min~q,p2m!

dvFrL~v,q!

1S 12
v2

q2 D rT~v,q!G . ~29!

The restrictionv.0 is due to the conditionsk,m and k8
.m, which together implyv5k82k.0 ~see Fig. 2, left!.
The damping of a hole is calculated in the same manner and
leads to the same expression, Eq.~29!, with p2m replaced
by m2p.

Since the spectral functionsrL andrT fall off rapidly for
q.em, one can safely take the cutoffq* to infinity. Intro-
ducing then the dimensionless quantitiesy5q/qD in Eq.
~29!, e5up2mu/qD , andx5v/q, one obtains

G~e!5
e2qD

4p2 E
0

1

dxE
0

e/x

y2 dy@r L~y,x!1~12x2!r T~y,x!#,

~30!

with r L,T5qD
2 rL,T .

In QCD, the damping rate of a quark or a quark hole has
a similar expression because the color current of a quark
~which enters the matrix element! has the same structure as
its electric current. The result is then given by Eq.~30! with
a multiplicative color factorCf5(Nc

221)/(2Nc): Nc
221 for

the number of soft gluons, 1/Nc for the average over the
quark colors, and 1/2 for the trace of SU~3! generator prod-
ucts.

The integrals in Eq.~30! can be evaluated numerically.
Simple approximate results can be derived in two limits:

~1! Far from the Fermi surface,e@1. As the spectral den-
sities r L and r T vanish rapidly fory>1, we can extend the
upper bound of they integral to infinity. One finds

G~p!50.057e2CfqD , ~31!

or

G~p!

5 H 0.018e3m for QED,

0.017ANfe
3m for QCD with Nf flavors, Nc53.

~32!

~2! Very close to the Fermi surface,e!1. The integration
overy covers an appreciable range of values for small values
of x;e only, so that one can safely extend the integral over
x to infinity. In the static limit,x5v/q!1, the longitudinal
and transverse spectral functions behave very differently.
Static electric fields are screened at distances larger than
qD

21. The longitudinal polarization function, given by Eq.
~A4!, reduces to a constant,PL.2qD

2 , and the correspond-
ing spectral functionr L is

r L5
px

~y211!2 . ~33!

Integrating overx first, one finds a contribution to the damp-
ing rate of ordere2:

GL5Cf

e2qD

4p E
0

`

dyE
0

e/y

dx
xy2

~y211!2 1O~e3!

;Cf

e2qD

32
e21O~e3!. ~34!

On the contrary, the transverse polarization function is
purely imaginary forx!1, because a static magnetic field is
not screened. In this limit (x5v/q!1), Eq. ~A5! gives
PT52 ipqD

2 v/4q3, and the spectral functionr T is

r T5
px

2@y41p2~x/4!2#
. ~35!

Even though there is no static screening, the term propor-
tional to x2 in the denominator induces a deviation from the
Rutherford 1/q4 ~i.e., 1/y4! behavior, which is referred to as
dynamical screening. The main contribution to the damping
rate comes from values ofy andx (x;e) such thaty4 and
x2 are of the same order, i.e., such thatq;(qD

2 v)1/3. Upon
introducing the variabley5y8Ax/2 and integrating overx
first, one finds

Cf

e2qDe

3p E
0

`

dy8
y8

y841p2 1O~e3!;Cf

e2qD

12p
e1O~e3!.

~36!

The damping rate is thus dominated by the transverse con-
tribution and gives
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G~p!

5H e2

12p
up2mu for QED,

e2

9p
up2mu for QCD with Nf flavors, Nc53.

~37!

For the damping rate of a positron or an antiquark, Ruth-
erford scattering has a matrix element varying as (u/t)2 and
dominates over pair-annihilation and thes-channel contribu-
tion to Bhabha scattering, varying respectively as (u/t) and
(u2/s2). The soft sector contribution gives therefore the
leading order term. Since the electric and color currents are
the same as for electrons or quarks, up to a sign, the damping
rate is also given by Eq.~30!, without the restrictiont
,e/x coming from Pauli blocking. The damping rate is then
given by the result of Eq.~32! for all momenta.

D. Boson in Yukawa’s theory and QED

An incident beam~of given central energy! of scalar
bosons or photons will undergo a spectral broadening due to
the elastic scattering of its quanta with electrons~Compton
scattering!. The matrix element squareduM u2, corresponding
to the diagrams depicted in Fig. 8, is related to that of pair
annihilation by crossing symmetry. For a Yukawa interac-
tion, one deduces, from Eq.~4!,

uM u252e4S 2
u

s
2

s

u
12D , ~38!

whereas for a hard photon we have

uM u254e4S 2
u

s
2

s

uD . ~39!

The computation of the damping rate is similar to the calcu-
lation done in Sec. III B. In particular, both hard and soft
momentum transfers may contribute.

To compute the hard contribution, we define the variables
v5p1k5p81k8 and q5p1k5p81k8, so that s5v2

2q2. Takingk8, v, andq as integration variables, the con-
tribution to the damping rate is given by Eq.~7!, with k
replaced byk8. The matrix elementuM u2 must be averaged
over the azimuthal angle ofk aroundq. Following the same
method as for pair annihilation, we obtain an equation simi-
lar to Eq.~18!:

K u

sL 5
1

2q2 @~2k82v!~2p2v!2q2#. ~40!

The limits on q are max(u2p2vu,u2k82vu),q,v, and the
constraints from Fermi statistics arev2p,m,k8.

The inverse term (2s/u) is integrated using the variables
v5k2p85k82p, q5k2k85k82p and following the
same steps as for the direct term.

Adding up the direct and inverse terms, we find, for the
hard sector contribution to the damping rate of a Yukawa
boson,

G~p,m!5
e4p

192p3 F12
3m2

p2 lnS 12
p2

m2D G ,
G~p.m!5

e4m2

64p3p F32
2m

3p
1 lnS ~p2m!pm

~p1m!q
*
2 D G . ~41!

For a photon~QED! we obtain

G~p.m!52
e4p

96p3 F11
3m2

p2 lnS 12
p2

m2D G ,
G~p.m!5

e4m2

32p3p F11
2m

3p
1 lnS ~p2m!pm

~p1m!q
*
2 D G . ~42!

As in Sec. III B, the logarithmic divergence inq* corre-
sponds to processes where the intermediate fermion state is
soft in the second diagram of Fig. 8. In these processes, the
incoming photon~boson! transfers almost all its energy to
the outgoing electron. Since the outgoing electron is always
above the Fermi level, this situation can occur only ifp
.m. ~We assume for simplicity thatup2mu@em.! Thus the
logarithmic divergence is present only forp.m, as can be
seen in Eqs.~41! and~42!. Then, both soft and hard momen-
tum transfers contribute.

The soft sector contribution corresponds to the emission
of a soft antifermion~or to the absorption of a soft fermion!
by a hard boson~Fig. 9, right!. Sincek8.p, the correspond-
ing matrix element is approximately given by Eq.~20! for a
Yukawa boson, and by

M 65eū~p,l!eT•gu~6q,l8!, ~43!

for a QED photon, whereeT is the polarization vector. Since
eT is transverse with respect to the photon momentump, The
operatoreT•g anticommutes with the Dirac operatorpg0

2p•g and with the chirality operatorg5. Thus, it simply
changesū(p,l) into ū(p,2l), up to a phase. The matrix
element is the same as for the Yukawa interaction. The only
difference is that the chiralityl is conserved (l85l), while
it changes in the Yukawa theory (l852l).

In both cases, the resulting soft sector contribution takes
therefore the same form as the soft contribution for positron

FIG. 8. Tree diagrams for electromagnetic and Yukawa Comp-
ton scattering.

FIG. 9. Left: Leading diagram for Compton scattering in the
limit of soft exchanged momenta. Right: Emission of a soft virtual
positron~or absorption of a soft electron! by a hard photon, corre-
sponding to the process on the left.
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annihilation in Eq.~23! with an additional factor 2 for the
final electron spins, and with an additional restriction on
phase space from Fermi statistics,p2v.m. Sincev is of
orderem, this restriction can be ignored as soon as the boson
energy is not too close to the Fermi energy, i.e., ifp2m
@em. In this condition, the damping rate is given by Eq.
~27!, multiplied by a factor of 2. Adding up the hard and soft
contributions, we find for the hard Yukawa boson

G~p,m!5
e4p

192p3 F12
3m2

p2 lnS 12
p2

m2D G ,
G~p.m!5

e4m2

64p3p F12
2m

3p
1 lnS 2pm~p2m!

mf
2~p1m! D G , ~44!

and for a hard photon

G~p,m!52
e4p

96p3 F11
3m2

p2 lnS 12
p2

m2D G ,
G~p.m!5

e4m2

32p3p F211
2m

3p
1 lnS 2pm~p2m!

mf
2~p1m! D G .

~45!

Once again the cutoffq* has canceled out upon addition of
the hard and soft contributions. These results are valid only
far from the Fermi surface, i.e., forup2mu@em. The corre-
sponding self-energy diagrams are displayed in Fig. 10.

E. Gluon

Three tree diagrams contribute to Compton scattering of a
gluon. They are displayed in Fig. 11. The first, as shown
below, yields a contribution of ordere3m; the contribution
from the other diagrams squared is subleading, and is of the
same order ine as in QED, i.e., of ordere4m or
e4m log(1/e) ~see previous subsection!. The interference
terms are therefore subleading, too, and only the square of
the first diagram must be taken into account.

The scattering process in Fig. 11, left, can be viewed as
the emission of a soft gluon by a hard one~see Fig. 12! and
also corresponds to the imaginary part of the self-energy dia-

gram depicted in Fig. 13. The matrix element in Fig. 12 is
evaluated as follows. The three gluon vertex, coupling a hard
gluon of color indexa, momentump and polarizationep to
a hard and a soft gluon of color indicesb andc, momentap8
andq and polarizationsep8 andeq , respectively, is

M5e fabc@ep•ep8~P1P8!•eq1ep8•eq~2P81Q!•ep

1eq•ep~2Q2P!•ep8#, ~46!

where f abc is the SU~3! structure constant. The hard gluons
are on-shell transverse gluons, whose polarization vectors
satisfy ep•P5ep8•P850. Therefore, in the limitq!p, the
last two terms in Eq.~46! vanish. The remaining term is

M52e fabc~ep•ep8!~P•eq!. ~47!

This can be written in the formM5Jmeq
m , where Jm

52e fabc(ep•ep8)Pm is the matrix element of the color cur-
rent between the initial and final hard gluon states. In this
form, it is analogous to the matrix element obtained in the
case of the emission of a soft photon by a hard electron~see
Sec. III C!.

The gluon damping rate is therefore given by an equation
similar to Eq.~29!, with two minor modifications: the con-
dition v,p2m does not apply for a final gluon state, and
the result must be multiplied by a factorNc/25 f abcf abc/16
coming from the color degrees of freedom:Nc for the pos-
sible ways of transferring color to the soft gluons, and 1/2 for
the symmetry factor. ForNc53, the numerical value is

G~p!5
3

2
0.057e2qD

50.019ANfe
3m. ~48!

IV. DISCUSSION

Damping rates of hard particles in a cold ultrarelativistic
fermion gas are at least of ordere3 higher than their energy:
hence, one-particle excitations are narrow quasiparticle states
in the perturbative regimee!1. The damping rates of the
various one-particle excitations are displayed as a function of

FIG. 10. Self-energy diagrams corresponding to Compton scat-
tering. The three two-loop diagrams correspond to the hard contri-
bution: the first and second diagrams correspond respectively to the
first and second processes in Fig. 8, while the third diagram is the
interference term; finally, the one-loop diagram on the right corre-
sponds to the soft contribution.

FIG. 11. Tree diagrams of gluon Compton scattering. The first
of the three diagrams dominates when the momentum carried by the
internal gluon is soft.

FIG. 12. Left: Diagram for gluon Compton scattering with a
screened interaction. The resummed propagator is indicated by a
blob. Right: Emission of a soft virtual gluon by a hard gluon, rep-
resenting the contribution of soft momentum transfers to the pro-
cess depicted in Fig. 11.

FIG. 13. One-loop self-energy diagram contributing to the gluon
damping rate through Compton scattering at small angles.
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their momentump in Figs. 14, 15, and 16 for the Yukawa
interaction, QED, and QCD, respectively.

We distinguish two categories of damping processes: for
charged particles in gauge theories, the scattering process is
essentially forward (u;e) and the resulting damping rate is
of order e3m; for other particles, large angle scattering (u
;1) contributes at least as much as small angle scattering,
and the damping rate is of ordere4m or e4m log(1/e). As
explained in the Introduction, the results derived in Sec.
III C, III D, and III E are gauge invariant: all the matrix ele-
ments used in either the hard or the soft sector contributions
are averaged over physical polarization states.

A. Damping rates of charged particles in gauge theories

Damping rates of charged particles are dominated by col-
lisions with soft momentum transfer, for which medium ef-
fects must be taken into account: scattering takes place
through the coupling of the elementary particle current with
coherent plasma oscillations of the charge and current den-
sities. The underlying classical structure is clear: the transi-
tion rate depends on the hard particle only through the asso-
ciated current. We are in a situation where the hard particle
motion is only slightly perturbed by the soft one: the gauge
field behaves essentially as a classical field which couples to
the current of the hard particles.

The electron and quark damping rates are very similar, in
the sense that they differ only by trivial color factors. On the
other hand, the gluon and photon damping processes are es-
sentially different: the dominant contribution to gluon damp-
ing involves the three-gluon vertex~see Fig. 11!, and the
damping rateG is of ordere3m, as for electrons and quarks.
Gluon damping is therefore specifically non-Abelian. The

photon damping rate is smaller in magnitude, of order
e4m log(1/e) or e4m.

It is interesting to note that the damping rates of charged
particles are independent of the particle momentum. The
only exception comes from electrons or quarks very close to
the Fermi surface, within an intervalem from the Fermi
level, where the damping rate decreases with the excitation
energyup2mu ~Sec. III C!. Then, the longitudinal part of the
interaction is screened at low momenta and leads to a width
quadratic in up2mu. The dominant term, shown in Eq.~37!,
is the contribution from the transverse piece of the interac-
tion, which is not screened in the static limit, and the width is
linear in up2mu. This correlation between the range of in-
teraction and the electron damping rate close to the Fermi
surface is already well known in the nonrelativistic electron
gas ~@19# and @20#!. In particular, our result of Eq.~37!
agrees with the energy dependence of the imaginary part of
the electron self-energy derived in@20#, if we set the Fermi
velocity vF5pF /m to vF51.

Note that the calculation presented here is valid only for
hard momentum excitations. The damping of soft, charged,
excitations in gauge theories has very different properties:
first, it is momentum dependent; second, the hard contribu-
tion is no longer negligible, but becomes of the same order
of magnitude as the soft contribution, yielding a damping
rate of ordere3m log(1/e), instead ofe3m for hard excita-
tions @17#.

B. Damping rates of other particles

Other particles include neutral particles~photons, Yukawa
scalars! and fermions with a Yukawa coupling, for which the
interactionfc̄c is not related to any conserved charge. For
these particles, the hard contribution to the damping rate is at
least of the same order of magnitude as the soft contribution.
While the soft contribution involves medium effects, i.e.,
coherent effects, the hard contribution simply results from
incoherent collisions: a quasiparticle excitation dies off by
kicking electrons out of the Fermi sea randomly. The result-
ing damping rates are smaller in magnitude, of ordere4m or
e4m log(1/e). They are strongly momentum dependent, as
can be seen in Figs. 14 and 15.

The log(1/e) term comes from processes in which a mass-
less fermion is exchanged, and the fermion propagator must
be corrected for medium effects. These processes are specific
to relativistic plasmas. As a result of the medium effects, the
photon and the scalar boson damping rates are strongly mo-
mentum dependent: they rise steeply near the Fermi energy

FIG. 14. Damping rate of hard one-particle excitations in the
Yukawa theory as a function of their momentump. We have cho-
sen fore the numerical valuee2/4p51/137. Full line: fermion@p
.m, Eq. ~12!# and hole@p,m, Eq. ~14!# excitations; long dashes:
antifermion@Eqs.~17! and ~28!#; short dashes: boson@Eq. ~44!#.

FIG. 15. Same as Fig. 14 for QED interaction.

FIG. 16. Same as Fig. 14 for QCD interaction, withNf52 fla-
vors. The numerical value of the coupling constant is the same as in
Figs. 14 and 15.
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~see Figs. 14 and 15!, and are of ordere4m for p,m and
e4m log(1/e) for p.m. Once again, the soft momentum
transfer process is almost classical in nature. Here, it is the
fermionic soft field which acts as a classical field~recall that
the dispersion relation of soft fermions is the same for both
interactions! in which the hard particles move@21#.

Near the Fermi surface, the fermion damping rate in a
Yukawa theory decreasesquadraticallywith up2mu, in con-
trast with the electron and quark damping rates. This is a
consequence of the fact that hard momentum transfers domi-
nate and that in this sense, the interaction is short ranged.

Damping rates of soft excitations are of ordere3m or
e3m log(1/e), i.e., one power ine smaller than for hard mo-
menta. The additional factor 1/e comes from kinematics
@17#.

C. Comparison with the high temperature case

As noted in the Introduction, ultrarelativistic plasmas
have the same screening properties in the high density (T
50) and high temperature (m50) limits. For neutral par-
ticles, we have seen that damping rates are of ordere4m or
e4m log(1/e) at T50. These damping rates are generally of
order e4T log(1/e) at high temperature@22#. The log(1/e)
factor comes from processes in which a soft fermion is ex-
changed, i.e., Compton scattering and pair annihilation at
low angles. AtT50, these processes are not always possible
~see Secs. III A and III D! and the log(1/e) then disappears.
Apart from this difference, the orders of magnitude of damp-
ing rates are the same in the hot and cold plasmas.

For charged particles, the situation is very different. Naive
perturbation theory yields an infrared divergent damping rate
in the T50 (m.0) andm50 (T.0) limits. However, the
level of divergence is different in these two cases, because
screening at the one-loop level gives a finite damping rate, of
ordere3m, if T50, whereas in the high temperature case the
damping rate is logarithmically divergent and of ordere2T.
In both cases, the damping processes are elastic collisions
with the charges in the plasma. The essential difference lies
in Pauli blocking: at zero temperature, processes in which a
boson with energyv;em is exchanged have a phase space
proportional tov ~only electrons very close to the Fermi
surface participate in the collisions!, whereas at high tem-
perature, phase space is proportional toT. This factorv both
contributes a factore and kills the divergence atv50.
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APPENDIX A: SPECTRAL DENSITIES OF SOFT MODES

In this Appendix, we recall how boson and fermion
propagators at low momenta are modified by medium effects
in an ultrarelativistic plasma.

1. Soft gauge field

In the Coulomb gauge, rotational invariance allows one to
decompose the photon propagator into a longitudinal (L) and
a transverse (T) piece@24#:

Dmn~q,z!5DL~q,z!eL
meL

n1DT~q,z! (
l51,2

eT
m~q,l!eT

n~q,l!

~A1!

whereeL
m5d0

m andeT
m(q,l), l51,2, are spacelike unit vec-

tors mutually orthogonal and transverse toq, therefore satis-
fying (l51,2eT

i (q,l)eT
j (q,l)5d i j 2qiqj /q2. For the bare

QED interaction, the decomposition of the propagator
D0

mn(q,z) according to Eq.~A1! gives

D0L
21~q,z!5q2; D0T

21~q,z!5z22q2. ~A2!

For soft momentaq;em, the propagator is modified by me-
dium effects:

Dmn
21~q,z!5D0,mn

21 ~q,z!2Pmn~q,z!. ~A3!

To leading order ine2, the polarization tensorPmn(q,z) is
given by bubble diagrams corresponding to the photon cou-
pling to electron-hole intermediate states. DecomposingPmn

according to Eq.~A1!, one obtains (h→10) @4,25,26#

1

qD
2 PL~q,v1 ih!5211

v

2q F lnUv1q

v2qU2 ipu~q22v2!G ,
~A4!

1

qD
2 PT~q,v1 ih!5

v2

2q2 1
v~q22v2!

4q3 F lnUv1q

v2qU
2 ipu~q22v2!G . ~A5!

Notice that the full one-loop self-energy contains also dia-
grams corresponding to electron-positron intermediate states,
however their self-energies are a power ofe smaller than
those of Eqs.~A4! and ~A5!, see@25,26#. In Eqs.~A4! and
~A5!, qD is the Debye screening momentum, given by the
first entry of the following table. The resummed propagator
obtained from Eqs.~A3!–~A5! is drawn as a photon propa-
gator with a ‘‘blob’’ ~see, for instance, Fig. 2!.

The gluon propagator and gluon self-energy are diagonal
in color indices, which we omit for brevity. In the strict
Coulomb gauge, in the sense defined in the second reference
of @11#, the decomposition~A1! holds for the gluon propa-
gator, and Eqs.~A1! through~A5! remain valid. The Debye
screening momentumqD is given by the second entry of the
following table @4#.
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Theory qD

QED em/p
QCD emANf /(p&)

The spectral densityrmn(q,v)522 ImDmn(q,v1 ih),
(h→10) can be decomposed, like the propagator in Eq.
~A1!, into longitudinal and transverse pieces,rL,T(q,v)5
22 ImDL,T(q,v1ih). Their expressions are easily obtained
from Eqs. ~A2!–~A5!. For free fields, they reduce to
r0L(q,v)50, r0T(q,v)52pd(v22q2)@u(v)2u(2v)#:
the only peaks are atv56q and correspond to transverse
photons~gluons!. For soft momenta,rL andrT are modified
by medium effects. The peaks ofrT are shifted towards
higher values ofuvu, and a peak appears inrL at the values of
v given byD0,L

21(q,v)2PL(q,v)50, corresponding to plas-
mon modes. Note that the real parts ofDL,T

21(q,v) are even
in v for fixed q, so that the peaks always appear in pairs of
opposite sign6v. In addition to these peaks, the spectral
densities have a continuous part foruvu,q coming from the
imaginary part of the polarization in Eqs.~A4! and ~A5!,
which corresponds physically to Landau damping: waves
with uvu,q lose their energy by accelerating fermions.

2. Soft fermion

The fermion propagator can be decomposed on a basis of
spinors in the following way~once again, we omit trivial
color indices for the quark propagator!:

G~p,z!5G1~p,z! (
l521,1

u~p,l!ū~p,l!

1G2~p,z! (
l521,1

u~2p,l!ū~2p,l!. ~A6!

In this decomposition,u(p,l) denotes a solution of the free
massless Dirac equation (pg02p•g)u(p,l)50 with chiral-
ity l, normalized according to the relation
(l521,1u(p,l)ū(p,l)5pg02p•g. Note thatu(p,l) is a
positive energy solution, whileu(2p,l) is the correspond-
ing negative energy solution with the same momentump: it
corresponds to a positron~or an antiquark! with momentum
2p. An explicit expression ofu(p,l) is most easily ob-
tained in the chiral representation of Dirac matrices:

u~p,11!5A2pS f p̂

0 D , m~p,21!5A2pS 0
f2p̂

D ~A7!

wherep̂[p/p andf p̂ is a two component spinor pointing in
the direction ofp̂, i.e., satisfyings•p̂f p̂5f p̂ , normalized to
unity f p̂

†f p̂51. Note thatf p̂f p̂
†
5(11s•p̂)/2.

For the free Dirac propagatorG0
21(p,z)5zg02p•g, the

decomposition~A6! gives

G06
21~p,z!52p~z7p!. ~A8!

As expected, the poles ofG1 and G2 are respectively the
positive and negative energy solution of the free Dirac equa-
tion. For soft momentap;em, the fermion propagator is
corrected by medium effects:

G21~p,z!5G0
21~p,z!2S~p,z!. ~A9!

The mass operatorS(p,z) can be decomposed according to
Eq. ~A6!, so thatG6

215G06
212S6 . To leading order ine2,

the componentsS6 are given by (h→10) @3,27,28#

1

2mf
2 S1~p,v1 ih!

512
v2p

2p F lnUv1p

v2pU2 ipu~p22v2!G ,
S2~p,v1 ih!52ReS1~p,2v1 ih!

1 i Im S1~p,2v1 ih!. ~A10!

The self-energy functionsS6 only include the coupling of
the soft external fermion to intermediate fermion states
through the absorption or the emission of a boson. These
terms are the dominant ones for a soft external fermion
@27,28#. The quantitymf in Eq. ~A10! is the quasiparticle rest
energy and is given in the following table:

Theory mf

Yukawa em/(4p)
QED em/(pA8)
QCD em/(pA6)

The spectral densityrF(p,v)522 ImG(p,v1 ih) can
be decomposed like the propagator in Eq.~A6!, with
G6(p,z) replaced by the corresponding spectral density
r6(p,v)522 ImG6(p,v1ih). For a free Dirac field, the
spectral density reduces to r6(p,v)52pd(v2

2p2)u(6v). Medium effects modify the spectral density
for soft momenta. The position of the peaks ofr1 are the
solutions ofG1

21(p,v)50. Using Eqs.~A8!–~A10!, one ob-
tains the dispersion relation in terms of the parameterx
[v/p:

p2

mf
2 5

1

x21
2

1

2
lnS x11

x21D ,

v5px. ~A11!

There are two peaks for a givenp. One with x.1, which
corresponds to the bare fermion state slightly shifted by its
interaction with the medium. Furthermore, a second peak
appears forx,21. It corresponds to a new fermionic exci-
tation called ‘‘plasmino’’ which has no counterpart in non-
relativistic plasmas. Finally,r1 has a continuous part in the
regionuvu,p, which corresponds to the fermionic analogue
of Landau damping. The densityr2 has the same properties,
with v replaced by2v.

APPENDIX B: SELF-ENERGY DIAGRAMS
AND CUTTING RULES

We show explicitly that the kinetic theory approach used
in this paper is equivalent to field theoretical techniques. To
illustrate our point, we choose here the imaginary time for-
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malism, similar arguments hold for the real time formalism,
see@30#. In the imaginary time formalism, the damping rate
G(p) is defined from the imaginary part of the self-energy.
In the case of a fermion, using the notations of Appendix A,
this relation reads (h→10) @29#

G~p!522 tr@p” Im S~p,p1 ih!#/4p

522 ImS1~p,p1 ih!. ~B1!

Cutting rules~see, for example,@30#! allow to express the
imaginary part of a generic self-energy diagram as the rate of
a scattering process, thus providing the equivalence with the
kinetic theory approach used in this paper. We show in this
Appendix that the hard contribution to the damping rate cor-
responds to a two-loop self-energy diagram where the loop
momenta are hard~see Fig. 1! while the soft contribution
corresponds to a one-loop self-energy diagram with a soft
internal momentum~Fig. 2!. We take the example of
electron-electron scattering in QED. Our arguments can be
easily extended to other scattering processes.

We proceed as follows: we first show that the imaginary
part of the one-loop resummed diagram depicted in Fig. 17
corresponds to the probability to emit a soft photon~second
equality in Fig. 2!. Then we show the equality displayed in
Fig. 1, i.e., that the rate of electron-electron scattering corre-
sponds to the imaginary part of a two-loop self-energy dia-
gram. Note, however, that the interference term between the
two Feynman diagrams of electron-electron scattering~Fig.
3, right! is not included here. It corresponds to the imaginary
part of another two-loop diagram~Fig. 4, right!. Finally, we
show that the imaginary part of the one-loop resummed dia-
gram corresponds to electron-electron scattering with a re-
summed interaction~first equality in Fig. 2!.

1. One soft loop

The contribution of the diagram in Fig. 17 to the fermion
self-energy is given by

S~p,zp!5E d3q

~2p!3 E
2 i`

1 i` dzq

2ip
~2 iegm!G0~p2q,zp2zq!

3~2 iegn!Dmn~q,zq!. ~B2!

In this expression,zp5m1 ix with x real,G0 is the fermion
propagator, which coincides with the free propagator~A8!
for a hard fermion, andD is the soft photon propagator given
by Eqs.~A3!–~A5!. We write the internal propagators using
the spectral representations:

Dmn~q,zq!5E
2`

1` dvq

2p

rmn~q,vq!

zq2vq
,

G0~p8,zp8!5E
2`

1` dvp8
2p

rF~p8,vp8!

zp82vp8
, ~B3!

with zq5 ix, zp85m1 ix and p85p2q. A straightforward
contour integration gives for the integral overzq :

E
2 i`

1 i` dzq

2ip

1

zq2vq

1

zp2zq2vp8
52

11n~vq!2 f ~vp8!

zp2vq2vp8
,

~B4!

where we have introduced the Bose-Einstein and Fermi-
Dirac distribution functionsn(v) and f (v) which, in the
limit T50, reduce to

n~v!5
1

ev/T21
5u~v!21,

f ~v!5
1

e~v2m!/T11
5u~m2v!. ~B5!

After analytic continuation ofzp to vp1 ih, the imaginary
part of Eq.~B4! becomes

pd~vp2vq2vp8!@11n~vq!2 f ~vp8!#. ~B6!

The imaginary part of the self-energy can thus be obtained
from Eq. ~B2! through replacing the internal propagators by
their spectral functions and the Matsubara frequenciesz by
real frequenciesv, and multiplying by the occupation factor
from Eq. ~B6!:

22 ImS~p,p1 ih!

5E d4Q

~2p!4 ~egm!rF~P2Q!~egn!

3rmn~Q!@11n~vq!2 f ~vp2vq!#, ~B7!

where we have introduced the four vectorsP5(p,p) and
Q5(vq ,q), andvp5p.

Note that the occupation factors can be rewritten as

11n~vq!2 f ~vp8!5@11n~vq!#@12 f ~vp8!#

1n~vq! f ~vp8!. ~B8!

The two terms correspond to the amplitudes for the direct
and inverse process in Fig. 2~right!. If vp.m ~particle ex-
citation!, only the direct process contributes, when 0,vq
,vp2m. If vp,m ~hole excitation!, on the other hand,
only the inverse process contributes, whenm2vp,vq,0.
Note that in this last case, the occupation factor isn f5
21; however, the boson spectral function also has an oppo-
site sign forvq,0 @see Eqs.~A4! and ~A5!# so that the
global sign is unchanged.

Decomposing the spectral functions according to Eqs.
~A1! and ~A6!, and taking into account thatr1(p,v)
52pd(v22p2)u(v) for a hard fermion~the spectral func-

FIG. 17. One-loop resummed diagram contributing to the elec-
tron or quark damping rate.
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tion is the same as in the vacuum, andr2 does not contribute
sincevp2vq.0!, one obtains from Eq.~B7!:

22ū~p,l!ImS~p,p1 ih!u~p,l!

5E d4Q

~2p!4 2pd„~P2Q!2
… (

j 5L,T
r j~Q!

3(
l8

uM j u2@11n~vq!2 f ~vp2vq!#, ~B9!

whereM j is the matrix element of the transition process in
Fig. 2 ~right!:

M j5ū~p8,l8!~2 iegm!u~p,l!e j
m~q!. ~B10!

Comparing Eq.~B9! with Eq. ~9!, one concludes

G~p!522ū~p,l!ImS~p,p1 ih!u~p,l!/2p ~B11!

522 tr@p” ImS~p,p1 ih!#/4p. ~B12!

2. Two hard loops

We now turn to the second step: we show that the imagi-
nary part of the two-loop diagram on the right of Fig. 1
corresponds to the rate of electron-electron scattering with
the diagram on the left of Fig. 1. The contribution of the
two-loop diagram to the self-energy is given by a formula
analogous to Eq.~B2!, whereD is replaced by a photon line
with a fermion loop insertion, i.e., byD0PD0 , with

Pmn~q,zq!5E d3k

~2p!3 E
m2 i`

m1 i` dzk

2ip
tr@G0~k,zk!~egm!

3G0~k1q,zk1zq!~egn!# ~B13!

with zq on the imaginary axis. Therefore, the imaginary part
of the two-loop diagram is given by Eq.~B7!, in which the
boson spectral functionr(q,vq)522 ImD(q,vq1 ih) is re-
placed by22 Im(D0PD0). Now, the imaginary part ofD0
vanishes because both fermions are on mass shell~uvpu5p
anduvp2vqu5up2qu!, which impliesuvu,q. Thus we can
write Im(D0PD0)5D0(ImP)D0. To calculate ImP, we fol-
low the same steps as for ImS in Eq. ~B2!. Using the spectral
representation to write the internal propagators, the integral
over zk can be calculated easily (k85k1q):

E
m2 i`

m1 i` dzk

2ip

1

zk2vk

1

zk1zq2vk8
5

f ~vk!2 f ~vk8!

zq1vk2vk8
.

~B14!

After analytic continuation ofzq to vq1 ih, the imaginary
part of this equation becomes

2pd~vq1vk2vk8!@ f ~vk!2 f ~vk8!#. ~B15!

One thus obtains

22 ImPmn~q,vq1 ih!5E d3k

~2p!3

dvk

2p
tr@rF~k,vk!

3~egm!rF~k1q,vk1vq!~egn!#

3@ f ~vk!2 f ~vk8!#. ~B16!

Replacing r in Eq. ~B7! by 22D0(ImP)D0, using Eq.
~B16!, and decomposing the fermion spectral functions ac-
cording to Eq.~A6!, one obtains

G~p!5
1

2p E d4Q

~2p!4 E d4K

~2p!4 ~2p!d„~P2Q!2
…~2p!

3d~K2!~2p!d„~K1Q!2
…uM u2@ f ~vk!2 f ~vk8!#

3@11n~vq!2 f ~vp8!#, ~B17!

whereK5(vk ,k). Notice that, fromK250, the only pos-
sible solution forvk is vk5k, only electrons are initially
present in the Fermi sea. The matrix elementM is given
by M5Sl8,k,k8Jp8,l8;p,l

m Jk8,k8;k,km(1/Q2) with Jp8,l8;p,l
m

5eū(p8,l8)gmu(p,l) and corresponds indeed to the direct
contribution to electron-electron scattering~Fig. 1, left!. In-
troducing the four vectorsK85K1Q andP85P2Q, inte-
grating over Q and making use of the identity
*(d4K)/(2p)42pd(K2)Q(K0)5*dtk , one finds Eq.~5!,
up to the statistical factors. Thus, we only need to check that
the product of the phase space factors Eq.~B6! and Eq.
~B15! corresponds to electron-electron scattering. For this
purpose, we note that the energy conservationvq1vk
5vk8 implies the following relations between the statistical
factors:

n~vq!@ f ~vk!2 f ~vk8!#5@12 f ~vk!# f ~vk8!,

@11n~vq!#@ f ~vk!2 f ~vk8!#5@12 f ~vk8!# f ~vk!.
~B18!

Using these equations together with Eq.~B8!, one obtains
immediately the phase space factor under the form

@12 f ~vp8!# f ~vk!@12 f ~vk8!#1 f ~vp8!@12 f ~vk!# f ~vk8!.
~B19!

The two terms correspond to the amplitudes of the direct and
inverse process, as expected.

3. Screened interaction

Finally, we show that the imaginary part of the one-loop
resummed diagram corresponds to the probability of
electron-electron scattering with a screened interaction~first
equality in Fig. 2!. This is a straightforward extension of the
previous result. We start from Eq.~B7!. The spectral func-
tion of the resummed photon line,r, is given by r
522 ImD52uDu2(ImD21). Using Eq.~A3! and the fact that
ImD0

2150, as discussed above, one obtainsr5
22uDu2(ImP). Thus the only difference with the previous
case is that the free photon propagatorD0 is replaced by the
resummed photon propagatorD, which includes the screen-
ing effects.
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