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Abstract 

We study the statistics of semi-meanders, i.e. configurations of a set of roads crossing a river 
through n bridges, and possibly winding around its source, as a toy model for compact folding 
of polymers. By analyzing the results of a direct enumeration up to n = 29, we perform on the 
one hand a large-n extrapolation and on the other hand we reformulate the available data into a 
large-q expansion, where q is a weight attached to each road. We predict a transition at q = 2 
between a low-q regime with irrelevant winding, and a large-q regime with relevant winding. 
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1. Introduct ion  

The meander problem is a simply stated combinatorial question: count the number of  

configurations of  a closed non-self-intersecting road crossing an infinite river through 

a given number of  bridges. Despite its apparent simplicity, this problem still awaits a 

solution, if only for asymptotics when the number of  bridges is large. The problem 

emerged in various contexts ranging from mathematics to computer science [ 1 ]. In 

particular, Arnold re-actualized it in connection with Hilbert 's 16th problem, namely 

the enumeration of  ovals of  planar algebraic curves [2] ,  and it also appears in the 
classification of  3-manifolds [ 3 ]. 
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Remarkably, the meander problem can be rephrased in the physical language of critical 
phenomena, through its equivalence with a particular problem of Self-Avoiding Walks: 
the counting of the compact foldings of a linear chain. 

Several techniques have been applied to this problem: direct combinatorial approaches 
[4,5], random matrix model techniques [6-8] ,  an algebraic approach using the Temper- 

ley-Lieb algebra and Restricted Solid-On-Solid models [9]. Several exact results have 
been obtain on the way for meander-related issues, including exact sum rules for me- 

andric numbers [ 7], the solution of the somewhat simpler irreducible meander problem 
[6,7], and the calculation of a meander-related determinant [9,3]. 

The present paper is dedicated to a more direct enumerative approach and a thorough 

analysis of its results in the spirit of critical phenomena. The meander problem is 

generalized to include the case of several non-intersecting but possibly interlocking 
roads with a weight q per road. The corresponding generating functions are analyzed as 

functions of q. In particular, we derive their large-q asymptotic expansion in powers of 
l / q .  

The paper is organized as follows. In Section 2 we give the basic definitions of 
meanders and semi-meanders (which correspond to the same problem with a semi- 

infinite river with a source, around which the roads are free to wind), as well as 
some associated observables such as the winding. We further give exact solutions to the 
meander and semi-meander problems at two particular values of q: q = 1, where they 

reduce to a random walk problem, and q = oo, dominated by simple configurations. 
In Section 3 we explain how to enumerate the semi-meanders for arbitrary number 

n of bridges, using a fundamental recursive construction. After implementation on a 
computer, this procedure allowed us to find the semi-meander numbers with up to n = 
29 bridges. These data are presented and then analyzed by a direct large n extrapolation. 
On the way we also confirm the scaling hypotheses borrowed from the theory of critical 

phenomena. Evidence is found for a phase transition for semi-meanders at a value of 

q = q¢ ~ 2 between a low-q and a large-q regimes, discriminated by the relevance of 
winding around the source. In Section 4 we show how to use the above data to generate 
a large-q expansion for most of the interesting quantities. This expansion provides an 
accurate description of the whole q > qc phase. In Section 5, we analyze the break-down 
of this expansion, which gives rise to the q < qc phase. Section 6 briefly describes the 
small-q expansion of the problem. We gather our conclusions in Section 7. The more 
technical details are relegated to appendices. 

2. The meander problem 

2.1. Definitions, observables 

A meander  of order n is a planar configuration of a non-self-intersecting loop (road) 
crossing a line (river), through a given number 2n of points (bridges). We consider 
as equivalent any two configurations which may be continuously deformed into each 
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Fig. 2. The 4 inequivalent foldings of a strip of 3 stamps. The fixed stamp is indicated by the empty circle: 
it is attached to a support (shaded area). The other circles correspond to the edges of the stamps. 

other, keeping the river fixed (this is therefore a topological equivalence).  The number 

of  inequivalent meanders of  order n is denoted by Mn. For instance, we have MI = 1, 

M2 = 2, M3 = 8 . . . .  More  numbers can be found in [6,7,10]. 

We stumbled on the meander problem by trying to enumerate the distinct compac t  

fo ld ing  configurations of  a closed polymer, i.e. the different ways of  folding a closed 

chain of  2n identical constituents onto itself. The best image of  such a closed polymer  

is that of  a closed strip of  2n identical stamps, attached by their edges, serving as hinges 

in the folding process: a compactly folded configuration of  the strip is simply a folded 

state in which all the stamps are piled up on top of  one of  them. 

Such a compactly folded configuration is easily identified with a meander config- 

uration as depicted in Fig. 1. Draw a closed line (road) passing though the centers 

(br idges)  of  all the pi led-up monomers,  then open one hinge of  the polymer (we 

choose to always open the bottom right one) and pull the stamps apart so as to form 

a straight line: the latter is identified with the river, whereas the distorted line becomes 

the road of  the resulting meander, 

When the strip of  stamps is open (see Fig. 2) ,  we decide to attach the first stamp to 

a support, preventing the strip from winding around it, while the last stamp has a free 

extremal edge. In this case, a slightly generalized transformation maps any compactly 

folded open configuration of  ( n -  1) stamps to what we will call a semi-meander  

configuration of  order n, in the fol lowing manner. 

As shown in Fig. 3, draw a curve (road)  though the (n - 1) centers (br idges)  of 

all the pi led-up stamps, then close this curve across the support (this last intersection 

is the nth br idge) ,  and pull the free edge of  the last stamp in order to form a straight 

half-l ine (r iver with a source).  The resulting picture is a configuration of a road (the 

curve) crossing a semi-infinite river (stamps and support) through n bridges: this is 

Fig. 1. The mapping between compactly folded closed strip of stamps and meanders. We display a compact 
folding configuration (a) of a closed strip with 2n = 6 stamps. To transform it into a meander, first draw a 
(dotted) line through the centers of the stamps and close it to the left of the picture. Then cut the bottom 
right hinge (empty circle) and pull its ends apart as indicated by the arrows, so as to form a straight line 
(b): the straight line forms the river, and the dashed line the road of the resulting meander. 
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Fig. 3. The mapping of a compactly folded configuration of 4 stamps onto a semi-meander of order 5. (a) 
draw a (dashed) curve through the pile of stamps and the (shaded) support. (b) pull the free edge of the last 
stamp to form a half-line (the river with a source). (c) the result is a semi-meander configuration of order 5, 
namely that of a road, crossing a semi-infinite river through 5 bridges (the source of the river, around which 
the road is free to wind, is indicated by an asterisk). 

called a semi-meander  configuration of  order n. Note that the road in a semi-meander 

may wind freely around the source of  the river, and that consequently the number of  

bridges may be indifferently even or odd, as opposed to meanders. The number of  

distinct semi-meanders of  order n is denoted by 57/,. For instance, we have aT/l = 1, 

.47/2 = 1, a43 - 2, a7/4 = 4 . . . .  More numbers can be found in [4,7] and in Appendix A. 

Through its compact  folding formulation, the semi-meander problem is a particular 

reduction o f  the two-dimensional  self-avoiding walk problem, in which only topological 

constraints are retained. It is therefore natural to define, by analogy with self-avoiding 

walks the connec t iv i ty /?  per  stamp and the configuration exponent y which determine 

the large-n behavior of  the semi-meander numbers as follows: 4 

nY 

The connectivity ,9 may be interpreted as the average number of  possibil i t ies of  adding 

one stamp to the folded configurations. The exponent y is characteristic of  the (open)  

boundary condit ion on the strip of  stamps. 

A natural observable for self-avoiding walks is the end-to-end distance. The corre- 

sponding notion for a compactly folded open strip of  stamps is the "distance" between 

the free end of  the strip and, say the support. This distance should also indicate how far 

the end o f  the strip is buried inside the folded configuration. It is defined as the minimal 

length w of  a strip of  stamps to be attached to the free end, such that a resulting folding 

with n -  1 + w stamps has its free end outside of  the folding, namely can be connected to 

the infinity to the right of  the folding by a half-line which does not intersect any stamp. 

Indeed, the infinity to the right can be viewed as the nearest topological neighbor of  

the support, hence w measures a distance from the free end of  the strip to the support. 

This is i l lustrated in Fig. 4a, with n = 5 and w = 1. In the semi-meander formulation 

(see Fig. 4b) ,  this distance w is s imply the w i n d i n g  of the road around the source of  

the river, namely the number of  bridges to be added if  we continue the river to the right 

4 That the semi-meander numbers hT/n actually have these leading asymptotics may be proved by deriving 
upper and lower bounds on R. See Ref. [7] for further details. 
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Fig. 4. The "end-to-end distance" of the folded strip of stamps (a) is the number (w -- I here) of stamps 
to be added to the strip (the added stamp is represented in dashed line), so that the new free end (empty 
circle) is in contact with the infinity to the right. This coincides with the "winding" of the corresponding 
semi-meander (b) ,  namely the number of bridges to be added if we continue the river to the right of its 
source (dashed line). 

of its source. By analogy with self-avoiding walks, we expect the average winding over 

all the semi-meanders of  order n to have the leading behavior 

1 ~ nV 
(w), _-- /f/n w ~ , (2.2) 

semi-meanders 

where u is some positive (end-to-end) exponent 0 ~< v ~< 1, as w is always smaller or 

equal to n. 

In this language, a meander of  order n is simply a semi-meander of  order 2n with 

winding w = 0. By analogy with closed (as compared to open) self-avoiding walks, we 

expect the asymptotics 

R2" 
M,  ~ c , (2.3) 

n a 

where the connectivity per bridge R is the same as that for semi-meanders (2,1), R =/~, 

and the configuration exponent ce 4: y is characteristic of  the closed boundary condition 

on the strip of  stamps. 

In the following, we will mainly focus our study on the semi-meander numbers. 

2.2. Arches and connected components 

Any semi-meander may be viewed as a particular meander by opening the semi- 

infinite river as indicated by the arrows on Fig. 5. In the process, the number of  bridges 

is doubled, hence the order is conserved. The resulting meander however is very peculiar. 

Note that in general a meander is made of  an upper (lower) configuration consisting of  
non-intersecting arches (arcs o f  road) connecting the bridges by pairs above (below) 

the river. In the present case the lower configuration is fixed: it is called the rainbow 

arch configuration o f  order n (the bridge i is connected to the bridge (2n - i + 1 ), 
i = 1,2 . . . . .  n). On the other hand, the upper arch configuration may take any of  the 

/f/,, values leading to semi-meanders of  order n. 
There are however 
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@ 
Fig. 5. A semi-meander viewed as a particular meander: the semi-infinite river must be opened up as indicated 
by the arrows. This doubles the number of bridges in the resulting meander, hence the order is conserved (n = 5 
here). By construction, the lower arch configuration of the meander is always a rainbow arch configuration 
of same order. 

(2n)!  
cn = (2.4) 

n ! ( n +  1)! 

distinct arch configurations of  order n [7] ,  as is readily proved by recursion (c,+1 = 

~o<<.j<~n cjcn-.i, with co = 1, hence Cl = 1, c2 = 2, c3 = 5, ca = 14 . . . .  : the cn are called 
the Catalan numbers).  Hence not all upper arch configurations, once supplemented by a 

lower rainbow arch configuration o f  same order, lead to an opened semi-meander (Kin < 

cn). This is because, in general, the corresponding object will have k >~ 1 connected 

components: we call it a semi-meander of  order n with k connected components. Indeed, 

if the river is folded back into a semi-infinite one, we are simply left with a collection 

of  k possibly interlocking semi-meanders of  respective orders nl, n2 . . . . .  nk, with nt + 

n2 4- . . .  4- nk = n. We always have 1 ~< k ~< n, and k = n only for the superposition 

of  an upper and a lower rainbow configurations, leading to n concentric circles. We 

denote by Ki~k) the number of  inequivalent semi-meanders of  order n with k connected 
components. In particular, we have KI~I) = KI, and Ki(n) = 1 for all n. 

The direct numerical study of  the asymptotics of  the numbers Ki~k) turns out to be 

delicate, as the natural scaling variable of  the problem is the ratio x = k/n, which 

depends on n and takes only a discrete set of  values. To circumvent this problem, we 

will study the generating function r~n(q) for these numbers, also referred to as the 
semi-meander polynomial, 

r~.(q) = ~ q~Ki(~). (2.5) 
k=l 

This quantity makes it possible to study the large-n asymptotics of  the Ki(n k) in a global 

way, by use of  extrapolation techniques for all real values of  q. The semi-meander 
polynomial (2.5) may be viewed as the partition function o f  a statistical assembly 
of  multicomponent semi-meanders of  given order n, with a fugacity q per connected 

component. As such, it is expected to have an extensive large n behavior, namely 

e(q) •(q)n 
gnn(q) ,~ ~ , (2.6) 

where R(q)  is the partition function per bridge, y(q) is a possibly varying exponent and 

6(q) a function independent of  n. For q --~ 0 (k = 1), we must recover the connected 
semi-meanders, namely that Vnn(q)/q--~ Kin, i.e. 
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R(q)  ~ R,  y (q)  ~ y ,  ~(q) /q  ~ ~ (2.7) 

(cf. (2.1)) .  The notion of winding is well defined for multi-component semi-meanders 
as well, as the sum of the individual windings of each connected component, namely 

the total number of times the various roads forming the semi-meander wind around the 
source of the river. Therefore we define 

1 
(w)n(q) = rh,,(q------~ Z wq k ~ n ~(q) , (2.8) 

illulticomp. 

semi-meanders 

where v(q)  is the generalized winding exponent for multi-component semi-meanders, 
satisfying 0 ~< v(q)  ~< 1. 

Analogously, we define multi-component meanders of order n, as configurations of k 

non-intersecting roads ( 1 ~< k ~< n) crossing the river through a total of 2n bridges, and 
denote by M(~ k) their number. We also define the meander polynomial 

mn(q) = ~ qk M(k) . 
k=l 

(2.9) 

This is nothing but the restriction of (2.5) with n ---, 2n, to semi-meanders with zero 

winding w = 0. We therefore expect the asymptotics for large n 

R(q)2" (2.10) mn(q) ,.~ c(q) na(q ) 

In this estimate, the partition function per bridge R(q) is expected to be identical to 
that of semi-meanders /~(q) only if the winding is irrelevant, namely if v(q) is strictly 

less than 1 

R ( q ) = / ~ ( q )  iff u(q) < 1. (2.1l)  

Otherwise, the fraction of semi-meanders with zero winding may be exponentially small, 

and we only expect that R(q)  < / ~ (q )  if u(q) = 1. 

2.3. Exact results for large numbers of connected components (q = oc) 

For very large q, we simply have 

~ , ( q )  ~ q" (2.12) 

as the meander polynomial is dominated by the k = n term, corresponding to the unique 
semi-meander of order n made of n concentric circular roads, each crossing the semi- 
infinite river only once. This semi-meander will appear as the rightmost object in the 
nth line of the tree of Fig. 8. The winding of this semi-meander is clearly w = n, hence 

we have, for q ~ c~ 
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R ( q )  --, q ,  y ( q )  --, O, g (q )  ~ 1, u ( q )  --~ 1. (2.13) 

As to meanders, the only way to build a meander of  order n with the maximal number 
n connected components is that each component be a circle, crossing the river exactly 

twice. This is readily done by taking any upper arch configuration and completing it 

by reflection symmetry with respect to the river. This leads to M,  (") = c,  (cf. (2 .4))  

meanders with n connected components. By Stirling's formula, we find that when q --~ oc 

the meander polynomial behaves as 

1 (2V~)  2n 
n3/2 , (2.14) mn ( q) ~ Cnqn ~ _ _  

hence, when q ---+ cxz 

R(  q) --* 2 v ~ ,  oe(q) -~ 3 / 2 ,  c ( q )  --, 1/v/-~. (2.15) 

This confirms the above-mentioned property (2.11) that R ( q )  < R(q)  when v ( q )  = 1, 

as 2 v ~  < q for large q. 

2.4. Exact  results f o r  random walks on a half-line (q = 1) 

When q = 1 in (2.5),  An(1) simply counts all the multi-component semi-meanders, 

irrespectively of  their number of  connected components. This simplifies the problem 

drastically, as we are simply left with a purely combinatorial problem which can be 

solved exactly. The multicomponent semi-meanders are obtained by superimposing any 

arch configuration of  order n with the rainbow of  order n, hence 

1 4 n 
Vnn( 1 ) = Cn ~ ~ n3/2 (2.16) 

by use of  Stirling's formula for large n. This gives the values 

R(1)  = 4 ,  y ( 1 )  = 3 / 2 ,  g(1)  = l /v/-~.  (2.17) 

The study of  the winding at q = 1 is more transparent in the formulation of  arch 
configurations o f  order n as random walks of  2n steps on a semi-infinite line. For 

each arch configuration o f  order n, let us label by 1, 2 . . . . .  2n - 1 each segment of  

river in-between two consecutive bridges, and 0 the leftmost semi-infinite portion, 2n 
the rightmost one. Let h ( i ) ,  i = 0, 1 . . . . .  2n denote the number of  arches passing 

at the vertical of  the corresponding segment i. By definition, h(0)  = h(2n)  = 0. 
More generally, going along the river from left to right, we have h ( i )  = h ( i -  1 ) + 1 

(respectively h ( i )  = h ( i -  1) - 1) if an arch originates from the bridge i (respectively 

terminates at the bridge i). 
The function h satisfies h ( i )  ~ O, for all i, and may be interpreted as a "height" 

variable, defined on the segments of  river, whose graph is nothing but a walk of  2n 
steps as shown in Fig. 6. This may be seen as the two-dimensional extent of  a brownian 
motion of  2n steps on a half-line, originating and terminating at the origin of  the line. 
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Fig. 6. A walk diagram of 18 steps, and the corresponding arch configuration of order 9. Each dot corresponds 
to a segment of river. The height on the walk diagram is given by the number of arches intersected by the 
vertical dotted line. 

This interpretation makes the leading behavior c, ~-, 2 2" of (2.16) clear: it corresponds 
to the two possible directions (up or down) that the motion may take at each step. 
The exponent 3/2 in (2.16) is characteristic of the boundary condition, namely that the 

motion is closed and takes place on a half-line (other boundary conditions would lead 
to different values of y, e.g. for a closed walk on a line, we would have a behavior 
(2",,) ~ 22n/V/-~)" 

In this picture, the winding is simply given by the height w = h(n) of the middle 

point. Let us evaluate more generally the average height of a point i over the arch 

configurations of order n. It is given by 

I Z h A , , i ( h  ) (2.18) (h ( i ) ) ,  = c-"~ 
h>~0 

where An,i(h) denotes the number of arch configurations of order n such that h(i) = h. 
A simple calculation [9] shows that 

( ( i )  ( i ) ) ( ( 2 n - i ' ~ _  ( 2 n - i  ) )  
A,,.i(h) = i+h - -  i+h + 1 \n -- i-hi i~l, (2.19) 

2 2 2 n - - - - q - 1  

as the An,i(h) walks are simply obtained by gluing two independent walks of i and 

2n - i steps linking the origin to the height h. 
In the case of the winding, w = h(i = n), (2.18) leads to a more compact formula, 

according to the parity of n 

(21'] 2 

n = 2 p  : ( W } 2  p = "P-----L--~ - -  1 ,  

Czp (2.20) 
(2.) (21,+1) 

n = 2 p + l :  ( W } 2 p + l = 2 , l  , / ~  t, J 1 .  
C2p+l 

For large n, this gives the following expansion: 



mn(1) = (cn) 2 ~ - - -  

or, in other words, 
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(w)n = 2 - 1 + ~ + O(1/n 3/2) (2.21) 

irrespectively of the parity of n. This implies that 

v (q  = 1) = 1/2.  (2.22) 

This is the well-known result for the Brownian motion, for which the extent of the path 
scales like n 1/2 for large n. It is instructive to note that, thanks to (2.21), the observable 

w + 1 is less sensitive than w to the finite size effects at q = 1. This will be useful in the 

forthcoming numerical estimates for arbitrary q where we observe that the numerical 

extrapolations are improved by considering w + 1 instead of w. Using (2.19), we may 

now compute the probability distribution P, (w) for an arch configuration of order n to 
have winding h(n) = w, which takes for large n the scaling form 

pn(w) l An,n(W) l_._~ f ( w ) = c, "~ (w), ~ (2.23) 

with a scaling function f independent of n for large n, readily obtained by use of 
Stirling's formula, upon writing w = 2v/n/~r ( for large n. This gives 

f ( ( )  = 32,¢:2e-(4/~')(2 (2.24) 
./7.2 

for all s c > 0. 
For general position i 4: n, we find, by a saddle point evaluation of the sum (2.18), 

that the average profile of arch configurations is a "Wigner" semi-circle 

(h(i)), ~ 2 V ~  ~ x / ~  - x) (2.25) 

when expressed in the scaled position x = i/n, 0 <~ x <~ 2. 
The meanders of order n are the semi-meanders of order 2n with winding w = h(2n) = 

0. They are therefore built as the juxtaposition of two independent walks of length 2n. 
Hence 

1 42n 
77" n 3 (2.26) 

R(1)  = R ( I )  = 4 ,  a ( 1 )  = 3 ,  c(1) = I /zr .  (2.27) 

This is again in agreement with (2.11), as u(1) = 1/2 < 1, i.e. the winding is irrelevant 
a t q =  1. 

3. Exact enumeration and its analysis 

In this section, we present results of  an exact enumeration of llT/n(k) for small n 
(n ~< 29), and analyze their large-n extrapolation. The enumeration is performed by 
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Rn 

(II) 

Fig. 7. The construction of all the semi-meanders of order n+ 1 with arbitrary number of connected components 
from those of order n. Process (I): (i) pick any exterior arch and cut it (ii) pull its edges around the 
semi-meander and paste them below. The lower part becomes the rainbow configuration Rn+l of order n + I. 
This process preserves the number of connected components k --~ k. Process (ll): draw a circle around the 
semi-meander of order n. This process adds one connected component k ~ k + 1. 

implementing on a computer  a recursive algorithm which describes all the semi-meanders 

up to some given order. Clearly, the complexity is proportional to the Catalan numbers 

(c,, ~ 4 n) hence the l imitation on n. 

3.1. The main recursion relation 

The subsequent numerical study relies on the exploitation of  the following recursion 

relation generating all the semi-meanders of  order (n + l )  from those of  order n. 

We start from any semi-meander  of  order n with k connected components,  in the open- 

river picture. We may construct a semi-meander of  order (n + l )  in either fol lowing 

way (denoted (I )  or ( I I ) ) ,  as illustrated in Fig. 7. 

( I )  Pick any exterior arch, i.e. any arch with no other arch passing above it. Cut 

it and pull  its ends all the way around the others (in order to add two br idges) ,  and 

reconnect them below, by creating an extra concentric lower arch for the rainbow. In this 

process, we have n --~ n + 1, but the number of  connected components has not changed: 

k --* k. Another  way of  picturing this transformation is the following: one simply has 

pulled the exterior arch all the way around the semi-meander and brought it below the 

figure, creating two new bridges along the way. As no cutting nor pasting is involved, 

the number of  connected components  is clearly preserved. 

( I I )  Draw a circle around the semi-meander. This adds a lower concentric semi-circle 

which increases the order of  the rainbow to (n + 1 ), and also adds one connected 

component  to the initial semi-meander k ~ k + 1. 

These two possibi l i t ies  exhaust all the semi-meanders of  order (n + l ), as the trans- 

formation is clearly invertible, by pull ing back up the lower external arch of  the rainbow. 

Note that by construction, there are as many possibil i t ies for the process ( I )  as exterior 

arches, and the transformation is therefore one-to-many. 



508 P. Di Francesco et aL/Nuclear Physics B 482 [FS] (1996) 497-535 

0 

Fig. 8. The tree of semi-meanders down to order n = 4. This tree is constructed by repeated applications of 
the processes (I) and (II) on the semi-meander of order 1 (root). We have indicated by small vertical arrows 
the multiple choices for the process (I), each of which is indexed by its number. The number of connected 
components of a given semi-meander is equal to the number of processes (1I) in the path going from the root 
to it, plus one (that of the root). 

We may now construct a tree of  all the semi-meanders, generated recursively from 

that of  order 1 ( roo t ) ,  as displayed in Fig. 8. Note that we have adopted the open-river 

formulation to represent them. 

Keeping track of  the connected components,  this translates into the following relation 

between the semi-meander  polynomials  

Vn,+l ( q) = Vn,( q)  (ext.arch.)n (q)  + qVn,( q) , (3.1) 

where we denoted by (ex t .a rch . ) , (q)  the average number of  exterior arches in a semi- 

meander of  order n, weighed by q~, k its number of  connected components.  In (3.1) ,  

the first term corresponds to all the processes ( I ) ,  whereas the second term corresponds 

to ( I I ) .  

Taking the large-n l imit  in (3 .1) ,  this permits to interpret 

/~(q) - q = ( ex t . a r ch . )~ (q )  (3.2) 

as the l imit  when n --+ c~ of  the average number of  exterior arches in semi-meanders 

of  order n, weighed by an activity q per connected component.  

In particular, when q ~ ~ ,  we have 

R(q )  - q --~ 1 (3.3) 

as the l imit ing semi-meander, made o f  concentric circles, has only one exterior arch. 

This is a refinement of  the large-q estimate in (2.13).  When q = 1, we find an average of  

( ex t . a r ch . )~ (1 )  = R(1 )  - 1 = 3 (3.4) 

exterior arches in arbitrary arch configurations of  large order [7] .  When q = 0, the 

connected semi-meanders,  with k = 1, are obtained through repeated action of  the 

process ( I )  only. This restricts accordingly the tree of  Fig. 8. In that case, the partition 

function per bridge 

---/~(0) = (ext .arch. )~ (0)  (3.5) 
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coincides with the average number of exterior arches in connected semi-meanders, for 
large n. 

3.2. Exact enumeration and large-n extrapolation 

In Appendix A, we give an archetypical example of the programs we have im- 
plemented to compute the semi-meander numbers and various observables. We have 
computed the numbers /9/(n k) for 1 ~< k ~< n ~ 27, the numbers ,Q(I) for n ~< 29. To 
investigate the winding of semi-meanders, we have also computed the numbers ~(k) (w) 
of semi-meanders of order n, with k connected components and fixed winding w for 
1 ,<~- k ~< n ~< 24 (encoding in particular the meander numbers M~ k) -~k) = M2, , (0) ) ,  and 
the semi-meander "profile" 

Z h(i)  (3.6) 
~cmi-me~nders 
order n.k c.c. 

for all positions 0 ~< i ~< 2n. Some of these numbers can be found in Appendix A. 

After gathering these numbers into generating functions of q, it is possible to perform 
large-n extrapolations at fixed q, for the quantities/~(q), R(q), y (q) ,  a (q ) ,  ~(q), c(q) 

and v(q) .  
The general extrapolation scheme is the following. Suppose an observed quantity X,, 

has the following large-n expansion: 

P 

x~ /nr+l) X, = Z ~-~ + O(1 . (3.7) 
k---0 

Then we get a best estimate of the large-n limit x0 by iterating p times the difference 
process ( A f ) ( n )  -~ f ( n  + 1) - f ( n )  on the function f ( n )  = nPXn, with the result 

AP 
~-(nP Xn = xo + O( 1/n p+j ) . (3.8) 

This gives perfect results for the Catalan numbers (i.e. q = 1 ) using X, = Iog(cn+t/c,,). 
This turns out to extend to a whole range of q's in a neighborhood of 1. For instance, 
log /~(q) is extrapolated using Xn = log v/fn~+l (q)/fnn-I (q). 

The results for /~(q) and R(q) are displayed in Fig. 9. The two functions are found 
to coincide in the range 0 ~< q ~< q¢ with qc ~- 2, and to split into /~(q) > R(q) 
for q > qc. As explained before, the comparison between R(q) and R(q) determines 
directly whether v(q) is 1 or not. The result of Fig. 9 is therefore the signal of a phase 
transition at q = qc between a low-q regime where the winding is essentially irrelevant 
(u(q)  < 1) and a large-q phase with relevant winding (~,(q) = 1). 

This is compatible with the direct extrapolation for ~,(q) displayed in Fig. 10, which 
is however less reliable in the region around q = 2, due to its sub-leading (and probably 
discontinuous) character. 

The configuration exponent for semi-meanders y(q)  is represented in Fig. 11, for 
two different orders in the extrapolation scheme (3.8). The extrapolation proves to be 
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Fig. 9. The functions R(q) and R(q) for 0 ~< q ~< 4 as results of large-n extrapolations. The two curves 
coincide for 0 ~< q ~< 2 and split for q > 2 with/~(q)  > R(q). Apart from the exact value R( 1 ) = R( 1 ) = 4, 
we find the estimates R(0)  = 3.50( 1 ), R(2) = 4.44( 1 ), R(3) = 4.93( 1 ) and R(4) = 5.65( 1 ). 
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0.4 6 8 

i i 

t I 

0 2 4 
q 

Fig. 10. The winding exponent v(q) for 0 ~< q ~< 8, as obtained from a large-n extrapolation. We observe a 
drastic change of behavior between low q's and large q's, with an intermediate regime where the extrapolation 
fails, hence is not reliable. The dashed line indicates a possible scenario for the exact function v (q),  compatible 
with a transition at qc -~ 2. Apart from the exact value v( 1 ) = 1/2, we read v(0)  = 0.52( 1 ). 

s t a b l e  f o r  0 < q < 2. F o r  q > 2, it d e v e l o p s  o s c i l l a t i o n s  a r o u n d  a m e a n  va lue ,  e s t i m a t e d  

to  v a n i s h  ( y ( q )  ,-~ 0 )  f o r  q l a r g e  e n o u g h .  F o r  s i m p l i c i t y ,  w e  c h o s e  no t  to  r e p r e s e n t  

t h e  f u n c t i o n s  o r ( q ) ,  c ( q ) ,  g ( q ) .  T h e  c o e f f i c i e n t  6 ( q )  d e v e l o p s  a d i s c o n t i n u i t y  at  t he  

t r a n s i t i o n  q = 2. O n  t h e  o t h e r  h a n d ,  t h e  f u n c t i o n s  p e r t a i n i n g  to m e a n d e r s  o n l y  (o~(q)  

a n d  c ( q ) )  d o  n o t  d i s p l a y  a n y  t r a n s i t i o n  a t  q = 2. 
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Fig. 11. The configuration exponent y(q)  for 0 ~< q ~< 4, from two different large-n extrapolations. Apart 
from the exact value 3'( 1 ) = 3/2, we estimate y(0) _~ 2. 

3.3. Scaling functions 

By analogy with critical phenomena, in addition to the scaling behaviors (2.6), (2.10) 
and (2.8) involving the critical exponents y(q) ,  a (q )  and v(q),  we expect to find more 
refined scaling laws involving scaling functions. A particular example of such scaling 

functions has been derived for q = 1 (2.23), for the probability distribution P, (w) of the 
winding w among arch configurations of order n. It involves the scaling function (2.24). 
For q = 0 we expect the same behavior for the corresponding probability distribution 

p(n°)(w) = ~l(nl)(w) 
/9/,(i ) (3.9) 

of winding w among connected semi-meanders of order n. We expect the scaling be- 
havior 

1 f ( ° ) (  w ) (3.10) 
~ (w).(0-----5 ( w ) ° ( 0 )  " 

This is precisely what we observe in Fig. 12, where we plot (w + 1) , (0)P~°J(w) 
as a function of the reduced variable ( = (w + l ) / ( w  + 1),(0) for different values of 
n. Indeed, as already explained in the q = 1 case, we have taken the variable (w + 1 ) 
instead of w to improve the convergence. All the data accumulate on a smooth curve, 
which represents the scaling function f(o) (so). The shape of this function is reminiscent 
of that of the end-to-end distribution for polymers. By analogy, we expect a certain 
power law behavior for small s c 

f(0)(s¢) ~ (0,  (3.11) 

where 0 satisfies the relation 
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Fig. 12. Plot of (w + l)n(0)p~}O)(w) as a function of the reduced variable ( =  (w + l ) / (w+ l)n(0) for 
n = 2, 3 . . . . .  24. The points accumulate to a smooth scaling function f(0) (~). The erratic points correspond 
to small values of n, which have not reached the asymptotic regime. 

a -  y = e ( l  + 0) (3.12) 

obtained by identifying 

n ( 0 )  O (  Y/~' 

with 

(3.13) 

-(1) 
M2, (0 )  _ M ,  oc n ~'-'~. (3.14) 

;,¢( 1 ) 1~12. 
v.  2 n  

For large ~r, we expect a behavior f ( 0 ) ( ( )  ... exp(_const.~:~) with a possible Fisher- 

law behavior fi = 1/ (  1 - v) .  The observed function of Fig. 12 is compatible with these 

limiting behaviors, although we cannot extract reliable estimates of the exponents 0 and 

As we already did in the case of q = 1 (2.25),  we can study the average profile of 

semi -meanders 

( h ( i ) ) n ( q )  1 
2, h " ,,, - p ( x  = i / n ; q )  (3.15) 

~j---o( ( J ) ) n ( q )  n 

involving a scaling function p ( x ;  q)  of the variable x, with 0 ~< x ~< 2 for each value of 

q (with the appropriate normalization such that f p = 1 ). For instance, we have seen in 

Eq. (2.25) that p ( x ;  1) = ( 2 / ~ )  x/%-(2 - x).  

We have represented in Fig. 13 these profiles for several values of q. Again, the points 

accumulate on smooth limiting curves p ( x ;  q) .  We observe a first change of behavior 

at q = 1 between a q < 1 regime with a negative cusp at x = 1 and a q > 1 regime 
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Fig. 13. S e m i - m e a n d e r  average  profiles for  q = 0, 1, 2, 4, and 1 ~< n ~< 24, as funct ions o f  the reduced  

variable x = i/n. For  q = 1, we  also represented the exact  large-n Wigner  semi-ci rcular  limit p(x;  I ). For  

q = 4, we also represented the large-n and  q piecewise- l inear  limit p ( x ;  o c ) .  

with a positive cusp, separated by the Wigner semi-circle, with no cusp at q = 1. For 
large q, p ( x ;  q )  tends to the limit p ( x ;  oe )  = 1 - I1 - x I corresponding to the unique 
semi-meander made of n concentric circles, which satisfies h ( i )  = i for 0 ~ i ~ n and 
h ( i )  = 2n  - i for n ~< i ~< 2n. For small x, we expect a power law behavior of the form 

p ( x ;  q)  ,-~ x Cp(q) , (3.16) 

where we identify the exponent q~(q) = 1,(q) from h(1) = 1 and the fact that ~ j  h ( j )  
F/ l+u(q)  

4. Large-q asymptotic expansions 

In the previous section, we have observed two regimes for the semi-meander polyno- 
mials, namely a low-q regime in which the winding is irrelevant and a large-q regime 
where the winding is relevant, separated by a transition at a value of q = qc --- 2. On 
the other hand, we have already exhibited an exact solution of the problem at q = oc 
(2.13), and a first correction thereof for large q in (3.3). It is therefore tempting to 
analyze the large-q phase by a systematic expansion in 1 /q .  This is performed in the 
following section, where/~(q) is expanded up to order 19 in l / q ,  and y(q) is found to 
vanish identically throughout the large-q regime. In the subsequent section, we compute 
the large-q expansion of the average winding in semi-meanders, and we find u ( q )  = 1 

identically in this regime. 
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Fig. 14. Semi-meanders with many connected components. (a) k = n connected components; there are n 
circles. (b) k = n - l connected components; there are (n - 2) circles and one "kidney". (c) k = n - 2 
connected components; there are respectively (c)1 two disjoint kidneys and (n - 4 )  circles; (c)2 two kidneys 
included in one another and (n - 4) circles; (c)3 and (c)4 one "spiral" and (n - 3) circles. 

4.1. Large-q asymptotic expansion of the semi-meander polynomial 

In this section we derive the large-q expansion of the semi-meander polynomial thn (q) 

of Eq. (2.5) as 

Fnn( q) =qn (l~4~n, q_ lf/I(n n-1) iQl(n-2) ) 
- -  + q--'--'7---- + ' ' "  (4.1) 

q 

involving the semi-meander numbers in the form /f/~"-~, k = 0, 1,2 . . . .  Remarkably, 

these numbers, for arbitrary n />  2k - 1, are polynomials of n, which furthermore exhibit 

some special structure allowing for an explicit large-q expansion of R(q) .  

The section is organized as follows. We first derive the polynomial form of the 

/f/~,-k), valid for n ~> 2k - 1, together with the corrections to be added for smaller n's. 

The re-exponentiation of thn(q) in the form (2.6) induces strong constraints on the 

polynomials  hT/~n-~), which allow for their complete determination up to k = 18, out of 

their first values for small n, which were enumerated exactly up to n = 27. 

For starters, let us first compute the numbers M~n-k) for k = 0, I, 2. 

As we already mentioned, the leading term hT/~") = I in the expansion (4.1) counts 

the unique semi-meander of order n with n connected components made of concentric 

circles only, and which we refer to as the leading semi-meander (cf. Fig. 14a). This 

yields the first polynomial 

po(n) =/9/~ n) = 1 (4.2) 
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for all n ~> 0. 

The sub-leading term is made of  the 

P l  (n)  =/9/(n n- l )  = n - 1 (4.3) 

"kidney"-type perturbations of  the leading semi-meander, displayed in Fig. 14b. 
The next-to-leading term consists of  the semi-meanders of  order n with (n - 2) 

connected components,  which may be obtained as follows. 

(i) A first possibility consists in taking two "kidney"-type perturbations of  the leading 
semi-meander (see Figs. 14cl and Cz), which are either 

( i l )  (Fig. 14cl ) disjoint, hence a total of  ( n - 2 )  ( n - 3 ) / 2  choices for the positions 
of  two kidneys. 

(i2) (Fig. 14c2) included in one another, hence a total of  (n - 3) choices tot  the 
position of the double kidney, or 0 choice if n = 2. 

(ii) The second possibility is a larger "spiral"-type perturbation of  the leading semi- 

meander, with a total of  ( n -  2) available positions, and there are two such 

perturbations (see Figs. 14c3 and c4). 
Summing up all these contributions gives 5 

/~/(.-2) = (n - 2 ) ( n -  3) + ( n -  3) + {5.2 + 2 ( n -  2) 
2 

n 2 + n - 8  
- 2 + ~n,2, {4 .4 )  

hence a polynomial 

n 2 + n - 8  
p2(n)  = 2 (4.5) 

We see here the first appearance of a correction for small n, in that an extra boundary 

term (6.,2) has to be added at n = 2, to recover the fact that hT'/~ °) = 0. 

More generally, let us consider the number hT/{~-k) for large n and finite k. The 
corresponding semi-meanders are obtained in the tree of  Fig. 8 by applying to the root k 

times the process ( I )  and (n - 1 - k) times the process ( I I ) .  This gives ( .~ l )  ~ n~/k! 
possible choices (k << n).  These choices however are not completely independent. 

Recall that the process ( I )  may be applied to any exterior arch of  the semi-meander. In 
the situation where k << n, the semi-meander will most probably have only one exterior 
arch (generated by the last process, most probably of the type ( I I ) ) ,  and there will be 

only one choice for ( I ) ,  creating a kidney. I f  two or more processes (I)  are applied 
consecutively, the number of  exterior arches may grow, and yield more semi-meanders 
(e.g. the application of  two consecutive processes (I)  yields three possibilities: two 
included kidneys, or any of  the two spirals). Such an effect is however sub-leading, as 
the number of  choices of  two or more consecutive processes ( I )  grows at most like 

5 Throughout  this section, we use the fact that /17/(°~ = 6,~.o, i.e. there are no semi-meanders  with zero 
connected component ,  except  for the vacuous semi-meander  of order 0. 



516 P. Di Francesco et aL/Nuclear Physics B 482 [FS] (1996) 497-535 

n k-1 . Collecting all these extra combinatorial factors permits, like in (4.4), to write the 
number hS/~,-k) = pk(n) as a polynomial of degree k in n for large enough n, and fixed 
k, with moreover a leading term nk/k!. 

For smaller n, the above consecutive choices are affected by the boundaries of the 
tree. Recall for instance that the double included kidneys of Fig. 14c2, obtained by two 
successive applications of (I) on two concentric circles, may only exist for n /> 4. 
We have therefore needed to specify that their number (generically equal to (n - 3 ) )  
vanishes for n = 3 (granted) and n = 2, the latter resulting in a boundary correction 
fin.2. More generally, expressing that the combinatorial expressions found are only valid 
for large enough n's will translate into boundary terms, studied in detail in Appendix B. 
We simply quote the result here, valid for all n/> k, 

k - 2  
- -  / ~ ( k )  /Q~,-k~ =p~(n)  + ~ j ~n,2~-2-i, (4.6) 
j=0 

where the/2J k) are some positive integers. In particular, (4.6) shows that the formula 
,Q~n-k) is a pure polynomial pk(n) with no corrections as soon as n ~> 2k - 1. This 
property is derived in Appendix B, where the first correction/x0 (k~ = ck-j is also obtained. 

The precise determination of the pk's and the /zJ k~ could be in principle achieved 
directly by pursuing the above method used for k = 0, 1,2. However, the complexity 
of this program is comparable to that of the exact enumeration of the semi-meander 
numbers. Instead we can guess the coefficients of p~ (n) by matching our data for ,Q~-k) 
with the form (4.6). This can be pushed further by exploiting the re-exponentiation 
property of &,(q) ,  which implies relations between the coefficients of the pk(n), as 
discussed now. 

The property (4.6) must be reconciled with the large-n behavior of &~(q) (2.6), 
namely that for n sufficiently large 

logrh,,(q) = nlog/~(q) - Y(q) logn + log~(q) + o(1 ) .  (4.7) 

Such an expansion is valid for all q, and we can in particular study it for large q. On 
the other band, up to any order k in the 1/q expansion, and by choosing n ~> 2k - 1, 
we may also write 

Fn.(q) ( p,(n) p2(n) pk(n) 1 ) 
log  qn = log 1 + - q + ~ + . . .  + ~ + O( q-TUi-) 

~'~'L-~mk 1 ~ (--1) j - I  
- Z 

m=l .j=l kl 
ki~>T 

Pk,(n)Pk2(n)...Pkj(n)+O(q-~) • 

(4.8) 

In this expansion, the coefficient of 1/qm is a polynomial of n, as a sum of products 
of polynomials of n. Comparing this with an expansion of (4.7) in l/q, we see that its 
degree is at most 1. Therefore, there exist two sequences of coefficients (ak, ilk), such 
that 



P Di Francesco et al./Nuclear Physics B 482 [FS] (1996) 497-535 

k 

j=2 J k I ~... ~j=k 
kt~l 

with the correspondence 

OZk 
log/)(q)  = logq + ~ ~ - ,  

k~>l 

~k 
logg(q) = Z ~ -  • 

k~>l 

Pkt(n)pk2(n)...P~j(n) 

517 

(4.9) 

(4.10) 

Moreover, there can be no logn term in the expansion of (4.7), hence the remarkable 

result 

y(q) = 0. (4.11) 

This result is expected to hold as long as the corrections to the polynomial behavior of 
the ~/~n-k) are negligible. As we will see, this condition defines precisely the large-q 
phase q > q,,. Therefore the exponent y(q)  vanishes identically over the whole phase 
q > q,. In view of, say, the exact value y (q  = 1 ) = 3/2, this property cannot persist in 
the small q < qc phase. This is not surprising since the first correction tx(0 ~) = ck-~ (for 
k = n/2 + 1 ) implies an additional power law correction of the form 1/n 3/2. 

For n ) 2k - 1, (4.9) is a quasi-recursion relation for the polynomials Pk, hence for 
the semi-meander numbers hT/(,-k). This relation is exploited in Appendix C to generate 
from our numerical data the polynomials pk(X) for 0 ~< k ~< 18, together with their 
corrections. Using these polynomials, it is now straightforward to read the functions 
/)(q) and O(q) using (4.10), with the result 

2 2 2 4 8 12 10 4 12 46 
/)(q) = q + 1 + q + ~-~ + q3 q5 q6 q7 q8 q9 q- q'~ -k- ql---i- 

98 154 124 10 102 20 64 (~19)  
+~-i2 + -~'i5- + ~-i-~- + q15 ql6 +q17 qlS + O  , 

I 4 4 14 44 56 28 82 252 388 
?(q) = 1 qa q3 + + + + q ~5 ~ -~ q8 q9 ql0 qll 

5 8 8 7 7 2 6 2 0 1 4 9 4 5 7 8 8 7 5 8 0 6 9 0  ( 1 )  
q12 q13 q14 - + - 7 +  q - ~  + q17 ql8 + O  ~-N • (4.12) 

It is interesting to compare the result of these large-q expansions to the previous 
direct large-n extrapolations of Section 3. As far as /)(q) is concerned, we find a 
perfect agreement for the values q >/2, down to q = 2, where we f ind/)(2)  ~- 4.442( 1 ) 
using (4.12), in perfect agreement with the previous estimate. The precision of (4.12) 
increases with q, leading to far better estimates than before: /)(3) -~ 4.92908(1), 
/)(4) _~ 5.6495213(1) . . .  

As to y(q), our prediction that y(q) = 0 for all q > 2 is compatible with the previous 
extrapolation of Fig. 11, where this value is represented in dashed line. We therefore 
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expect y(q)  to have a discontinuity at q = 2, where it goes from a non-zero "y(q = 2 - )  
value to zero. This will be confirmed by the forthcoming analysis of the low-q phase in 
Section 5. 

4.2. Large-q asymptotic expansion o f  the semi-meander winding 

In this section we first examine the contribution of the circles to the winding of 
semi-meanders in the large-q phase. It turns out to be of the order n throughout this 
phase, implying that the winding exponent ~,(q) = 1 for all q > qc. In a second step, we 
compute the large-q expansion of the average winding by techniques similar to those of 
the previous section, showing that the circles contribute only for a finite fraction of the 
winding in the large-q phase. This study will single out the value qc = 2 with a very 
good precision. 

To enumerate the total number of circles in order n semi-meanders, we simply have 
to count the semi-meanders with a marked circle, in one-to-one correspondence with 
pairs of semi-meanders of total order (n - 1) (since the marked circle separates the 
original meander into two disconnected pieces, its inside and outside). Hence, the 
average number of circles in semi-meanders is given by 

q~.~01 r~7(q) 7nn-l-./(q) 
(circ.), (q) = (4.13) 

#t~(q) 

valid for all q and n, with the convention that #t0(q) = 1. Using the large-n asymptotics 
~ n ( q )  ~ ? (q )~ (q )n ,  with y ( q )  = 0 throughout the large-q regime, we find 

e(q) 
(circ.)n(q) ~ n q k ( q )  . (4.14) 

The average number of circles therefore grows like n which in turn implies that 

u(q)  = 1, q > qc (4.15) 

throughout the large-q regime, since each circle contributes 1 to the winding and clearly 
(w) ~> (circ.). Note that the above argument relies crucially on the fact that y (q )  = O, 
and thus cannot be applied to the small q regime. Indeed, for q = 1, (4.13) simply gives 
(circ.),(q = 1 ) = 1 for all n, hence a very different behavior. 

The quantity o-(q) = nli__m(circ.),(q)/n is simply given by the Taylor expansion of 

qe(q) / [~(q) ,  

2 4 2 8 14 22 14 66 98 54 106 
o-(q) = 1 q2 "}- + -q- + q ~-~ ~ q~ q6 q7 q8 q9 q~0 + qll 

2 0 2 8 2 2 2 0 1 6 0 2 3 4 2 8 1 3 3 0 1 3 8 2 4  ( 1 )  
% q12 q13 ql~ + - ~  + ql~ q17 q l ~  + O ~ . 

(4.16) 

Let us now turn to the large-q expansion of the average winding of semi-meanders 
(2.2). This requires a refined study of the semi-meander numbers 214~ "-k) (w) with fixed 
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Fig. 15. The series A(q) (4.18) and o'(q) (4.16) of l /q  up to order 14 and 18 respectively, for 1 < q < 8. 
Both curves seem to vanish at q = 2. 

winding w, which display a similar polynomial structure as the /f/~,,-k). The study of 
the corresponding generating function is presented in Appendix D and leads to 

(w).(q) = A(q)n + N ( q ) ,  (4.17) 

where the coefficients ,l(q) and/x(q)  have the following large-q expansions up to order 

14 in l/q: 

2 2 2 2 2 10 6 14 10 
A ( q ) = 1 q2 -+- + 4- 4- q ~ -~ ~ q6 q7 q8 q9 

22 + 86 58 222 118 + O (~Ls )  
+ ~-i'6 qll q12 q13 q14 

2 10 22 54 134 246 622 1434 3178 /x(q) = -  + + + + + + + + - -  
q ~ ~ ~ 7 -7- -7- -7-  q9 

6 8 3 4 1 3 7 8 6 3 0 8 3 4 6 6 5 9 0 1 4 0 5 8 2  ( 1 )  
+ - U - + - - ~ + - U - + - U - ,  + q,---r- + o -U  " (4.18) 

It can be checked directly that A(q) > o-(q) hence the circles only contribute for 
a finite fraction of the total winding. The plots of the functions A(q) and o-(q) are 
displayed in Fig. 15. Remarkably, both coefficients seem to vanish at the same point 
q = 2 with an excellent precision. Since these coefficients must be positive, we deduce 
that our large-q formulas break down for q < 2. We interpret this as yet another evidence 
of the drastic change of behavior of the average winding (w), which is no longer linear 

in n below qc, and we find qc = 2 with an excellent precision. 
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The actual break-down of the large-q phase is studied more systematically in next 
section. 

5. The break-down of the large-q expansion for q < qc 

The properties of the iarge-q phase are intimately based on the polynomial structure 
of the numbers -.-n~"-k). In this section, we explain the break-down of this phase by the 
precise structure of the non-polynomial corrections (4.6) to this behavior. The phase 
transition occurs when these corrections become dominant. The detailed analysis of 
these corrections shows a strong resemblance between the low q phase and a meander 
(zero-winding) regime. 

The corrections to the polynomial behavior of the hT/(,-k) are gathered in the function 

/2"(q)=~--~(lC/I(nn-kl--p~(n))qn-~ L /2(k) ~n-k 
= 2~-2-n ' t  . (5.1) 

k=O k=[(n+2)/2l 

The numbers /2 ~k~ 2~-2-. are listed for n/2 < k < n = 2, 3 . . . . .  9 in Appendix C. With 
the only difference that we are now dealing with rational fractions of n instead of 
polynomials, we can carry the same large-n expansion as in Section 4.l, to extract the 
large-n asymptotics o f /2 . (q ) ,  with the result, according to the parity of n, 

/22,, (q) "~ ~+ (q) (2n) z,, (q) ' 

/~1 (q)Zn-I 
/22.-~ (q)  H e _ ( q )  (2n - 1)~',(q) " (5.2) 

Using the results of Appendix C, we get the following large-q expansions (incorporating 
the large n asymptotics of c. ~ 4"/(v/-~n3/2)) 

/ ~ l ( q ) = 2 v / q (  1 +  1 + 3 3 29 (~-~5)) 
q 2q 2 2q 3 8 7  + 0  

`5+(q) ~W~-2 ( 1 +  23 283 3027 3 1 3 7 5 1 =  - +  + + ~ + O ( q ~ ) )  
q ~ 7 q4 

2 ~ / 2 (  3 + 4 0 + 4 1 7  4418 44991 (q~5))  
`5-(q) = q --~ -~-- + - - ~  + -----~ + O . (5.3) 

Due to the rational fractions of n we have dealt with, we cannot conclude that 3/1 (q) = 
3/2 (the 3/2 comes from the Catalan number asymptotics) identically for large q. We 
expect this to hold only in the q ~ c~ limit, whereas for finite q, yr (q) is some function 
of q. 

We can now write 

,54-(-)/~l (q)" fn,(q) ~_ eo(q) Ro(q)" + q ~ + . . . .  (5.4) 
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where ± is chosen according to the parity of n and we have indexed by 0 the functions 
/~(q) and ~(q) corresponding to the polynomial contributions to the ~ , - k ) ,  with the 

asymptotic expansions (4.12). When q is large, the first term dominates as /~0(q) ~ q, 
whereas Rj (q) ,-~ 2x/~. This justifies a posteriori the identification/~(q) =/~0(q) in the 
large-q regime of Section 4. The properties derived in Section 4 for the large-q regime 
will however break down if/~l (q) >~/~0(q), i.e. when the corrections become dominant. 
We expect such a crossing of phases to take place at the transition point q = qc, at which 

/~l(qc) =/~0(qc). In this scenario, /~(q) =/~l (q) for all q < qc, and the exponent y(q)  
jumps abruptly from its large q > qc value y0(q) = 0, to a non-zero value yl (qc) 4: 0. 
This mechanism explains the jump in the value of y(q)  at the vicinity of q = q,, as 
observed in Fig. 11. In this figure, we have represented in dashed line the purported 
value y(q)  = 0 for q > 2, which must be substituted to the (bad) large-n estimate in 
this regime, whereas we still rely on the (good) q < 2 estimate. 

To reconcile this scenario with the picture described in Section 3, in which t~r 
q < q~ the winding of semi-meanders becomes irrelevant (i.e. /~(q) = R(q) ) ,  we 
should have/~l (q) = R(q)  below the transition point qc, where the semi-meanders enter 
their meander-like phase. Since the meanders themselves do not display any transition 
at q = qc, it is tempting to infer that /~j (q) = R(q) for all values q. As we will see 
now, this is corroborated by the large-q expansion (5.3) for /~x (q), which turns out 
to coincide with that of R(q) for meanders (2.10). The latter is easily carried out for 
the meander numbers, whose structure, given in Appendix E, is very similar to that of 
the semi-meander corrections. More precisely, the meander numbers M}, "-~) take the 
general form 

M(,7-k) , = e, r~(n) , (5.5) 

where rk(x) is a rational fraction of x, with total degree k. With the values listed in 
Appendix E, we find the following large-q expansion for the functions R(q) and c(q) 

of (2.10), up to order 6 in 1/q 

R ( q ) = 2 , v / ~ ( l +  1 + 3 3 29 81 89 (q~7))  
q 2q 2 2q 3 8q 4 8q 5 16q~ + O 

1 ( 6 28 92 196 224 2412 (q~7))  
c(q) = - ~  1 q2 + + + - -  + 0 q ~ - 7  q5 q 6  " 

(5.6) 

The exponent o~(q) is also found to tend to the Catalan value 3/2 when q tends to 
infinity, but appears to be a non-constant function of q for all finite q. Remarkably, 
the first terms of the large-q series expansions of R(q) and those of the correction to 
semi-meanders /~1 (q) coincide! 

In conclusion, all our results conspire to suggest that the semi-meanders undergo at 
q = q,. a transition from a "meander"-like regime q < qc, governed by the meander 
partition function per bridge R(q) ~ Rl(q) ,  to another regime q > q,., governed by 
R0(q). The order parameter for this transition is clearly 



522 P. Di Francesco et al./Nuclear Physics B 482 [FS] (1996) 497-535 

1(  { ,t(q) for q > qc 
lim w)n = (5.7) 

n--.oo n 0 for q < qc 

which vanishes for q < qc (irrelevant winding, i.e. v(q) < 1) and is non-zero for 
q > qc (relevant winding, i.e. v(q) = 1 ). With the order parameter (5.7), the transition 

is found to be continuous, as the leading coefficient .t(q) (4.18) vanishes at q = qc. 

The smooth character of the transition is also visible from the fact that/~(q) and R(q) 
approach each other tangentially at q = qc, and that the coefficient C'o (q) = R (q) o ' (q) /q  
of the large-q dominant contribution to ~ , ( q )  vanishes at q = qc (see Fig. 15). 

6. Small q behavior of the semi-meander polynomial 

The very existence of asymptotics of the form (2,6) for the semi-meander numbers, 

with a smooth enough function R(q) has highly non-trivial consequences on the numbers 
37/~ k). We have already seen how the numbers hT/~,-k), for large n and finite k, are 

linked to each other (4.8) in order for (2.6) to hold for large q. Let us now examine 

its consequences on the small q and large-n behavior of ~n(q) .  Let us expand r?tn(q) 
around q = 0 up to order k, and take the large-n asymptotics of each term in the 

expansion: 

k 

7nn( q) = Z 191(nJ) qd + O( qk+l ) 
.j= 1 

R(q)" 
N ?(q) n ~'(q) 

- nr--~q) R(O) l + q - f f ~  + O(q 2) 

~(o)" ~ nJ -~ f ~'(0)'~ i-~ 
= c q - - - ~ -  ~ ( ) m  T)! t q - - ~ - ~ )  + O(qk+l) , (6.1) 

.i=1 

where we have only retained the leading n asymptotics in each qJ term, and used the 
q ---+ 0 limits (2.7) (actually, we have assumed that q ,,~ 1in). Comparing with the/17/, 

asymptotics (2.1), we finally get 

1 ( ,  M---z--" ,-~ - -  (6.2) 
~.~J~ ( k -  1)! \ ,~(o)  / ' 

valid for large n and finite k. This is actually very similar to the behavior of the 
~ , , - k )  ,,, nk/k! for large n and finite k, and may be deduced from the main recursion 
relation for semi-meanders as well. Indeed, the number hT./~k) of semi-meanders of order 
n with k connected components is obtained from that of order 1 (root) by (k - 1 ) 
applications of the process (II)  (see Fig. 8), and (n - k) applications of the process 
(I) ,  whereas the /Q~I) connected semi-meanders are obtained through the process (I)  



P. Di Francesco et al./Nuclear Physics B 482 [FS] (1996) 497-535 523 

only. Apart from the relative combinatorial factor k-i • (n- l )  "~ n ~ - l / ( k  - 1)! accounting 
for the ( k -  l)  choices of process (II) among the total of ( n -  1) steps, we must 

consider that whenever a step (II) is chosen instead of a step (I), some freedom in the 
overall choice is lost. Eq. (6.2) tells us that this corresponds to an average factor of 
/~'(0)//~(0) per step (II) taken instead of a step (I). We checked (6.2) numerically, 
by performing a large-n extrapolation of the appropriate ratio for a few values of k. We 
find a very good agreement with the estimate 

~ ' (0)  
- - ~ 0 . 1 5 4 ( 1 ) .  (6.3) 
~(0)  

7. Conclusion 

In this paper, we have analyzed the meander problem in the language of critical 
phenomena, by analogy with Self-Avoiding Walks. In particular, we have displayed 
various scaling behaviors, involving both scaling exponents and scaling functions. We 
have presented strong evidence for the existence of a phase transition for semi-meanders 
weighed by a factor q per connected component (road). In a large-q regime (q > qc), 
the winding is found to be relevant, with a winding exponent v (q )  = 1, while the 
configuration exponent y ( q )  = 0. Throughout this phase, a finite fraction o ' ( q ) / A ( q )  of 
the winding is due to circles, i.e. circular roads with only one bridge, winding around the 
source of the river. In this regime, the partition function per bridge for semi-meanders 
/?(q) is strictly larger than that of meanders R(q) .  The particular form of its large- 
q series expansion in 1/q (4.12) with slowly alternating integer coefficients, which 
furthermore grow very slowly with the order, and its purported re-summation (D. 14), 
suggest a possible re-expression in terms of modular forms of q, yet to be found. In a 
low-q regime q < qc, /~(q) and R(q)  coincide, in agreement with an irrelevant winding 
v ( q )  < 1. The exponent y ( q )  is no longer 0, but a strictly positive function of q. 

We have estimated the value of the transition point qc "~ 2 with an excellent precision, 
and we conjecture that qc = 2 exactly. This special value of q has already been singled 
out in the algebraic study of the meander problem, in connection with the Temperley- 
Lieb algebra [9]. There, we have been able to re-express the meander and semi-meander 
partition functions as that of some Restricted Solid-On-Solid model, whose Boltzmann 
weights are positive precisely iff q 7> 2, indicating very different behaviors for q < 2 
and q >  2. 

In the large-q phase, in addition to the exact values v ( q )  = 1 and y ( q )  = O, we 
can use the asymptotic expansion (4.12) to get R(q) with a very good precision. The 
somewhat sub-leading meander quantities R(q)  and o~(q) are more difficult to evaluate 
in this regime. 

A number of questions remain unsettled. There still remains to find the varying 
exponents 3'(q) and v ( q )  in the q < 2 regime, as well as the precise value of R(q)  = 
/~(q). Although we improved our numerical estimates, we are limited to conjectures. 



524 P Di Francesco et al./Nuclear Physics B 482 [FS] (1996) 497-535 

For q = 0, we confirm a previous conjecture [7] that T = 2, and that [6] a = 7/2.  
We also conclude from the numerical analysis that 9(0)  ~ 0.52(1) is definitely not 

equal to the trivial random-walk exponent l /2 .  For q = 2, we have an amusing guess 

for R(2)  = R(2)  = 7rx/~ = F ( 1 / 4 ) F ( 3 / 4 )  = 4 . 4 4 2 . . .  inspired from possible infinite 

product formulas for R(q) .  
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Appendix A. Algorithm for the enumeration of semi-meanders 

The following is a simple computer algorithm directly inspired by the recursion 

relation o f  Section 3.1. 

There, it has been shown that one can construct a tree of  all the semi-meanders 

generated recursively with processes (I)  and (I I ) ,  as displayed in Fig. 8. Each node 

at depth n represents a semi-meander of  order n. To have a finite cost of  computation, 

the order is limited to nmax and the nodes of  depth nmax appear to be leaves. The 

algorithm we used consists in visiting all the leaves from left to right, following the 
branches, as a (clever) squirrel. 

To do that, the rules are 

(a) The squirrel starts at the root (upper node). 

(b) When the squirrel is on a intermediate node (not a leaf), it follows the leftmost 

branch which it has not yet visited and the depth increases by 1. If  all the branches 

o f  a given node have been visited, the squirrel goes back up one level and the 

depth decreases by 1. 

(c) When the squirrel is on a leaf (depth nmax) ,  it goes back up one level and the 
depth becomes ( n m a x -  1). 

The reader can convince himself that the above rules describe a systematic and 
complete visit of  the tree. Of course, when the squirrel is on a node, it can measure 

a lot of  interesting quantities like the number of  connected components, the winding 

number . . .  These measures are added up and analyzed at the end of  the enumeration. 

From a Fortran point o f  view, many representations of  (semi-)meanders are possible. 
In the open-river formulation, each semi-meander is made of  a lower rainbow arch 
configuration (which we need not code) and an upper arch configuration of  order n. 
For convenience, we label the 2n bridges of  the river from i = - n  + l to i = n, and 

the system of  arches is described by a sequence of  integers {A(i) ;  i = - n  + 1 . . . . .  n}, 

where A( i )  C { - n  + 1 . . . . .  n} is the label of  the bridge connected with the bridge i. 
The following Fortran program enumerates the connected semi-meanders. For simplicity, 

only the process (I)  is coded and the number of  connected components is always k = 1. 
The arch to be broken ( j , A ( j ) )  begins at the bridge j and ends at the bridge A ( j ) .  
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The process (I) splits this arch into two arches ( - n , j )  and ( A ( j ) , n  + 1). When the 

squirrel climbs back up one level, the two extremal arches ( - n  + 1, A ( - n  + 1 ) ) and 

( A ( n ) , n )  are re-sealed to give one arch ( A ( - n  + 1), A ( n ) ) .  At this stage, we know 
that the next arch to break starts at bridge j = A(n)  + 1. This ensures the completeness 

of  the algorithm. 

PARAMETER (nmax = 14) ! maximal order 

INTEGER A (-nmax+l : nmax) ! arch representation 

INTEGER Sm(amax) ! semi-meander counter 

INTEGER n ! current depth (or order) 

INTEGER j ! next branch to visit 

DATA n,  Sm/0,  nmax*0/  ! n and Sm initialized to 0 

A(O) = 1 ! single-arch semi-meander 

A ( 1 )  = 0 

2 n  = n + 1 ! a new node is visited 
Sm(n) = Sin(n) + i 

j = - n  + 1 leftmost (exterior) arch 

1 I F ( ( n .  El~.nmax) .OR. ( 3 . E Q . n + I ) )  GOT0 3 up or down? 

A ( A ( j ) )  = n+ l  go down with process (I) 

A(n+l) = A(j) 

A(j) = -n 

A(-n) = j 

GOTO 2 

3 A(A(-n+I)) = A(n) going up 

A(A(n)) = A(-n+l) 

j = A(n)+i [ next arch to break 

n=n- i 

IF (n .GT. i) GOTO I 

PRINT '(i3, i15)', (n, Sm(n), n = i, nmax) 

END 

It is possible to use the left-right symmetry to divide the work by two. It is also 
possible to adapt the program for a parallel computer. For that, an intermediate size 

(nl  = l l, for instance) is chosen. A first (little) run is made with nmax = nl,  which 

gives/9/(nl  ) leaves. In a second (big and parallelized) run, each of these leaves is now 

taken as the root of  a (sub-)tree and treated independently of  the others. At the end, all 

the results of  the sub-trees are collected. The calculations of  this article have be done 

on the parallel Cray-T3D ( 128 processors) of  the CEA-Grenoble, with approximately 
7500 hours x processors. 

We have computed zf/', (the (pure) semi-meander number of  order n) up to n = 29, 

M(,~ (semi-meander number of  order n with k connected components) up to n = 27 
and the other quantities up to n = 24. The reader can obtain an electronic copy of  the 
numerical data upon request from the authors. We content ourselves with giving, in 
Table A.I ,  the 117/, and our last row (n = 27) of  the /17/}}). 
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Table A.I 
The numbers M~k) of semi-meanders of order n with k connected components, obtained by exact enumeration 
on the computer: on the left, the one-component semi-meander numbers (k = I ) are given for n ~< 29; on the 
right, n is fixed to 27 and 1 ~< k ~ n. The Mn ~k) for n < 27 can be obtained by request from the authors 

n /f/n n /17¢,~ k ~tk) k ,fret) 
' " 27  - ' 2 7  

1053874 1 369192702554 1 1 16 
2 1 17 3328188 
3 2 18 10274466 
4 4 19 32786630 
5 10 20 102511418 
6 24 21 329903058 
7 66 22 1042277722 
8 174 23 3377919260 
9 504 24 10765024432 

10 1406 25 35095839848 
I1 4210 26 112670468128 
12 12198 27 369192702554 
13 37378 28 1192724674590 
14 111278 29 3925446804750 
15 346846 

16 2376167414 
2 2266436498400 17 628492938 
3 6454265995454 18 153966062 
4 11409453277272 19 34735627 
5 14161346139866 20 7159268 
6 13266154255196 21 1333214 
7 9870806627980 22 220892 
8 6074897248976 23 31851 
9 3199508682588 24 3866 

10 1483533803900 25 374 
11 619231827340 26 26 
12 236416286832 27 1 
13 83407238044 
14 27346198448 
15 8352021621 

Appendix B. Correction terms for semi-meanders with large number of  connected 
components  

In this appendix ,  we show that the correct ions  to the po lynomia l  expression (4 .6)  for 

the numbers  ,(/~n-k) occur  only  for n ~< 2k - 2, and derive the first correct ion /z~0 k) o f  

(4 .6)  for n = 2k - 2. The  result  reads 

~ 0  ~k) = c k - ~ ,  ( B . I )  

where  the c ,  are the Catalan numbers  (2 .4) .  

As  expla ined  in Sect ion  4, the po lynomia l  part o f  AT/~ "-k~ is gener ica l ly  obtained as 

a sum o f  combina tor ia l  factors,  count ing  all the poss ib le  occurrences  o f  per turbat ions  o f  

the lead ing  semi -meande r  (o rder  n, n componen t s )  which have the same order  n, but 

have on ly  n - k connec ted  components .  A perturbat ion,  by definit ion,  is made  o f  a core, 

which does  not  conta in  any circle,  supplemented  by circles. The  core  is gener ical ly  made  

o f  p i r reducib le  semi-meanders  wi th  a total order  no, and a total o f  (no - k) connected  

components .  By  i rreducible ,  we  mean that no circle  can separate the semi-meander  in 

two d i sconnec ted  pieces.  This  core  is comple ted  by (n  - no) circles, to form a semi-  

meander  o f  order  n. Enumera t ing  all per turbat ions  o f  the leading meander  with n - k 

componen t s  amounts  to enumera t ing  all the ways o f  comple t ing  cores by circles. There  

are exact ly  

( n - n o + p )  ( n - n o + p ) ( n - n o + p - 1 ) . . . ( n - n o + l )  
P = p!  (B .2)  

poss ib le  decora t ions  o f  the above core  by circles.  The  po lynomia l  form (B .2 )  o f  the 
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Fig. B. 1. Arbitrarily disjoint or included kidneys are equivalent to symmetric meanders upon folding back the 
river, as indicated by the arrows. The latter are in one-to-one correspondence with arch configurations of the 
same order. 

combinatorial  factor is however only valid for n /> no - p .  When n ~< no - p  - 1, 

we have to add a correction to the polynomial  form to get a vanishing result, equal to 

( - 1 )  t'+l for the largest n = no - p  - 1. The largest n at which such corrections occur 

is obtained by maximizing no - p.  As the core does not contain any circle, each of  its 

no - k connected components  is at least of  order 2, hence 

no >/2(n0 - k) :=> no ~< 2k .  (B.3) 

This inequali ty is saturated for a core made of  k kidneys. Minimizing p consists in 

taking (k  - l )  arbitrary kidneys included in one, for which p = 1. We therefore find 

that the first correction to the polynomial  behavior (4.6) occurs at n = 2k - 2. 

There are exactly ck- i  possible  choices of  these ( k -  1) kidneys, in one-to-one 

correspondence with arch configurations of  order (k - 1 ) as illustrated in Fig. B. 1, upon 

a folding procedure. Each corresponding core contributes 1 to the correction/x(0 ~), which 

completes the proof  of  (B.1) .  

More generally, we expect corrections to the polynomial  part of  ]f/( ,-k) for all k ~< 

n -<~ 2k - 2, hence the form (4.6) .  In Appendix C, the structure of  the first 9 successive 

corrections is found, together with the polynomial  part of  ~}n-k) ,  up to k = 18. 

Appendix C. Fine structure of the semi-meander numbers 

As shown in Appendix  B, the polynomial  part in (4.6) of  the semi-meander numbers 

pk(n) is equal to the semi-meander number ~ ( n - k )  for n ~> 2 k -  1. In addition, the - - n  
polynomials  Pk are subject to the quasi-recursion relation (4.9) ,  which leaves only two 

coefficients of  Pk tO be fixed, once the Pt, l <~ k - 1 are known (we have P0 (n)  = 1 ). 

It is therefore straightforward to derive the first 13 polynomials  Pk from our numerical 

data, as only the two values p k ( 2 k -  1) = ~ ( k - 1 )  and pk(2k)  = M(k) 2k-J 2k are required, and 

the corresponding numbers are known up to k = 13. 

However, knowing the pk'S up to k = 13, we get a list of  all the corrections 

p (2k- 2 - j )  (c.1) 

to these polynomials  needed to get the correct values of  /f/}n-k), up to k = 13. The 

resulting table of  corrections displays a remarkable structure (very close to that of  
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m e a n d e r  n u m b e r s ,  s tud ied  in A p p e n d i x  E ) ,  w h i c h  reads  as fol lows,  acco rd ing  to the  

par i ty  o f  j :  

-~p+]+.i) c 21 ( 2 p + l ) !  
t22. i = p ~  ( 2 p +  3 j ) ! I 1 4 j _ l ( n )  w i t h n = 2 p ,  

-~p+l+ i )  c.,3 2j ( 2 p ) !  
/x2.i+1 " = i j !  ( 2 p  + 3 j ) ! H 4 J ( n )  w i t h n = 2 p -  1,  ( C . 2 )  

val id  for  all j ~> 0, w h e r e  cp are the  Ca ta lan  n u m b e r s  ( 2 . 4 ) ,  and  t h e / / k ( n )  are m o n i c  

p o l y n o m i a l s  o f  degree  k. 

P r o c e e d i n g  in para l le l  ( d e t e r m i n i n g  the  pk and  the  co r rec t ions  s i m u l t a n e o u s l y ) ,  we 

can  p r o c e e d  fu r the r  up  to k = 18, wi th  the  resul t  

p o ( x )  = 1 , 

p l ( x ) = x -  l ,  

p 2 ( X )  = (X 2 .3- X -- 8 ) / 2 ,  

P3 (X)  = (X 3 + 6 X  2 -- 3 1 X - -  2 4 ) / 3 ! ,  

p 4 ( X )  = (X 4 + 14X 3 -- 49X 2 -- 2 5 4 X ) / 4 ! ,  

p 5 ( x )  = (X 5 .3- 25X 4 -- 15X 3 -- 1105X 2 -- 1066X + 1 6 8 0 ) / 5 ! ,  

p 6 ( X )  = (X 6 + 39X 5 + 145X 4 -- 2895X 3 -- 10226X 2 .3- 8616X + 3 1 6 8 0 ) / 6 ! ,  

p 7 ( x )  = (X 7 .3- 56X 6 .3- 532X 5 -- 51 lOx 4 -- 50141X 3 -- 20146X 2 + 377208X 

. 3 - 2 8 2 2 4 0 ) / 7 ! ,  

p 8 ( X )  = (X 8 + 76X 7 .3- 1274X 6 -- 5264X 5 -- 165991X 4 -- 422156X 3 .3- 1979116X 2 

.3-6031824X + 1 1 2 8 9 6 0 ) / 8  ! ,  

P9 (X)  = (X 9 "3- 99X 8 + 2526X 7 .3- 2646X 6 -- 41351 l X 5 -- 2570589X 4 .3- 4826744X 3 

+ 5 5 1 8 5 4 4 4 X  2 + 5 4 0 0 7 9 2 0 X  -- 2 9 7 5 6 1 6 0 ) / 9  ! ,  

pIO(X) = (X J° .3- 125X 9 .3- 4470X 8 + 30090X 7 -- 803607X 6 -- 10282755X 5 

- - 6 2 0 6 3 2 0 X  4 + 3 0 2 0 6 5 6 6 0 X  3 + 838000656X 2 

- -  179320320X -- 9 1 4 4 5 7 6 0 0 )  / 1 O!, 

Pl 1 ( x )  = ( x  I 1 .3- | 54X 10 .3- 7315X 9 + 9 6 3 6 0 x  8 -- 1170477x  7 -- 31531038X 6 

- 1 1 6 7 4 8 1 1 5 x  5 .3- 1 0 8 5 3 4 7 3 4 0 x  4 + 7 1 8 3 9 9 1 2 7 6 x  3 .3- 4 8 1 3 8 5 6 7 8 4 x  2 

- 2 0 9 1 7 2 0 9 6 0 0 x  - 1 5 4 8 7 7 1 8 4 0 0 )  / 11 ! ,  

p l 2 ( x )  = ( x  12 .3- 186x  jl + 11297x  l° + 2 3 1 3 3 0 x  9 - 9 2 1 6 5 7 x  8 - 7 8 8 5 9 2 4 2 x  7 

- 6 3 2 0 8 4 6 2 9 x  6 .3- 2 3 0 1 1 9 5 2 7 0 x  5 .3- 4 1 2 7 9 4 0 2 9 5 6 x  4 .3- 9 3 5 5 4 7 7 0 0 5 6 x  3 

- 1 8 1 9 5 1 8 7 9 9 6 8 x  2 - 5 2 8 3 1 5 7 8 2 4 0 0 x  - 2 8 1 6 5 2 9 4 0 8 0 0 )  / 12 ! ,  
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p J 3 ( X )  = (X 13 + 221X 12 + 16679X 11 + 478621X I° + 1380093X 9 -- 1 6 4 7 6 7 3 1 7 x  8 

- - 2 3 8 2 6 8 0 4 4 3 X  7 -- 4 9 6 8 9 6 2 5 7 x  6 + 1 7 2 9 7 9 6 6 4 2 8 6 X  5 + 8 6 2 3 7 8 6 5 5 9 9 6 x  4 

- - 4 3 3 5 8 0 0 0 4 9 3 6 X  3 -- 7 9 1 6 9 3 2 0 3 7 6 6 4 x  2 -- 9 8 4 3 4 7 3 1 3 4 0 8 0 x  

- - 4 8 0 7 2 6 0 0 5 7 6 0 0 ) / 1 3 ! ,  

Pl4(X) = (X 14 + 259X 13 + 2 3 7 5 1 x  12 + 8 9 9 1 7 1 X 1 1 +  8661653X l° 

- - 2 8 5 0 4 7 7 6 3 X  9 -- 7 2 0 2 3 1 3 5 4 7 X  8 -- 3 0 0 3 4 7 3 1 7 2 7 X  7 + 5 3 8 4 4 4 1 5 2 2 4 6 X  6 

+ 5 3 5 7 9 9 6 1 2 7 4 8 4 X  5 + 6 4 7 0 3 3 9 3 3 5 0 9 6 X  4 -- 6 7 6 9 7 5 7 9 5 1 1 7 4 4 X  3 

--191470854038400X 2 -- 1 5 6 9 7 0 6 7 8 3 9 4 8 8 0 X  -- 5 4 0 5 0 5 4 0 5 4 4 0 0 0 ) / 1 4 ! ,  

P l s ( X )  = ( x  15 + 3 0 0 x  14 + 3 2 8 3 0 x  13 + 1 5 7 5 2 1 0 x  12 + 2 6 2 7 8 2 5 2 x  It 

- - 3 7 8 4 0 8 0 3 0 x  l° -- 1 8 4 1 9 1 8 2 2 1 0 x  9 -- 1 6 4 9 0 3 5 3 7 3 7 0 x  8 

+ 1 1 4 5 7 1 1 8 t 0 2 4 3 x  7 + 2 5 0 7 1 9 9 8 5 6 1 6 1 0 x  6 + 8 9 2 9 3 5 6 2 5 0 1 7 8 0 x  5 

- - 3 4 2 8 0 7 8 7 3 1 5 6 8 4 0 x  4 -- 2 3 4 2 1 0 5 6 9 5 0 3 4 4 9 6 x  3 -- 3 3 9 4 5 8 6 3 7 5 7 8 6 8 8 0 x  ~ 

- - 1 6 0 2 0 3 1 5 4 8 9 0 2 4 0 0 x  + 1 9 5 3 6 6 5 5 0 5 7 9 2 0 0 0 ) / 1 5 ! ,  

Pl6(X) = (X 16 + 344X 15 + 44260X  14 + 2614640X  13 + 6 3 3 2 1 6 2 2 X  12 

- - 2 4 4 4 6 5 3 1 2 X  11 -- 4 0 7 8 3 5 7 4 2 6 0 X  1° -- 6 2 1 9 4 9 9 8 0 0 8 0 X  9 

+ 7 4 3 7 7 4 1 5 5 5 5 3 X  8 + 9 2 5 7 4 0 7 2 3 8 2 7 9 2 X  7 + 6 5 0 5 2 1 2 3 4 9 6 7 2 4 0 X  6 

- - 6 5 8 1 2 8 2 2 9 8 2 8 1 6 0 X  5 -- 1 9 4 0 9 3 2 8 2 2 8 7 1 2 1 7 6 X  4 

- - 5 3 2 2 4 6 4 2 5 3 0 8 7 7 8 2 4 X  3 -- 3 5 5 1 5 6 1 3 0 2 9 6 7 4 2 4 0 X  2 

+ 4 8 8 9 4 8 8 6 0 4 6 3 6 1 6 0 0 X  + 1 2 1 1 0 1 1 0 7 8 7 1 7 4 4 0 0 0 ) / 1 6 ! ,  

p l y ( X )  = (X 17 + 391X 16 + 58412X 15 + 4 1 5 5 8 2 0 X  14 + 134381702X j3 

+ 6 0 5 8 7 6 3 6 2 X  12 -- 7 8 4 4 0 9 7 0 0 3 6 X  11 -- 1 9 0 5 5 7 5 9 6 0 8 6 0 X  l° 

- - 7 1 8 2 4 0 4 3 2 1 8 0 7 X  9 ÷ 2 7 1 6 9 6 0 1 4 2 0 6 9 0 3 X  8 + 3 4 3 8 1 4 5 4 2 8 6 1 7 5 3 6 X  7 

+ 5 4 4 0 7 6 7 4 9 6 7 0 6 3 6 0 X  6 -- 1 1 3 3 0 8 2 0 2 7 1 2 2 6 4 4 9 6 X  5 

- - 5 9 4 8 3 7 5 7 0 6 6 2 0 8 0 6 5 6 X  4 -- 7 4 2 8 4 4 8 6 1 8 4 4 6 3 0 9 1 2 X  3 

+ 7 8 0 8 4 2 5 3 5 8 6 0 8 3 9 6 8 0 X  2 + 4 2 1 3 6 1 2 6 8 7 9 1 8 2 3 3 6 0 0 X  

+ 2 6 9 6 1 1 0 7 0 4 9 6 7 6 8 0 0 0 0 ) / 1 7 ! ,  

p l s ( x )  = ( x  18 + 4 4 1 x  17 + 7 5 6 8 4 x  16 + 6 3 7 2 7 5 6 x  t~ + 2 6 1 8 5 4 5 0 2 x  14 

+ 3 2 0 3 7 9 1 5 4 2 x  t3 - 1 2 8 1 3 6 3 7 7 2 5 2 x  12 - 5 0 2 3 3 6 1 5 3 8 4 6 8 x  I1 

- 4 5 5 0 9 4 9 5 4 7 8 4 4 7 x  t° + 6 0 2 3 6 1 8 2 7 8 0 3 5 9 3 x  9 + 1 4 4 3 5 0 5 1 9 6 1 4 4 5 7 5 2 x  8 

+ 6 7 0 1 5 4 1 0 0 0 7 6 7 7 7 6 8 x  7 - 4 5 1 4 3 4 3 7 8 7 2 9 8 8 7 2 1 6 x  6 

- 4 8 7 9 4 3 0 1 4 7 2 7 2 5 6 1 7 7 6 x  5 - 1 1 6 7 8 8 4 1 7 8 1 3 9 4 9 0 9 1 8 4 x  4 

+ 6 0 4 1 8 0 3 0 6 4 0 0 9 2 6 6 9 4 4 x 3 + 7 8 0 9 8 7 5 0 1 5 6 7 6 6 0 4 4 1 6 0 x  2 

+ 1 4 8 8 4 1 6 5 3 9 9 3 8 4 3 5 0 7 2 0 0 x  - 4 4 1 7 6 3 7 8 5 6 9 5 2 3 2 0 0 0 0 ) / 1 8 ! .  ( C . 3 )  
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The f i r s t / / ' s  read 

33x2 49 
I I 3 ( x ) = x 3 +  2 + -~-x + 12, 

~ _ 7  13229 3 
/ / 7 (x )  = x  7 + 44x 6 + x 5 + 3371x 4 +------~-x + 11735x 2 + 6336x + 1440, 

163 1o 198453x8 
/ / l l ( x )  = x  Il + - - ~ - x  + 2814x9 + 4 + 405471x7 + 1586409x6 

+4522625x 5 ÷ 53075437x4 ÷ 13577913x 3 + 14321997x 2 + 3974616x,  
4 

9911591xl I 11187899 ,1o /-/15(x) = x j5 + 129x 14 + 7462x 13 + 248370x L2 + + x 
2 2 

+345882086x 9 + 1392155925x 8 + 12479885017x7 + 44260908189x6 
2 2 

+30440330807x 5 + 71900294130x 4 + 17319985020x 3 

-28987682544x  2 - 36059230080x - 10059033600, 

no(x )  = 1, 

47 3 37 
/ / 4 (x )  = x  4 + - ~ - x  + 31x 2 +--~-x + 20,  

124x7 12~3x6 18479x5 8543x4 72077 
/ / 8 (x )  = x  8 + 3 + - -  + - - ~  + 2 + - ~  "-x3 

+26106x 2 - 4994x - 840,  

5135xl o 88129 9 
/ /12(x)  = x l 2 + 7 7 x  II +----f--  +------~--x + 341193x 8 + 1023192x 7 

q 5147959x6 ÷ 35955101x5 ÷ 23942231x 4 - 16806044x 3 
2 2 

+18500028x 2 - 21290040x - 6350400, 

368 15 664235 13 855768!x12 135562460 11 
/ /16(x)  = x  j6 +--~--x  + 6845x 14 +--- - - -~--x  + 2 + 3 x 

452366205x10 + 1940546440x9 + 11216097197x8 + 89505296956x7 
2 3 2 3 

27505324345x5 ÷9305821085x6 ÷ ÷ 164921583110x 4 
2 3 

-422241984828x 3 - 328334271840x 2 

-252250683840x - 40475635200. (c.4) 

Appendix D. Semi-meanders and winding 

In this appendix, we study the numbers hT/~k) (w) of semi-meanders of order n, with k 
connected components and winding w. The winding w has the same parity as the order 
n, hence we consider the following generating function: 
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n-I min(k,[n/21) 

gnn(q, t) = Z q  n-k Z tJM~n-k)(n - 2j )  (D.1) 
k--O .j=O 

interpreted as the parti t ion function for semi-meanders weighed by q per connected 

component  and 1/v '7  per winding unit (up to a global normalization factor) .  In the 

large-q l imit  we now repeat the analysis performed in Section 4.1, by Taylor-expanding 

l og ( fnn (q , t ) / q " )  order by order in l /q ,  in the same way as we did previously for 

log(Fn, (q) /q") .  This also relies on the identification of  the numbers /~/~n-k)(n - 2 j )  

as polynomials  of  n, with special re-exponentiation properties, as discussed now. 

For k = 0, the corresponding leading semi-meander has winding w = n, hence 

hT/~ n) (n - 2 j )  = 6j, o. (D.2)  

For large n and finite k >/ 1, the winding of  a semi-meander of  order n with n - k 

connected components  may only take the values (n - 2k) ,  (n - 2k + 2) . . . . .  (n - 2).  

Indeed, if C denotes the number of  circles of  such a semi-meander with winding ( n - 2 j ) ,  

there are ( n -  k -  C)  connected components which are not circles, hence which occupy 

two or more bridges. Therefore we have the following lower bound on the order of  the 

semi-meander  

n>~C + 2 ( n - k - C )  ¢:~C > ~ n - 2 k  (D.3) 

and therefore, as each circle contributes 1 to the total winding, 

w ~ > C  / > n - 2 k .  (D.4)  

When k = 1, all the one-kidney perturbations (4.3) of  the leading semi-meander have 

winding w = ( n -  2) ,  hence 

/ ( /~n- l ) (n  - 2) = n - 1 (D.5)  

When k = 2, let us reexamine the various semi-meanders obtained in Fig. 14: the 

perturbations of  Figs, 14cl,2 have winding (n - 4) ,  whereas those of  Figs. 14c3,4 have 

winding (n - 2) .  Hence we have 

/f / (n-2) ,  4) = n(n  - 3) + ~,,2 

/f/}~"-2~ (n - 2) = 2 ( n  - 2 ) .  (D.6) 

The correction is ad hoc to yield a zero answer when n = 2. 

With a lit t le more patience, the enumeration of  the semi-meanders of  order n with 

(n - 3) connected components  and fixed winding yields 

K(. n-3) (n - 6) = n(n  - 1 ) (n  - 5) + 28n,3 -+" 2~n,4, 
6 

/9/~ "-3) (n -- 4) = 2 (n  2 -- 4n + 1 ) + 48,,3,  

hT/(~ "-3) (n - 2) = 2 (n  - 3 ) .  (D.7)  
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In general, the/9/ , ( ' -k)(w) form a decomposition of  the ~-,~(n-k) in the sense that I v 1  n 

Z/9 /"(n-k)  (w)  = -'-n/gt("-k) • (D.8)  
W 

In a way similar to the AT'/(~ n-k), we expect the numbers ,Q~(n-k)(n - 2j)  to be, for 

large enough n, some polynomials of  n, whose coefficients depend only on j and k. For 

small n, some corrections have to be added to recover the actual numbers from their 

polynomial part. More precisely, one can show that 

.j-2 
hT/~"-k)(n 2 j )  =p~k)(n)  + Z  ° _(k,j) 

- -  . On,k+j-m--2 qm 
m=O 

(D.9) 

for 1 ~< j ~< k ~< n, where I~k)(X)  is a polynomial of  degree j of  x (pCo°)(x) = 1), 

whose coefficients depend on j and k, and the r/,(ii, k) are non-negative integer corrections. 

In particular, according to (D.8),  we must have 

k 

.j=l 
(D.10) 

We have computed the polynomials /~I k) (x) for 0 ~< j ~< k ~< 14, by using exact 

enumeration data on the /17/(,"-~)(n- 2 j )  for 0 ~< j ~< k ~< n ~< 24, and the re- 

exponentiation trick described in Section 4.1. These lead to the large-n asymptotics of  

the partition function (D.1) in the large-q regime 

/~(q, t) n 
gn. (q , t )  ~ 6 ( q , t )  n~'(q,t'----'-~ (D.11) 

with y (q ,  t) = 0 as before, and with the following large-q series expansions: 

2t 2t 2t 2 t ( t -  1) 2 2 t ( t  2 - 4 t +  1) 
R ( q , t ) = q + t + - - +  + + + q -~ ~ q4 q5 

2t(  3t2 - 8t + l ) 2t( 4t4 - 8t3 + 9t2 - 1 2 t  + l ) 
q- + 

q6 q7 

2t (10t  4 -  2 6 t 3 +  28t 2 -  18t + 1) 
-+ 

qS 

2 t (6 t  5 + 12t 4 - 61t 3 + 64t 2 - 24t + 1) 
q 

q9 

2t (24t  6 - 52t 5 + 71t 4 - 137t 3 + 131t 2 - 32t + 1) 
ql0 

2 t ( l O l t  6 - 260t 5 + 308t 4 - 324t 3 + 237t 2 - 40t + 1) 
qll 

2 t (90t  7 + 50t 6 - 610t 5 + 894t 4 - 726t 3 + 400t 2 - 50t + 1 ) 
-t ql2 
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2 t ( 1 7 3 t  8 - 243t  7 + 409t  6 - 1507t 5 + 2237t  4 - 1564t 3 + 631t  2 - 60t  + 1) 
q13 

? ( q ,  t) = 1 
t 4t 2 t ( t  - 3) 

+ + 
q q2 q3 

2 t ( 2 t  3 - 13fl + 3 9 t -  6) 
4 + q6 

2 t ( 4 5 t  4 -  1 2 2 t 3 + 1 8 3 t  2 -  1 2 8 t + 8 )  

8t( t  - 1) 2 t ( 7 f l  - 19t + 5)  
~ q5 

2 t ( 1 8 t  3 - 62t  2 + 7 9 t -  7) 
q7 

ql0 

2 t ( 3 5 3 t  6 - 1183t 5 + 2104t  4 -- 3012t  3 + 2342t  2 - 421t  + 11) 

q8 

2t (9 t  5 - 138t 4 + 4 0 6 t  3 - 514t  2 + 205t  - 9)  
q9 

2t (69t  5 -  4 7 5 t 4 +  1138t 3 -  1 1 4 3 t 2 +  2 9 5 t -  10) 
-+ 

(D .12)  

qll 

2 t ( 5 6 t  7 - 1553t 6 + 4986t  5 - 7692t  4 + 7668t  3 - 4311t  2 + 5 6 4 t -  12) 
+ q12 

2 t ( 2 3 0 t  7 + 3888t  6 - 14710t 5 + 22124t  4 - 17898t 3 + 7490t  2 - 751t  + 13) 
ql3 

2t 
q14 (3123t8 - 10053t7 + 22655t6 - 45694t5 + 58185t4 - 39176t3 

+ 1 2 2 1 5 t 2 - 9 5 9 t + 1 4 ) + O ( - ~ - ~ r s )  . (D .13)  

The  prev ious  results (4 .12)  are recovered up to order  14 in l / q  by taking t = 1. Let  

us look more  c lose ly  at the express ions  (D .12)  and (D.13)  above: we may Taylor-  

expand them as funct ions  o f  t for  small t. Remarkably,  due to the structure o f  the 
~(k) coeff icients  o f  t ' j  ( x ) ,  which  are themselves  po lynomia l s  o f  k for fixed j (e.g. we 

have p l k ) ( x )  = 2 ( x - k )  for all k >~ 2 whi le  p l l ) ( x )  = x -  1), we have been able 

to re-sum the large-q series coeff icients  o f  this expansion up to order  3 in t, in the 

fo l lowing  form: 

[ ~ ( q , t ) = q + t  q +  l _ 4 t 2  1 
q -  1 ( q -  l ) 2 ( q  2 -  l )  

7 _ q6 q_ 5q4 -k- 11 q3 5- 8q2 5- q - 1 
+ 4 t  3q  + O ( t  4) , 

q Z ( q _  1)2(q2 _ 1)2(q3 _ 1) 

q2 + 2q - 1 q5 + 2q4 5- lOq3 + qZ _ 3q 5- 1 
g ( q , t )  = 1 - t + 2t 2 

q ( q _  1)2 q Z ( q _  1)2(q2 _ 1)z 

t 3 
- 2  (7q 12 + 6q I1 + 28q 1° + 89q 9 + 193q 8 

q 4 ( q _  l ) ( q 2  _ 1)3(q3 _ 1)2 
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+ 2 2 8 q 7 + 1 4 7 q 6 + 3 5 q  5 -  1 4 q 4 - - 5 q 3 + 6 q 2 + q  - 1) + O ( t 4 ) .  (D.14) 

This structure is very reminiscent of  the large-Q Q-state Potts model free energy [ 11 ], 

and suggests a possible expression in terms of  modular  forms of  q. 

The average winding in large-q semi-meanders is obtained by the formula 

(w),  (q)  = n - 2t  d log th~ (q, t ) I t=l ,  (D.15) 

leading to the expression (4. ! 7) through the identifications 

d 
• ~(q) = 1 - 2t~-~ log/~(q ,  t ) [ t=l ,  

d 
/ z (q)  = - 2 t ~  log ~(q,  t)I,=1 • (D.16) 

A p p e n d i x  E.  F i n e  s t r u c t u r e  o f  the  m e a n d e r  n u m b e r s  

By simple inspection of  the meander numbers (which we read from the semi-meander 

numbers with zero winding) ,  we have found the following structure for the numbers 
M~ n-k): 

m~n,,- k~ = cn rk (n)  , (E. I ) 

where c ,  is a Catalan number (2 .4) ,  r k ( x )  is a rational fraction of  x with total degree 

k. More  precisely, we have ro(n)  = ! and for k ~> 1 

2kn!(n + 1)! 
rk (n )  = q~z~-2(n) 

k ! ( n - k -  1) ! (n  + 2k)!  

2 k n ( n -  1 ) ( n -  2) . . . ( n -  k) 
= - -  ~ 2 k - 2 ( n ) ,  (E.2)  

k ! ( n + 2 ) ( n + 3 ) . . . ( n + 2 k )  

where q~2~-2(x) are monic polynomials  of  x of  degree (2k - 2) .  They read, for k = 

1,2 . . . . .  6 

~oo(x) = 1,  

q~z(x) = x  2 + 7 x - 2 ,  

~o4(x) = x  4 + 20x 3 + 107x z - 107x + 15, 

~p6(x) = x  6 + 39x 5 + 547x 4 + 2565x 3 - 5474x 2 + 2382x - 672,  

~os(x) = x 8 + 64x 7 + 1646x 6 + 20074x 5 + 83669x 4 - 323444x 3 

+257134x  2 - 155604x + 45360 

q~10(x) = x 1° + 95x 9 + 3840x 8 + 83070x 7 + 940443x 6 + 3382455x 5 

- 2 2 2 9 4 7 3 5 x  4 + 27662860x 3 - 26147139x z + 16354530x - 4098600. 

(E.3) 
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