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Abstract: The statistics of meanders is studied in connection with the Temperley-Lieb 
algebra. Each (multi-component) meander corresponds to a pair of reduced elements 
of the algebra. The assignment of a weight q per connected component of meander 
translates into a bilinear form on the algebra, with a Gram matrix encoding the fine 
structure of meander numbers. Here, we calculate the associated Gram determinant as 
a function of q, and make use of the orthogonalization process to derive alternative 
expressions for meander numbers as sums over correlated random walks. 

1. Introduction 

The meander problem is one of these fundamental combinatorial problems with a simple 
formulation, which resist the repeated attempts to solve them. The problem is to count 
the number Mn of meanders of order n, i.e. of ineqnivalent configurations of a closed 
non-self-intersecting loop crossing an infinite line through 2n points. The infinite line 
may be viewed as a river flowing from east to west, and the loop as a closed circuit 
crossing this river through 2n bridges. Two configurations are considered as equivalent 
if they are smooth deformations of one another. 

Apparently, the meander problem dates back the work of Poincar6 about differential 
geometry. Since then, it arose in various domains such as mathematics, physics, computer 
science [1] and fine arts [2]. In the late 80's, Arnold reactualized this problem in relation 
with Hilbert's 16th problem, concerning the enumeration of ovals of planar algebraic 
curves [3]. Meanders also emerged in the classification of 3-manifolds [4]. More recently, 
random matrix model techniques, borrowed from quantum field theory, were applied to 
this problem [5, 6]. As such, the meander problem seems to belong to the same class as 
large N QCD [7]. 
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In a previous paper [6], we made our first incursion into the meander problem, in 
trying to solve the compact folding problem of a polymer chain. Considering indeed a 
long closed polymer chain of say 2n identical monomers, we ask the question of counting 
the inequivalent ways of folding the whole chain onto itself, forbidding interpenetration 
of monomers. By compact folding, we mean that all the monomers are packed on top 
of each other. Accordingly, folding is a simple realization of objects with self-avoiding 
constraints. The reader may bear in mind the simple image of the folding of a closed 
strip of 2n stamps, with all stamps piled up on top of each other [8, 9]. 

~ ~  road 

bridge river 

(a) (b) 
Fig. 1. A compactly folded polymer (a) with 2n = 6 monomers, and the associated meander (b), obtained by 
drawing a line (river) horizontally through the monomers. Each monomer becomes a bridge, and each hinge 
a segment of road between two bridges. 

The equivalence between this folding problem and the meander problem may be seen as 
follows. As illustrated in Fig. 1, drawing a line (river) across the 2n constituents (bridges) 
of the folded polymer, and pulling them apart, produces a meander of order n. The folding 
of a closed polymer chain and the meander problem are therefore completely identical. 
By analogy, we were led to define the meander counterpart of the folding problem of 
an open polymer chain: the semi-meanders. The latter are defined in the same way as 
meanders, except that the river is now semi-infinite, i.e. it has a source, around which the 
semi-meander is allowed to wind freely. We denote by ~rn the number of semi-meanders 
of order n, namely with n bridges. 

In this paper, we reconsider the meander and semi-meander problems in the frame- 
work of the Temperley-Lieb algebra [10]. This is based on a one-to-one correspondence 
between (multicomponent) semi-meanders and reduced elements of the Temperley-Lieb 
algebra. Similarly, (multicomponent) meanders are associated topairs of such elements. 
More precisely, the Tempedey-Lieb algebra is endowed with a bilinear structure out of 
which a Gram matrix can be constructed. In our language, the bilinear form associates 
to each pair of elements of the algebra a weight qC, where r denotes the number of 
connected components of the associated meander. In particular, the Gram matrix, as a 
polynomial of q, encodes all the relevant information about meander and semi-meander 
numbers. 

Here we obtain as a main result an exact compact expression for the determinant of 
the Gram matrix, referred to as the meander determinant. Far from solving the question 
of enumerating meanders, this gives however some partial information on the problem, 
and produces an exact solution to a meander-flavored issue. This result is summarized 
in Eq. (5.6), and proved by explicit orthogonalization of the Gram matrix. In a second 
step, we make use of the precise form of the change of basis in the orthogonalization 
process to derive various expressions for the semi-meander (Eq. (6.62)) and meander 
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(Eq. (6.63)) numbers as statistical sums over paths, with an interpretation as Solid On 
Solid (SOS) model partition functions. 

The paper is organized as follows. We start in Sect. 2 by giving basic definitions 
of (multi-component) meander (Eq. (2.1)) and semi-meander (Eq. (2.3)) numbers and 
associated polynomials in which a weight q is assigned to each connected component. 
The relation between (semi-)meanders and both arch configurations and walk diagrams 
is then discussed, and known results for q = • are reviewed (Eqs. (2.6)-(2.8)). Various 
conjectured and/or numerical asymptotic behaviors for large n are given (Eqs. (2.11)- 
(2.18)). In Sect. 3, we introduce the Temperley-Lieb algebra TLn(q), and discuss its 
relation with walk diagrams and arch configurations, in one-to-one correspondence with 
reduced elements of the algebra. These reduced elements form a natural basis (basis 1) 
of TLr~(q). The contact with meanders is made through the introduction of a trace and a 
bilinear form on TL,~ (q) (Eqs. (3.11) and (3.14)). When evaluated on pairs of reduced 
elements (of the basis 1), this form generates the Gram matrix (Eq. (3.15)), which 
encodes the fine structure of meander numbers. In Sect. 4, we make a change from basis 
1 to a new basis 2, in which the Gram matrix is diagonal. This allows for the calculation 
of the Gram determinant as a function of q (Eq. (5.6)), and the identification of its zeros 
(Eq. (5.10)) and their multiplicities (Eq. (5.23)). These results, together with a complete 
combinatorial proof are detailed in Sect. 5. The matrix for the change of basis 1 ~ 2 is 
studied in great detail in Sect. 6, where it is shown to obey a simple recursion relation 
(Eq. (6.29)). This equation is explicitly solved, in the form of matrix elements between 
two walk diagrams, factorized into a selection rule (with value 0 or 1, see Eq. (6.38)) 
multiplied by some weight, with a local dependence on the heights of the walk diagrams 
(Eq. (6.43)). This leads to expressions for the meander and semi-meander polynomials 
as sums over selected walk diagrams (Eqs. (6.62) and (6.63)). Analogous formulas are 
derived within the framework of SOS models (Eq. (6.90)), leading to various conjectures 
as to the asymptotic form of the meander and semi-meander polynomials for q _> 2. 
Section 7 is devoted to a refinement of the meander determinant for semi-meanders with 
fixed number of windings around the source of the river (Eq. (7.5)). A few concluding 
remarks are gathered in Sect. 8. Some technical ingredients are detailed in Appendices 
A,B and C. 

2. Definitions 

2.1. Meanders. A meander of order n is a planar configuration of a closed non-self- 
intersecting loop (road) crossing an infinite oriented line (river flowing from east to west) 
through 2n points (bridges). We denote by M,~ the number of topologically inequivalent 
meanders of order n. We extend the definition to a set of k roads (i.e., a meander 
with k possibly interlocking connected components). The number of meanders with k 
connected components is denoted by M~ k). Note that necessarily 1 _< k < n. These 
numbers are summarized in the meander polynomial 

n 

ran(q) = ~ M (k) qk 
k=l 

(2.1) 

The various meanders corresponding to n = 2 are depicted in Fig. 2. They correspond 
to the polynomial 

mz(q) = 2q + 2q 2. (2.2) 
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@ 0 0  
k = 2  

Fig. 2, The four meanders of order n = 2, i.e. with 2n = 4 bridges. The two first ones have k = 1 connected 
component, the two other have k = 2 connected components 

The numbers M~ k) are listed in [6] for 1 < k < n < 12. 

2.2. Semi-meanders. 

k=l k=2 k=3 

Fig. 3. The five semi-meanders of order n = 3, arranged according to their numbers k = 1,2, 3 of connected 
components. 

A semi-meander of order n is a planar configuration of  a closed non-self-intersecting 
loop (road) crossing a semi-infinite line (river with a source) through n points (bridges). 
Note that, in a semi-meander, the road may wind around the source of  the river. We 
denote by )~/n the number of  topological ly inequivalent semi-meanders of  order n, and 
by 37/~k) the number of  semi-meanders with k connected components,  1 < k < n. We 
also have the semi-meander polynomial  

ran(q) = M,~ ~ .  (2.3) 
k=l 

The various semi-meanders corresponding to n = 3 are depicted in Fig. 3. They corre- 
spond to the polynomial  

m3(q) = 2q + 2q 2 + q3. (2.4) 

The numbers ,~/~k) are listed in [6] for 1 < k < n < 14. 

2.3. Arch configurations and (semi) meanders. 
A multicomponent meander may be viewed as the superimposit ion of  two (top and 

bottom) arch configurations of order n, corresponding respectively to the configurations 
of  the road on both sides of the river, as shown in Fig. 4. An arch configuration is simply 
a configuration of  n planar non-intersecting arches (lying, say, above the river) linking 
the 2n bridges by pairs. The number of  arch configurations of  order n is given by the 
Catalan number 

(2n)! 
cn ( n +  1)!n! (2.5) 

The set of  arch configurations of  order n is denoted by An. 
As an immediate consequence, as arbitrary mult icomponent meanders are obtained 

by superimpositions of  arbitrary top and bottom arch configurations, we have 
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Fig. 4. Any meander is obtained as the superimposition of a top (a) and bottom (b) arch configurations of same 
order (n = 5 here). An arch configuration is a planar pairing of the (2n) bridges through n non-intersecting 
arches lying above the river (by convention, we represent the lower configuration b reflected with respect to 
the river). 

4 

Fig. 5. Any semi-meander may be viewed as a particular meander by opening the semi-infinite river as indicated 
by the arrows. This doubles the number of bridges in the resulting meander, hence the order is conserved (n = 5 
here). By construction, the lower arch configuration of the meander is always a rainbow arch configuration of 
same order. The number of connected components (k = 3 here) is conserved in the transformation. 

m,~(1) = (c,~) 2 (2.6) 

As for semi-meanders ,  upon opening  the semi-infini te river and dedoubl ing the 
bridges (cf. Fig.  5), they can also be v iewed as the super imposi t ion of  a top arch con-  
figuration of  order n ,  and of  a part icular  bot tom "rainbow" arch configurat ion (namely 
that l inking the ith bridge to the (2n  + 1 - i) th one, i = 1,2,  ..., n) .  Therefore arbitrary 
mul t i componen t  semi-meanders  may  be obtained by super imposing  an arbitrary arch 
configurat ion with a rainbow of  order n ,  leading to 

~ n ( 1 )  = on. (2.7) 

In ref.[6], we have also proved the fol lowing results 

m ~ ( - 1 )  = { O(cp)2 
{o 

m n ( - 1 )  = -(Cp) 

i f n  = 2p 
i f n = 2 p +  1 ' 

i f n  = 2p 
i f n  = 2p + 1 " 

(2.8) 

Note that the one-component  meander  and semi-meander  numbers  are recovered in 
the q ---+ 0 l imit  of  respectively mn(q)/q and ~n(q)/q. 

2.4. Walk diagrams. An arch configurat ion of  order n may  be viewed as a closed 
random walk of  2 n  steps on a semi- inf ini te  line, or  equivalent ly its two-dimens ional  
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extent, which we call a walk  diagram, defined as follows 1 . Let us first label the segments 
of  river between consecutive bridges, namely the segment i lies between the i th and the 
(i  + l )  th bridge, for i = 1,2, ..., 2n - 1. Let us also label by 0 and 2n, the semi-infinite 
portions of  fiver respectively to the left of  the first bridge and to the fight of  the last one. 
To each portion of river i, we attach a height gi equal to the number of arches passing at 
the vertical of  i. The nonnegative integers gi satisfy the following conditions 

go -- g2n -- 0, (2.9) 
g i + l - g i  C {4-1} i = 0 , 1 , . . . , 2 n - 1 .  

The diagram formed by the broken line joining the successive points (i, gi), i = 
0, 1,..., 2n, is the walk diagram corresponding to the initial arch configuration. This 
diagram represents the two-dimensional extent of a walk of  2n steps on the semi-infinite 
line g _> 0 starting and ending at its origin. 

i i ! : i i : : : 

0 1 2 3 4 5 6 7 8 9 1011 12 1314 1516  1718 

Fig. 6. A walk diagram of 18 steps, and the corresponding arch configuration. Each dot corresponds to a 
segment of river. The height on the walk diagram is given by the number of arches intersected by the vertical 
dotted line 

Conversely, any walk diagram of  2n steps, characterized by integer heights g~ >_ 0, 
i = 0, ..., 2n, satisfying (2.9), corresponds to a unique arch configuration of order n. 
To construct the arch configuration corresponding to a walk diagram, notice that, going 
from left to fight along the river, whenever g~ - gi-  1 = 1, a new arch originates from the 
bridge i, whereas when gi - gi-1 ---- - - 1 ,  an arch terminates at the bridge i. We denote 
by Wn the set of  walk diagrams of  2n steps. We have the identification 

Wn - An. (2.10) 

In this paper, we will alternatively use the arch configuration and walk diagram 
pictures. 

2.5. Asymptot ics .  Earlier numerical work [9, 5, 6] suggests that the (one-component) 
meander and semi-meander numbers behave in the large n limit as respectively 

with 

R n  

M n  '~ nC ̀ , 

~n 
J ~ n  ~ n T ~ 

1 The walk diagrams are usually referred to as Dyck paths in the combinatorial literature. 

(2.11) 
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/~ ~ 3.5... R = R  2, 
(2.12) 

a = 7 /2  "1' = 2. 

The values of  the exponents a and "7 are conjectured to be exact. The relation R =/~2 
is a consequence of the polymer folding interpretation [6]: the entropy per monomer 
is the same for the open and closed polymer  folding problems. Note however that the 
configuration exponents a and 2/depend on the boundary conditions (open or closed). 
A natural quantity of interest for the study of semi-meanders is the winding, namely the 
number of  times the road winds around the source of the river in the river/road picture 
of  the semi-meander. In the arch configuration picture, the winding of a semi-meander 
is the number of  arches of the upper configuration passing at the vertical of  the middle 
point; representing the upper arch configuration as a walk diagram a, the winding of  the 
semi-meander is simply g~. Denoting by c(a) the number of connected components of  
the superimposition of the arch configuration a and of a rainbow configuration of order 
n, the average winding in semi-meanders of  order n reads 

Wn(q) = Y'~aeW,~ g~ qc(a) ~ n~'(q), (2.13) 
~-~aEW,~ qc(a) "*---~ oo 

where we have identified a winding exponent v(q) E [0, 1]. In this paper, we give strong 
analytical evidence that v(q) = 1 for all q > 2. For 0 < q < 2, numerical work seems 
to indicate that 1/2 <_ v(q)  < 1. 

More generally, we expect the meander and semi-meander polynomials to behave 
for large n as 

R(q)  n 

rnn(q)  ~ ha(q) ,  
/~(q)n (2.14) 

~ ( q )  " n'Y(q) ' 

where R(q)  =/~(q)2 like in the q = 0 case, but only for q < 22 
As an element of  comparison, by using Stirling's formula for factorials, we have 

4'* 
~ , d l )  = c,~ ,-~ / / 3 / 2 '  

42 n (2.15) 
rn,~(1) = (c~) 2 ,-~ n3 , 

hence/~(1) = 4 and 

We also have the obvious large q asymptotics 

~ ' * ( q )  ~ qn, 

m'*(q) ~ c'* q~ ,'~ - -  

a(1)  = 3 "/(1) = 3/2.  (2.16) 

(4q) n (2.17) 

723/2 

2 This relation is only expected insofar as v ( q )  < 1. Indeed, in this case, comparing the numbers ran(q)  
and ~2~(q)  of respectively meanders and semi-meanders with (2n) bridges, we see that the semi-meanders 
with significative winding (i.e., W n  ~ n )  are negligible, hence we expect the two numbers to be of the same 
order, namely 

r a n ( q )  ~ R ( q )  n ~ rh2n(q) ~ /~(q)2n, 

hence R ( q )  =/~(q)2. According to the previous discussion, this fails for q > 2, where v ( q )  = 1. Indeed, it is 
easy to see that, for large q, R ( q ) / R ( q )  2 ~ 4 / q  ~ O, as r a n ( q )  ~ c n q  n ~ (4q) n and rh2n(q) ~ q2n.  
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hence R(q) ,-~ 4q and [~(q) ~ q, whereas 

3 ~(~) = 
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7(c~) = O. (2.18) 

3. Temperley-Lieb Algebra and Meanders 

3.1. The Temperley-Lieb algebra and arch configurations. The Temperley-Lieb algebra 
of  order n and parameter q, denoted by TL,~(q), is defined through its n generators 
1, el, e2, ..., e n -  l subject to the relations 

(i) e~=qe~ i = 1 , 2 , . . . , n -  1, 

(ii) [e~,ej] = 0 if ]i - j[ > 1, (3.1) 

(iii) e iei+l  e~ = ei i = 1 , 2 , . . . , n -  1. 

This definition becomes clear in the "braid" pictorial representation, where the generators 
act on n parallel strings as follows: 

1 =  i 
i+ l  

n 

ei = i+l (3.2) 

and a product of elements is represented by the juxtaposition of the corresponding braid 
diagrams. The relation (ii) expresses the locality of  the e's, namely that the e's commute 
whenever they involve distant strings. The relations (i) and (iii) read respectively 

2 i �9 i 
(i) ei = = q ) ( - -  i+l  = q ei, 

. 

(iii) ei ei+l ei = +ti  [ i D i+l  = ) ( - -  i+l  = e~. 

(3.3) 

In the relation (i), the loop has been erased, but affected the weight q. The relation (iii) 
is simply obtained by stretching the (i + 2) th string. 

3.2. The basis 1. The algebra TLn(q )  is built out of arbitrary products of generators 
ei. Up to numerical factors depending on q, any such product can be reduced by using 
the relations (i)-(iii). The algebra TLn(q) ,  as a real vector space, is therefore naturally 
endowed with the basis formed by all the distinct reduced elements of the algebra. This 
basis will be referred to as basis 1 in the following (as opposed to the basis 2, defined 
in Sect. 4 below). For illustration, the reduced elements of  TL3(q) read 

c l e 2 _ -  e 2 o , _ -  

(3.4) 
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17 
16 
15 
14 
13 
12 
U 
10 

1 2 3 4 $ 6 7 8 9 10 U 12 1314 1516 1718 

Fig. 7. The transformation of a reduced element of  TL9 (q) into an arch configuration of order 9. The reduced 
element reads e3e4e 2 e5e 3 e 1 e6e4e2 

Let us now show that the reduced elements of  TLn(q)  are in one to one correspon- 
dence with arch configurations of  order n. This is most clearly seen by considering the 
braid pictorial representation of  a reduced element. Such a diagram has no internal loop 
(by virtue of  (i)), and all its strings are stretched (using (iii)). As shown in Fig. 7, one 
can construct a unique arch configuration of order n by deforming the diagram so as 
to bring the (2n) ends of  the strings on a line. This deformation is invertible, and we 
conclude that, as a vector space, TLn(q)  has dimension 

dim(TLn(q))  = Cn. (3.5) 

The basis 1 is best expressed in the language of walk diagrams. The walk diagrams 
of 2n steps are arranged .according to their middle height 2n = h, where h = n - 2p, 
0 < p < n /2 .  For each value of h, the basic reduced element 

f(n) = ele3es...e2p-1 f~n) = 1 (3.6) 

corresponds to the lowest walk diagram ~A;~h n) with middle height h, namely 

)'V~h n) / ~ ~  (3.7) = / N / ~  . . . . . .  / N / N  

0 2 4 ... 2p ... n--.2(n-p) ... 2n 

with 
20 = 22 . . . . .  22p = 0 ,  

21 : 23 . . . . .  22p--1 = 1, 

22p+j = j j = 1 ,2 , . . . ,h ,  

2 2 n - j = g  9 j = 0 , 1 , 2 , . . . , n .  

(3.8) 

i n n 

Fig. 8. An example of allowed left multiplication by ei. The initial walk diagram must have a minimum at the 
vertical of the point i. This operation adds a box to the walk diagram at the vertical of the point i < n. 

It is then easy to see that any reduced element corresponding to a walk diagram 
with middle height g,, = h is obtained by repeated appropriate multiplications to the left 
or to the right of  r with e's. The walk diagrams of middle height h are constructed J h  
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univocally by  adding "boxes" to the diagram W~ n). As illustrated on Fig. 8, adding a 
box to a diagram )4; at the vertical of  the point i is allowed only if i is a minimum of 
W ,  namely g~+t = gi-1 = gi + 1, in which case the new diagram, with the box added, 
has gi ~ gi + 2. For the associated basis 1 elements, this addition of a box corresponds 
to the left (resp. tight) multiplication by ei (resp. e2n- i )  when i < n (resp. i > n). This 
does not affect the middle height gn = h. For illustration, we list the elements of  the 
basis 1 for TL3 (q) together with the corresponding walk diagram (the middle height g3 
takes only the values 1 (in 4 diagrams) and 3 (in 1 diagram)) 

el = f ~ 3 ) = _ ~  , 
v w w 

e2E1 = c 2 = 
w v w 

ele2 = f~3)e2 = _ ~ ~  , 
_ . - ( 3 . 9 )  

e2 = e2 

1 = f3 ~3) = _ ~ ~  

To avoid later confusion (with the basis 2), we will denote by (a)l  the basis 1 element 3 
corresponding to the walk diagram (or arch configuration) a E W~ ( ~  An). 

3.3. Scalar product and meanders. 

! L/LL i,i' ~ . . . . . . . . . . .  /,:, :: 

Fig. 9. The trace of an element e E TL6(q) is obtained by identifying the left and right ends of its strings 
(dashed lines). In the arch configuration picture, this amounts to closing the upper configuration by a rainbow 
of order 6. The corresponding semi-meander has 3 connected components, hence Tr(e) = q3 

The standard scalar product on TLn(q) is defined as follows. First one introduces a 
trace over TLn(q). From the relation (i) of  (3.1), we see that in any element e of TLn (q) 
each closed loop may be erased and replaced by a prefactor q. Taking the trace of a basis 
1 element e corresponds to identifying the left and right ends of  each string as in Fig. 9, 
and assigning an analogous factor to each closed loop, which results in a factor 

Tr(e) = qC(~) (3.10) 

3 This notation will become clear when we introduce the basis 2. Indeed, the basis 2 elements will be 
indexed by the same walk diagrams ( ( a ) 2 ) ,  but will represent different combinations of products of e's, hence 
(a)z 5t(a)l in general. 
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where c(e) is the number of connected components of  the closure of e. The definition of  
the trace is extended to any linear combination of  basis elements by linearity. Note that, 
with this definition, the trace is cyclic, namely Tr(ef)  = Tr(fe).  In the arch configuration 
picture, e(e) is easily identified as the number of  connected components of the semi- 
meander obtained by superimposing the arch configuration a corresponding to e and the 
rainbow of  order n: indeed, the rainbow connects the ith bridge to the (2n + 1 - i)th 
which exactly corresponds to the above identification of string ends. In particular, this 
permits to identify the semi-meander polynomial (2.3) as 

!~n(q ) = ~ qC(e) = ~ T r ( ( a ) l )  

eE basis 1 aCW n 
(3.11) 

We also define the transposition on TL,~(q), by its action on the generators e~ = ei, 
and the relation (el)  t = fret for any e, f E TLn(q). The definition extends to real 
linear combinations by (Ae + # f ) t  = )~et + # f t .  In the arch configuration picture, this 
corresponds to the reflection i --~ (2n + 1 - i) of the bridges. In the walk diagram picture, 
this is the reflection i ~ (2n - i). 

Fig. 10. The scalar product (e, f) is obtained by first multiplying e with f t ,  and then identifying the left 
and right ends of the strings (by the dashed lines). Here we have (e, f) = q3. The corresponding meander is 
obtained by superimposition of the upper arch configuration a corresponding to e and lower arch configuration b 
corresponding to f (the transposition of f is crucial to recover b as lower arch configuration). Here the meander 
has c(a, b) = c(e, f) = 3 connected components 

For any two elements e and f E TLn(q), the scalar product is defined as 

(e, f )  = Tr(e f t ) .  (3.12) 

This has a simple interpretation in terms of  meanders. We have indeed 

(e, f )  = qC(e,f) = qC(a,b), (3.13) 

where c(e, f )  = c(a, b) is the number of  connected components of  the meander obtained 
by superimposing the a and b arch configurations corresponding respectively to e and f 
(see Fig. 0 for an example). This permits to identify the meander polynomial as 

Iron(q) = ~-~a,bEA,~ qC(a,b)= Ea,bcWn ((a)l ,(b)l)  J (3.14) 

Note that (e, 1) = Tr(e), hence the semi-meander expression (3.11) corresponds to 
taking (b)l = 1 in the above and summing over a E Wn only. This agrees with the 
abovementioned fact that the semi-meanders are particular meanders, namely with lower 
arch configuration fixed to be a rainbow. Indeed, the unit i E TL~(q) corresponds in 
the arch configuration picture to the rainbow of order n, (rn)l = 1. 

3.4. Gram matrix. The Gram matrix G~(q) of  the basis 1 of  TLn(q) is the cn x Cn 
symmetric matrix with entries equal to the scalar products of  the basis elements, namely 
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[ [~n(q)] a,b = ( (a) l '  (5)1) = qC(a,b) 

For instance, G3(q)reads, in the basis 1 (3.9): 

q3 q2 q2 
q2 q3 q 

G3(q) = q2 q q3 
q q2 q2 
q2 q q 

V a, b E An =- Wn (3.15) 

q2 
q2 
q3 q2 
q2 q3 ) 

(3.16) 

The meander and semi-meander polynomials are easily expressed in terms of the Gram 
matrix. Arranging the elements of basis 1 by growing middle height of the walk diagrams 
(in particular, the unit 1 is the last element), and defining the c,~-dimensional vectors 

g =  (1, 1, 1 , . . . ,  1) ~=  (0 ,0 , . . . , 0 ,  1) (3.17) 

we have 
m~(q) = if- G,~(q)ff, 

(3.18) 
~hn(q) = ~" ~n(q)g, 

where ~ .  ff denotes the ordinary Euclidean scalar product of ~c~. Moreover, we also 
have 

rr~n(q 2) = tr (~n(q)2). (3.19) 

The Gram matrix Gn(q) contains therefore all the information we need about mean- 
ders. The remainder of the paper is devoted to a thorough study of this matrix and of the 
consequences on meanders. 

4. The Basis 2 

The multiplication of elements of the basis 1 involves many reductions, and therefore is 
quite complicated. In this section, we describe another basis for TLn(q), which we refer 
to as basis 2, in which the products of basis elements are trivialized, namely the product 
of any two basis 2 elements is either 0 or equal to another basis element. This second 
basis, described in detail in [11], will be instrumental in writing alternative expressions 
of the meander and semi-meander polynomials. 

4.1. Definition of the basis 2. We need a few preliminary definitions. The Chebishev 
polynomials of the second kind are defined by the initial data Uo(x) = 1 and Ul(x) = x 
and the recursion relation 

Un+l(X) = x Un(X)  -- U n - I ( X )  

or equivalently by 
Z n+l  __ Z - - n - - 1  

U n ( z  -I- 1 )  = z - 2; - 1  

We also introduce the fractions 

On- j (q) 
U n -  Un(q)  

(4.1) 

(4.2) 

(4.3) 

subject to the recursion relation 
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1 1 
- -  - # n .  ( 4 . 4 )  
]~n+l ]Zl 

To describe the basis 2, we use a walk diagram picture analogous to that for basis 
1. Each basis element will be attached to a walk diagram of 2n steps. As in the case of  
basis 1, we start from the definition of  the fundamental element _(n) corresponding to ~ h  ' 
),V(h '~), the lowest walk diagram with middle height gn = h = n - 2p (3.7), namely 

•p(n) h = (#  1)pele3"'" e2p-lEh(e2p+l, e2p+2, ..., en-1) ,  (4.5) 

where the elements Eh are defined recursively by 

E o = E 1  =1  

E h + l ( C i ,  Ci+l ~ ...~ e i + h - 1 ) ~  

= Eh(e i ,  ei+l,... ,  ei+h--2)(1 -- IZhei+h-l)Eh(ei,  ei+l, . . . ,  el+h-2). 

(4.6) 

�9 For instance, we have 

E2(ei)  = 1 - IZlei, 

E3(ei, ei+l) = (1 - # le0(1  - #2el+l)(1 - # l e i )  

= 1 - Iz2(ei + ei+l) + Itl/Z2(eiei+l + ei+lei). 

(4.7) 

Note that Eh is a projector 4 (E~ = Eh) ,  and that the normalization factor in (4.5) ensures 

that ~(h n) is a projector too. 

In a second step, we construct the other basis elements corresponding to walk dia- 
grams with middle height h. The latter are obtained by repeated left and right additions 
of  boxes on the basic diagram W(h n). To define the corresponding basis 2 elements, it 
is sufficient to give the multiplication rule corresponding to a box addition (see Fig. 8). 
The rule reads as follows. I f a  box is added on a minimum (gi+l = g i - l  = gi + 1) of  the 
walk diagram at the vertical of  the point i < n (resp. 2n - i > n), the corresponding 
basis element is multiplied to the left (resp. right) by the quantity 

~ (  e i  - -  /-s (4.8) 

Applying these rules in the case of  TL3(q) ,  we find the following basis 2 elements 

4 This is easily proved by recursion on h,  by simultaneously proving that E 2 = E h  and 

( E h  (e i  , . . . ,  ez+h -- 2)e~+h -- 1)2 = # h  I E h  ( e l , . . . ,  ei+h-- 2 ) e l + h -  1. 
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= ~/-~-~2 (e 2 _ / . t l )p l e  1 
. - - V Pl 

= px/-~~(e2el -- #1el) 

=/Zlel  ~ / ~ 2  (e2 - -  ]A1) 
. - . V # 1  

= ~ V / - ~ ( e l e 2  - -  / A l e l )  

. - V /-~1 V ]~1 

(4.9) 

= m(e2 - ,ul(ele: + e2el) + / ~ e l )  

~ = ~(3) 
3 = E3(el, e2) 

v v 

= 1 - -  # 2 ( e l  + e 2 )  + # l # 2 ( e l e 2  + ezel) 

4.2. Properties of the basis 2. The construction of the basis 2 basic elements ^(nl is ~h 
entirely dictated by the requirement that 

ejEh(ei,ei+l, . . . ,ei§ f o r j = i , i + l , . . . , i + h - 1 .  (4.10) 

These relations were indeed used in [11] as a defining property for the Eh'S. 
The multiplication rule (4.8) ensures that whenever the multiplication by e~ acts on 

a slope of the corresponding walk diagram (i.e., when f i+ l  + g i - 1  - -  2gi -- 0), the result 
vanishes. In other words, 

ei (a)2 = 0 whenever g i + l  + gia--1 - -  2g~ = 0. (4.11) 

These rules are also responsible for the following main property of  the basis 2 
elements. To write it explicitly, we need a more detailed notation for the walk diagrams 
of middle height gn = h, and the associated basis 2 elements. Such a diagram will be 
denoted a = lr, where I (resp. r)  denotes the left (resp. right) half of  the walk diagram, 
with i = 0, 1, ..., n (resp. i = 2n, 2n - 1, ..., n), namely 

l = {(i,gi)} r = {( i ,g2n-0} (4.12) 

for i = 0, 1,2...,  n. Note that I is read from left to right on a and that r is read from right 
to left. Moreover, 

(/r) t = (rl). (4.13) 

Both half-walks start at height go = g2n = 0 and end at height g~ = h. To avoid confusion, 
we will denote the corresponding basis 1,2 elements by (lrh,  (lr)2 respectively. 

The main property satisfied by the basis 2 elements reads, for any elements (a)2, (at)2 
of  the basis 2, a = Ir and a '  = / ' r ' :  

(/r)2 ( / ' r ' )2 = ~r,l, (/r ')2. (4.14) 

On this relation, we learn that all the self-transposed elements (i.e., with (a)2 = (a)t),  
namely those attached to symmetric walk diagrams (i.e., with l = r), are projectors. In 
particular, we recover the fact that qo(h ~) = (l,V(h~))2 is a projector. As we shall see in the 
next section, the relation (4.14) implies also that the basis 2 is orthogonal with respect 
to the scalar product (3.12). 
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5. The Meander Determinant 

5.1. The Gram matrix for basis 2. Thanks to the main property (4.14), the Gram matrix 
Fn(q) of the basis 2 elements takes a particularly simple diagonal form. Its cn x cn 
entries read 

[rn(q)]o,a, = ((a)2,(a')2). (5.1) 

Let us compute the scalar product 

((a)2, (a')2) = Tr((lr)2(l'r')tg) = Tr((Ir)2(r'l')2) = (ir,r' Tr((ll')2) 

= Tr((l'r')t~(lr)2) = Tr((r'l')2(Ir)2) = 3t,t, Tr((rr')2) (5.2) 

= 3a,~, Tr((a)2(a) t) 

by direct application of (4.14) and use of the cyclicity of the trace and of  (4.13). Hence 
the matrix F~(q) is diagonal. Moreover 

Tr((a)2(a) t) = Tr((rr)2) = Tr((ll)2) (5.3) 

for any r,  l, does not depend on the half-path r of final height gn = h. It may be 
evaluated on the left half-path Ph corresponding to the walk diagram ),V(h ~) of (3.7). A 
simple calculation shows that 

Tr((phPh)2) = Tr(~ (n)) = Uh(q), (5.4) 

where U denotes the Chebishev polynomial (4.1). Hence Fn(q) is simply the diagonal 
matrix with the c,~ entries 

INn(q)] a , a  = Uga (q), (5.5) 

where g~ denotes the middle height of  the walk diagram a. 
We conclude that the basis 2 is orthogonal with respect to the scalar product ( , ) .  

5.2. Main result. This remarkable property of the basis 2 will enable us to compute the 
determinant Dn(q) of the Gram matrix Gn(q) for the basis 1, also referred to as meander 
determinant. The result reads 5 

Dn(q) = det (G,~(q)) = I~I Ui(q) an'i 
i=1 

2n 
(5.6) 

where Ui(q) are the Chebishev polynomials (4.1), and we use the convention that (~) = 0 
if j < 0. For instance, the determinant of the matrix ~3(q) (3.16) reads 

Da(q) = Ul(q) 4 U2(q) 4 U3(q) = q5 (q2 _ 1)4 (q2 _ 2). (5.7) 

As a nontrivial check, let us first compute the degree of D,~(q) as a polynomial in q 

5 Ref. [4] presents a recursive algorithm for computing this determinant, which relies on direct manipula- 
tions of lines and columns of ~n.  The main result of [4] is the identification of the zeros of Dn(q). Here we 
also give their multiplicities. 
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deg(Dn(q)) = E ian'i = n - 1 
i=l 

= n c ~ ,  (5 .8 )  

which is in agreement with the definition of the Gram matrix 6n:  the term with highest 
degree in the expansion of the determinant comes from the product of  the diagonal 
elements of  Gn, namely 

H qC(a,a) = H q'~ = qn~. (5.9) 
aEW~, aEW,., 

as all the meanders with identical top and bottom arch configurations have the maximal 
number n of  connected components. 

5.3. The zeros of  the meander determinant and their multiplicities. Before going into the 
proof of  the formula (5.6), let us describe a few consequences of  this result. The zeros 
zk,z of the polynomial Dn(q) are those of  the Uk(q), for k = 1, ..., n, namely, using (4.2) 

l 1 < I < k < n (5.10) zk,~ = 2 cos 7r k + 1 

hence we may rewrite 

n 
l< l<k<n 

This yields the multiplicity d,~(zk,1) of  each zero Zk,l, when (k + 1) and I are coprime 
integers, and 1 < (k + 1)/2 (Zk,k+l-t = --Zk,z has the same multiplicity as zk,z) 

[(n+l)/(k+l)] 

d,~(zk,z) = E an,m(k+l)-I (5.12) 
m=l 

For k = 1, l = 1 this yields the multiplicity of the zero q = 0, 

[(n+l)/2] ( 2 : )  ( 2 n )  
- = dn(O) = an,2m--1 = n -  1 cn. (5.13) 

m=l 

The fact that the zero q = 0 of  dn(q) has multiplicity cn enables us to write, in the limit 
q - + 0 ,  

qC, , Dn(q) ~ Dn(O), (5.14) 

where D~(0) 5/0 is the determinant of  the matrix G ' (0 )  with entries 

' 0 { 1  i f c ( a , b ) = l  
[~n( )]a,b---- 0 otherwise 

( 5 . 1 5 )  

hence G~(0) is the one-connected component piece of  the Gram matrix Gn(q). For 
instance, 0 01 ) 

0 1 0 
G~(0)= 1 0 0 D ~ ( 0 ) = - 2 .  (5.16) 

0 0 0 
1 1 0 
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Noting that in the limit q ~ 0, 

U2i(q) --~ ( - 1 )  i U 2 i - l ( q ) / q  ~ i ( - 1 )  i -1 ,  (5.17) 

the limit q ~ 0 of  (5.6) yields 

[~/2] l(n+l)/2] 
D~(0) = I~(--l)ian'2~ H [i(--1)i-1] a'~':~-I 

i=l  i=l  

[(n+1)/2] 

= ( -1)~  1-I i~'~'-~" 
i=1 

(5.18) 

Therefore 

loglD'(0)l= ~ n - 2 i  n - 2 i - 1  + n - 2 i - 2  log/ 
i=1 

4 
2 n  2 Cn , 

(5.19) 

where the asymptotic estimate results from a saddle-point approximation to the sum. If  
I 0 most of  the eigenvalues ,k of  the matrix Gn( ) were of  the same order 

t 1/c,~ ~ (Dn(0)) ~ e C ~ / 2  (5.20) 

we would have a meander polynomial, expressed through (3.19), of  the order 

m~(q2) ~ q2 ~--~(,k)2 ~ q 2 e C ~ C n  (5.21) 

which clearly is incompatible with the numerical estimate 

/~2n  
m n ( q 2 ) / q  2 ,-, M n  ~ (5.22) n7/2 q---)o 

We conclude that the eigenvalues A of  G~(0) do not have a localized distribution when n 
becomes large. This is also the case when q = 1. Indeed, the matrix ~,~(q = 1) is simply 
the cn • cn matrix with all entries equal to 1. It has the eigenvalue 0, with degeneracy 
(cn - 1), and the nondegenerate eigenvalue c~. This permits to recover the sum rules 
(2.6)-(2.7) easily. In this case, the distribution of eigenvalues of  the Gram matrix is 
certainly not localized when n --- oc, as the only eigenvalue which matters diverges 
while all the other eigenvalues remain 0. 

More generally, the expression (5.12) can be resummed to yield 

k 
1 7 r m  . 2  , 71"m ~2n 

Cn - d,~(zk, t)  = 2(k + 1) ~ (2 sin k ~ i - ' /  {2 cos ~-~--i- ) 
ra=l  

(5.23) 

(see Appendix A for a detailed proof). The result is independent of  l, under the require- 
ment that 1 and k be coprime. For instance, for k = 2, 3, 4, 5 and n, we find 
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d ~ ( •  = cn - 1 

d~(•  = c~ - 2 ~-1,  

2 ) = c , , - - ~  + 

3 n-1 +1  
d~(+v/3)  = cn - - ,  

2 
7rl 

d,~(2 cos ) = 1 for 1 and (n + l) coprime. 
n + l  

(5.24) 

The r.h.s, of  (5.23) appears to be an integer in the following interpretation. Let ,Ak 
be the k • k symmetric matrix, with entries 

[ A k ] , , 8  = 6s,,§ + 6 . . . .  1 (5 .25)  

for r, s = 1 ,2 , . . . ,k .  This matrix diagonalizes in the orthonormal basis {v, , r = 
1, 2, ..., k}, where 

V/ -k~--f 7r?~8 [vr]8 = 2 sin f~+]  (5.26) 

are the entries of  the eigenvector vr of  ,Ak, for the eigenvalue fl~ = 2 cos 7rr/(k  + 1). 
Hence, the r.h.s, of (5.23) is nothing but 

k 

Z [vm] l( m)k 2,  1 = , ,1  (5.27) 
m=l 

This expression is clearly an integer, as a matrix element of  the (2n) th power of  an 
integral matrix. Moreover, this permits to interpret the number cn - dn(Zk,Z) as counting 
the number of  distinct closed walks of  (2n) steps on a segment  of size k, which start and 
end up at a fixed end of the segment. Indeed, .Ak is the adjacency matrix of a chain of  

k vertices, labeled 1,2, ..., k. The quantity [(.Ak)2n] 1,1 counts the number of distinct 

paths of length (2n) on the chain which start and end up at the vertex 1. In the language 
of walk diagrams, this is the number of  walk diagrams w c W n  whose heights do not 
exceed (k - 1). Denoting by 

W n , j  = {a E W n  I ta  <- J for i = 0, 1,..., 2n}, (5.28) 

Eq. (5.27) may be rephrased into 

Ca -- dn ( zk,t ) = card(W,~,k-1). (5.29) 

This interpretation permits to write a very simple generating function for the multi- 
plicities dn(Zk,l). Indeed, for k >_ 1, let 

Gk(X)-'~ ~ X n (C n - -dn (zk ,1 )  ) . (5 .30)  

n=O 

When k = l, we set Gl(X) = l, deciding by convention that d0(0) = 0, whereas co = 1. 
When k = 2, we are simply counting the only path of  length 2n, going back and forth 
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�9 - . . . . . . . .  �9 . . . . . . . .  �9 �9 
�9 0 . . . . . . . .  �9 �9 
�9 . . . . . . . .  -O . . . . . . . . .  �9 �9 

1 2 3 4 k + l  

A 2 A k 

A k+l 

Fig.  11. Any  wa lk  on .A~:+I may  be viewed as the prolongat ion  of  a walk on ..42, by one or  several walks  on 
.Ak, at each visit o f  the vertex 2. Here we have represented a walk  on ..42, of  length  6, corresponding to the te rm 
x 3 in G2(x) .  Each  of  its three visits of  the vertex 2 m a y  be arbitrari ly p ro longa ted  by  walks  on ~4k (vertices 

2, 3 . . . . .  k + 1 on the figure), to generate all the walks  on .A/~+I, resulting in the substi tut ion x 3 --~ ( x G k ( x ) )  
3 

in the cor respond ing  generat ing function. 

between the origin and the other vertex of  the chain. Each such come and go picks a 
factor of  x, resulting in the generating function 

1 
G2(x) = 1 + x + x 2 + . . . .  (5.31) 

1 - x  

in agreement with the first line of  (5.24). To compute Gk+l(X), knowing Gk(x),  we may 
view all the walks on r as an arbitrary insertion of  walks on .Ak at each visit of  the 
vertex 2 by arbitrary walks on .A2, as indicated in Fig. 11. This leads to the following 
composition of  generating functions: 

1 1 
Gk+l(X) = G2(xGk(x))  - 1 - xGk(x )  1 -- t - x , (5.32) 

" " ' l - x  

where the fraction is iterated k times. Together with the initial condition Gl(x)  = 1, 
eq.(5.32) completely determines Gk(x)  for all k. In fact, we find the following simple 
expression in terms of  the Chebishev polynomials (4.2) and the function #k(q) (4.3): 

U l ( 1 / v ~ ) U k _ f f l / v ' ~ )  1 1 
G k ( x ) =  U k ( l / v ~ )  = v ~#k(~)'~/x" 

(5.33) 

where we have identified the recursion relation (5.32) with (4.4) upon a mutliplicative 
redefinition of  # (which also gives Gt(x)  = 1) and the change of  variable q = 1/v '~ .  
Note that the expression (5.33) is valid as a series expansion in powers of  x for small 
enough x. This in turn translates into the following expression for the generating function 
for the multiplicities d,~(zk,z): 

where 

n=O 

1 - v/1 - 4x 
C ( x )  = ~ x n c n - 2x 

n=O 

(5.34) 

(5.35) 
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denotes the generating function of the Catalan numbers (2.5). The results (5.24) may be 
easily recovered from the expression (5.34), for k = 2, 3, 4, 5. Note that the series Fk(x) 
has the valuation k, namely Fk(x) ~ x k when x ~ 0, as dn(zk,D = 0, for n < k - 1, 
and dk(zk,t) = 1 for n = k. Hence limk__+~ Fk(x) = 0 uniformly for small enough x, 
which means that Gk(x) converges to C(x) uniformly when k ---+ cxD: this establishes a 
link between the Chebishev polynomials and the Catalan numbers. 

Remarkably, the formula (5.23), together with the above interpretation (5.27), sug- 
gest a relation between the multiplicities dn(zk,t) of the zeros of D,~(q) and the rank 
r~(zk,1) = dim Im Gn(zk,z) of the matrix ~n(q = Zk,l), namely that 

d~(zk,t) + rn(zk,z) = c~ = dim(TLn(q)) (5.36) 

or in other words that 
dim Ker G~(Zk,l) = d,~(zk,l). (5.37) 

Indeed, the matrix ~ ( 0 )  = 0 has rank 0, whereas G,~(1) has rank 1 as all its lines 
are identical and non-vanishing. We also checked that 6n (v~)  has rank 2 n-1 for n = 
1, 2, 3,4, 5. Equations. (5.27) and (5.36) would imply in general that the rank of the 
matrix Gn(zk,t) (for l and (k + 1) coprime) is equal to the number of walk diagrams 
w E Wn, whose heights are less or equal to (k - 1), i.e., card(W,~,k-l). Assuming that 
(5.36) is true, it is tempting to conjecture that the lines of G~(zk,z) corresponding to 
the diagrams a E Wn,k-1 form a collection of r,~(zk,l) independent vectors, of which 
any other line of G~(Zk,t) is a linear combination. In particular, the last line of G~(zk,l), 
corresponding to the diagram W (n), should be a linear combination (with coefficients 
A~) of the lines of Gn(Zk,t) pertaining to the diagrams a E W,~,k-l. This would result 
in a relation 

~ xcO/V(n n) b) n zk,z) ' = E ~a (ZkJ) c(a'b)" (5.38) 
a E W n , k - 1  

Summing this over b E W,~ would give a new expression for the semi-meander 
polynomial at q = Zkj, as a linear combination of the polynomials corresponding to the 
diagrams a E Wn,k-b namely 

~n(zk,t)  = E )~ ~(a ,  Zk,l), (5.39) 
a E W n , k - I  

where 
~(a ,q )  = E q~(a,b). 

b E W n  

This conjecture is illustrated in appendix B, for q = ~ (k = 3, l = 1). 

(5.40) 

5.4. Proof of the main result. We now turn to the proof of the formula (5.6) expressing 
the meander determinant. Since the Gram matrix (5.5) is trivial in basis 2, we simply 
have to compute the determinant of the matrix of the change of basis 1 to 2. This is done 
by first showing that this matrix can be put in an upper triangular form and computing 
the product of its diagonal entries. The result, combined with (5.5), is identified with the 
desired expression (5.6) through a subtle mapping of walk diagrams. 
Preliminaries. Let Pn(q) denote the matrix of the change of basis 1 to 2, made of the 
column vectors of the basis 2 expressed in the basis 1. It satisfies 

(b)2= E [P~(q)]a,b (ah" (5.41) 
a E W n  
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Let us show that the walk diagrams indexing the vectors of both bases can be ordered 
in such a way that the matrix 7~n(q) is upper triangular. 

The basic element ~(h h) is, according to (4.5)-(4.6), a linear combination of the basis 
1 elements of TLh(q) of the form 

~(h h) = ~ "~a (a)l(el,.-., Ch-1), (5.42) 
aEWh 

where the sum extends over all the diagrams of 2h steps, which are all included in the 
walk W(h h). By inclusion of diagrams a, b E W,~, we mean 

a C b iff l~ < I b k/i = 0, 1,..., 2n. (5.43) 

Similarly, the basic element ~(h '~ is equal to the linear combination 

•fl(n) h = ~ "~a(IZl)P e l e 3 ' ' -  e2p-1 (a)l(e2p+l, ..., en-1)  (5.44) 
aEWh 

which corresponds only to walk diagrams of 2n steps, included in W(h n). 
The other basis 2 elements with middle height h are obtained by repeated box 

additions on )/V(h n) (see Fig. 8), with the corresponding multiplication rule (4.8). It is 
then easy to prove recursively that any basis 2 element with middle height h, of the form 
(b)2, is a linear combination of basis 1 elements whose walk diagrams are included in b, 
namely 

[T'~(q)] a,b : /0  =* a C b. (5.45) 

Arranging the walk diagrams by growing middle height, we see that ~(h n) is expressed 
only in terms of lower basis 1 elements: this gives only upper triangular entries in the 
matrix T'n(q). More generally, the walk diagrams can be ordered for each fixed middle 
height h is such a way that all the diagrams included in a come before a: it is sufficient, 
for instance, to order the diagrams by growing number of boxes added to l/Y(h n). With 
such an ordering of the bases 1 and 2, the matrix T'n(q) is upper triangular (with nonzero 
terms on the diagonal). For instance, with the ordering of (3.9) and (4.9), we get the 
upper triangular matrix 

0 --/Zl/A 2 ~l/A2 
~3(q) = 0 ~ --/Al~ 2 ]Zl~ 2 

0 0 #2 -# 2  
0 0 0 1 

(5.46) 

Let us decompose the upper triangular matrix 7~n(q) into the product 

3~ = Q,~(q).N'n(q), (5.47) 

where N'n(q) is a diagonal normalization matrix and Q,~(q) an upper triangular matrix, 
with diagonal entries equal to 1. This separates the redefinition of basis elements (which 
does not affect the Gram determinant), through the matrix Qn(q), from the change of 
overall normalization of the basis vectors (which affects the Gram determinant), through 
N',~(q). For n = 3, these matrices read 
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.hf3 (q) = 

Q3(q) = 

The change of basis 1 --~ 2 

Fn(q) = 

Pl 0 0 0 0 ~  
o o o 
o o o , 
0 0 0 #2 
0 0 0 0 

0 1 0 - ~ 1  ~1~2 ) 0 0 1 - ~ 1  ~1~2 
0 0 0 1 - ~ 2  
0 0 0 0 1 

translates into the matrix identity 

Pn(q) t 6n(q) Pn(q) 

�9 N'n(q) Qn(q) t 6n(q) Qn(q).hfn(q) 

(5.48) 

(5.49) 

hence, as det Q~(q) = 1, we have the relation between determinants 

det[Fn(q)] = det[N'~(q)] 2 D~(q) (5.5o) 

with, according to ( 5 . 5 ) ,  

det[Fn(q)] = H Ulg(q) 
aCWn 
[n/2] 

b 2 
= H [Un-2P(q)] ( n,~ 2,) 

(5.51) 

p--O 

where bn,n-Zp is the number of  half-walks of n steps with final height h = n - 2p, and 
constrained by gi _> 0, for i = 0, 1, ..., n. The walk diagrams of  middle height h = n -  2p 
are simply obtained by taking arbitrary left and right halves of  final height h, hence their 
number is (bn,,~_Zp) e. 

The number bn,n-2p is obtained by subtracting from (p),  the total number of  un- 
constrained walks with go = 0 and g~ = h, the number of  those which touch the line 
g = - 1 ,  namely (p~_ 1)" Indeed, by a simple reflection (mirror image) with respect to the 
line g = - 1 of  the portion of walk between its origin and the first encounter with g = - 1, 
we get a one-to-one mapping with unconstrained walks such that g~ = - 2  and g~ = h; 
the number of  such walks is (pnl) .  Hence we have 

The normalization Ar~(q). To get D~(q) from (5.50), we are left with the calculation of 
det[N'n(q)]. The diagonal entries of  N'n(q) are computed as follows. For the diagram 
W(h ~/, the entry reduces to the global normalization of the vector ~h n), namely 

[.N'n (q)] Wr),W 2, = (/Zl) p. (5.53) 

The entries corresponding to other walk diagrams of middle height h are simply 
the product of  this factor by the product over all the box additions to l,V(h ~) of  the 
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Fig. 12. The left and right strip decomposition of a diagram of middle height h. The strip lengths are given 
by the numbers ~a corresponding to the maxima i of a, i ~ n 

normalization factors V/#~+2/#e~+l which enter the multiplication rule (4.8). In other 
words 

[J~fn(q)]aa = (#1)P  H ~ / + 2  . ( 5 . 5 4 )  

' box additions i V #ei+l  

To make this formula more explicit, let us arrange the box additions needed to generate 
a from l/Y~h n) into p left and p right strips of consecutive boxes, oriented respectively 
to the right and left as indicated on Fig. 12. This is called the strip decomposition of 
a. Each strip ends at a local maximum of a, namely at the vertical of a point i with 
s  = g i - - 1  = g i  - -  1. The length of the corresponding strip is defined to be gi (there are 
actually gi - 1 boxes in a strip of length gi; a strip with no box has indeed gi = 1). The 
expression (5.54) becomes 

['/~fn(q)]a,a = ( # I ) P  H V ~11 ( 5 . 5 5 )  
strips 

where g denotes the length of each strip. As there are p left and p fight strips, the factors 
#t cancel out, and we are left with 

[J~fn(q)]a,a = H V ~  
strips 

(5.56) 

Hence the prefactor in (5.50) reads 

n 

det [.A/'~(q)]2 = H H /ze = H(#~)  s~,', (5.57) 
aCWn strips of a i=l 

where sn,i denotes the total number of strips of length i in the strip decompositions of 
all the walk diagrams of W~, or equivalently the number of distinct diagrams of W,~, 
with a marked top of strip of length i. 

Using the relation Ui = 1/(#1#2... #~), we can rewrite det[Fn(q)] (5.51) as 

n 

det[F~(q)] = H(#~)  -h~,~, (5.58) 
i=l 

where 
hn,i = E (b~,k)2 (5.59) 

z_<k_<n k=n mod 2 
is the total number of walk diagrams of 2n steps with middle height larger or equal to 
i. We finally get 

n 

Dn(q) = H ( P i )  -s'~'~-hn'~. (5.60) 
i=l 
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Let us now prove that 
Sn# + hn,i = b2n,2i, (5.61) 

namely that the total number of  walk diagrams of 2n steps with final height 2i is equal 
to the total number of  strips of  length i plus the total number of walk diagrams in Wn 
with middle height larger or equal to i. To prove this, we establish a map between the 
walk diagrams of length 2n and final height 2i and (i) the walk diagrams of W,~ with a 
marked top of strip of  height i or (ii) the diagrams of W,~ with middle height gn _ i. 
The mapping of  walk diagrams�9 Starting from a given walk diagram w of 2n steps f rom 
g0 = 0 to g2n = 2i, with gk > O, for all k, the construction proceeds in three steps. 

b 
2i 

0 
0 j 2n 0 2n-j  2~ 

Step 1 S tep  2 

Fig. 13. Reflection-translation of the diagram w. The rightmost crossing point between w and the line of  
constant height g = i, at an ascending slope, is marked by a black dot. The dot separates w into a left piece a 
and a right piece b. The reflection-translation consists in a reflection of a --+ a t, followed by a translation of  
a t in order to glue the two walks b and a t. The gluing point is indicated by a black dot on the second diagram. 

Step 1. Let j be the largest point 0 < j < 2n of height gj = i on w, and such that 
g j - i  = gj - 1 = gj+l - 2. As shown on Fig. 13, this separates the walk diagram w into a 
left piece a, with j steps and final height i (namely g~ = 0, g~ = i and g~ _> 0 for all k), 
and a right piece b, with (2n - j )  steps, initial height i and final height 2i. Note that the 
heights of  b remain above the g = i line, by definition of j ,  hence b can be considered as 
a walk diagram of (2n - j )  steps, with extremal heights gb = 0, g2b,~_j = i, and subject 

to the constraint g~ _> 0, for all k. 
Step 2. Let us perform the following reflection-translation on w, shown in Fig. 13: reflect 
the a diagram (a --* a t) and translate it so that its height i (left) end is glued to the height 
i (right) end of b. Note that the resulting diagram w t is an element of  Wn, as all its 
heights lie above the g = 0 line�9 Let us mark this gluing point on the resulting diagram 
w'  c Wn. This procedure maps the diagram w onto a marked diagram w ~ E Wn.  
Step 3. Only two possibilities may occur for the marked point, denoted by j in the 

w t w p following: it is either (1) a maximum of w'  (gj+l = gj-1 = g~' - 1) or (2) a descending 
w' = g ~ / + l  = w' slope ( s  gj+l + 2) of  w '. Indeed, the point ( j  + 1) on w ~ has the height 

w / a ~__ 
gj+l  = t j - - 1  g3' -- 1. 

�9 w t 

Case 1. When j is a maximum of w ~, the marked point (3, gj ) corresponds to the top 
end of a strip in the strip decomposition of w ~ unless j = n. Therefore we have the two 
subcases 

(1) (a): If  the marked point is a maximum of w ~, not in the middle of w ~ (i.e. j ~ n), w ~ 
is a walk diagram of Wn, with a marked (right or left) top of strip at height i. 

(1) (b): If  j = n, the diagram w ~ has a middle height i (hence enters the category of  
walk diagrams of Wn with middle height _> i). 

�9 / 
w Case 2. When the walk has a descending slope at j ,  the marked point (j, gj ) corresponds 

to the top end of a (left) strip in  the strip decomposition of w ~ only i f j  < n. Therefore 
we have the three subcases 
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n j '  j n j 

(c~) ([~) 

Fig. 14. The cases (2)(b)(c~) and (/3). We indicate the migration of the marked dot in the (c~) case. In the (/3) 
case, the diagram w has a middle height _> i. 

(2) (a): I f  the marked point has j < n, w '  is a diagram with marked top of  (left) strip. 

(2) (b): If  j > n, we move the marked point to the left along a line of  fixed height 
g = g~', until we reach a top of  (right) strip (see Fig. 14 (a)). Of course, one may 
reach the middle of  the diagram before crossing any top o f  strip (see Fig. 14 (/3)). 
This leads to two more possibilities 

(2) (b)(a): The line of  constant height g = g~o' crosses an ascending slope of w'  at j '  

( g j , - 1  = g j ,  - 1 = gj ,+l  - 2), such that n < j '  < j .  Taking for j l  the largest such 
integer, we move the mark from j to f ,  and end up with a diagram w '  E Wn with 
a marked top of (right) strip. 

(2) (b)(/3): The line of  constant height g = g~o' does not cross any ascending slope of  w '  
between n and j .  The diagram w ~ E Wn has therefore a middle height _> i. More 
precisely, we have either possibility: 

(2) (b)(/3)(i): The middle height is > i. 

(2) (b)(/3)(ii): The middle height is = i. 

(2) (c): The marked point is at j = n. The diagram w ~ E Wn has middle height i (hence 
enters the category of  walk diagrams of  Wn with middle height _> i). 

This exhausts all the diagrams with marked top of strips, according to whether 

- the top is a maximum (1)(a) 
- the top is on a left descending slope (2)(a) 
- the top is on a right ascending slope (2)(b)(a) 

and all the diagrams with middle height _> i, according to whether 

- the middle height is > i (2)(b)(/3) 
- the middle height is = i and is a maximum (1)(b) 
- the middle height is = i and is either an ascending slope or a minimum (2)(b)(/3)(ii) 
- the middle height is = i and is a descending slope (2)(c). 

T h e  i n v e r s e  m a p .  Conversely, any walk diagram w ~ E Wn with a marked top of strip at 
height i can be mapped onto a walk w of  2n steps with g~ = 0, g~',~ = 2i and g~o > 0 for 

all k as follows. The marked top of  strip (j, g~o' = i) can be either (i) a maximum, (ii) 
a descending slope in the left half of  w ~ (j < n) or (iii) an ascending slope in the right 
part of  w '  (j > n). 

In the cases (i) and (ii), the marked point separates the walk w ~ into a left piece a 
(with j steps and g~ = 0, g~ = i, g~ > 0 for all k), and a right piece b (with (2n - j )  

steps and go b = i, gzbn_j = 0, gb _> 0 for all k). The diagram w is built by the inverse 
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of the reflection-translation of Fig. 13, namely by first reflecting b --~ b t, and then by 
translating it and gluing its right end to the left end of a. After this transformation, the 
gluing point, now at position (2n - j )  has an ascending slope on w at height i, and is 
the largest such point. 

In the case (iii), the marked point is first moved to the right until the first crossing of 
the line of constant height g = i with a descending slope is reached: such a point always 
exists, because the height g2w~ = 0 must be eventually reached. One then applies the 
above inverse reflection-translation to this new marked diagram. This produces again a 
diagram w E Wn where the gluing point is the largest point on w with ascending slope 
and height i. 

Finally, any walk diagram w ~ E Wn with middle height > i may first be marked as 
follows. Mark the first crossing j > n between the line of constant height g = i and the 
walk w' at a descending slope. Then apply the above inverse reflection-translation. 

In all cases, we have associated a walk diagram w to each diagram w ~ with either 
a marked end of strip of height i or a middle height ___ i. This concludes the proof of 
(5.61). 
Conclusion. Equation (5.60) implies that 

/ z  

D~(q) = II(#i) -b2n,2~ (5.62) 
i=l 

or, reexpressed in terms of Ui through #i = Ui-1/U~, 

Dn(q) = ~ I  [Ui(q)] (b2~'z~-bz~'2i+2)' (5.63) 
i=1 

which takes the desired form (5.6) with 

an,i = b2n,2i -- b2n,2i+2 

( n - i ) _ 2 ( n - i - 1 )  ( n - - i - 2 ) .  (5.64) 

= 2n 2n + 2n 

6. Effective Meander Theory 

In this section, we study various properties of the matrix 79n(q) and its inverse, in rela- 
tion with the meander and semi-meander polynomials through (3.18). Indeed, rewriting 
(5.49) as 

~n(q) = (Pn(q)t) -1 F n ( q )  (79n(q)) -1 (6.1) 

the relations (3.18) become 

?~n(q) = i f "  G n ( q ) f f  = ( ~ n ( q ) - l f f )  " Fn(q)  79n(q)-1ff, 
(6.2) 

ran(q) = i f -Gn(q)u = ('Pn(q) -1~) �9 Fn(q) 79~(q) -1~, 

where the vectors g and g are defined in (3.17). 

6.1. The matrix 79n(q)-k By definition, the matrix 79n(q) -1 describes the change of 
basis 2 --* 1, through 
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(a)l = E [Pn(q)-l]b,~ (b)2. (6.3) 
bC W~ 

Multiplying both sides to the right by (c) t, for some c E W,~, and taking the trace, we 
get 

Tr((a)l(C)~) = E [Vn(q)-l]b,a Tr((b)2(c)~) 
beW~ , (6.4) 

= [ P ~ ( q ) - ' ] ~ , T r ( ( c ) 2 ( c )  t )  

where we have used the orthogonality of the basis 2 elements. According to (5.3) (5.4), 
we have Tr((c)2(c)~) = Ue~(q), where g~ is the middle height of  the diagram c, and we 
finally get 

[79n(q)_l]ca Tr ((a)l(c)~) 1 - - Ut~(q)Tr((ah(c)t) . .  (6.5) 
, Tr ((c)2(c) t ) 

6.2. Properties ofTen(q) - l .  The formula (6.5) can be used to derive many properties of  
the matrix Pn(q)  -1. Let us take a = W~ n) (i.e., (ah = f~'~) = 1) in (6.5). This yields 

Tr((c)~) (6.6) 
[Pn(q)- l ]c 'W~n'-  Ugh(q) 

Writing c t = Ir as a juxtaposition of a left and right half-walk, and using (4.14), we 
compute 

Tr(lr)2 = Tr (( lr)2(rr)2)  = Tr((rr)2(Ir)2)  = 5z,r Tr(rr)2. (6.7) 

Hence the trace of (ct)2 vanishes, unless c t is a symmetric diagram, i.e. with l = r,  in 
which case the trace takes the value (5.3), (5.4) 

Tr(ct)2 = Tr(rr)2 = Tr(pe~ptg)2 = Ue~(q). (6.8) 

Putting (6.6) and (6.8) together, we simply find that 

1 if c is  symmetric 
['Pn(q)- 1 ] c,W~ ~) = 0 otherwise (6.9) 

~c,symmetric 

With the definition (3.17) of the vector ~7, this translates into 

where the vector g has the entries 

79n(q) -1 ff = g, (6.10) 

8a = ~a,symmetric. (6.11) 

Comparing with (3.17), this permits to rewrite the semi-meander polynomial as 

~ n ( q )  = g" Fn(q)[Pn(q)] - l f f  

= E [Pn(q)-l]a,b Ue•(q)' (6.12) 
a ,bEWn 

a symmetric 

whereas the meander polynomial reads 
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ran(q) = 7 9 n ( q ) - 1 U  " I 'n(q)~n(q)- lu 

a E W n  bEW~ 

(6.13) 

Another interesting particular case of  formula (6.5) is obtained by taking c = W ~  ), 

where e,~ is the smallest possible middle height in W,~, namely e~ = (1 - ( - 1 ) ' * ) / 2  = 
5~,odd. The heights of  a read g2i = 0 and g2i-1 = 1, for all i. This diagram is the smallest 
of  all the diagrams in W,~, in the sense that it is included in all of  them. It corresponds 
to the first entry of  the bases 1 and 2, hence to the vector 

v7 = ( 1 , 0 , 0 , - . .  ,0). (6.14) 

The corresponding basis 1 and 2 elements read respectively f ~ )  and ,_,,~,(n). By the defi- 
nitions (4.5) and (3.6) taken at h = e~ (in which case E,~ = Eo or Ea, hence E,~ = 1), 
we find the following relation between them: 

D n)  ---- (#l)[n/Zlf~:), (6.15) 

or equivalently 

(]/~ ( n ) ]  = ( P l ) [ n / 2 ]  (~/~(n)~ (6.16) 
en /2  \ en ] l  ~ 

where we have identified en = n - 2p, hence p = [n/2].  For the choice c = W ~  ), (6.5) 
reads 

['Pn(q)-l]w•:)a = Tr((a) t (W~: ))2) 
, Urn(q) 

= (]d,1) [n /2]  Tr ( (ah (W~:  ))1) 
U,,(q) (6.17) 

= (#,)[(n+l)/2] [G,ffq)] a,W~:, 

= (i, Zl)[(n+l)/2]-c(a,~'V~2 )) 

In the second line, we have used the relation (6.16), whereas in the third line, we have 
used the fact that U~n(q) = q~" = ( /q)-~"  and that en + In /2]  = [(n + 1)/2]. The last 
expression uses the definition of  the Gram matrix (3.15): the quantity e(a, W~] )) is, in the 
arch configuration picture, the number of  connected components of  the meander obtained 
by superimposing the upper configuration a and the lower configuration b - W~: ), made 
of  a sequence of  n consecutive single arches, linking the bridges (2i - 1) and (2i), for 
i = 1,2, ..., n. The (meander) polynomial corresponding to the closings of  W ~  ) was 

computed in [6] and reads 6 

in (q )=v7  ~,~(q)~7= ~ c(aw~') ~ l ( k ) ( k - 1 )  
" q ' = n n n qk 

a E W n  k=l 

(6.18) 

6 In ref.[6], it has been shown that the number of closings of ~4),(n~ ) with k connected components is identical 
to that of arch configurations of order n with k interior arches (i.e.. arches linking two neighboring bridges 
i and (i + 1)). In turn, this is nothing but the number of walk diagrams in W,~ with exactly k maxima (the 
notion of interior arch in an arch configuration is equivalent to that of a maximum in the corresponding walk 
diagram). This number is (kn) (k~ 1)/n. 
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with the vectors g and C defined respectively in (3.17) and (6.14). Note that the polyno- 
mial in(q) is reciprocal, i.e. qni~(1/q) = i,~(q). Hence, from (6.17), we get a sum rule 
for the first line of the matrix ~~ 

E [ • n ( q ) - l ]  lA1(n) a = (~tl)[(n+l)/2] i n ( L )  

~Ew. " ~ '  /~1 (6.19) 

= in(#l)/(l~)[n/2] 

by using the reciprocality of in(q). 

6.3. Recursion relation for the matrix Q~(q)-l.  The matrix Qn(q) is constructed in 
a similar way as P,~(q), as the matrix of a redefinition of basis 1, except that all the 
normalization factors are dropped, namely the prefactor (#1) p in the definition (4.5) of 
p(,0 is dropped, as well as the prefactor g//Zei+2/].tgi+l in the multiplication rule (4.8). h 

This results in a diagonal of l ' s  for Q,~(q). Qn(q) is the matrix of change of basis 1 to 
the unnormalized basis 2 (denoted by basis U), with elements (a)2, = (a)2/.Afa,a. 

Let us now derive recursion relations for constructing the inverse matrix Qn(q) -1. 
This matrix sends the unnormalized basis 2 ~ into the basis 1, according to the identity 

(b)l = E [Qn(q)-l]a,b (a)2'" (6.20) 
aE W~ 

Recall that the basis 1 elements are constructed by box additions (Fig. 8) on the basic 
elements f(h n), each box addition corresponding to the multiplication by some ei. 

+ + 

(i) (ii) (iii) 
Fig. 15. The three possibilities for the multiplication ei(a)2,, represented as a box addition at the vertical of 
the point i on a diagram a E Wn.  The latter may be above (i) a slope of a, (ii) a maximum of a or (iii) a 
minimum of a. 

Let us study the consequences of a left box addition on b, at a minimum i < n of b. 
Let us denote by b + o the resulting diagram. Multiplying accordingly (6.20) to the left 
by e~, we find a recursion relation for the matrix elements of Qn(q) - t .  Indeed 

(b+O)l-- Z [Qo(q)-t]o,b+o(a)2' 
aew.  (6.21) 

=ei(b)l  = E [Qn(q)-l]a,b ei(a)2' 
a E W,~ 

gives a relation between [Qn(q)-'],,b+o and elements of the f o r m  [~n(q)-l]a,,b by 

identifying the coefficients of the basis 2' elements. Three situations may occur for 
ei(a)2,, as depicted in Fig. 15. 
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a = 2g~). Due to the (i) The box addition is performed on a slope of  a (gi~+l + gi-1 
vanishing property (4.11), we find that the resulting element vanishes, namely 

[ e~ (a)2, = 0] (6.22) 

= a ~ - 1). For (ii) The box addition is performed on a maximum of a (gi~+l gi-a = s 
(a)2,, this maximum is itself the result of an (unnormalized) box addition with the 
roles of  basis 2, hence a factor (ei - #k), where k = g~ - 1, according to (4.8). The 
multiplication by ei results in 

ei(ei - #k)  ( 1  _ i.zk)e i = = -  x ( e i - - # k ) +  #k X 1, (6.23) 
1 

#1 #k+l #k+l 

where we have used the recursion relation (4.4) for the # 's .  The first term in (6.23) 
restores the box of  (a)2,, while in the second term the box is removed, yielding 
(a - <>)2,, where a - o denotes the walk diagram a with the box below the maximum 
removed. Hence 

1 
ei(a)2, = ((a)2, + I~k(a -- <>)2') (6.24) 

#k+l 

with k = g~ - 1. 

(iii) The box addition is performed on a minimum of a (g~+l = gi~-I = g~ + 1). We are 
left with the multiplication of  (a):, by 

_ a where k - gi + 1. Hence 

ei = (ei -- pk)  + #k  • 1, (6.25) 

ei(a)2, = (a + <>)2' -I- ]Ak(a)2, f (6.26) 

Substituting (6.22), (6.24),(6.26), in (6.21), we get 

[Qn(q)-lla,b+(>( a )2 '=  ~ [Qn(q)- l]a,b  
aCW~ aCW~ {1 

X - - ~ a  max(i) ((a)2, + # q - l ( a  - 0)2,), (6.27) 
#e~ ' 

+ 6a,min(i) ( (a  + <>)2' + ]zg~+l(a)2') 
) 

where we use the notation 

{o - o - o  i f  ~i~+l -- ~i--I -- ~i -- 1 
da'max(i) = otherwise ' 

(1  - o - o  if  gia+l -- gi--1 -- gi + 1 
~a,min(i) = otherwise 

The identification of  coefficients of  (a)2, yields the relation 

(6.28) 

[Q'(q)-q.,b+o (Ja,rnax(,)(~-~ [~'a(q)-l]a,b + [~n(q)-l]a_c,,b) 
+ ~ rQ " - 1 7  , 

+(~a,min(i)(fl'g:+l [~n(q)- l]a ,b  #~+2 k n(q) Ja+<>,b) 

(6.29) 
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where we have used 
(~a,max(i) = (~a--o,min(i) ~ 

5a,min(i) = (~a+o,max(i), . (6.30) 
ga+~' = g~ + 2 Z 

Together with the initial condition 

[ Qn(q) - l ]  a w("' = a ,  w(-), (6.31) 

Equation (6.29) is an actual recursion relation, yielding all the entries of  Q - l ,  column 
by column starting from the left. 

A first remark is in order: the entries of  Q~(q)-I satisfy the property 

[Qn(q)-l]a,b g 0 ~ a C b, (6.32) 

easily proved by recursion using (6.29). This last condition has been previously derived 
for the entries of  ;O(q)  (cf. (5.45)), but holds as well for the inverse matrix. Note that 
(6.29) also implies that 

[Qn(q)-l,]a,a'= 1 (6.33) 

in agreement with the normalization of  Q. 

6.4. The matrix Q~(q)-l .  The recursion relation (6.29) will be solved in two steps. The 
idea is to treat separately the question of finding when [Q,~(q)- 1] a,b vanishes or not, and 

that of  determining its precise value when it does not vanish. This suggests to separate 
the matrix element [Qn(q) -1 ] a,b into a product 

[ ~ n ( q ) - I  ] a,b = Wa,b fa,b, (6.34) 

where f~,b is subject to the recursion relation 

fa,b+o = ( a,max(i) (fa,b + fa--o,b) 
+ 6a,n n.)(A,b + A+o,b) 

(6.35) 

and 
fa,w(,~ ' = d,,,,v,~("'" (6.36) 

Solving for f. From (6.35), (6.36), it is clear that the f ' s  are nonnegative integers. In 
fact, the f ' s  may only take the values 0 or 1, and act as selection rules on the couples of  
diagrams a C b. To describe the solution of (6.35), (6.36) we need one more definition. 
We will need a mixed representation of  a couple a C b of  walk diagrams in Wn, namely 
a E Wn is represented as a walk diagram, but b E A,~ -- Wn is represented as an arch 
configuration of  order n. The diagram b is therefore represented by the permutation ab 
of the bridges, with a~ = 1, describing the arches (namely ab(i) = j iffthe bridges / and 
j are linked by an arch). The diagram a C b is said to be b-symmetric iff it satisfies 

g~b(~) - ea~,b(~)-I = -(g~ - gig_l) (6.37) 

In other words, we may represent on the same figure the arch configuration b and the 
walk diagram a, as illustrated in Fig. 16. Each bridge i of  b sits at the vertical of the link 
(i - 1, i) of  a. Then a is b-symmetric iff the links of  a are pairwise symmetrical under 
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: : : : : ; : : : : : :  

Fig. 16. An example of walks a C b, where a is b-symmetric, b is represented in the arch configuration picture, 
and a in the walk diagram picture. The dotted lines continuing the arches of b indicate the links of a which 
have to be symmetrical: the two links connected to the same arch must be mirror image of each other 

the pairs  of  br idges  l inked by  an arch on b. In particular,  if  a is b-symmetr ic ,  then, be low 
an inter ior  arch of  b (i.e., an arch l inking  two consecut ive br idges  i, (i  + 1)), a must  
have a m a x i m u m  or a m i n i m u m  (the on ly  two left-r ight  symmet r ica l  l ink  configurat ions 
around i). Note  also that  a d i ag ram a is symmet r ic  iff  it is w~n) - symmet r i c ,  and that  the 
d iag ram/42  (n) is b-symmetr ic  for  all b E Wn.  

Cn 

With this definit ion,  the solut ion of  the recurs ion re la t ion (6.35), (6.36) reads 

f a , b = (  1 i f  a is b - symmet r ic  I 
0 o therwise  

(6.38) 

Hence,  in (6.34), f selects the couples  of  d iagrams  a C b such that a is b-symmetr ic  7. 
With  fi,,b as in (6.38) let  us now check  (6.35), (6.36). T h e  re la t ion (6.36) amounts  

to the fact  that  a is a - symmet r i c .  Indeed,  an arch of  a a lways  starts (say, at the b r idge  i) 
above  an ascending  l ink of  a (g~ = g i~l  + 1) and ends (say, at the br idge j = ~ra(i)) over  
a descend ing  l ink of  a (g~ - g~_ 1 = - 1 ) ;  these two l inks are therefore  symmetr ica l .  

To check  (6.35), let us cons ider  a d i ag ram a C b+o,  which  is b+o-symmet r ic .  Not ing  
that b + o has  an interior  arch l inking  the br idges  i and (i + 1) (this is equivalent  to a 
m a x i m u m  above  i on the cor responding  walk  diagram),  by  vir tue of  the abovement ioned  
property,  the b + <>-symmetric d i ag ram a must  have ei ther  a m a x i m u m  or a m i n i m u m  
above  i. These  two possibi l i t ies  co r respond  to the two lines o f  (6.35). To comple te  the 
check  of  (6.35), we must  prove that  in ei ther  case one and on ly  one of  the two d iagrams  
a and a -4- o is b-symmetr ic  (then (6.35) s imply  reads 1 = 1). 

More  precisely,  the box  addi t ion  on b ~ b + o is in terpre ted  in the arch configurat ion 
picture as the bridge move i l lus t ra ted in Fig .  17. Before  the box  addi t ion,  b has a m i n i m u m  
at the ver t ical  of  i.  This  means  that  an arch (starting, say, at the br idge  i l  < i) ends  at 
the br idge  i2 = i,  and that another  starts f rom the br idge  i3 = (i + 1) ( and ends, say, at 
the br idge  i4 > (i + 1)). The br idge  move  of  Fig.  17 replaces  these  two arches by  an arch 
connect ing  the br idges  i t  and i4, and an interior arch connec t ing  i2 and i3. The crea t ion  
of  an inter ior  arch corresponds  to that  o f  a m a x i m u m  (the top of  the box)  on b. Le t  us 
denote  by  A,  B ,  C,  A r ( l ike in Fig .  17), the regions of  b ly ing  respect ive ly  to the left  of  

7 Note, with the above definition, that fa,b 5 t0 =~ a C b. Indeed, if fa,b 510, a cannot cross b, otherwise 
one would have g~ = g~ and gai+l = /?za + 1, ebi+l = 17'3~ - 1, for some i. Take the smallest such i, this means 
that an arch of b ends at the bridge i. Let i ~ < i be the bridge where it starts, then by b-symmetry, we must 
h a v e  ~ t + l  = /?bi,+l and g~, = gi'+Ia + 1, gb = /?ai,+l -- 1, which contradicts the fact that i is the first crossing 
between a and b. 
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il iz ia 14 I1 i2 ia 14 

b b+<> 

Fig. 17. The bridge move b ---* b + <> on the corresponding arch configurations, b has a minimum at i = i2, 
hence an arch ends at the bridge i = i2, and another starts at the bridge i 3 = (i + 1). In b + o, this minimum 
has been changed into a maximum, hence the bridges (i~, i4) and (i2, i3) are connected. All the other parts A, 
/3, C and A ~ of b are unchanged. 

i l ,  between i l  and i 2 ,  between i3 and i4 and to the right of i4. Note that the regions A 
and A ~ may be connected to each other by arches passing above the (i], i2) and (/3, i4) 
arches, but/3 and C are only connected to themselves. 

b + ~  b 

A A '  
il i2 i3 14 il i2 i3 14 

(i)  a =  

((~1 = %=4-] )  a - O  

(ii) a= ~ a 

(el= - - ~ ] )  a-~  ~ 

Fig. 18. Example of a walk a, which is b + <>-symmetric. The two possibilities (i) a l  = o2 = 1 and (ii) 
0" 1 = --0" 2 = - - I  are represented. In both cases, one and only one of the two diagrams a and a - 0"2 ~ is 
b-symmetric. 

Let us consider a walk diagram a which is b+o-symmetric (cf. Fig. 18). The portions 
a , /3,  % a ~ of  the walk a lying respectively below A, /3 ,  C,  A ~ satisfy the following 
properties: fl is B-symmetric, "~ is C-symmetric, and a a  ~ is AA'-symmetr ic  8. All these 
portions of  a remain untouched in a + o. Only the two links (i2 - 1, i2) and (i3 - 1, i3) 
of  a will be affected. The b + <>-symmetry of  a implies that 

(ei  a - - e ~ _ l )  ea  _ a -- = ( i 4 - - 1  s ) ~ O'1 + l ,  
(6.39) 

e a - e  a - -  = ( i 3 - - [  i3 ) ~ a2 = •  

as the bridges (i], i4) and (i2, i3) are connected in b + 0. Two situations may now occur, 
according to the relative values of  (xl and or2. 

(i) (71 = or2: a is not b-symmetric, because the links (i] - 1, i l)  and (i2 - l, i2) of a are 
not symmetrical (the same holds for the links (i3 - 1, i3) and ( i4  - 1, i4)). On the 

s Here we extend slightly the notion of respective symmetry to walks c C d, with initial and final heights 
not necessarily equal to 0, by still imposing the condition (6.37 
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contrary, a - o2<> is b-symmetric, because both links (i2 - 1, iz) and (i3 - 1, i3) are 
flipped by the box addition/subtraction. This is illustrated on Fig. 18-(i). 

(ii) cr 1 = - a 2 :  a is b-symmetric, but a - o-2<> is not, as the situation of the previous case 
is reversed. This is illustrated in Fig. 18-(ii). 

Hence, we have shown that, when a is b + o-symmetric, one and only one of the two 
diagrams a and a - o2<> appearing on the rhs of (6.35) is b-symmetric. This completes 
the check of  the recursion relation (6.35) (which reduces in both cases crz = -4-1 to i = 1). 
Equation (6.38) is the unique solution to (6.35), (6.36). 

1 2 

Fig. 19. A particular folding of the walk diagram b C Wn, leading to an a C Wn, such that a is b-symmetric. 
The solid horizontal lines represent the unfolded folding lines, while the horizontal dashed lines represent the 
lines along which b is effecti,lely folded (lines number 3,5,6). The total number of folding lines is n, the order 
of the diagrams (n = 6 here). 

In addition to their defining recursion relation, the f ' s  satisfy a number of interesting 
properties, which will prove crucial in the study of meander and semi-meander polyno- 
mials. Among the many interpretations of  the condition f~,b = 1, the set o f a ' s  such that 
f~,b = 1 for a given b E W~, may be obtained as shown in Fig. 19. First represent b as a 
walk diagram of 2n steps. Then draw horizontal lines joining the couples of points (of 
the fo rm( i ,g~)  �9 b b �9 - -  (j ,  gj =_ gi), z, j >_ 1) corresponding to the beginning and end of  all 
arches o f  b (the arch starts at the bridge (i + 1) and ends at the bridge j). It is easy to 
see that there are exactly n such lines. The set of admissible a ' s  is simply obtained by 
f o l d i n g  the path b arbitrarily along these lines (see Fig. 19). Indeed, the folding operation 
preserves the b-symmetry of  a, by simply reversing all the quantities (g~+l - g~) along 
the folding line. If  no additional constraint was imposed on the a's, we would get 2 n 
possible foldings for each diagram b. However, a is further constrained to have nonneg- 
ative heights, which reduces this number, but we expect it to still behave as 2 '~ for most 
b's, in the large n limit. 

Conversely, here is an algorithm to generate, for fixed a E W~, all the walks b E Wn 
such that f~,b = 1. The path b = a is always admissible. Let us represent it by the sequence 
o f  signs ti(a) = g~ - g~-l, i = 1,2, ..., 2n, and consider the modified sequence 

�9 ~ri ( a )  --- ( - 1 )~ - 1 t~ ( a )  = ( - 1 ) i  - 1 ( e ~  - g i  a _  1 )" (6.40) 

Interpreting these indices i as bridge numbers (from 1 to 2n), the set of  b's such that 
f~,b = 1 is simply the set of  arch configurations linking these 2n bridges, such that each 
arch connects two bridges with the same value of the sign ~r~(a). An example is displayed 
in Fig. 20. The number of  admissible b's for fixed a seems to depend strongly on a. 
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ti(a ) + + - b . - - + . - - -  q- . . . .  + - -  
~,(a) + i - - + i + : +  + - - . - -  --  + + + i  

Fig. 20. For fixed a, the b's such that fa,b = 1 are the arch configurations connecting bridges with the same 
value of a~(a) = ( - 1 ) i - l t i ( a ) ,  where ti(a) = g~ - / ~ - l "  for i = 1,2, . . ,2n. Here n = 6, and we have 
represented one of the admissible b's. 

Let us finally mention the following sum rule, proved in detail in Appendix C: 

3 2n-l(__2n)! 2 n - I  

E fa ,b  = n!(n  + 2)! - 3 ~ c n 
a,bEWn 

(6.41) 

expressing the total number of  couples (a, b) c W~ • W~, where a is b-symmetric. By 
Stirling's formula, we see that 

3 8 n 
E fa,b ~ 2V/- ~ n5/2. (6.42) 

a,bGWn 

The leading behavior 8 '~ agrees with the expectation that the number of  admissible a ' s  
for fixed b behave like 2 '~ for most b's (whose number is of  the order of  4'~). 
Solving for  w. To complete the solution of  (6.29), we have to compute the weight 

--1 Wa,b = [Q ] a,b when a is b-symmetric. The form of Wa,b is entirely dictated by the 

coefficients of  the recursion relation (6.29). The result reads 

2n--1 
1 b a 

Wa, b "~ ( w ( e a  1 ,e  a 
i=1 

w(k,  g, m)  = I~e+l (Izel.ze<) ~(k+m)-e 
,ue 

(6.43) 

In order to check that this is compatible with (6.29), we note that, with the form (6.34), 
and when a is b + <>-symmetric, one and only one of the four terms in the r.h.s, of  (6.29) 
is non-zero. Assuming for instance that a has a maximum at i, it is sufficient to check 
that 

1 Wa,b+o _ 

Wa, b [,tea (6.44) 
Wa,b+~ _ 1 
W a - o , b  

irrespectively of  which term survives. Equation(6.40 )follow directly from (6.43), and 
are exactly what is needed to absorb the coefficients in (6.29). Similarly, if a has a 
minimum at i, one easily checks that the sufficient conditions 
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Wa, b+o 
- -  = P e a + l ,  

213a,b 
Wa,b+ 0 -- ~e~+l 

Wa+o,b ~e~+2 

are fulfilled. Note also that wa,a = 1 as required. 

(6.45) 

b= 

0 3 5 6 7 8  12 

Fig. 21. An example of computation of wa,b, for a C b. b is obtained from a by six box additions. The box 

weights are computed using the rules (i)-(ii)-(iii). Here we have wa,b = (l~ll~z) 3/z. 

Practically, for a C b irrespectively of  whether a is b-symmetric, the weight (6.43) 
can be computed as a product of  box factors over all the boxes which must be added to 
a to build b. 

(i) ff the box is added at the vertical of  a maximum of  a, the weight w is multiplied 
by 1/#e~. 

(ii) If  the box is added at the vertical of a minimum of a, the weight w is multiplied by 

#e~+l- 
(iii) If  the box is added at the vertical of a slope of a, the weight w is multiplied by 

i #e~+l/m~. 

This is a direct consequence of the expression of w(k, ~, m) in (6.43), where the 
power �89 + m)  - e distinguishes between maxima (value - 1 ) ,  minima (value 1) and 
slopes (value 0). An explicit example is given in Fig. 21. 

6.5. The normalization matrix N'n(q). Let us reexpress the (diagonal) matrix elements 
of N'n(q) (5.56) in the language of weights w~,b (6.43). The result reads simply 

I [./V'n(q)]a,a = Wa,~,y~) ] ( 6 . 4 6 )  

where ],V(~ n) is the largest walk diagram of W,~, i.e. containing all the others, with heights 

~max = rain(i, 2n - i). (6.47) 

This is easily proved as follows. Let us first consider a symmetric diagram a. As 
mentioned before, this diagram is also I'V(~'~ hence f~,w,,~ = 1. By (6.9, we 
find that 
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1 = [  ~ ( q ) ]  a,l/y~ ) 

= [ ~ r n ( q ) - l ] a  a - 1  ,* 
, [Q~(q) ] o , ~ , .  

(6.48) 

hence 

[ H n ( q ) ]  o o = - 1  o [Qn(q) ]a,l/VO) ---- W ..,,n) (6.49)  
a~ VV n 

as f~,w(~) = 1. This proves (6.46) for any symmetric diagram a. However, the expression 
(5.56) for arbitrary a is clearly factorized into products pertaining to the left and right 
halves of a = Ir, namely 

[xn(q)]o,o: II II 
left strips right strips 

on I on 

= n( l )  n ( r ) .  (6.50) 

Analogously, the quantity Wa,l/y(n) factorizes into two products pertaining respectively 
to the left and right halves of a = l r ,  namely 

where 

and 

W ~ , w ~ ,  = w(1) w(r), (6.51) 

n--1 

w(1) (x(g~_l,g~)) ~ H z z z ---- (W(~ i - -1 '  ~i' ~i+l )) �88 (g~ax__g~) 
i=1 

(6.52) 

x(k ,  ~) = " "(~tmax(k,O) k -g  
(6.53) 

---- (~t(k+g+l)/2) k--e 

In the above, we have used the formula max(k, g) = ([k - g[ + k +g)/2 = (k +g+ 1)/2, as 
k - g = +1. The weights x separate the middle box factors in (6.43) into left and right 
halves. More precisely, each box factor 

[ w(k, e, m) = x(k, e) x(,n, e)] (6.54) 

is factorized into a left half (k, g) (described from left to right on a) and a right half 
(m, g) (described from right to left on a). Equation (6.54) results from the identity 

_ # k - ~  m - e  (6.55) /~g+l ( iZglZg+l) �89 _ max(k,g) Pmax(m,O' 
/ze 

easily proved by inspection. Now the result for symmetric diagrams a = I t ,  r = l, reads 

[N'n(q)] a,a = n(/)2 = w(/)2, (6.56) 

hence n(1) = w(1). For arbitrary diagrams a = Ir, we have 

[.Afn(q)] a,a = n(1 )n ( r )  = w(1 )w( r )  = W a,w~n, (6.57) 

which completes the proof of (6.46). 
As a by-product of the previous analysis, the local factorization property (6.54) and 

the obvious relation x ( k ,  g)x(g, k) = l, enable us to rewrite the general expression (6.43) 
as 
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Wa, b = 

2 n - -  1 
1 b a 

H [x(er-~,e7)~(eT+,,e7)] ~(~-~') 
i=l 

2 n - - I  

= H [x(e~,e~+,)] ~(~'`'-~>-(~'~'-~r>) 
i=O 

2 n - - I  1 1 a a 8 8 

= H ("('+':+':+,>/')~(-"'"-'~'<"+'-")) 
i--O 

(6.58) 

This last expression reduces directly to (5.56) in the case b = l/V(")..n , providing us with 
an alternative proof of (6.46). Indeed, gib+l -- gb = 1 if i < n, and - 1 if i >_ n, and the 
factor �89 - (g~+l - gi~)(gi+lb _g~)) takes the value 1 on a's (left and right) tops of strips, 
and 0 everywhere else, while (1 + g~ + g~+1)/2 is the corresponding length of strip. 

6.6. The path formulation of(semi)-meanders. We now have all the elements to write 
alternative expressions for the meander and semi-meander polynomials, as weighted 
sums over paths. The entries of  the matrix 79~(q) - l  read, using (6.43) 

[79n(q)- l]a,b = [./~fn(q)-l]a,a [ Qn(q) - - l ]a ,b  

"~ fa,b Wa,b 
W a , ~/y(n n) 

2n- -1  (6.59) 
1 b m a x  

= fa,b H [w(~-l'~'~'eia+l)] 7)(g*-el > 
i=1 

2 n - - 1  b m a x  ~z a a . 

= fa,b e �88 ~'=~ (e~-e~)~(e~_,,g~ ,e,+,.q), 

where gm~x is defined in (6.47), and 

/ #e+,'~ k + m - 2g 
c~(k, g, m; q) = log l l \ - ~ e / +  2 log (pgpe+l). (6.60) 

Using the alternative expression of Wa,b (6.58), we may also write 

l . 1  [ [79,~(q)-l],~,b = fa,b e ~ ~ : o  [(e~-e~)-(ei\ ,-e~)] (e~L,-e?)log ~,(e~+,~,.,,/2 (6.61) 

The passage from (6.59) to (6.61) may be viewed as a discrete integration by parts in 
the sum over i. 

Substituting the expression (6.61) in (6.12) and (6.13), we get the following expres- 
sions for the semi-meander and meander polynomials 

r~nn(q) = L,b fa,w~-, ue~(q) 
a,bG Wn 

1 max max b ~b a g a  • ~ EL-' [(~,+,-~, >-",+,- ~>](~,+,- ,> lo~..~+,= +,,. 
(6.62) 

ran(q) = ~ f,~,b f~,b' Ue~ (q) 
a,b,b' cWn 

1 2r~ -- ] max max b ~b ~b I ~b ! a ~ a  x ~ , = o  [~(e~+l-e, >-~,+,- .>-( ,+,-, >](~.+,- .>~og.,,:+~r+,+,,. 
(6.63) 
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Note that the semi-meander expression (6.62) may be viewed as (6.63) in which U is 
fixed to be W(~ n) - r,~, the walk diagram corresponding to the rainbow arch configuration 
of order n, which restricts the sum to symmetric walk diagrams a. 

The expressions (6.62), (6.63) should permit a detailed asymptotic study of the 
semi-meander and meander polynomials for large n. 

6. 7. Connected components in meanders. For any b c A,~ -- W,~, let v~ be the vector 
with entries (V~)a = 5o,6. The matrix elements of G,~(q) can be expressed as 

[~n(q)] b,b' = V~, �9 ~n(q)~ = (T'n(q)-lv~ ') �9 Fn(q)T'~(q)-lz~ = qc(b,b'), (6.64) 

where c(b, U). Equation (3.13) is the number of connected components of the meander 
obtained by superimposing the arch configurations b and U. Hence we can write a refined 
version of 6.63 for fixed b and b ~ E A~ 

q~(b,b') = E fo,b fo,b' Ue~(q) 
a E W ~  

I max max b b b / b ! a a >( e ~ E : ~  -1 [2(ei+,-g , ) - ( s  )](gi+l--g,)log,te~+,a+l+l)/Z 
(6.65) 

Note that the highly non-local quantity c(b, b ~) is expressed as a sum of local weights. 
However, the non-locality reemerges in a weaker form through the selection factors f ,  
which induce mutually non-local constraints on the walks summed over. 

This formula gives an interesting expression for c(b, U) in the limit of large q. Indeed, 
we have, for q ~ oc, 

1 (6.66) Ue(q) ~ qe #e ~ - ,  
q 

hence (6.65) becomes 

2 n  - -  1 b b b ! b t a a 

qc(b,b')~ E f~,bf~188176 ((e,+~-e,)+(e,+,-e~)(t,.~-e,), (6.67) 

a E  W ~  

where we see the contributions of the ~max,s and that of the Chebishev polynomial have 
cancelled each other, thanks to the identity 

2n--1 
g ~ _ l  ~ max a (gim+• - gi )(gi+l - g~) = O. (6.68) 

i=O 

For large q's, the sum in the rhs of (6.67) is dominated by some a C Wn for which the 
exponent of q is maximal. Such a maximum is unique, as the coefficient of qC(6,6') is 1. 
This yields the following formula for the number of connected components c(b, bt): 

1 m a x  [ A..r - -  ~ i )  -b (gi+l - -  gi )] (gi+l - -  ~i ) c(b, U) = ~ o~wn, 
b and b ~ -symmetric 

(6.69) 
A particular case corresponding to semi-meanders consists in taking b r = }V~ n) = rn 
the rainbow configuration of order n. Using (6.68), we find 



40 E Di Francesco, O. Golinelli, E. Guitter 

1 
max c(b) = c(b, ],V(~ '~)) = 

a ~  Wr~ ~ symmetric i 

and b--symmetric 

2n--1 } 
b a 2e~ + y~. (~ib+l -- e i )(ei+ 1 -- e~) 

i-0 
(6.70) 

Another interesting consequence of the expression (6.65) is obtained if we take b = U, in 
which case c(b, b) = n. It takes the form of a sum rule for fa,b, namely, for any b E Wn, 

1 2 ~ . - - 1  [(e,.m~_e.~%_(gb+_g})](g~%l_eg)logl.(eg+~,~.l+,)/=" (6.71) q"= 
aE W~ 

In particular, for b = 14~(~ l, hence gb = gm~x for all i, we find, with f~,w~2~ = 5~,symm~uic: 

q~= E Ue,~(q) 
a E Wf~ 

a symmetric 

In/21 (5.72) 

-- ~ bn,n-2~ Un-2p(q) 
1)-0 

which is easily proved by recursion on n (the coefficient b,~,,~-2p, computed in (5.52), 
is indeed the number of symmetric diagrams with middle height h = n - 2p). 

6.8. Asymptoticsfor q > 2. In this section, we use the expressions (6.62), (6.63) to 
derive asymptotic formulas for the semi-meander and meander polynomials for large n. 
Such formulas can only be inferred when all the terms in the sums (6.62), (6.63) over 
walk diagrams are positive. This is the case for all q > 2, for which Urn(q) > 0 and 
#m > 0 for all m. 
q=2. As a preliminary exercise, let us start by taking the limit q ---* 2 of  the sum rule 
(6.71). Due to the definition (4.2), we have 

U/(2) = (g + 1) 

therefore, when q ~ 2, (6.71) becomes 

g 
#e(2) = g + 1'  (6.73) 

] la+g a +1 1 max max b b a a ~ "+1 2n E fa'b(e~+l)e~2:;-' (e , . , -e , ) - (e , , -e , ) (e ,§  ~§ g. e. +3 YL- -"I A ~ 

aCWn 

Note that, summing (6.74) over b c Wn we get the result 

1_ max max b b a a ~, t + l  

E fa ,b(e~ + 1 ) e 2 E : 7 '  [(gi+l-g' )-(g~+l-gi)](gi+l-gi)l~ e%~q" +1 ~?+~;~+,.3 = 2nc,~ (6.75) 
a ,bE W n  

which behaves, for large n, like 

n 

n3/~-- ~ ~ n E fa,b 
a,bEWn 

(6.76) 

by making use of  the asymptotics (6.42). Comparing (6.75) and (6.76), we are led to the 
following scaling hypothesis for the values of  g/5 and ga dominating the sum (6.75): 
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g~ ,~ n~g~(x) gb ~ n,gb(x),  (6.77) 

where x = i / n  and u E [0, 1] is an exponent  characterizing the average height o f  the 
walk diagrams a, b. For  this hypothesis  to be compatible  with (6.76), we mus t  necessari ly 
have u = 1, in  which case the exponent ia l  in (6.75) tends to a constant  9 (the sum over 
i is of  order n ,  but the logari thm is o f  order l / n ) ,  and the factor (g~ + 1) tends to 
const, x n ,  which  yields (6.76). This  is an example of  use of a scaling hypothesis on  the 
g's domina t ing  the sum (6.75), leading  to large n asymptotics.  

Analogously ,  if  we make the same scaling hypothesis (6.77), with u = 1, on the g's 
domina t ing  the sums (6.62), (6.63), for q = 2, we find the asymptotic  relations, valid for 
large n 

rhn(2)  ~ n ~ f~,b 
a,bEWn 
o ',"~"~' (6.78) 

m,~(2) ,-~ n Z fa,b fa,b' 
a,b,b~ E W n  

This expresses the asymptotics of  the meander  and semi -meander  polynomials  at q = 2 
in terms off~,b only. In  going f rom (6.76) to (6.78), we have assumed that configurat ions 
of  the same order of  magni tude  domina te  both sums. In fact, we have made  a scaling 
hypothesis on  the matrix e lements  of  p~- l (q  = 2) and Fn (q  = 2), namely  that the 
configurat ions with 

[7~,7~(2)]~,b " J'~,b [rn(2)]~,. = (g~ + 1) ,-, n "  (6.79) 

dominate  the three sums 

Tr( o(2)) ~ n fo,b, 
a,bEW,~ 

17"gn(2)Z7 ~ n ~ Z fa,b, 
a,bE Wn 
a symmetric 

if" 9n(2)ff  ~ n "  y ~  f~,o f~,b' 
a,b,b~ E W n  

(6.80) 

9 To see why, note that for large n and g's the sum in the exponential may be approximated by 

2n-- 1 

2 max _ i _ (ei+ 1 i+l - gi - e ~  +[ 
i---O 

i=0 

where we have performed a discrete integration by parts. Hence the exponential of this sum is equivalent to 

H i  min. of b (ca  + 1) 
( g ~ + l ) •  1-Ii . . . . .  fb (~a +1) ~ const. 

The products extend respectively over the i's which are minima and maxima of the walk b and as there is 
always one more maximum than minima, the above ratio is exactly balanced, hence is of order 1 for large 
e~'s. 
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with the same value of u = 1. Let us stress, however, that the scaling hypothesis (6.79) 
leads to a wrong result for the meander determinant, D~(2), for large n. Indeed, from 
(6.79), we would conclude that 

]-[  2 D,~(2) ~ f~,a n ~ n ~'c'~ (6.81) 

whereas, from the exact result (5.6) for D,~(2), we extract the large n asymptotics 

n 

log D~(2) = Z a n , j  logo + 1) ~ x/-d-nc~ 
j=l 

(6.82) 

by the standard saddle point technique (note that we find exactly twice the previous 
result (5.19) for the large n asymptotics of log det D~ (0)). The correct asymptotics (6.82) 
contradict (6.81). This simply means that the configurations of a C 1 ~  dominating the 
meander determinant are very different from those dominating the trace of the Gram 
matrix or the (semi-)meander polynomial. 
q > 2 .  We start again from the sum rule (6.71), with q = e ~ + c -~  0 > 0. We again make 
the hypothesis that, when summed over b E W,~, the sum (6.71) is dominated by large 
g's for large n. Noting that 

emO 
Urn(c~ + e - ~  ~ 1 - e - 2 ~  P m  ~ e - ~  (6.83) 

for large m, this gives the asymptotic formula 

[tprnax Drnax ~ igb gb ~] c~ o ~:2o-' L,~,+,--, ' - ,  - , -  ~,J~e,~+,-e~) 
c n ( c a + e - ~  n ~ ~ A , b l _ e - 2 ~ c  

a,bC W n  

1 ~ 0 ~"~2r~--llob flb'~dpa ~Oa~ 

- 1 --  C - 2 ~  ~ fa,be'~ A.~i=o , ~ + 1 - ~  . . . .  i+1-- ~, 

a,b~ Wn 

4 n e_O)n 
n3/2  ( cO + 

(6.84) 
where we have used (6.68). This gives an asymptotic sum rule involving the f~,b'S and 
q. 

Assuming that the same scaling hypothesis holds for the sums (6.62), (6.63), we find 
the following asymptotic formulas 

~ ( e  o + c - 0 )  ~ ~ A,bc o[eo+~ 27-, b b o 

a,bG W n  
a symmetric 

0 2 n - - I  b b b t b ! a a 

m,~(e  ~ + e  - ~  ~ ~ f~ ,b f~ ,b ,e  ~ s [,e,+,-eO+(~,,-e~ )],e~+,-e,) 

a,b,b' E W~ 

(6.85) 
where we have dropped the prefactor 1/(1 - e-2~ subleading for 0 > 0. Indeed, the 
limits 0 -+ 0 and n --~ cc do not commute, hence (6.85) is only valid for 0 > 0. On the 
other hand, in the limit 0 ~ co, we recover the large q asymptotics 
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~ n ( q )  ~ q'* ~ e n~ 

(4e0)n (6.86) 
ran(q) ~ Cn qn ~ n 3/2 

by using the two formulas (6.70), (6.69). 
As before," we can test the scaling hypothesis used above against the large n asymp- 

totics of  the meander determinant for q > 2. This hypothesis amounts to writing 

o [_2g~+X-,2n-bab _obve= _god 
[ ~ n l ( e  0 -t- e-0)]a,b "~ fa,b e 41- n /--~i=0 ,~,+l ",, '  i+1 i ' ] ,  

(6.87) 
[Fn(e ~ + e-~  "~ eOe:. 

The corresponding large n estimate of  the meander determinant reads 

Dn(e~ + e-~ ~" H f2,,y~o ~ e ~ o ,  (6.88) 
aEWn 

whereas the exact formula (5.6) leads to the asymptotics 

n 
s inh( j  + 1)0 

log D,~(e ~ + e - ~  = 0 E an,j log ~,, nc,~O (6.89) 
sinh 0 

j=l 

by the standard saddle point method. The agreement between the two estimates (6.88)- 
(6.89) is a confirmation a posteriori that the scaling hypothesis (6.87) holds for a very 
large class of  properties of  the gram matrix G~(q), for q > 2 and large n. 

Finally, in view of the assumed q = 2 value u(2) = 1, and the exact q ~ c~ value 
u(cx~) = 1 (the semi-meander polynomial (6.86) is indeed dominated by the single 
diagram b = kV(n '~), with winding gb = n ~ n~(~176 it is reasonable to infer that u(q) is 
identically equal to 1 for all q _> 2. 

6. 9. Meander and semi-meander polynomials as SOS partition functions. The asymp- 
totic formulas (6.85) are to be compared with the following exact formulas 

rh~(e ~ + e - ~  

m~(e ~ + e -~  

0 a 1 2 n - - 1  b b ~ a  a 

= E fa'be$[gn+~ Ei=~ ( ~ i + l - - ~ i ) (  i + l - - ~ i ) ]  

aE P n  ,bE W n  
a symmetric 

0 2 r ~ - - I  b b + b ! b ! a a A,bA,b,e~ E~:o [(~.,-e,)(~.+,-e~ )](~,+,-e,) 
a E P n  

b,bt E W n  

(6.90) 

where a runs now over the set Pn of all closed paths of  (2n) steps (with g~ = g~n = 0) 
not subject to the constraint g~ >_ O. The relations (6.90) may indeed be obtained 
as consequences of  the following alternative formula for qC(b,b'), b, b t E Wn (to be 
compared with (6.65)) 

( e~ + e-~ c(b'b') = ~ a e P ,  fa,bf~,b 'e~ ~2"2~ [(e,,-eO+(e,+,-t, )](t,+,-e,) (6.91) 

Let us now prove (6.91). On the one hand, as a is both b and U-symmetric,  the values of  
ti(a) = (s - g~) are fixed, up to an overall sign, along each connected component of  
the meander (b, U), and alternate on successive bridges along the connected component. 
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3 6 \ 
-1 +1 0 0 

Fig. 22. The four possible local environments of the (i + 1) th bridge together with the corresponding value 
s i (b ,  b t) = =kl, 0 

On the other hand, the quantity s i (b ,  b') = [(eibl  _ ~i)+(~i+lb b' _ gb')] /2 may only take 
the three values - 1,0 and + 1, corresponding to the four possibilities of local environment 
of  the (i + 1) th bridge of  the meander (b, U), depicted in Fig. 22. Along any connected 
component of (b, b') ,  the variable s i (b ,  b')  alternates as long as it remains nonzero, and 
discarding all the zeros leaves us with an alternating sign. 

t"'x 

1 2 3  10 

Fig. 23. An oriented connected component K with 10 bridges. Starting from bridge 1, the sequence of visited 
bridges is 1, 8, 9, 10, 3, 4, 7, 6, 5, 2. 

For illustration, with the connected component  depicted in Fig. 23, this gives the 
sequence, starting from the bridge 1 

b r idge i  1 8 9 10 3 4 7 6 5 2 
t i ( a )  + - + - + - + - + - 

s ~ ( b , b ' )  + 0 0 - + 0 - 0 0 0 

t i ( a ) s ~ ( b , b ' )  + 0 0 + + 0 - 0 0 0 

turn R R R - L 

where we also indicated the type of turn (right=R, left=L) taken on the corresponding 
bridge. The global sign t i ( a ) s i ( b ,  U)  is thus constant between two zeros and is reversed 
through each zero. Since a zero indicates a transition from turning left to right and vice 
versa along the meander, the quantity 

1 a b b ~ 

i along K 

(6.92) 

summed along any connected component K of the meander (b, U), is simply equal, up 
to a sign, to the total number of  right turns minus that of  left turns ( n n  - n r ) ,  taken on 
the bridges along K .  As on any closed loop we have ( n n  - n L )  = 5:2, we compute 
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f ( K )  = E fa'bfa,b'e~ E ,  a,oog K t~(a)s,(a) 
ti(a)=d=l 
i along K 

= E eOe(nR--nL)/2 

e=4- l 
= e 0 + e -O~ 

(6.93) 

where the sum over e = -4-1 corresponds to the only overall sign ambiguity left on the 
t~(a) after taking into account the b and U-symmetry of a on K .  The final result (6.91) 
is simply the product over all the connected components K of (b, b ~) of the weight f ( K )  
above, which completes the proof of the result. 

More generally, the above analysis can be carried over to q = z + 1/z, for any complex 
number z, resulting in 

Z 1 2n--1 b b t b I 
+ 1/z)C(b'5') = E A,bA,b'ZZ ~-~,--o [ (e 'b+l-e ')+(ei§ (e la+l -~)  

aEP~ 
(6.94) 

This yields the following general expressions for semi-meander and meander polyno- 
mials at q = z + 1/z for arbitrary complex z 

~n(Z  + l / z )  

m~(z + 1/z) 

= E f a , b  z l  [~a+ l  ~ 2 n - 1  ,b b a a 

aEPn,bEWn 
a symmetric 

2n--I b b p b r 
= E f ~  z l  E,=O [ ( ~ b + l - ~ / ) q - ( ' i + ' - ' i ) ]  (~ ia+l -~)  

aE Pn 
b,bt E Wr~ 

(6.95) 

Fig. 24. An example of SOS configuration attached to a meander. We display the value of the height L Note 
that it is entirely dictated by the choices of orientation of the connected components of the meander, and the 
fact that s = 0 at infinity 

This analysis suggests to interpret the quantity qc(b,b') as the Boltzmann weight of a 
particular configuration, formed by the meander (b, b'), of a suitably defined SOS model. 
Indeed, the b and b/-symmetry of a E Pn implies that the variable/?a takes identical 
values on all segments of river which can be connected to each other without crossing 
any arch of b or b'. Therefore, the variable ~ may be considered as a height variable in 
the plane, constant on each connected component delimited by one ore several roads, and 
undergoing a jump discontinuity of-4-1 across each road (see Fig. 24 for an example), and 
continuous across the river. In particular, ~ = 0 at infinity, due to the boundary condition 
g0 = g2n = 0. Such an height configuration induces a unique orientation of the various 
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connected components of(b, b'), by taking the convention that g --~ g+ 1 (resp. g + g -  1) 
across a road pointing to the right (resp. left). Conversely, a choice of orientation of the 
connected components of (b, b') specifies uniquely the height configuration, by further 
demanding that g = 0 at infinity. The Boltzmann weight 

b b b ! b ! 
z�88 ~2~-1 [(gi+_el)+(g~+l_g * )](g~+l_g~) (6.96) 

corresponds to attaching to each bridge of (b, b') one of the following Boltzmann weights 

! ! _! _! 
Z 2 Z 2 Z 2 Z 2 

1 1 1 1 

(6.97) 

according to the local environment of the bridge, and taking the product over all the bridge 
weights. Again, summing over the two orientations of each connected component K of 
(b, b') results in a total weight per connected component 

Z z~('~R-nO/2 = z + 1/z  = q, (6.98) 
e=4-1 

where nR (resp. nL)  is the number of right (resp. left) tums of the road on the bridges 
of K,  and e = +1 accounts for the global orientation of K.  In the language of SOS 
models, the expression (6.65) corresponds to a Restricted SOS version, in which the 
height variable is further restricted to be non-negative (in particular the configuration of 
Fig. 24 is ruled out). 

As a first element of comparison with the results of the previous section, if we write 
(6.95) at z = 1, hence q = 2, we see that 

~n(2) = L,b 
a ~ P n , b E W ~ .  

a sy . . . . .  ( 6 . 9 9 )  

m,~(2) = fo,b fa,b, 
a E  P n  

b ,b t  E W n  

to be compared with the asymptotic estimates (6.78): this gives a relation between sums 
over Pn and over Wn, involving the same combinations of f .  Note that the same type 
of relation links the cardinals of the two sets over which a is summed, namely 

n ) = (n 1)en (n + 1)card(Wn), (6.100) card(Pn)= 2n + 

and also, using (6.41) 

2 
fa,b = 2 n Cn -~ -~(n + 2) ~ fa,b. (6.101) 

aE Pn ,bE W n  a,bE W n  

The reader could wonder in what the restricted expressions (6.62), (6.63) of the previous 
section are really different from the simple SOS expressions (6.90) obtained above. 
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Actually, the considerations of the previous section on the heights g dominating the 
expressions (6.62), (6.63) for the meander and semi-meander polynomials, eventually 
leading to an exponent v = 1 for q = 2, could not be carried over here, because of the 
lack of an explicit prefactor proportional to (g + 1). Hence, in some sense, the formulas 
(6.62), (6.63) (at least for q = 2) give us access to more precise details on the path 
formulation. 

More generally, it is interesting to compare the q > 2 formulas (6.90) and (6.85). 
We see that these are identical, except for the range of summation over a (Wn in (6.85) 
and Pn in (6.90)). We conclude that the restriction condition that g~ _> 0 in (6.85) is not 
important in the large n limit, for q > 2. 

7. Generalization: the Semi-meander Determinant 

In this section, we consider a possible generalization of the meander determinant to 
semi-meanders in the following way. 

1 2 3 4 5  

Fig. 25. Any semi-meander may be viewed as the superimposition of an upper and a lower open arch con- 
figurations. Here the initial semi-meander has winding 3. The two open arch configurations on the right have 
h = 3 open arches. To recover the initial semi-meander, these open arches must be connected two by two, 
from the right to the left (the arches number 5,4,1 of the upper configuration are respectively connected to the 
arches number 5,4,3 of the lower configuration). 

Going back to the original fiver/road formulation of semi-meanders, we see on Fig. 25 
that any given semi-meander, with winding number h, is obtained as the superimposition 
of two (upper and lower) open arch configurations of order n, with h open arches. By 
this, we mean that h semi-infinite vertical roads originate from h of the n bridges, 
otherwise connected by pairs through (n - h) /2  nonintersecting arches (the winding h 
has always the same parity as the order n in the semi-meanders). The semi-meander is 
re-built in a unique way by connecting the upper and lower open arches from the right 
to the left. In particular, only open arch configurations with the same number of open 
arches may be superimposed to yield a semi-meander. Let A~  ~ denote the set of open 
arch configurations of order n with h open arches. It is a simple exercise to show that 

card(A~ )) = b n , h  = n ~ h  - -  n - h  " 
, , - - ~ - /  ~ - 1 

(7.1) 

Indeed, the open arch configurations of order n with h open arches are in one-to-one 
correspondence with the half-walk diagrams of n steps, with final height h, namely with 
Q = 0, g~ > 0 and gn = h. Let W~ h) -= A ~  ) denote the set of half-walks of order n with 
final height h. The number of such half-walks has been derived in Eq. (5.52) above. We 
now define the semi-meander determinant of order n and winding h, as the determinant 
D~)(q) of the matrix G~)(q) with entries 
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[ G(h)(q)] t,z' = qr l, l' E W (h) = A (h), (7.2) 

where c(l, l ')  denotes the number of connected components of the semi-meander obtained 
by superimposing the open arch configurations 1 and l ~ and connecting their h open 
arches. For illustration, we list below the matrices corresponding to n = 4, h = 0, 2, 4, 

G4(~ = ( q2 q (7.3) q q2) G4(2)(q) = q3 q2 G4(4)(q)=q4 
q2 q3 

with the following ordering of open arch configurations 

h = 0  : ~ ~-,, ~ h = 2  : ~ 1 1 , 1 ~ 1  I1~ h = 4  : (7.4) 

Note also that G~(q) (1) = G2n- l(q) = Gn(q), hence the formula (5.6) applies to the winding 
zero and one cases. More generally, we conjecture that 

- ~ + 1  
T T  .~ otfh) 

D~)(q )  = det G~h)(q) = 1-I u j tq )  "~,J 
j=l 

(7.5) 

(h) where the numbers c~,~,j read, in terms of the an,j of (5.6) 

O•(2h) 2n,j = 
(2h+l) 

r 1 ,j = 

We checked the validity of this 
have 

D(2) 8 
n = 8 D~ 4) 

D~ 6~ 
D~ 8) 

an,j+h + 2h an,j+h-1 (7.6) 
an,j+h + 2h (an-l, j+h + an--l , j+h-l)  

conjecture up to n = 9. For instance, for n = 8, 9, we 

= u  ~' u~ 3 u 6 u4 
= u ?  9 u~ 2 u~ 3 u4 ~ 
= u,~8 u~ ~ u 4 
=u~ u 6 
=u[ 

D(91) = U115 U240 
(3) = U~ 2 U~  9 

n : 9 D(9 5) = V 102 U 36 

D(97) = U15~ U 7 
D(9) 9 = U9 

U26 U 8 U 5 

u~ 2 u2 
v~ 

(7.7) 

in agreement with (7.5), (7.6). We have performed various checks on the numbers a~}  
(7.6). In particular, the term of highest degree of D~)(q) ,  as a polynomial of q, is given 
by the product of the diagonal terms in ~h)(q), namely 

qdeg(D~)) I I  n+h = q--r-, (7.8) 

lEW~ h) 
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hence 

deg(D~) ) = n + h b n,h. (7.9) 

This can actually be derived from (7.6). 
We expect that (7.5), (7.6) can be proved by diagonalizing the matrix G(~h)(q). This 

matrix has again a simple interpretation as the Gram matrix of a certain subspace of 
TL,~(q), generated by some particular basis 1 elements. Inspired by the one-to-one 
correspondence between walk diagrams of order n and the elements of the basis 1, 
we attach to any half-walk I of n steps and final height h in W(~ h) the basis 1 element 
(a)l corresponding to the walk diagram a = lr E W,~, where we have completed the 
half-walk 1 with a particular choice of right half-walk r of final height h, namely with 
g~ = [1 + ( -1 ) i ] / 2 ,  i = 0, 1, ..., n - h, and g~ = i + h -  n for i = n -  h+ 1, n -  h+2, ..., n. 

This corresponds to only retaining basis 1 elements which are obtained by acting on f('~) h 
(defined in (3.6)) through left multiplications by ei. In this new basis, the scalar product 
between two elements reads 

(lr, l'r) = Tr((lr)l(l'r)~) = qC(tr, z'r) = q.V_~ qC(Z,l') (7.10) 

which coincides with (7.2) up to an overall prefactor of q(n-h)/2 due to the addition of 
(n - h)/2 trivial loops to the semi-meander ll r. A proof of (7.5), (7.6) should follow 
the lines of that of (5.6), by writing a change of basis which diagonalizes the Gram 
matrix (7.2). Note also that like in the meander case, the formula (7.5), (7.6) gives the 
multiplicities of the zeros of D ~  )(q), 

Finally, the product over all the possible windings of the semi-meander determinants 
takes the simple form 

[gn(q) = ~ I  D~)(q) = ~ I  UJ (q)~n'j 
h=O j = l  

r ~ -  h=O rood 2 

(7.11) 

where 

\ n  -- j /  \ n  -- j -- 1 (7.12) 

~2n--l,j  = \ n - j /  \ n - j ~  n - j - 1  

(h) Equation (7.11) may be viewed as a direct consequence of (7.6), with fln,j = Z h  ~ 
as the semi-meander counterpart of (5.6). 

The semi-meander gram matrix (7.2) also gives access to refined properties of the 
semi-meanders. Indeed, we may compute 

= T r  

n 

= Z 29/~k)(h) qSk, (7.13) 

k = l  

where ]f/I(~k)(h) denotes the total number of semi-meanders of order n with winding h 
and k connected components. An asymptotic study of these numbers should be made 
possible by the explicit diagonalization of ~(h)(q). 
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8. Conclusion 

R Di Francesco, O. Golinelli, E. Guitter 

In this paper, we have extensively studied the representation of the meander and semi- 
meander enumeration problems within the framework of the Temperley-Lieb algebra 
TLn(q). This representation is induced by the existence of a map between the reduced 
elements of TLn(q) and the arch configurations of order n used to build meanders and 
semi-meanders. Moreover, we have seen that the standard trace over TLn(q) provides 
a tool for counting the number of connected components of meandric objects. The first 
result of this paper is a direct computation of the meander determinant (5.6), interpreted 
as the Gram determinant of the basis of reduced elements of TLn(q), and the exact study 
of its zeros (5.11) and associated multiplicities (5.23)-(5.24). 

Beyond the meander determinant, we have been able to rewrite the change of basis 
diagonalizing the Gram matrix in terms of local height variables defining a restricted 
SOS model (see (6.65)). We also derived an unrestricted SOS model interpretation (see 
(6.94)) of the Gram matrix elements. These lead to various expressions for the meander 
and semi-meander polynomials, as weighted sums over discrete paths (walk diagrams). 
It is tempting to try to approximate these sums by continuous path integrals, in the limit 
of large number of bridges. In the case q > 2, where all the SOS Boltzmann weights are 
positive, this path integral might even be dominated by a simple subset of configurations, 
obtained for instance through a saddle point approximation. 

A generalization of this approach to the semi-meanders with fixed winding (number 
of times the roads wind around the source of the river) should be possible, in view of 
the conjectured form (7.5) for the corresponding (fixed winding) semi-meander deter- 
minants. A proof of (7.5) should be at hand, by a simple adaptation of the proof of (5.6) 
presented here. This will be addressed elsewhere. 

Appendix A. Proof of the formula (5.23) for the multiplicities of the zeros of the 
meander determinant 

In order to prove (5.23), we note that 

k 
1 

Oj+l,O mod (k+l) ---- k -t- 1 ~2--~(Cdk+l)m(j+l)' 
m=O 

(A.1) 

where Wk+l = e 2irr/(k+l), and rewrite 



Meanders  and the Temperley-Lieb Algebra 51 

| k n 

d,~(zk,t) - k + 1 ~ Z(OOk+l)m(j+l)an'j 
m=O j=l  

- k + 1 E n - j (5dk+l)m(j+l )  - -  2(r + (COk+l)m(j -1)  

m=O j=l  

- ( n 2 7 1 )  

_ 1 ~--~(2sin rrm)2 ~ ,n -J )  (oak+l) _ 2n 
gVi  n - I  k +  1 m=0 j=l 

1 k 7rm )2 [ 1 )2n ( 2 : ) ]  
- 2 ( k + l )  Z ( e s i n k +  1 ( w v / 7 ~ + l + ~  - 

m---0 

- ( n 2 2 1 )  

(A.2) 

k 
1 x--"2 sin rrm .2.~ rrm -2n 

=cn  2(k+ 1) 2--at ~-~--i-) tzcos ~-f]-) 
m=l  

which is equivalent to (5.23). In the second line of (A.2), we have performed two discrete 
2n integrations by parts, which have produced the boundary term (n-l)" In the fourth line 

of (A.2,)we have used the reality of dn(zk,t) to express the sum over j as 

~-.~( 2n ) w J + w  - '  _ 1 [ + 1 ]2n_  ( 2 : ) ]  
j=l n - j  - - 2  2 (x/~ ~ j  . (A.3) 

In the last line of (A.2), we have used the sum rule 

1 k / . 7 r m  \ 2  

2(k + 1) ~ / 2  sm k-7-i ) = 1 (A.4) 
m=O 

and recombined (2~) 2,~ - -  ( n - - l )  = Cn" 

Appendix B. The Gram matrix at q = v/2  

Let us illustrate the conjecture (5.39) in the case k = 3, l = 1, namely q = z3,1 = v'~. 
For n = 3, 4 we have the following identities relating the last line of Gn(V/2) to those 
corresponding to diagrams of maximal height 2 

(B.1) 

where each line vector is represented by its labeling diagram. In turn, the labeling diagram 
represents a basis 1 element for TLn(q = v~). Equations (B.1) translate into the fact 
that the element 
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E3(el, e2) = 1 - v/-2(el + e2) + (e2el + ele2) (B.2) 

is orthogonal (with respect to the scalar product (3.12)) to all the elements of respectively 
TL3(v"2) and TL4(v~) .  This is a direct consequence of the following identities: 

el E3(el, e2) = e2 E3(el, e2) = 0, 

Tr(1 E3(e~, e2)) = ~/U3(V~) = 0, , (B.3) 

Tr(e3E3(el, e2)) = v ~  U3(x/2) = 0 

where the first and second lines are valid in both T L 3 ( v ~ )  (7/ = 1) and T L 4 ( v ~ )  
(7/= v~) ,  and the third line holds only in TLa(v~) .  

More generally, the element (B.2) is orthogonal to all the elements of  TL,~(x/~) for  
any n > 5 as the ei commute with E3(el,e2) for i >__ 4. For n > 5 however, all the 
linear combinations we get involve diagrams with some heights > 3. For instance, for  
n = 5, the first combination reads 

Z ~  = V'2 ( ~  + / ' / ~ )  - (Z 'r  + ~"N,~) (B.4) 

Fig. 26. The enhancement transformation of a walk diagram. The walk diagram a = ABE Wn is enhanced 
at the point marked by a dot, by simply inserting a maximum at this point. Here A = l and B = r t, as the 
marked point lies in the middle of the diagram. The enhanced diagram belongs to Wn+l. 

Note that going from TL4 to TL5 (as well as going from TL3 to TL4) amounts  
simply to enhancing the middle part of  the diagrams, as depicted in Fig. 26, which 
results in a middle height 64 = 2 ~ 6 L = 3 for the four diagrams on the r.h.s, of  (B.4). 
To reexpress the combination (B.4) in terms of  diagrams of  W5,2, we note that the four  
diagrams appearing in the r.h.s, of  (B.4) contain a middle sequence of  heights of  the f o r m  
(6  3 = 1 , 6  4 = 2, 65 = 3, 6 6 = 2, 6 7 = 1), as the result of  two successive enhancements. 
Using the first line of  (B.1), we may rewrite this central part as a linear combination o f  
four diagrams with central height _< 2, which results in the four combinations 

~ _ ~  = v ~  ( ~ . . , , ~  + ~ )  - ( z ~ x , . ~  + ~ )  

= v ~  ( , ~  + ~ )  - ( ~  + ~ )  

(B.5) 

which, upon substitution into (B.4), yield the desired expression of  the last line o f  
Gs(v'~) as a linear combination of  the 25-1 = 16 lines corresponding to the elements 
of  W5,2. Note that all these diagrams have middle height 1. For general n, we have the 
following recursive algorithm to generate the desired linear combination expressing the 
last line of  Gn(x/2) in terms of  the lines a E Wn,2, denotedby K,~ = Y~aew,,: AT(a). The  
combinations K3, K4 and K5 have been constructed above. Suppose we have constructed 
K , .  Two situations may occur for K,~+I. 
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(i) I f  n = 2p - 1, the combination K2p is simply obtained by enhancing (see Fig. 26) 
the middle of  all the diagrams of  W2p-l,2 appearing in K2p-1, and keeping the 
coefficients of  the combination fixed. But as the middle heights always satisfy gn = 
n mod 2, for all n, the diagrams of  W2p-l,2 have all middle height g2p-1 = 1. 
Therefore, the combination Kzp only contains elements of  W2p,2, with middle height 
g2p = 2. 

(ii) If  n = 2p, the combination K2p+l is obtained in two steps. First enhance the middle 
of  all the diagrams in K2p to get another linear combination Lzp+l. According to the 
previous discussion, the enhanced diagrams in L2p+l have all middle height equal to 
3. But they actually arise from the diagrams appearing in Kzp_ 1, after two successive 
enhancements. This means that they all contain a middle sequence of heights of  the 
form (gn-1 = 1,gn = 2, g~+1 = 3,gn+z = 2, gn+3 = 1). The second step consists in 
using the first line of  (B. 1) to reexpress this middle piece as a linear combination of  
diagrams with middle height 1 < 2. This yields Kzp+l after substitution in L2p+I. 

By carefully following the above algorithm, we find the following compact expression 
for the linear combination K2p+l. 

P 
(1A)( 2p+ I )'~ _ 

�9 "2p+l ' - K 2 p  +1 = E ( -  1 ) J ( v ~ ) P - J  E (a) 
j---o ae I~ 

(B.6) 

where the sets Ij C W2p+l,2 are constructed recursively as follows. I0 is the set of  
symmetric diagrams of W2p+l,2. lk is the set of diagrams of W2p+1,2 which may be 
obtained from diagrams in Ik-1 by one box addition, and which are not already elements 
of  some 1k-l ,  1 > 1. One can easily show that card(Ij)  = 2P(P). The reader will 
easily check (B.6) for n = 3, 4, 5, with the previous expressions (B. 1), (B.4), (B.5). The 
expression for K2p+Z is easily obtained by enhancing K2~1 (case (i) above). 

This leads to the relation (5.39) linking the semi-meander polynomial of degree 
(2p + 1) at q = x/2 to the polynomials (5.40) corresponding to the closures of  all 
a E W2p+1,2, at the same value of q 

P 
r~2p+,(vf2) = ~-~(-1)J(v~) p-j ~ ~(a, V~) 

j=O aCIj 

(B.7) 

This proves the conjectured relation (5.39) in the case k = 3,1 = 1. Note also that 
changing x/~ ~ - x / ~  in (B.7) gives an analogous relation in the case k = 3,1 = 2. 

More generally, the element ~(n) = E,~(el, ..., en-1) (4.5) is orthogonal to all the 
elements of  TLn(q = 2 cos 7r/(n + 1)), as a consequence of the identities 

e~ q0~n) = 0 for i = 1 , 2 , . . . , n -  1, 

Y r ~  n) = Un(q = 2 cos 7r 
n + l  ) = 0 ,  

(B.8) 

This permits to express the last line of  Gn(q = 2 cos 7r/(n + 1)) (corresponding to the 
diagram },V~ '~) or equivalently to the element (w~n))l = 1) as a linear combination of  
the (Ca - 1) other lines, corresponding to diagrams with heights < (n - 1), and middle 
height (n - 2). This implies in particular that rn (2 cos 7r/(n + 1)) < c,~ - 1, and agrees 
with the conjectured relation (5.36), which reads here 
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71" 71" 
dn(2 cos 1 ) = 1, rn (2  cos ) = Cn -- 1. (B.9) 

n +  n + l  

For  m > n, En(el , . . . ,  e,~_ l) remains  or thogonal  to all the e lements  of  T L m ( 2  cos 7el(n+ 
1)). This  results in an expression o f  the last l ine o f  Gm(2COS~/(n + 1)) as a l inear 
combina t ion  o f  the (Cn - l )  repea ted  ( m  - n t imes) enhancements  o f  the e lements  
o f  W n , n - l ,  which belong to Win,m-1. For  m = n + l ,  the e lements  o f  the enhanced  
l inear combina t ion  still l ie in W,~,n-1 as only the middle  heights  have  been affected, 
and changed  from (n  - 2) to (n  - 1). Hence  all the l inear combina t ions  corresponding 
to m = kn  + 1 are the trivial enhancements  of  the l inear combina t ion  at m = kn. In 
all the o ther  cases, many reduct ions  must  be applied to the d iagrams to eventual ly get  a 
l inear  combina t ion  o f  e lements  o f  Wm,n-1 only. We will  not  discuss the details o f  this 
m e c h a n i s m  here. 

Appendix C. Proof of the sum rule (6.41) 

b2 
1 2j+2 

a a l  ~ 1  a2 

I "  II k ............ 

a a l  I l  a2 

~~k-1 ...... l//lI k 

0 1 2j+l 2j+2 2n+2 

Fig. 27. The recursion for .(k) The diagram b C Wn+l is represented as an arch configuration, and we have , t n +  1 �9 

represented its leftmost arch, separating its interior piece bl C Wj from its exterior p!ece b2 E Wn .4. The 
(-k) _ ga = 1. The piece al a's C P~+I which are b-symmetric are of either form depicted. In the first case, g~ - 2a+l 

of a between these two points is bi-symmetric, and has its restriction condition lowered by 1: al G P3 ( -k - l )  

(the dashed line represents the g = 0 line in the ai's). There are ~1~ k+l) such couples (al, bl ). In the second case, 

g~ = gzad+l = --1. am is bl-symmetric, but now its restriction condition is raised by I: al E P3 ~.-k+l). There 

are r/? -1) such couples (al, bl). The piece a 2 is bz-symmetric and has its restriction condition unchanged in 

c--k) There are r/(k) couples (a2, b2) both cases: a2 C P~_j �9 n- j  

We wish  to establish the fo l lowing  result  

Z fa 'b=2ncn- -12n+lcn+l  (C.1) 

a,bE Wn 

valid for n _> 1 (we set the number  on the lhs o f  (C.1) to be  1 w h e n  n = 0). By  a 
s imple  rear rangement  of  factorials,  this is readily seen to be  equivalent  to (6.41). Our  
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strategy will be the following. First we write a system of recursion relations linking the 
numbers (C. 1) to other numbers, to be defined below. We proceed and show that this 
set completely determines all the numbers, provided we take some suitable boundary 
conditions. Finally, we solve the system explicitly, and extract back the exact value (C. 1). 

Like in Sect. 6.9, we denote by Pr~ the set of unrestricted walks a, such that g~ = 
g ~  = 0, without the positivity constraint on the ga,s. Let p ( -k )  denote the set of walks 
a E Pn, whose (possibly negative) heights are bounded from below by - k ,  k a given 
nonnegative integer, 

p(-k)  = {a E Pn, s.t. g,'~ = g"~n = 0andg~ _> - k ,  Vi}. (C.2) 

In particular, p(O) = Wn. Note also that if  k _> n, the above restriction amounts to no 
restriction at all, hence p ( -k )  = Pn. We define ~7~ ) to be the total number of couples 
(a, b), a E p ( - k )  and b E W,~, such that a is b-symmetric 

7l~) = E f~,b (C.3) 
aEP(~ -k),  bEW,~ 

and Ek the generating function 

oo 

Ek(x)  = E ~7~) x~" (C.4) 
n=0 

Again, whenever k > n, we simply have 

~(k) E = f~,b = 2 n C,~ (C.5) 
aE P~ , bE Wn 

as shown in (6.101). 
The desired result (C. 1) amounts to writing that 

1 ( C ( 2 x )  - 1 - 2 x ) ,  (C.6)  Eo(x )  = C ( 2 x )  - 8xx 

where C(x) denotes the generating function (5.35)of the Catalan numbers (the subtrac- 
tions in the second term are ad hoc to yield the initial value %(0) = 1). 

Let us now derive a system of recursion relations for the numbers ~(n k). Let us count the 
pairs of  walk diagrams (a E W~+l, b E Wn+~) such that a is b-symmetric. Representing 
b in the arch configuration picture as in Fig. 27, let us concentrate on its leftmost arch, 
connecting the first bridge (1) to, say, the bridge (2j + 2) (the bridge number must clearly 
be even). This arch isolates its interior, corresponding to the bridges 2, 3 ..... (2j  + 1) from 
its exterior, corresponding to the bridges (2j  + 3) ..... (2n + 2): these two sets of  bridges 
cannot be connected to each other. Let us now count the a ' s  which are b-symmetric, 
and consider an a E Wn+l, such that fa,b = 1. The part al of  a corresponding to the 
interior bl of the leftmost arch of b is symmetric w.r.t, this piece of  b. The same holds 
for the part a2 of a corresponding to the exterior b2 of this arch, which may be simply 
seen as a walk with 2(n - j )  steps, i.e. an element of  Wn- j .  In addition, we also have 
~ - g~) = 1 = g~j+l - -  g~j+2 by symmetry w.r.t, the leftmost arch of b, which implies that 
g~ = g~j+l = 1, while g~ _> 0 for i = 1 , 2 , . . ,  2 j  + 1. Therefore, by a trivial translation of 
the heights and bridge numbers g~ = gi+l - 1, the part of  a corresponding to the interior 
of  the arch may be seen as a walk of (2j) steps with g~' = gzaj ' = 0, but with the constraint 
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that g~' _> - 1  for i = 0, 1, ..., 2j,  hence as an element of pj(-1). Conversely, we may 

build any a which is b-symmetric by the juxtaposition of a walk in p)- l )  and one in 
Wn-j, with the respective conditions that they are b-symmetric w.r.t, the corresponding 
portions of b, and elevating the interior portion by shifting the ga's of p ! - l )  by +1, and 
adding g~ = g~j+2 = 0. This is summarized in the following recursion relation: 

n 
~(0) _-- ~ ~(1)~(0) 
"tln+l ~ l l j  ' l l n_  j �9 

j--o 
(C.7) 

(k) , More generally, the same reasoning applies to r/n+1 with the result (see Fig. 27) 

r/(k) ~ k+l) ~(k- 1)~ ~(k) 
n+l = (r/5 + " j  ) " n - - j ,  

j---0 
(c.8) 

where two situations may now occur for the part of a corresponding to the interior of the 
arch: either g~ = g2~+l = 1, in which case the restriction condition on a is lowered by 1 

(term r/~k+l)), or g~ = gEaj+l --- --1, which may occur as soon as k >_ 1, in which case the 

restriction condition is raised by 1 (term r/~k-1)). The exterior part of a is unaffected and 

keeps the restriction condition at level - k  (term r/,~(k)_j). We may take (C.8) as generic 

recursion relation, also valid for k = 0, provided we define 77(--1) - -  0 for all n _> 0. In 
addition to this boundary condition, we set r/(k) = 1 for all k (there is exactly one walk 
diagram of 0 steps, with go = 0, whatever the restriction k). 

The recursion relations (C.8) together with the boundary conditions 

r/(--1) -~ 0 ?7(0 k) = 1 (C.9) 

determine all the numbers r/~) completely. Indeed, (C.8) expresses r/n+1 in terms of r/j, 
j < n, hence by repeated applications, we may express all the numbers ~(k) in terms of 

_ _  t/n 

collection of numbers r/(0 k). This establishes the uniqueness of the solution to (C.8), the 
(C.9) provided it exists. To show the existence, we next exhibit the solution explicitly. 
It is best expressed in terms of the generating functions Ek(x) (C.4), in terms of the 
variable 

C(2x)2 - 1 ~ x~ y = = 2 n-I  c n (C.10) 
n=l  

easily invertible as 
Y x - - -  (C.11) 

(2y + 1) 2 

by use of (5.35). The general solution reads 

E2k(x) = 2 y + l - -  

E2k+l(x) = 2 y + l - -  

y + l  

Uk(1/y)Ua+I( I /y) 
(2y + 1)(y + 1) 

y(Uk(1/y) + Uk+l(1/y) ) (Uk+l(1/y) + Uk+2(1/y) ) 
(C.12) 
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where Uk(z) denote the Chebishev polynomials (4.2). Note in particular that for k = 0, 
we recover Eo(x) = 1 + 2y - y(y + 1) = 1 + y - y2, which yields the desired result (C.6), 
and therefore proves (C. 1). The first few generating functions read 

Eo(x) = 1 + y - y2, 

(1 - y)(2y + 1) 2 
El(x )  = l + y - y  2 

1 + y - 2y 2 - y3 
E2(x) = 

1 - y  

(1 - 2y2)(2y + l) 2 
E3(x) = 

(1 + y - y2)(1 + y - 2y 2 - y3)" 

(C.13) 

Note also that the expressions (C.12) make it clear that the Ek(x )  converge uniformly 
towards (2y + 1) = C(2x) when k ~ oc, for small enough x (indeed, when expanded 
at small y, (C.12) reads Ek(x)  = 2y + 1 + O(y k+l) ~ 2y + 1 when k ~ c~). This 
is not surprising, as letting k tend to infinity amounts to progressively removing the 
constraints on the counted paths, whose numbers tend to 2ncn (they are actually exactly 
equal to this for all n _< k), and 2y + 1 = C(2x)  is precisely the generating function for 
unconstrained paths. 

To prove (C. 12), let us rephrase the recursion relations (C.8) in terms of  generating 
functions. We have 

E k(x )  - 1 = x E k  (x)  (Ek+ l(X) -I- E k_ l(X)), (C.14) 

where we have used the boundary condition ~7r k) = 1 ~ Ek (0) = 1. The remainder of  
(C.9) implies that 

E - I ( x )  = O. (C.15) 

It is now a straightforward but tedious exercise to check that (C. 14) is satisfied by (C. 12). 
For odd k = 2p + 1, we have 

1 - x(E2p+2(z)+E2p(z)) 

2y y(y  + 1) Up+2(1/y) + Up( l /y )  
= 1  - - + - -  

2y + 1 (2y + l) 2 Up(1/y)Up+l(1/y)Up+z(1/y) 

1 y + l  
- -  + 

2y + 1 ( 2 y +  1)2Up(1/y)Up+2(1/y) 

(2y + 1)Up(1/y)Up+2(1/y) + y + 1 

(2y + 1)2Up(1/y)Up+2(1/y) 

, ( C . 1 6 )  

where, in the second line, we have used the recursion relation (4.1). On the other hand, 
we compute 

1 y(Up + up+l)(u. ,  + up+2) 

E2p+l(X) (2y + 1 ) (y (Up  + U p + , ) ( U p + l + U p + 2 ) - f f - 1 )  
(C.17) 

Using the multiplication rule 
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m+k 
Uk(t) U.~(t) = E Uj(t) (C.18) 

j=lm-kb 
j=m+k mod 2 

easily proved by recursion, and implying in particular that U2I  = UpUp+2 + 1, we 
reexpress 

(Up(t) + Up+l(t)) (Vp+l(t) + Vp+2(t)) 

= Vp+l(Vp + Up+2) + Vp2+l + VpUp+2 

= (t + I)U2+I + UpUp+2 

= (t + l)(UpUp+2 + 1) + UpUp+2 

= (t + 2)Up(t)Up+2(t) + t + 1 

(C.19) 

by various applications of (4.18) Substituting this into (C.17), with t = l / y ,  this gives 
exactly (C.16), thus proving (C.14) for k = 2p + 1. 

For even k = 2p, we have 

1 -- X (E2p+l (x)+E2p_ l(X)) 

1 

2y+ 1 

1 

2y + 1 y(2y + 1)(Up_l + Up)(Up+l + Up+2) 

-- (Up-1 + Up)(gp+l + Up+2) + (y + 1) /y  

(2y + l ) ( g p - 1  + gp)(Up+l + Up+2) 

y + 1 up_~ + up + up+l + up+2 

2y + 1 (Up-1 + Up)(U v + Up+t)(Uv+t + Uv+2) 
y + l  (C.20) 

We then compute 

(Uv_l(t)+Uv(t))(Up+l(t) + Uv+2(t)) + t + 1 

= (Up_lUp+l +UpUp+2) +Up-lUp+2+UpUp+l + t +  1 

= (tUpUv+I - 1) + (UpUp+1 - U1) + UpUp+t + t  + 1 

= (t + 2)Uv(t)Up+l(t) 

(C.21) 

Finally, we write 

1 Up(1/y)Uv+l(1/y)  

E2p(x) (2y + 1)Up(1/y)Up+,(1/y) - y - 1 
(C.22) 

which, upon the substitution of (C.21), with t = i / y ,  is equal to (C.20). This completes 
the proof of (C.14) for k = 2p. 
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