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Abstract

If the particles produced in a nuclear collision undergo collective flow,

the reaction plane can in principle be determined through a global event

analysis. We show here that collective flow can be identified by evaluating the

reaction plane independently in two separate rapidity intervals, and studying

the correlation between the two results. We give an analytical expression

for the correlation function between the two planes as a function of their

relative angle. We also discuss how this correlation function is related to the

anisotropy of the transverse momentum distribution.
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1 Introduction

In searching for evidence of the formation of quark–gluon plasma in ultrarelativistic
nucleus–nucleus collisions, one is led to address the question whether the matter
produced in these collisions can be considered, at least locally, to be in thermal
equilibrium. Local equilibrium implies that the matter behaves collectively, which
may have observable consequences. When collective flow is present, the evolution
of the system is determined by the pressure gradient, and is therefore strongly
influenced by geometrical factors (nuclear size, impact parameter...). Effects of
geometry on global event shapes have made possible the detection and the study of
collective flow of nuclear matter at colliding energies up to 1 GeV per nucleon[1].
However, few such studies have been undertaken at ultrarelativistic energies, and
no conclusion has been drawn so far[2].

Most analyses at intermediate energies have been concerned with the determi-
nation of the flow direction, which is the direction of maximum kinetic energy flow.
However, the flow angle (angle between collision axis and flow direction) decreases
with increasing energy and cannot be measured at ultrarelativistic energies; this is
because longitudinal momenta are much larger than transverse momenta. When
it can be measured, the flow direction gives an experimental determination of the
reaction plane, which is the plane spanned by the collision axis and the impact
parameter. The latter can also be determined independently by measuring the
transverse momentum transfer between target and projectile regions[3]. Although
this method has not been successful at SPS[2], it has been recently argued that it
should give results with heavy nuclei[4].

Since the flow direction merges with the collision axis at ultrarelativistic ener-
gies, whether or not there is collective behavior, evidence for collective flow should
rather be sought for in the transverse directions. Note further that while analy-
ses carried out at intermediate energies are mostly concerned with nucleons, the
large number of mesons created at ultrarelativistic energies in the central rapidity
region offers an opportunity to study collective flow, not only of spectators and/or
participant nucleons, but also among the produced particles. Starting from these
observations, we have proposed a new signature in a previous work[5]. The idea is
that for peripheral collisions, the region where nucleon–nucleon collisions take place,
when projected onto the transverse plane, is anisotropic: it has a smaller size in the
direction of impact parameter than in the perpendicular direction. This causes the
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matter produced in the central rapidity region to flow preferentially in the direc-
tion of the impact parameter, which results in a corresponding anisotropy of the
transverse momentum distribution. This anisotropy should increase with impact
parameter.

We propose to study collective flow in the plane orthogonal to the principal flow
direction (here, the collision axis). This has also been done at lower energies[6],
where it was found that matter escapes preferentially in the direction orthogonal
to the reaction plane. This was referred to as the squeeze–out effect. By contrast,
we predict a larger flow in the reaction plane. However, this is only an apparent
contradiction since the effects that come into play are very different[7]. Squeeze–out
results from an interaction between the participant nucleons, which try to escape
the fireball, and the spectators which block their path in the reaction plane. But
at ultrarelativistic energies, the time it takes for the nuclei to cross each other is
so short that the particles produced in the central rapidity region do not “see”
the spectators. Anisotropy results from the interaction of particles in the central
rapidity region among themselves.

The main problem one usually encounters in global analyses is that fluctuations
occur due to the finite multiplicity, which may hide collective effects[8]. In this
article we would like to show how statistical and dynamical effects can be separated
in the anisotropy analysis. The idea is that in a given event, one can perform
two measurements of the reaction plane by doing global analysis with two separate
subsets of the emitted particles (by selecting for instance the particles produced in
two separate rapidity intervals). Then the difference between the two results gives
a direct measure of the dispersion due to statistical fluctuations.

In section 2 we recall the definitions of the variables we use in the global analysis[5].
In section 3 we give a general discussion of finite multiplicity fluctuations. The main
results are contained in section 4 where we calculate, under quite general assump-
tions, the correlation function between the two measurements of the reaction plane.
We show how to measure the ratio of dynamical to statistical effects directly from
the experiment. In section 5 we show how this can be used to isolate the dynamical
part in the anisotropy. The relevance of this work to current and future experiments
is discussed in section 6.

3



2 Global analysis

In flow analyses, an event is characterized by means of global observables describing
its shape. At ultrarelativistic energies, we are only interested in the transverse
directions. We therefore define the 2 × 2 transverse sphericity[9] tensor S⊥ by

S⊥

ij =
M
∑

ν=1

w(ν)ui(ν)uj(ν) (1)

where (u1(ν), u2(ν)) is the unit vector parallel to the transverse momentum of the
νth particle, w(ν) is a weight, and the sum runs over all the particles detected in a
given rapidity interval. If there is no particle identification, w(ν) can be chosen to
be equal to some function of the transverse energy ET (ν) deposited by the particle
in the calorimeter, for instance w(ν) = Eβ

T (ν), with β equal to some real constant.
Collective flow usually results not only in a larger number of particles emitted in
the flow direction, but also in a higher energy per particle in this direction, so that
β should be taken positive, for instance β = 1. Which is the best weight to consider
should be determined on the basis of a more careful analysis. However, the results
which are presented here do not depend on such details.

S⊥

ij has three independent components and is therefore fully determined by its
two eigenvalues f1 and f2 (we choose f1 ≥ f2) and the angle θ between the x–axis
and the eigenvector associated with f1, with −π/2 ≤ θ ≤ π/2. Instead of f1 and f2

we choose the variables E and α defined by

E = trS⊥ = f1 + f2

α =
f1 − f2

f1 + f2

(2)

S⊥ can then be expressed as a function of E , α and θ :

S⊥ =
E
2

(

1 + α cos 2θ α sin 2θ
α sin 2θ 1 − α cos 2θ

)

(3)

α measures the relative difference between the eigenvalues of S⊥, i.e. the anisotropy
of the momentum distribution. As we said in the introduction, collective flow results
in anisotropy for peripheral collisions[5]. Hydrodynamical calculations predict that α
decreases linearly with the multiplicity or the transverse energy (which are measures
of the impact parameter). The highest value of α, obtained for very peripheral
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collisions, is about 0.25 to 0.3 for a Pb–Pb collision, and slightly less, about 0.2, for
a S–W collision.

There is a larger flow in the direction of the impact parameter than in the
direction perpendicular to the reaction plane[6]. Thus we expect that the principal
axis associated with the larger eigenvalue f1 is the direction of the impact parameter.
Since S⊥ is directly measurable, this in turn gives an experimental measurement of
the orientation of the reaction plane. However, this estimate is reliable only if the
measured anisotropy originates from collective flow. Statistical fluctuations related
to the finite multiplicity also generate anisotropy, which must be disentangled from
the dynamical anisotropy created by collective behavior. It is the purpose of this
article to show how this can be done experimentally.

3 Finite multiplicity fluctuations

Macroscopically, a collision between two spherical nuclei is fully characterized by
the colliding energy and the impact parameter. However, particle emission is the
result of microscopic processes (parton–parton or nucleon–nucleon collisions) which
are not described by these macroscopic variables. For fixed energy and impact
parameter, this results in statistical fluctuations of global macroscopic quantities
such as the sphericity tensor S⊥

ij . Now, since particles are created independently at
different points in the system, it is reasonable to assume that S⊥

ij is the sum of a
large number of independent random contributions. Then the central limit theorem
states that the probability law of S⊥

ij is gaussian. To avoid having to deal with too
many indices, we rearrange the three independent components of S⊥

ij into a 3-vector
S whose components Si are defined as

S1 = S⊥

11 + S⊥

22 = E
S2 = S⊥

11 − S⊥

22 = Eα cos 2θ (4)

S3 = 2S⊥

12 = Eα sin 2θ.

The most general gaussian probability distribution for Si is of the form

dP

dS1dS2dS3

∝ exp
[

−
(

tS − tS̄
)

T−1
(

S − S̄
)

/2
]

(5)
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where S̄ = 〈S〉 is the average value of S and T is the 3×3 covariance matrix defined
by

Tij = 〈SiSj〉 − S̄iS̄j. (6)

If one considers two independent random variables S and S ′ with gaussian proba-
bilities such as (5), with respective covariance matrices T and T ′, the probability of
S+S ′ is gaussian, with a covariance matrix equal to T +T ′. Thus Tij is proportional
to the number of particles M used in the analysis.

Since the system is symmetric with respect to the reaction plane for spherical
nuclei, so must be the probability (5). We choose x to be the direction of the impact
parameter. Then the symmetry with respect to the reaction plane changes θ into
−θ. Eq.(5) is invariant under this transformation if

S̄3 = 0

T13 = T23 = 0. (7)

Thus S̄ depends only on two parameters

S̄1 = Ē
S̄2 = Ē ᾱ. (8)

ᾱ represent the anisotropy associated with S̄, that is the anisotropy in the emission
law. Although S̄ is the average value of S, ᾱ is in general not equal to the average
value of α, 〈α〉 : for an isotropic emission, ᾱ = 0, but in general α > 0 with
a finite number of particles. While ᾱ represents the anisotropy associated with
macroscopic effects, for instance with collective flow, the average value 〈α〉 also
receives a contribution from finite multiplicity fluctuations.

If the emission is weakly anisotropic, i.e. if ᾱ ≪ 1, the covariance matrix T is ap-
proximately the same as for an isotropic distribution. For an isotropic distribution,
the probability (5) must be invariant under rotations, that is under transformations
θ → θ + θ0 with θ0 fixed. This implies

T12 = 0

T22 = T33. (9)

Then the probability (5) can be integrated over E with the result[5]

dP

dαdθ
=

4α

πσ2
exp

(

− ᾱ2 + α2 − 2αᾱ cos 2θ

σ2

)

(10)
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with

σ =

√
2T22

Ē . (11)

σ is the order of magnitude of the anisotropy created by statistical fluctuations
alone, as can be seen easily if ᾱ = 0: the probability distribution for α, apart from
the preexponential factor α which arises from the jacobian transforming (α, E , θ)
into (S1, S2, S3), is a gaussian of width σ/

√
2. Note that since both T22 and Ē are

proportional to the number of particles M used in the analysis, σ scales like 1/
√

M .
For an uncorrelated emission of identical particles, one finds σ = (1/

√
M)〈w2〉/〈w〉2,

where w is the weight of the particle in the sphericity tensor, Eq.(1). We have chosen
to normalize Eq.(10) to unity in the interval [0, π/2] (rather than [−π/2, π/2] because

the function is even), that is
∫ π/2

0 dθ
∫ 1

0 dα(dP/dαdθ) = 1. This will be checked below.

It is convenient to express the probability as a function of the scaled quantities

χ = α/σ and χ̄ = ᾱ/σ (12)

Eq.(10) becomes then

dP

dχdθ
=

4χ

π
exp

(

−χ̄2 − χ2 + 2χ̄χ cos 2θ
)

(13)

This equation only involves the dimensionless parameter χ̄, which will play a crucial
role in our analysis. Physically, χ̄ represents the ratio of the anisotropy ᾱ generated
by dynamical collective effects to the typical anisotropy σ yielded by statistical
fluctuations. Note that strictly speaking, Eq.(13) also involves the parameter σ
since χ varies from 0 to 1/σ. However, σ ≪ 1 for a large system and the probability
(13) decreases exponentially for χ ≫ 1. Thus we will let χ vary from 0 to +∞ when
we integrate over χ.

Eq.(13) can be integrated over θ using the modified Bessel function I0 defined in
Eq.(A.2). One gets then the distribution of the scaled anisotropy χ:

dP

dχ
= 2χ exp(−χ̄2 − χ2)I0(2χ̄χ). (14)

To check that this distribution is normalized to unity, we integrate (14) by parts
and use the relation I1(z) = dI0/dz. Then the formula

∫

+∞

0

exp(−χ2)Iν(2χ̄χ)dχ =

√
π

2
exp(χ̄2/2)Iν/2(χ̄

2/2) (15)
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with ν = 1 gives the result, using the fact that I1/2(z) = 2 sinh z/
√

2πz.

In principle, the distribution (14) can be compared to the experimental distri-
bution of the anisotropy α: χ̄ and the scale factor σ can be fitted so as to obtain
the best agreement with the data. However, this may be difficult in practise, as we
are going to see shortly. Fig.1 displays (1/χ)(dP/dχ) (that is the distribution (14)
divided by the factor χ arising from the jacobian), for three values of the parameter
χ̄. For χ̄ = 0 (no collective flow), this quantity would be a gaussian of width 1/

√
2

centered at χ = 0 as can be seen from Eq.(14). On the other hand, if χ̄ > 1, one
easily shows that (1/χ)(dP/dχ) reaches its maximum at a non vanishing value of
χ, which becomes closer to χ̄ as χ̄ increases. This can be used[5] as a signature
of collective flow. If χ̄ < 1, however, the maximum is reached at χ = 0 and the
distribution is very close to a gaussian as illustrated in Fig.1 for χ̄ = 0.5. Thus, the
effect of χ̄ is simply to increase the width of the χ-distribution, compared to χ̄ = 0.
Since the α distribution has the same shape as for χ̄ = 0, it is impossible to extract
χ̄ from the anisotropy distribution alone.

Eq.(13) can also be integrated over χ, which yields the probability distribution
of the angle θ

dP

dθ
=

2

π
exp(−χ̄2)

{

1 +
√

πχ̄ cos 2θ [1 + erf(χ̄ cos 2θ)] exp
(

χ̄2 cos2 2θ
)}

(16)

where

erf(x) =
2√
π

∫ x

0

e−t2dt (17)

is the standard error function. dP/dθ is a decreasing function of θ. If statistical
fluctuations are large compared to the dynamical anisotropy, that is if χ̄ ≪ 1,
Eq.(16) reduces to

dP

dθ
=

2

π

(

1 +
√

πχ̄ cos 2θ
)

+ O(χ̄2). (18)

The anisotropy results here in a small deviation, with amplitude proportional to χ̄,
from the constant value corresponding to isotropic emission. On the other hand, in
the limit where χ̄ ≫ 1 (strong anisotropy), Eq.(16) becomes

dP

dθ
=

4χ̄√
π

exp
(

−4χ̄2θ2
)

. (19)
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In this case, the probability is a gaussian of width 1/(2
√

2χ̄) ≪ 1, centered at θ = 0.
Note that Eq.(16) is of little practical use : θ is measured from the x–axis which we
have chosen, in this section, to be the direction of impact parameter x. But since
there is no direct access to this direction in the experiment, θ, unlike α, is not an
observable. We do not get any physical information from θ unless it is correlated
with another independent evaluation of the reaction plane.

4 Reaction plane correlations

If one measures the reaction plane from S⊥ in two separate rapidity intervals with the
same multiplicity, one obtains two angles θ1 and θ2 (measured from an arbitrary fixed
direction) which are two measurements of the reaction plane. The determination is
reliable only if θ1 and θ2 are strongly correlated. In this section, we calculate the
probability distribution dPcorr/dθ of the relative angle θ ≡ θ1−θ2. If this probability
is flat, θ1 and θ2 are uncorrelated and no conclusion can be drawn concerning the
occurrence of collective flow. We expect this to be the case if anisotropy is small or
statistical fluctuations are large, that is if χ̄ ≪ 1. If, on the other hand, χ̄ ≫ 1, we
expect dPcorr/dθ to be strongly peaked at θ = 0.

We shall assume that the rapidity intervals are well separated, so that there is
no correlation between them, and consider the two corresponding sphericity tensors
as statistically independent. Then θ1 and θ2 are two independent random variables.
We further assume that macroscopic quantities (fluid velocity, energy density) are
invariant under Lorentz boosts along the collision axis[10] and postpone the discus-
sion of this point to section 6. Since the sphericity tensor S⊥ involves transverse
coordinates only, it is also boost invariant. Thus ᾱ and σ are the same for both
rapidity intervals and θ1 and θ2 have the same probability distribution, given by
Eq.(16). The correlation function is then given by

dPcorr

dθ
=

1

2

∫ π/2

−π/2

dθ1

∫ π/2

−π/2

dθ2

dP

dθ
(θ1)

dP

dθ
(θ2) δ(θ − θ1 − θ2)

=
1

2

∫ π/2

−π/2

dθ1

dP

dθ
(θ1)

dP

dθ
(θ1 − θ) (20)

where dP/dθ is given by Eq.(16). The factor 1/2 normalizes dPcorr/dθ to unity
between 0 and π/2.
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The integration can be carried out analytically (see Appendix A), which yields
the result

dPcorr

dθ
= e−χ̄2

{

2

π
(1 + χ̄2) + χ̄2

[

cos 2θ (I0 + L0)(χ̄
2 cos 2θ)

+(I1 + L1)(χ̄
2 cos 2θ)

]}

(21)

where I0 and I1 are modified Bessel functions of the first kind and L0 and L1 are
modified Struve functions. Eq.(21) reduces to

dPcorr

dθ
=

2

π
+ χ̄2 cos 2θ (22)

if χ̄ ≪ 1, and to

dPcorr

dθ
=

√

8

π
χ̄ exp(−2χ̄2θ2) (23)

if χ̄ ≫ 1. These asymptotic forms can be deduced directly from Eqs.(18), (19) and
(20). Note that for small χ̄, the correlations (deviations from a flat probability)
are of order χ̄2. Thus, when statistical fluctuations become larger than dynamical
effects, correlations decrease very quickly. On the other hand, if χ̄ ≫ 1, dPcorr/dθ is
the convolution of two identical gaussians (19), that is a gaussian of width 1/(2χ̄).
The correlation function given by Eq.(21) is displayed in Fig.2 for three values of χ̄,
together with the approximations (22) and (23). One sees that these approximations
are very good for χ̄ ≤ 0.5 and χ̄ ≥ 2 respectively.

A measure of the correlation strength is obtained by forming the ratio of the
number of events with θ > 45◦ to the number of events with θ < 45◦. This ratio
is equal to 1 if there is no correlation between reaction planes and vanishes if they
are strongly correlated. Integrating Eq.(21) over θ, one obtains a simple analytic
expression for this ratio (see Appendix A):

Nθ>45◦

Nθ<45◦
=

∫ π/2

π/4

dPcorr

dθ
dθ

∫ π/4

0

dPcorr

dθ
dθ

=
1

2 exp(χ̄2) − 1
. (24)

This quantity is displayed in Fig.3 as a function of χ̄. As expected, it decreases from
1 to 0 when χ̄ goes from 0 to +∞. One observes that this ratio differs significantly
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from unity already for modest values of χ̄, so that collective effects should be seen
easily by measuring reaction plane correlations. Any deviation of dPcorr/dθ from a
constant value can be attributed to collective flow (within our hypotheses), which
makes this signature less ambiguous than that associated with the distribution of
anisotropy (see Fig.1 and the corresponding discussion in section 3).

The ratio in Eq.(24) can be measured directly, and from its value one deduces the
value of χ̄. One may then check whether Eq.(21) reproduces the observed behavior
of the correlation function.

5 Relation to anisotropy

The correlation between reaction planes clearly does not exhaust all the information
we get from the sphericity tensor analysis. We also have a measurement of the
anisotropy α. The value of χ̄ one gets from the analysis of plane correlations fixes
the shape of the χ distribution, using Eq.(14). In order to get the α distribution,
the scale factor σ is required (see Eq.(12)). As we shall see shortly, this quantity
can be determined through the measured average value of α, which we denote by
〈α〉. It is directly proportional to σ.

When we studied reaction plane correlations in section 4, only half of the de-
tected particles (at most) could be used to construct the sphericity tensor since
we needed two independent evaluations of the reaction plane in each event. On
the other hand, when measuring the anisotropy distribution, it is better to use all
the particles detected in the central rapidity region, in order to minimize statistical
fluctuations. Then the value of χ̄ which has been determined from reaction plane
correlation cannot be used directly in analyzing the α-distribution. Since σ scales
like 1/

√
M and ᾱ is independent of M , χ̄ must be scaled like

√
M . If, for instance,

the set of measured particles is divided into two approximately equal subsets for the
measurement of reaction plane correlations, and then used as a whole for measuring
the anisotropy distribution, the value of χ̄ must be multiplied by

√
2.

Let us now calculate the average value of α:

〈α〉 = σ〈χ〉 = σ

∫

χ(dP/dχ)dχ
∫

(dP/dχ)dχ
(25)

The denominator of this expression is equal to unity since dP/dχ given by Eq.(14) is
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normalized to unity. To calculate the numerator, we integrate Eq.(14) by parts and
use the relation dI1/dz = (I0(z) + I2(z))/2 and Eq.(15) to calculate the remaining
integrals. The result is

〈χ〉 =

√
π

2

[

(1 + χ̄2)I0(χ̄
2/2) + χ̄2I1(χ̄

2/2)
]

exp(−χ̄2/2). (26)

Thus, if one measures χ̄ and 〈α〉, the last two equations gives the scale factor σ and
thus ᾱ = σχ̄. From Eq.(25) one gets immediately

ᾱ

〈α〉 =
χ̄

〈χ〉 . (27)

This quantity is displayed in Fig.4. For small anisotropy, χ̄ ≪ 1, the χ distribution
(14) is gaussian and one gets

ᾱ

〈α〉 ≃ 2√
π

χ̄. (28)

In this case most of the observed anisotropy results from fluctuations and the dy-
namical component ᾱ is only a small fraction of the average anisotropy. On the
other hand, for χ̄ ≫ 1, statistical fluctuations become negligible and the average
anisotropy 〈α〉 is close to ᾱ. Asymptotically,

ᾱ

〈α〉 ≃ 1 − 1

4χ̄2
. (29)

Once ᾱ and σ are determined, the measured α distribution can be compared to the
theoretical prediction, Eq.(14).

6 Discussion

Let us recall and discuss the hypotheses on which our calculations are based. The
first hypothesis was made at the beginning of section 3, where we assumed that the
sphericity tensor Sij has a gaussian distribution. This is true if it can be considered
as the sum of a large number of independent sources, which is a reasonable assump-
tion if the nucleon–nucleon collisions creating the particles are incoherent. However,
deviations from this behavior can occur due to jets, which result in strongly corre-
lated, strongly anisotropic emission of particles. At very high energies, for instance
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at LHC, one expects a large number of jets per event, and pairs of jets can be
considered independent so that our statement holds : the only consequence is that
the number of independent sources is the number of jets rather than the number of
produced particles, so that we expect larger statistical fluctuations. On the other
hand, if only a few jets (say, one or two) are produced in each event, which may be
the case at lower energies, significant deviations from the gaussian distribution may
occur. These would cause deviations of the anisotropy and angle distributions from
the shapes predicted by our model, given by Eqs.(14) and (21).

The second hypothesis was made in section 4 where we treated the sphericity
tensors measured in two separate rapidity intervals as independent variables. This
is not strictly true if the rapidity intervals are too close to each other : for instance,
a resonance decay or a pair of jets can give contributions to both rapidity intervals.
This can be avoided by taking two remote rapidity intervals. This will be possible at
RHIC and LHC if detectors have a large rapidity acceptance. In current experiments
at CERN and Brookhaven, the rapidity window is not so large and one may be
constrained to work with adjacent rapidity intervals. One may check directly, as a
test of statistical independence, that the value of χ̄ deduced from the analysis indeed
scales like

√
M , with M the number of particles used in the analysis.

We also assumed in section 4 that the probability distribution of S⊥ was the same
for both rapidity intervals as a consequence of Bjorken’s scenario[10] for the fluid
evolution. This scenario is known to be unrealistic in current experiments since
the measured rapidity distributions are not flat. However, this hypothesis is not
crucial here. It simplified the calculations since we used the same value of the scaled
anisotropy χ̄ for both rapidity intervals. Without this hypothesis, we wouldn’t have
obtained analytical expressions, but the qualitative ideas would remain the same.
In particular, the correlation between reaction planes could still be used to identify
collective flow. Note further that recourse to Bjorken’s scenario can be avoided for
a symmetric collision: if the two rapidity intervals are chosen symmetric of each
other in the center of mass frame, they are equivalent by symmetry and the value
of χ̄ is the same for both. Even more generally, it is reasonable to assume that the
anisotropy ᾱ depends only weakly on the rapidity since it is not much affected by the
longitudinal expansion[5]. If the two rapidity intervals have the same multiplicity,
the statistical fluctuations σ should also be comparable and therefore there is no
reason for χ̄ to change drastically from one rapidity interval to another.

Although one must be careful in applying our results according to the above dis-
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cussion, reaction plane correlations appear to provide a powerful tool for identifying
collective flow. The ratio defined in Eq.(24) is very sensitive to collective effects:
for χ̄ = 0.3, this ratio is about 0.85, and such a deviation from unity would be seen
clearly in an experiment. We have shown[5] that the anisotropy distribution alone
should allow to identify collective flow at AGS and SPS with heavy nuclei (Au or Pb
projectiles). With the plane correlation method presented here, the possibility is not
excluded that collective effects could be seen with lighter projectiles, for instance
with 32S or 40Ca beams on heavy targets.
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Appendix A: Derivation of the correlation function

Inserting Eq.(13) in Eq.(20) one may write the correlation function in the form

dPcorr

dθ
=

8

π2
exp(−2χ̄2)

∫ +∞

0

χ1dχ1

∫ +∞

0

χ2dχ2 exp
(

−χ2
1 − χ2

2

)

(A.1)

×
∫ π/2

−π/2

dθ1 exp [2χ̄χ1 cos 2θ1 + 2χ̄χ2 cos 2(θ1 − θ)]

This can be integrated over θ1 by using the modified Bessel function I0:

∫ π/2

−π/2

dθ1 exp (A cos 2θ1 + B sin 2θ1) = πI0

(√
A2 + B2

)

(A.2)

This gives

dPcorr

dθ
=

8

π
exp(−2χ̄2)

∫ +∞

0

χ1dχ1

∫ +∞

0

χ2dχ2 exp
(

−χ2
1 − χ2

2

)

× I0

(

2χ̄
√

χ2
1 + χ2

2 + 2χ1χ2 cos 2θ
)

(A.3)
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Introducing polar coordinates in the (χ1, χ2) plane, defined by χ1 = r cos φ, χ2 =
r sin φ, with r ≥ 0 and 0 ≤ φ ≤ π/2, the integral over r is of the type

∫ +∞

0

dr r3 exp(−r2)I0(ar) =
1

2

(

1 +
a2

4

)

exp

(

a2

4

)

(A.4)

as may be checked by expanding I0. Eq.(A.3) thus becomes

dPcorr

dθ
=

2

π
e−χ̄2

∫ π/2

0

dφ sin 2φ
[

1 + χ̄2 (1 + sin 2φ cos 2θ)
]

× exp
(

χ̄2 sin 2φ cos 2θ
)

(A.5)

Note that the integrand is invariant under φ → π/2 − φ, which reflects the fact
that χ1 and χ2 play symmetric roles in Eq.(A.1). The integration range can then
be restricted to the interval [0, π/4]. Making the change of variables π/2− 2φ → φ,
the integral can be expressed in terms of the modified Bessel functions

I0(z) =
2

π

∫ π/2

0

cosh(z cos φ)dφ

I1(z) =
2z

π

∫ π/2

0

sin2 φ cosh(z cos φ)dφ (A.6)

and the modified Struve functions[11] L0(z) and L1(z) which have expressions similar
to I0 and I1, with cosh replaced by sinh. After an integration by parts, Eq.(A.5)
yields the result

dPcorr

dθ
= e−χ̄2

{

2

π
(1 + χ̄2) + χ̄2

[

cos 2θ (I0 + L0)(χ̄
2 cos 2θ)

+(I1 + L1)(χ̄
2 cos 2θ)

]}

(A.7)

identical to Eq.(21). Let us check that this expression is normalized to unity when
integrated from 0 to π/2. the functions cos 2θI0(χ̄

2 cos 2θ) and I1(χ̄
2 cos 2θ) are odd

in cos 2θ and thus do not contribute to the integral. Using the relations I1(z) =
dI0/dz and L1(z) = dL0/dz + 2/π and the definitions (A.6), the integrals of Struve
functions can be expressed in terms of integrals of Bessel functions, which can be
found in the literature or calculated directly by power series expansion:

∫ π/2

0

dθ L1(χ̄
2 cos θ) = −1 +

∫ π/2

0

dφ cosφI0(χ̄
2 cos φ)

= −1 +
sinh χ̄2

χ̄2
(A.8)
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and

∫ π/2

0

dθ cos θ L0(χ̄
2 cos θ) =

∫ π/2

0

dφ cosφI1(χ̄
2 cos φ)

=
cosh χ̄2 − 1

χ̄2
. (A.9)

Normalization of the probability (A.7) follows immediately.

Let us finally calculate the ratio defined in Eq.(24). Since the correlation function

(A.7) is normalized to unity, we only need to calculate
∫ π/2

π/4
(dPcorr/dθ)dθ. On this

interval, all the terms in Eq.(A.7) give a non vanishing contribution. However, using
Eqs.(A.8) and (A.9) one obtains

∫ π/2

π/4

dθ cos 2θ I0(χ̄
2 cos 2θ) = −1

2
−
∫ π/2

π/4

dθ L1(χ̄
2 cos 2θ) (A.10)

and

∫ π/2

π/4

dθ I1(χ̄
2 cos 2θ) = −

∫ π/2

π/4

dθ cos 2θ L1(χ̄
2 cos 2θ) (A.11)

The terms involving Bessel functions and Struve functions in Eq.(21) thus cancel
pairwise in the integration and one gets

∫ π/2

π/4

dPcorr

dθ
dθ =

1

2
exp(−χ̄2), (A.12)

from which Eq.(24) follows immediately.
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Figure captions

Fig. 1 : The solid lines display the values of (1/χ)(dP/dχ), given by Eq.(14),
as a function of χ for three values of the parameter χ̄. The dashed line is an
approximation to the curve χ̄ = 0.5 by a gaussian corresponding to the same average
value 〈χ〉 of χ, calculated from Eq.(26) (see section 5). All curves are normalized to
unity :

∫

+∞

0 (1/χ)(dP/dχ)dχ = 1.

Fig. 2 : Solid lines: correlation function defined by Eq.(21) for three values of χ̄.
Dashed line: Small χ̄ approximation, Eq.(22). Dot-dashed line: large χ̄ approxima-
tion, Eq.(23).

Fig. 3 : Ratio defined in Eq.(24) as a function of the dimensionless parameter χ̄.

Fig. 4 : Solid line: ratio of the “dynamical” anisotropy ᾱ to the measured average
value of α, denoted by 〈α〉, as a function of χ̄. Dashed line: small χ̄ approximation,
Eq.(28). Dot-dashed line: large χ̄ approximation, Eq.(29).
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