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The most general large N eigenvalues distribution for the one-matrix model is shown 1o consist of tree-like structures in the
complex plane. For the m =2 critical point, such a solution describes the strong coupling phase of 2D quantum gravity (¢=0 non-
critical string). It is obtained by taking combinations of complex contours in the matrix integral, and the relative weight of the
contours is identified with the non-perturbative “6-parameter” that fixes uniquely the solution of the string equation (Painlevé
1). This allows to recover by instanton methods results on the non-perturbative effects obtained by the Isomonodromic Defor-
mation Method, and to construct for each #-vacuum the observables (the loop correlation functions) which satisfy the loop
equations. The breakdown of analyticity of the large N solution is related to the existence of poles for the loop operators.

The discovery of the “double scaling solutions” of
the matrix models [1-3] led to important progress
in the understanding of string theories in d< 2 back-
grounds and of 2D gravity (see refs. [4,5] for re-
views ). However, the important issue of the non-per-
turbative status of some of these theories remains
unclear, in particular for 2D gravity coupled to uni-
tary matter for ¢< 1. In this letter, we discuss some of
these questions in the framework of the hermitian
one-matrix models. We shall show that a simple gen-
eralization of the complex integration contour pre-
scription [6,7], which allows to construct non-per-
turbative — but in general complex - solutions of the
string equations and of the continuous loop equa-
tions, leads to real non-perturbative solutions of these
equations. This generalization, which consists in tak-
ing combinations of inequivalent integration con-
tours, has been already discussed by Fokas, Its and
Kitaev [8] in the framework of the isomonodromic
deformation method (IDM) approach to the string
equations [9], but does not seem to have attracted
much attention. Our treatment is based on the BIPZ
solution of the one-matrix model [10], and follows
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our previous analysis of ref. [ 11]. We shall show that
in the limit N—co, new solutions for the eigenvalues
(EVs) distribution exist, which have not been dis-
cussed before. They correspond to a distribution of
EVs along tree-like structures in the complex plane.
Moreover, these solutions depend non-analytically on
the coupling constant of the matrix model, and will
be associated with the sectors with an infinite num-
ber of poles of the string equation solutions. The non-
perturbative parameter which characterizes the non-
perturbative solutions is simply related to the differ-
ent weights chosen for the contours, and our treat-
ment allows to recover easily by instanton methods
some results of refs. [7,8]. In addition, we show that
to each real solution of the string equation is associ-
ated a prescription for the asymptotics of the loop
operators which defines uniquely observables (i.e.
macroscopic loop VEV) which obey the loop equa-
tions. Finally we shall show that these new solutions
allow to explain the properties of the solutions for the
double well matrix models recently discussed by
Brower, Deo, Jain and Tan [12].

In the matrix model formulation of 2D gravity, the
partition function F (sum over orientable connected
2D riemannian spaces ) is discretized into a sum over
triangulations, and is written as the logarithm of the
partition function Z for the hermitian one-matrix
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model (F=In Z), which after diagonalization of the
matrix @ can be written as an EV integral,

Zy=Cu [ T dhexpl -NV(1) 1 (2)?,

An(2;)= ,U, (Ai—4;), (1)
where Cy is a normalization factor, 4, the Vander-
monde determinant and V¥ the matrix potential. The
integral (1) can be calculated in terms of the matrix
elements of the operator Q: 7,(A1)—Am,(A), where the
m, are orthonormal polynomials for the measure
dAdexp[ —NV(A)]. In the double scaling limit, N—co
and V-V iica While x=1—n/N becomes a continu-
ous parameter. Then Q becomes a second order dif-
ferential operator of the form

d2
Q=—E+2u(x), (2)
u is the string susceptibility
9%F
u(t)y=- el (3)

where ¢ is the renormalized cosmological constant.
For the m=2 critical point (pure ¢=0 gravity), ¢
scales with NV as 1~ N*/3 and u satisfies the Painlevé
I string equation
2

-16—2‘ +ul=t, u~/t, to+co. (4)

6 ot
It is known that (4) fixes uniquely the terms of the
asymptotic expansion of u (in powers of ¢ (! ~3)/2)
as t— +oo, but that the corresponding series is not
Borel summable, and that the solutions of (4) form
a one-parameter family of “simply truncated solu-
tions” [13], which differ by exponentially small terms
of the form

Succt= B exp(—2-2/31%4). (5)

The real solutions of (4) have an infinite series of
double poles (with residues 1) on the negative real
axis. If one divides the complex plane into 5 sectors
s=I, .., V (which correspond to (s—1)-%n<
Arg(t) <s-3n), these poles extend to an infinite net-
work of poles in the sectors I1, III and IV, so that the
asymptotics u~ \/t hold only in the two pole-free sec-
torsIand V.
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It was suggested in ref. [6], and shown more pre-
cisely in refs. [11,7,8], that, if one constructs the
m=2 theory by starting from a cubic potential of the
form

V(A)=—=2A3+..., (6)

and defines the integral (1) by choosing as integra-
tion contour for the A,’s the complex contour %, (re-
spectively %_) which goes from —oo to joo (j=
e™/3) (respectively joo), one obtains the “simply
truncated solution” u, (respectively u_) of (4)
which has poles only in the sector II (respectively IV)
and satisfies the asymptotics u~ \/i in the remaining
four pole-free sectors. From these two solutions,
which are analytic on the real axis, one can construct
without ambiguity the operator @ (2), which is not
hermitian anymore, and the loop operators w(p)
[14] (where p is the loop momentum ), which satisfy
the loop equations [6,15,16].

In fact a straightforward generalization of this pre-
scription is to consider linear combinations of the two
contours, i.e. to replace

f di-c, J. di+c_ J‘ di, (7
€+ €+ €¢—

(see fig. 1). Indeed, the partition function Z will still
be real (for real V) if the weight ¢, are complex
conjugate

*if. (8)

Nob—

Ci=

Fig. 1. The three contours for the cubic potential.
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With this prescription, the orthogonal polynomial
method still works, and the recurrence relations (dis-
crete string equations) still hold. Therefore, if the
double scaling limit exists, one should still obtain
some solution of the string equation (4).

As already mentioned, it has been shown in ref, [8],
within the DM approach, that this is indeed the case,
and that there is a one to one correspondence be-
tween the weight ratio ¢, /c_ and the simply trun-
cated solution of (4) which is obtained in the double
scaling limit. To recover this result in the BIPZ ap-
proach, let us consider the matrix model integral (1)
in the large N limit. The eigenvalue probability den-
sity (1/N)Z X, 6(1—2;) becomes the classical den-
sity ¥(4). It is convenient to consider the function

gt _ 1 < ,(;))
Fm‘“.{d”a—u =lm 5{™Mis))- )
It can be shown, from the saddle point equations for

the effective action for v, or through the loop equa-
tions [6], that F must be of the form

FQ=4r () +/om1,

Q(A)=V"(A)*+4N (1), (10)
where N(4) is some polynomial of degree
degree N==degree V—2=m~1 . (11)

Generically, ¢ has 2m complex zeros, which corre-
spond to square root cuts for F. From (9) the EV
density v is proportional to the discontinuity of F
along the cuts, and can be reconstructed from F. The
normalization [ dAv=1 implies that F~ 1~ at co and
this fixes the coefficient of the leading term of N. Re-
quiring that F has only one cut (as done for instance
in ref. [10]) implies that Q has m—1 double zeros
and this fixes uniquely N. However, in general F may
have several cuts.

Let us label by « the cuts and by x,, the fraction of
EV alongeach cut (x,>0and Zx,=1). The EV den-
sity v must minimize the action

S= I dAv(A)V(A) - jj diduv(A)v(u) Inji-pu|

+ 31 o), (12)

where I',, are Lagrange multipliers. In fact (10) is the
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most general solution when one extremizes S with re-
spect to variations of the density which do not change
the x,’s. As a consequence, the effective potential
() for one EV in the background created by the
N-1 other EVs,

r)=v(n) -2 § duo(o) Ini- ) (13)

is constant along each cut a, and equal to I,
Ir(A)=r, ifiea (14)

so that the total action is
S=4y (jdlv(i)V(A)+xaFa). (15)

The remaining constraints which fix N are the
following:

(a) the EV fractions x, must be real,

(b) One must minimize Re(S) with respect to
variations of the x,’s, subjected to the constraints that
Xq20 and that 3x,=1. Since from (12) 8S/0x,=1",
this implies that the real part of the effective poten-
tial is the same along all the cuts:

Re(l'y) =TI}, unless x,=0. (16)

In fact the constraints (a) and (b} can be recast in
the same form:

m(£)=0, %= $ 2 r@a), (17)

where %, is any contour encircling a pair of zeros of
Q. Indeed, if € encircles a cut «, .# =x,, while if ¥
encircles the end points of two different cuts & and B,
it follows from the fact that away from the cuts,
I (A)=V"(A)—2F(4) (obtained by taking the de-
rivative of (13)), that . = (1/in) (I'g—1,) (see fig.
2). Since there are 2m — 2 independent contours, (17)
fixes the m— | remaining coefficients of N, Let us note
that if Q has a double zero, two independent con-
straints (17) are automatically satisfied, since for any
contour % which encircles the double zero and at most
one single zero, .# =0. Therefore we expect in general
to have one solution of (17) with no double zeroes,
2m~1 solutions with one double zero, etc. Some of
these different solutions will be excluded because:
(c) Some x,’s are <0.
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()

(b)

Fig. 2. The contours in (17) corresponding to constraints (a)
and (b).

(d) The contours of integration for the EV cannot
pass through one of the cuts a. Finally among the re-
maining solutions, it is the one with minimal Re(.S)
(real part of the action (12)) which is the physical
saddle point.

Let us discuss explicitly the case of the m=2 criti-
cal point. We start from the potential
V(A)=—1443+gA. In the critical regime we rescale
g.—g~a*, A—A.~ap [11]. ¢t is the renormalized
cosmological constant and p the loop momentum. The
scaling parameter (short-distance cut-off) a is de-
fined so that the double scaling limit is obtained by
taking N— o0, g52ne =N 2a’*=1. In the planar scaling
limit (N=o0, then a—0), the general solution (10)
for F(A4) becomes

F(A)-w(p)=a**3,/p°-3ip+c, (18)

where ¢ is the only parameter to be determined in the
polynomial N(1) which is relevant in the scaling limit.
It corresponds to the VEV of the puncture operator
[6]. In the weak coupling phase ¢> 0, the saddle point
is the standard one cut solution [10,6]

C=2t3/2 ,
w(p)=a®*3(t"?>=p)/p+2t'*. (19)

The EVs are located on the real axis along the cut
]—co0, —2¢'/2] (see fig. 3a). The action for this so-
lution scales as

Soca®?3? (20)
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(a) ®

© @

Fig. 3. Schematic picture of the EV distribution (black line) and
the Re(I") >0 domains (grey) in the p complex plane for the ge-
neric solution of the m=2 critical point: (a) real >0 (and sec-
tors I and V); (b) real <0 (and sector III); (c) ¢ in sector II;
(d) tin sector IV.

There are other unphysical solutions which violate
(c)or (d).

This solution can be analytically continued into the
strong coupling unstable phase <0. The two com-
plex conjugate solutions describe EVs still located
along a single arc [11], and correspond to the triply
truncated solutions of (4). From (20) they have a
purely imaginary action. However, for #<0 the con-
straints (17) have another solution, where w(p) has
now three branch points. For this solution ¢ is given
by

c=c(=1)*? ¢>0 (21)

and it corresponds to the branched distribution of the
EVs depicted in fig. 3b. The density of EVs along the
negative real axis vanishes at the real branch point pg
as /po — D, but there are two arcs starting from p, to-
ward the two other complex conjugate branch points
p+. Therefore equal fractions x, =x_ of EVs are sit-
ting along these two arcs. Moreover the action for this
solution is real and negative, and therefore it is ge-
nerically the dominant one. Away from the negative
real axis, the branched solution still exists, but with
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asymmetric branches (x, #x_), provided that one
stays in the sector III (—3in<Arg(—1?)<3%n), and
still has a smaller action than the perturbative one.
Moreover, since the constraints (17) are non-ana-
lytic, this solution does not depend analytically on ¢
(in other words, the number c in (21) depends on
Arg(1)).

Finally, in the sectors II and IV, another kind of
solutions, with two cuts, is dominant (see figs. 3c,
3d). These solutions are still non-analytic in z. In the
sectors I and V, the perturbative analytic solution
(19) is the physical one.

As is clear from fig. 3, for the general integration
prescription (7), one can obtain these new, non-an-
alytic, solutions in the sectors II, IIT and IV. Since
they have a smaller action than the analytic solution,
they will dominate the large N limit, unless ¢, or c_
is zero.

This new solution for the EV distribution is asso-
ciated with the simply truncated solutions of (4). This
can be seen as follows. First, we have seen that these
solutions are non-analytic in ¢ in the sectors where
simply truncated solutions have poles. Since double
poles of u(¢) should correspond to simple zeros of
the 7 function, which corresponds to the partition
function Z for the matrix model, and since in the large
Nlimit Z is obtained from the action S for the saddle
point EV configuration by Z=exp(N3S), using the
Cauchy formula for the derivative of In(Z) and
Stoke’s formula we obtain the estimate for the num-
ber of zeros in a domain D:

# of zeros in domain D= §$ 9In(Z)
2imr og
D
dgdgd .,
~ N2 g0

Thus the new solution describes a partition function
with a positive density of zeros pac 335 in the three
sectors II, III, IV, which scales as poc N2a%/2|¢]'/?
X f(¢), where ¢ =Arg(¢).

One can make the identification more precise by
relating the constraints (17) to the asymptotics of the
simply truncated solutions of (4). Following ref. [13]
(see refs. [17,18] for more recent discussions) we
make the change of variable

u=t'2U, T=%4 (23)
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in (4), which becomes

U 4 U
"—6U+b6=— — +—7. 24
U'—6U*+6 T +2 5 T2 (24)
As | T| - oo, Uis asymptotic to a Weierstrass elliptic
g function Uy (T, Ey), solution of

(Up)?=4U¢—12U, +E,, (25)

which is doubly periodic (with a lattice of double
poles) with periods

Q.= § dUy(4U3 - 12U+ Ey) ~1/2, (26)

6,2

where %, , are two contours encircling pairs of zeros
of the RHS of (25). In a neighborhood of some
T=T,, one can treat E, as a slowly varying variable
Ey(T). From (24), in the local periods coordinates
T—To=2,y'+Q,y?, E, varies as

aF, 2

ayl())z ~ = ?}1,2(E0) s

H2(Eo) = § AU, (4UE— 12U, + Eq) /2. (27)
@,

Solving the flow equations (27) one can check that
asymptotically, E, depends only on the argument of
T, ®=Arg(T), but not on its modulus, and is solu-
tion of the two constraints

Ref[el® #2(Eq)]1=0. (28)

But these constraints are exactly equivalent to (17)
for (18), one we identify Ey=¢~3/%c and use the fact
that &=3Arg(¢).

Before discussing the asymptotics for the loop op-
erators, let us show how the choice of weight con-
tours ¢, in (7) fixes uniquely the non-perturbative
part of the solution of (4). Let us denote by Z,(68)
(respectively Fy(8) the partition function (1) (re-
spectively its Logarithm) for N EVs with the contour
coefficients (8). Taking the derivative of F with re-
spect to 8 singles out one of the EV's
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x[ 1o [ TT atavarexe -V T vian ).

(29)

where €; is the contour going from joo to jco. One
estimates this integral by first integrating out the N—1
last EVs (by using the BIPZ method ), in the effective
potential

PA)=V()+ % [V(A)=2In(2g—=A)]

modified by the first EV. The resulting effective po-
tential for the first EV is in general complicated, since
it takes into account the backreaction of this EV on
the bulk N—1 other EVs. However it takes a simple
form if A, is close to the end-point A, of the EV dis-
tribution, since we obtain

dFy i J’ 1

® "5 Yoroa

dé ~ 8n

€

Xexp{—N[F(lo)—F(le)]}l:l+O(%>i| ,  (30)

where I'(4) is the effective potential (13). For the
m=2 critical point, in the scaling regime I (p)=
—2w(p), with w(p) given by (19). At large N the
integral (30) is dominated by the instanton configu-
ration of ref. [11], where the EV sits at the top of the
potential p=1¢'/2. The result, including the contribu-
tion of fluctuations around the saddle point, is

dF 237

@=—gs m

xew - L4230 1+0(3)]. on)

where g,=N ~'a~5%/2 is the string coupling constant.
In the double scaling limit g,;=1, and (31) gives the
non-perturbative 6-dependence of the sting suscepti-
bility u= —F". Using the fact that the triply trun-
cated solutions u, correspond to f=F ii, one thus
recovers the results of refs. [7,8] for the non-pertur-
bative part of the simply truncated solutions of Pain-
levé 1.

t—5/8
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Finally, let us return to the construction of the loop
operators. It is very easy to check that with the ge-
neric choice of contours (7), the finite-N loop equa-
tions of the matrix model are still satisfied by the loop
operators. It remains to understand what is the con-
tinuum limit of these operators. In string perturba-
tion theory, the operator which creates a macro-
scopic loop with momentum p (conjugate to the loop
length /),

wipy= [ ate=rwiy,
0

can be expressed in terms of matrix elements of the
operator @ given by (2) [14]. For instance the one-
loop correlator is

o)y = [ dxcxl 5 10, (32)

and the problem is to define the resolvent

G(x;p)=<{x|(p—Q) " |xD

for the generic real solutions of (4), with poles on the
negative real axis. ¢ must satisfy the Gelfand-Dikii
equation

—2GG"+G'*+4[p+2u(x)]1G*=1, (33)
and generically G has also double poles at the poles
of u. In fact there is a unique asymptotic prescription
for G(x) in the strong coupling regime x— — oo, which
is consistent with the contour prescription (7) (de-

fined by the 6-parameter), and the specific u. If we
perform the rescaling (similar to (23))

X=%x5’4, G=x"/4H, P=X'”2p, (34)
in the limit | X| —»o0 (33) becomes

—2HH" + H'24+ 4[P+2Uy(X) |H?

1
=1+0(}), (35)

where Uy(X) is the elliptic function given by (23),
which is solution of (25). There is a unique solution
of (35) which is doubly periodic with the same pe-
riods 2, »(E,) than U,. It is given explicitly by

P-Up(X)

H(X;P)= . 36
(X P) ;;4P3—12P+E0 (36
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This, together with (32) and the constraints (28)
which fix E,, gives the same asymptotic expression
for the one-loop correlator w(p) in the non-pertur-
bative phase t<0 than the expression (18) that we
have obtained previously through the BIPZ ap-
proach. This achieves the identification of our large
N non-perturbative solution of the matrix model with
the real solutions of the string equation (4). These
loop operators will satisfy the loop equations
[6,15,16], at variance with the operators con-
structed only in the perturbative phase with the pre-
scription of refs. [2,3,14]. Each loop operator will
have a single pole in t wherever the string susceptibil-
ity has a double pole. This is in fact natural, since the
string susceptibility is the VEV of two microscopic
loops (puncture operator).

Let us summarize and discuss our results for the
case of pure gravity.

The proposal of ref. [8] to take a real combination
of complex integration contours in the one-matrix
model to obtain real solutions of the Painlevé I string
equation for pure 2D gravity (c=0) has been for-
mulated here in the framework of the large N solu-
tion of the matrix model a la BIPZ, i.e. in terms of
distribution of eigenvalues. We have shown that the
strong coupling phase, which corresponds to negative
values of the renormalized cosmological constant ¢,
and in which the string susceptibility has poles, can
be described simply in terms of splitting of the mean-
field distribution of the eigenvalues into two branches
at the end of the EV distribution.

These two different branches can be viewed as two
different topological sectors in the integral over the
EVs and the non-perturbative 6-parameter which
distinguishes the different solutions of the string
equation is simply the phase difference between these
two sectors, which has to be specified in the func-
tional integral. Therefore, at a formal level, each 8
defines a 6-vacuum of 2D gravity, as in field theories
with topological sectors, such as 4D non-abelian gauge
theories or some 2D g-models. The non-perturbative
effects associated with this @ parameter can be esti-
mated by simple instanton methods.

Finally, we have shown that, for each real solution
of the string equation (6-vacuum), it is possible to
construct in a consistent way observables (loop op-
erators), in such a way that the loop equations should
be satisfied non-perturbatively.
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Of course, many interesting questions are still open.

It is clear that one can define non-perturbatively
the one-matrix model for general potential, and
probably reconstruct by adequate choice of contours
the real non-perturbative solutions of the unstable
even m string equations. We shall discuss below the
case of the double well potential. Similarly, the same
recipe can be applied to the multi-matrix models, and
used to study the general (p, g) string equations (al-
though for the multi-matrix models there is no sim-
ple picture of the large N limit in terms of EV
distribution).

The fact that the loop equations are still valid non-
perturbatively in the framework discussed here is
quite appealing. These equations can be derived from
various points of view: Dyson-Schwinger equations
for the matrix models, Virasoro constraints for the
KdYV hierarchy, recursion relations in 2D topological
gravity. This is at variance with other schemes which
have been proposed for defining non-perturbatively
2D gravity [19,20].

One important issue has to be properly under-
stood. In the strong coupling phase (#<0) the parti-
tion function Z=exp (F) has zeros, and the loop op-
erators have poles. This implies that the non-
perturbative real solutions of 2D gravity that we have
discussed here should suffer from non-perturbative
violation of positivity, even in the weak coupling re-
gime > 0. It remains to understand what this really
means when one formulates these solutions in terms
of string field theories in low dimensional back-
grounds, in particular for positivity and unitarity.

The ¢=1 matrix model solution studied in ref. [21]
does not suffer from the kind of instability of the c=0
model, since it corresponds to free fermions in an in-
verted harmonic potential, with the two wells of the
potential filled at the same Fermi level. Conse-
quently, although the string perturbation theory for
the c=1 model is not Borel summable, there is a well
defined summation prescription which allows to re-
construct this non-perturbative solution. Does the
kind of ideas discussed here allow to construct other
non-perturbative solutions of the ¢=1 model?

Finally let us briefly discuss the case of the double
well potential,

V(A)=4pd2+ 542, (37)
For u<0 large enough, the EVs are distributed along
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two cuts (symmetric under A—>—1). At the critical
point 4., the two cuts fuse (at A=0) into one seg-
ment. In the double scaling limit the string equation
for this critical point is the Painlevé II equation [22].
Recently, Brower et al. showed that by relaxing the
parity condition n,(1)=(—-1)"%,(—4) on the or-
thonormal polynomial and on the associated solu-
tions of the recurrence equations, new symmetry
breaking solutions of the model could be obtained
[12]. This can be easily understood by considering
the three independent paths of integration for the po-
tential (37). In addition to the real axis %, we can
also integrate over the paths %, going from —co to
+ico. The most general weight factors for these paths
which give a real partition function are

¢=1-2x, c.=x%if. (38)

If ¢, #0, in the strong coupling phase u> g the EV
distribution is no more the one cut solution but a
cross-shaped distribution with four cuts meeting at
the origin. Setting x # 0 breaks explicitly the symme-
try A<+ — A and should allow to recover the symmetry
breaking solutions of ref. [12] (which differ from the
standard solution by subdominant terms of order
1/N?). Setting x=0 but 60 gives solutions which
differ non-perturbatively from the standard one, and
which correspond to solutions of the Painlevé II
equation with (simple) poles on the negative real axis.
These considerations can be extended easily to the
multicut matrix models studied in ref. [23].

I am very indebted to S. Jain for explaining to me
the results of ref. [12] prior to publication. I thank
R. Conte, P. Di Francesco, J. Zinn-Justin and J.-B.
Zuber for very useful discussions, and P. Di Fran-
cesco for a careful reading of the manuscript.
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