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WeconsideracontinuousmodelofD-dimensionalelastic(polymerized)manifoldfluctu-
ating in d-dimensionaleuclideanspace, interactingwith a single impurity via an attractive
or repulsiveö-potential(but without self-avoidanceinteractions).Exceptfor D = 1 (the
polymercase),this model cannotbe mappedonto a local field theory. We showthat the
useof intrinsic distancegeometryallowsfor a rigorousconstructionof the high-temperature
perturbativeexpansionandfor analytic continuation in the manifold dimensionD. We
study the renormalizationpropertiesof the model for 0 < D < 2, and showthat for
bulk spacedimensiond smaller that the uppercritical dimensiond* = 2D/(2 — D), the
perturbativeexpansionis ultravioletfinite, while ultraviolet divergencesoccuraspolesat
d = d*. The standardproof of perturbativerenormalizabilityfor local field theories(the
Bogoliubov—Parasiuk—Hepptheorem)doesnot apply to this model.We proveperturbative
renormalizabilityto all ordersby constructinga subtractionoperatorR basedon ageneral-
izationof theZimmermannforestsformalism,andwhichmakesthetheoryfinite at d = d*.
This subtractionoperationcorrespondsto arenormalizationof the couplingconstantof the
model (strengthof the interactionwith the impurity). The existenceof aWilson function,
of an c-expansiona Ia Wilson—Fisher aroundthe critical dimension,of scaling laws for
d < d* in the repulsivecase,andof non-trivial critical exponentsof the delocalization
transitionfor d > d* in theattractivecase,is thusestablished.To ourknowledge,this study
providesthe first proof of renormalizability for a model of extendedobjects,andshould
be applicableto the study of self-avoidanceinteractionsfor randommanifolds.

1. Introduction

Onegeneralproblemarising in statisticalphysicsis the understandingof the
effectof interactionson the thermodynamicalpropertiesof extendedfluctuating
geometricalobjects.Theseobjectsmaybe (one-dimensional)lines, like long lin-
earmacromoleculesor polymers,(two-dimensional)surfaces,like membranes
or interfaces,or even (three-dimensional)volumes,like gels. The interactions
involve in generaltwo-body attractiveor repulsiveforces,andonemayin gen-
eral reducesuchproblemsinto two different classes:(i) eitherone dealswith
self-interactionsbetweendistinctpointsofthesamefluctuatingobject,ormutual
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interactionsbetweenseveralfluctuatingobjects; (ii) or one dealswith the in-
teractionof asingle freely fluctuatingobjectwith anothernon-fluctuatingfixed
object. Case (i) includesfor instanceself-avoidingpolymersor membranes,
polyelectrolytesandchargedgels, as well as the descriptionof intersectionsof
randomwalks. Case(ii) includesthe problemsof binding/unbindingof along
moleculeor a membraneon a wall, the wetting of an interface.Onecan also
reduceto this classtheproblemsof unbindingof two membranesor interfaces,
andthatof the stericrepulsionsbetweenmembranesin alamellar phase.

Among the many differentgeneric situationsone can think of, one caseis
now well understood,namely thatwherethe fluctuating objectsare only one-
dimensionalobjects.Indeed,manyproblemsin case(ii) can thenbesolvedby
simpleanalogywith quantummechanics,i.e. by useofadiffusion equation.The
situationis morecomplicatedin case(i), a paradigmof which is the celebrated
problemof self-avoidingpolymers.Still in thiscase,the useof perturbativeex-
pansionsand renormalizationgroup techniquesallows for explicit resultson
thethermodynamicsof theseobjects.For instance,a self-avoidingpolymerem-
beddedin ad-dimensionalexternalspacecanbe describedby the continuous
Edwardshamiltonian [1,21

lf(d~ cif) ~f
0Sdsf0Sds/~d(r(s)_r(sF)). (1.1)

This modelcan thenbe viewedas a one-dimensionalfield theory,with position
field r (s) at abscissas alongthe chainof size S, andwith a non-local interac-
tion term.This field theory thenhasa formal perturbativeexpansionin b: this
point of view datesbackthe work of Fixman [31andhasbeendevelopedby
desCloizeaux [2,4]. The termsof this expansionare in generalintegralsover
the internalcoordinatess of the interactionpointsandmaydivergewhenthese
interactionpointscomecloseto eachother (~s— s’I —p 0). The theorycan then
be regularizedby analyticcontinuationin d ~ 2, and the naturalexpansion
parameteris thenbS

2”/2, hencelarge in the thermodynamiclimit S —~ oo for
d < 4. Fordimensionalreasons,thecorrespondinglong-distancedivergencesare
twinnedwith the short-distancedivergences,andappearas polesin d at d = 4.
Withinadoubleexpansionin b andE = 4—d,thestructureof thesepolesis such
that thetheory is renormalizablefor e ~ 0. This meansthat the polesat � = 0
can actually be absorbedinto redefinitionsof theparametersof the model,and
thata scalinglimit is obtainedfor the thermodynamicalpropertiesof the poly-
mer whene ~ 0. Still, a rigorousproofof renormalizabilityrequiresthe useof
the famousequivalenceof the Edwardsmodelwith the 0(n) modelfor n = 0,
that is a model with a n-componentfield 0 (r) in the d-dimensionalexternal
space,as shownby deGennes[5]. Fromthisdifferentpointof view, whichwas
the first to be developedin the 70’s, the self-avoidingpolymerproblemis seen
asa d-dimensionallocal field theory,thatis atheorywith local interactions,and
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amenableto thestandardrenormalizationgrouptreatmentsfor critical phenom-
ena [6,7]. Again, this field theorycanbe studiedvia a perturbativeexpansion,
the termsof which may divergewhen two externalinteractionpoints r andr’
comecloseto eachother(Ir—r’I —~ 0).Now thegeneralrenormalizationscheme
for local field theoriesappliesandensures(perturbative)renormalizability,from
which onededucesa posterioritherenormalizabilityof the directapproach“a la
desCloizeaux” [8—10].This equivalencewith a local field theoryalsoholdsfor
one-dimensionalproblemsin case(ii), andmethodsofperturbativefield theory
canalsobeappliedin this case.Althoughthey are in generalmorecomplicated
thanthe simplediffusionequation,theygive comparableresults(seeref. [11]).

Besidetheperturbativeframework,oneshouldnoticethatrigorousnon-pertur-
bative resultshavebeenobtainedfor the Edwardsmodel and relatedmodels:
themathematicalconstructionof the measureon randompathsassociatedwith
(1.1) [121;the largedistancebehaviorofintersectionpropertiesof independent
randomwalks atd = 4 [131;thelargedistancebehaviorof weaklyself-avoiding
polymersat d = 4 in constructivefield theory [14]. Thesenon-perturbative
studiesalwayscorroboratethe resultsof the perturbativerenormalizationgroup
analysis.

Theexistenceof anunderlyinglocal field theoryin the externald-dimensional
space,which is crucial to ensurerenormalizabilityand allows for predictions
from the perturbativeexpansion,is howeverdirectly related to the one-dim-
ensionalnatureofthe object.WhenwenowconsideraD-dimensionalobjectwith
D ~ 1, embeddedin d dimensions,no suchequivalencewith ad-dimensional
local field theoryexists.Still, the approach“a la desCloizeaux” can be gener-
alized, by consideringa D-dimensionalfield theory.For instance,the Edwards
hamiltonian readsfor a D-dimensionalmanifold with internal coordinatex
[15—17]

N = ~fdDx (~xr. ~xr) + ~fdDxfdDxbod(r(x) — r(~)). (1.2)

Thisdescribesa polymerizedor “tethered” manifold with a fixed internal met-
ric (to be distinguishedfrom the caseof fluid membranes,with a fluctuating
metric).The self-avoidanceinteractionterm leadsto aperturbativeexpansion
in b, with poles in � 4D — d(2 — D). Thismethodhasbeenusedto first order
in � [16,171,andleadsto first-orderestimatesof critical exponents[16—191,
assumingthat renormalizabilityholdsandthatarenormalizationgroupequation
canthusbeused.

Twocrucialquestionsremainhoweveropen,which showthat newmathemat-
ical developmentsarerequired:

(I) A perturbativeapproachcannotbeperformeddirectlyatD largeror equal
to 2. Indeed,for D ~ 2 (and d ~ 0), � is neversmall (� ? 8). The double
expansionin band� requiresto considerthecaseofrealnon-integerD (typically
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1 ~ D < 2). Theterm of orderN in theperturbativeexpansionbeinganintegral
over 2N (resp.N) interactionpointsin case(i) (resp.case(ii)) in internalD-
dimensionalspace,the meaningof theseintegrationsfor non integerD hasto
bedefined.

(II) Since,as aD-dimensionalfield theory,thetheoryis eithernonlocal (case
(i)) or local (case(ii)) but with a singularpotentialwith explodesatthe origin
r = 0 (typically l/IrI~or ô~(r)), standardmethodsof local field theorydo not
apply. Sincefurthermore,as mentionedabove,we cannotrely (asfor D = 1)
on an equivalencewith a d-dimensionallocal field theory, the questionarises
of the actualrenormalizabilityof the theory,andin particularof the validity of
theuseof a (for instancefirst order) renormalizationgroupequationto predict
a scalingbehavior.

Beyondtheone-loopcalculationsof refs. [16—19]for themodelof self-avoiding
randommanifold,whichassumerenormalizability,anextstepin ageneralanal-
ysisof the problemof renormalizationfor interactingextendedobjectwith di-
mensionalityD ~ 1 hasbeenperformedby one of the presentauthorsin ref.
[20]. In ref. [20] amodel describingthe simpleavoidanceinteractionof a D-
dimensionalfluctuatingmanifoldwith afixedeuclideanelementwasconsidered.
The leadingUV divergencesof the modelwereanalyzedin perturbationtheory
andresummed,so that the consistencyof arenormalizationgroupequationat
one loop wasestablishedfor thismodel. A similardirect approachhasbeenap-
plied to the Edwardsmanifold model (1.2),andthe one-looprenormalizability
established[21].

The purposeof this paperis to presenta general, mathematicallyTigorous,
framework to studythesequestions,and to analyzethe renormalizabilityof
modelsof interactingobjectsto all orders in perturbationtheory.In thispaper,
we shall discussthe simple model of ref. [20], of a D-dimensionalfluctuat-
ing manifold interactingwith a single fixed point (or moregenerallya fixed
euclideanelement),definedby the following hamiltonian:

N = dDx(Vxr(x) . Vxr(X)) + bfdDxod(r(x)). (1.3)

We prove perturbativerenormalizabilityfor this model,to all ordersin pertur-
bationtheory, from the internal-spaceformulationof ref. [201. For thatpur-
posewe rely on methodsdevisedin perturbativefield theory, in particularby
BergèreandLam, for renormalizingthe Feynmanamplitudesin the so-called
cs-parameter or Schwinger representation. Indeed, our construction can be seen
asa generalizationof renormalizationtheoryin Schwingerrepresentationto the
caseof aD-dimensionalcs-parameterspace.

This paperis organizedas follows.
In sect.2 we presentthe modelof aD-dimensionalmanifold interactingwith

asingle fixed point, discussits physical relevancefor the problemof entropic
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repulsionby an impurity (caseof repulsiveinteraction)andof delocalization
transition (caseof attractiveinteraction),anddiscussits formal perturbative
expansion.To eachorderN of the expansioncorrespondsa uniquediagram,
whichisanintegraloverthepositionsofN pointsin theD-dimensionaleuclidean
internalspace.

In sect.3 wegive a mathematicalprescriptionto definethe analytic contin-
uationof thoseintegrals for non-integerD. The basicidea relies on the con-
ceptof “distancegeometry”:we usethe euclideaninvariancein RD to replace
the integral overN D-dimensionalvectorslabelingthe positionsof the points,
x, = {x~,u= 1,... ,D} (i = 1,... ,N), by an integralovertheN(N—l)/2
mutualsquareddistancesa1 = (x1—x1)

2,with possibleconstraints.Thedimen-
sionD appearsthenonly as aparameterfor the measureterm of thea,j’s (which
by analyticcontinuationin D hasin generalto beconsideredas a distribution).

In sect. 4 we analyzethe short-distance(ultraviolet) divergencesof these
analytically continuedintegrals.We showthat they lead to poles in � D —

d(2 — D)/2. They correspond to an upper critical dimension d* = 2D/(2 — D).
We also analyzethe large distance (infrared) divergenceswhich occur when
the internalsize of theD-dimensionalmanifold goes to infinity. We showhow
to regularizetheseinfrareddivergences,simply by keepinga finite size for the
manifold, in orderto concentrateon the ultraviolet divergences.

Thenextfour sectionsaredevotedto the analysisandproofof renormalizabil-
ity of thetheory.Our analysisreliesin fact heavily on conceptsandmathemat-
ical tools developedin the 70’s for the theory of perturbativerenormalization
of “ordinary” local field theories[22]. Sincetheseconceptshaveto be strongly
modified for our problem,andsincethey arenot so well known,they will be
introducedfrom thebeginningin this paper,which is therefore(hopefully) en-
tirely self-contained.

In sect.5 we showthatadiagramof arbitraryorderN is finite when� > 0.
For thatpurpose,we introducea “sectordecomposition”of the domainof inte-
grationoverdistancesin internalspace,which is analogousto the Heppsector
decompositionof renormalizationtheory.

The nextthreesectionsaredevotedto the proofof renormalizabilityof the
theory,i.e. the possibilityof absorbingthepolesat � = 0 into a redefinitionof
the coupling constantof the model, thus making the diagramsfinite at � = 0
by appropriatecounterterms.Renormalizedamplitudesaredefinedin sect.6 by
subtractionof suitablecounterterms.Thesecountertermsareorganizedin fam-
ilies of divergent“subdiagrams”,which correspondto the conceptsof “forest”
andof “nest”.

To provefiniteness,we needto reorganizein each“sector” the counterterms.
Such areorganizationis presentedin sect.7 andrequiresan elaborate“equiva-
lenceclassesof nests”construction,inspiredfrom ref. [23].

Finally, in sect.8, we showthatthe subtractedamplitudesarefinite at� = 0,
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as long as the integrationover the squareddistancesa1~is given by a measure,
while in sect. 9 we show that this remainstrue in the generalcasewherethe
measureterm is adistribution.This endsthe proofof the renormalizabilityof
the model. The restof sect.9 is devotedto somephysicalconsequencesof this
renormalizabilityproperty,suchastheexistenceofaWilson—Fisherf-expansion
andof universalscalingbehaviors.

In sect.10we summarizeourwork anddiscussvariousprospects,in particular
for the problemof self-avoidingrandommanifolds.

A lot of technicalpointsarerelegatedinto various appendices.
The readernot interestedin the detailsof the proofof renormalizabilitymay

skip (at leastin a first reading...) sections 5, 7 and8.

2. Themodel

2.1. THE ACTION

We first definethe modelthat we shallstudyandthe formal structureof its
perturbativeexpansion,withouttakingcareof thepossibleinfinities whichmay
arisefrom short and/orlarge distancedivergences.It is the purposeof next
sections(in particularsect.4) to defineproperregularizationschemes.

We startwith the manifoldhamiltonian[20]

N = fdDx [~r(x). (_J)k/
2r(x) + böd(r(x))] , (2.1)

wherex labels the internal position in the D-dimensionalmanifold with vol-
umeV andr (x) is the correspondingpositionin the d-dimensionaleuclidean
space.For the physicalcasek = 2, the first term in (2.1) correspondsto the
elasticenergyof thegaussianmanifold (the internaltensionis set to unity). For
reasonsof mathematicalconvenience,which will be clear in the following, we
shall considerin full generality the more generalclassof elastic hamiltonians
with k ~ 2. This allowsin particularto definein aproperway aconsistentana-
lytic continuationin the internaldimensionD. Thecasek = 4 correspondsto a
manifoldwith vanishingtensionbut with bendingrigidity. Theabsencefrom eq.
(2.1) of a two-pointself-avoidanceinteractionterm (ascomparedto eq. (1.2))
meansthatwearedealingwith a “phantom” manifoldwhich can intersectitself
freely. The secondterm in (2.1) correspondsto the interactionof the manifold
with a fixed impurity, that is a single point in the externald-dimensionalspace,
hereattheorigin r = 0 (fig. 1). Thecouplingconstantb maybeeitherpositive
(repulsiveinteraction)or negative(attractiveinteraction).

As mentionedin sect.1, this model is interestingas a toy modelfor the more
complexproblemof self-avoidingmanifolds.In bothcasesthe interactionterm
is a singular 5-function, andsimilar mathematicaltechniquescan be usedto
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Fig. 1. A D-dimensionalfluctuatingmanifold (hereD = 2) interacting:(a) with a point at the
origin in tl’~1 (here d = 3), (b) with a fixed D’-dimensional euclideansubspaceof R~~’(here
D’ = 2, d = 1, d’ = d + D’ = 3). (c) A “directed”manifold interactingwith a “parallel” flat

subspaceof samedimensionD in R’1’.

write perturbativeexpansionsandto studytheirproperties.In the presentcase
the interactionis muchsimpler, sinceit correspondsto a one-bodyinteraction,
insteadof a two-body interaction in the caseof self-avoidance.This model is
also interestingin its own, since the hamiltonian (2.1) can also be usedto
describethe (attractiveor repulsive)interactionof afluctuatingD-dimensional
manifold with afixed D’-dimensionaleuclideansubspacein a d’-dimensional
euclideanspace[20], with d’ = d + D’ (fig. lb). In this caser describesthe
d coordinatesof the fluctuatingmanifold orthogonalto the fixed euclideanD’-

subspace.The caseD = 1, correspondingto a polymerinteractingwith some
fixed object, hasbeen alreadyconsideredby severalauthors[11,24,251.The
caseD = 1, d = 2 correspondsfor instanceto apolymer interactingwith a
rigid rodin three-dimensionalspace.If D = D’ thismodelcanalsobeusedto
describea“directedmanifold” (parallelto a flat euclideansubspace)(fig. lc).
In this casethe coordinatesin the externald’-dimensionalspaceof the point
with internal coordinatex are (x,r(x)), and the first D = D’ longitudinal
degreesof freedomare fixed. For instancethe caseD = D’ = 1 describesa
“directedpolymer” interactingwith a parallelrod in d’-dimensionalspace;the
caseD = D’ = 2, d’ = 3 (d = I) describesa SOS-likefluctuatinginterface
interactingwith a parallelplane,

The “engineering”dimensionsof thepositionfield r andof thecouplingcon-
stantb arerespectively

k-D
Er] = [x”} , v = 2

[b] = [x~] , � = D—vd. (2.2)

Thereforethe interactionis expectedto be relevant (that is to changethe large
distancepropertiesof the manifold) if� > 0, that is if D > D*, whereD* is the
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critical internaldimension,given by

D*=k/2, (2.3)

or equivalently if d <d*, where d* is the critical embedding dimension

d* = k—D’ (2.4)

simplyequalto the fractal dimensionof the manifold. In particular,this model
possessesanuppercritical dimension0 < d* <00 for a “membrane”dimension
0 <D < k. For thestandardinterfacemodel (k = 2), werecoverthe conditions
0 < D < 2 [16,17,20].The exponentii playsthe role of thesizeexponentof the
elasticmanifold.For fluctuatinginterfaces,thatis “directedmanifolds”,it is also
called in the literaturethewanderingexponent,anddenotedby ~ [26]. ii hasits
naturalrangebetween0 (collapsedmanifold) and 1 (stretchedmanifold).This
correspondsexactlyto

k—2~D~k, (2.5)

or equivalentlyto the “physical” conditionsD ~ d* ~ oc.

In ref. [20] adimensionlesseffectivecouplingconstantg wasintroducedwhich
measurestheeffectivestrengthof theinteractionasafunctionof thelengthscale
X measuringthe linear internalextentof the manifold,definedby V = X’~.In
the vicinity of the critical dimension(� 0), andfor the physical casek = 2,
a one-loopcalculation [20] showsthat thiseffective couplingconstantobeysa
renormalizationgroup (RG) flow equation,which reads

x~-f= W(g) = �g— !5~g2 + 0(g
3) (2.6)

with SD = 2ir’~I2/T(D/2)the volume of the unit spherein R’3. Apart from
the trivial g = 0 solution,this flow equationhasafixed point solutionat the
non-trivial zeroof the Wilsonfunction W(g)

= + Q(~2)~ (2.7)

For largenegativeg, W(g) behaveslike

W(g) o~Dglog(—g). (2.8)

The physicalconsequencesof theseequationsarethe following:
(I) � > 0: This correspondsto D > D* or d < d*. The RG flow hasan

infrared (IR) stablefixed point atg* > 0 andan IR unstable(ultraviolet (UV)
stable)fixed point atg = 0, as depictedin fig. 2. Forarbitrarily smallnegative
b (attractiveinteraction),g is negativeandflows to (—oc) atlargelength scale
X; the manifold is localized (or pinned)at the origin r = 0, andits average
distanceto the origin stays finite. For arbitrarily small positive b (repulsive
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W(g) w(g) W(g)~ g ~ g ,,/~J_~_\
(a) (b) (c)

Fig. 2. TheWilson W functionandthe renormalizationgroup(IR) flow (for increasingmanifold
sizeX) for the dimensionlesscoupling constantg: (a) in the casec > 0, (b) in the casec < 0,

(c) in the casec = 0.

interaction),g is positiveandflowsto g* at largeX; the manifoldis delocalized,
andfurthermorerepelledfrom the origin. TheUV gaussianfixed pointat g = 0
thus describes a delocalizationtransition,whose critical properties are given by
meanfield theory *~ The nontrivial JR fixed point at g = g* describesthe
universallarge distancepropertiesof the delocalizedstate [20,25], andof the
long rangerepulsiveforce awayfrom the origin generatedby the fluctuationsof
the manifold.

(II) � < 0: This corresponds to D < D* or d > d*. The RGflow has now
an JR unstable(UV stable) fixed point atg* <0 andan JR stablefixed point
at g = 0 . The delocalizationtransitionnow occursfor someb = b* < 0, i.e.
for a non-zero,large enoughattractiveinteraction.For b < b*, g is negative
and flows to (—oc) at largeX; the manifold is pinnedat the origin. The UV
non-trivial fixed point at b = b* describesthe delocalizationtransition.At this
point g (b*) = g* for any value of the size X. The critical propertiesof the
transitionare now anomalous,i.e. no longer given by meanfield theory.For
smallerattractiveinteraction (b* <b <0), g is negative but now flows to 0 at
largeX. For repulsiveinteractions(b > 0), g is positive and flows to 0 at large
X. In theselattertwo cases(b > b*), the manifoldis delocalized,andno longer
feelsatlargedistancethe existenceof thesingularinteractionatthe origin, since
the JRbehavioris now governedby the trivial gaussianfixed pointat b = 0.

(III) � = 0: Finally, at thecritical dimension,we arein the marginalsituation
wherethe localizationtransitionoccursat g = 0 (b = 0), but wherecalculable
logarithmiccorrectionsto scaling occur [20].

As discussedpreviously,thispictureisvalid providedthattherenormalization
groupcalculationswhichleadto fig. 2 makesense.Thispointhasbeendiscussed
atoneloopby oneof usin ref. [20]. For thecaseof aone-dimensionalmanifold

* This transition occursat vanishingb, which correspondsto infinite temperature.Thus it cannot

beinducedby a simplechangein thetemperaturebut requiresaqualitativechangefromattractive
to repulsiveinteraction.
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(D = 1), exact solutionscorroboratethis picture. Finally, let usmentionthe
exacttreatmentof the renormalizationgroupflow for smallb (b 0) for the
problemof interfacepinningof ref. [27]. This correspondsto the caseD= 2,
d = 1 andk = 2 (� = 2).

2.2. THE PARTITION FUNCTION

The partitionfunctionZ for the model is definedby

z = fv[r] exp(-N). (2.9)

Its perturbativeexpansionin the couplingconstantb is
N

N=O N! N, (. )
where

ZN = (fdDxiôd(r(xi)))o (2.11)

and(...)o is the averagewith respectto the gaussianmeasure

exp[_fd1x~r. (4)kI2r]

The evaluationof ZN is best performed in Fourier space by introducingthe
vertexfunction

V(x,k) =exp(ik.r(x)), (2.12)

with k ad-dimensionalvector,andby writing 2N as

ZN = KHfdDXif ~“~V(x
1,k~))0. (2.13)

We computetheabovefunctionalaverageby takingcareof theoverall displace-
ment of the manifold ( zero-mode):

rG = ~fd’xr(x). (2.14)

We haveexplicitly

(flV(x~,k~))0= Jddrofv[r(x)]out(ro —ro)

x exp [_fd’~x~r~(A)kI
2r + i~k

1 .r(xi)]

(2.15)
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Performingthe shift r = rG + r, we get

fddrofV[~(x)]öd(~G)exP[_fdDx~.(_A)kI2~+i~k
1. (~(x1)+ro)]

(2.16)

Integratingover thedisplacementr0, andperformingthe gaussianaverage,with
normalization

= 1, (2.17)

we finally get

ZN=fHd(d(2ôd(~ki)exP[_~>ki.kJG(xi,xJ)]

(2.18)

where G(x,y) is the propagator,solution (in infinite flat D-dimensionalspace)
of

(A~)”
2G(x,y) =oD(X_y), (2.19)

namely

G(x,y) = 2k~D/2r(k/2) x-y~~. (2.20)

This propagator,whichisaCoulomb-likepotential,will playa fundamentalrole
in what follows. In the rangeof parameters(2.5), it vanishesat Ix — y~= 0.

The first term of theexpansionof Z (N = 0) is simply the (infinite) volume
of externalspace

= (2
7r)dod(k = 0) = f ddrG VRd. (2.21)

But the next termsare finite. Indeed,for N > 0 we candealwith the öd con-
straintin eq. (2.18)by settingk1 = — ~~‘i2k~.The integrationoverk becomes
gaussianandleadsfor N = 1 to

= fdDxi = V (2.22)

andfor N> 1 to thebasicformula [20]

2N = (
2~)N~/2 ffidDxi (det [Hij]2~~J~N)’, (2.23)
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where H,~(2 ~ i, j ~ N) is the (N — 1) x (N — 1) matrix

H,3 = G(x,,x1) — G(xi,x1) — G(x,,x1) + G(x1,x1). (2.24)

Notice thatH,~is functionof thepoint x1 which actsas a referencepoint, and
thatG(x1,x1) is actuallyequalto zero.

2.3. CORRELATION FUNCTIONS

Similarly, all expectation values of observables can be obtained from the par-
tition functionswith insertedvertexoperators(2.12)

Z(M)(Xa,ka) = V(Xa,ka)) = fv[r]exp [N +~ika.r(Xa)]

(2.25)

Eachterm of theirperturbativeexpansion
N

Z(M)(Xa,ka) = ~ ~ Z~M)(Xa,ka) (2.26)

canbe computedby the sametechniques.The final resultis for N> 1

Z~M)(Xa,ka) = (2m)~(N1)/2 fH dDx~(det [HiJ12<~J<N)’

xexp [—~~ kakbz4ab] , (2.27)
a,b=1

whereAab is a ratio of determinants:

(Hab Haj
detN( UT UT

A \“ib ‘
tij

etN1~ ii

with an obviousextensionof the definition of the H matrix (2.24) to iiiclude
externalpoints (in particular Hab = G(Xa,Xb) — G(xl,Xb) — G(Xa,Xi) +
G(x

1,x1 )). The casesN = 0 andN = 1 require aspecificanalysis.For N = 0
we get simply

Z~M)(Xa,ka)= (2Th)död(~ka)exp ~ kakbG(Xa~Xb)]
a=1 a,b=1 (2.29)

andfor N =

Z~M)(Xa,ka)= fdDxi exp ~ ka~kbHab] . (2.30)
a,b=1

(Noticein this lastequationthat Hab actuallydependson x1).
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2.4. MEAN SQUARED DISTANCES

Fromeq. (2.29) onecanin particularderivethe meansquareddistancebe-
tweenanytwo pointsx andy for the free model (b = 0):

1 2 1 (1—u) 2~~((r(x)—r(y)) )~= —G(x,y)= 4v(4~)D/2vp(v+D/2)IXYI~

which is IR- andUV-finite andpositivefor 0 < u < 1 (k —2 <D < k).

3. Analytic continuationin the internaldimensionD

3.1. INDEPENDENTPARAMETERS: D, v AND c

We nowwantto giveameaningto theaboveexpressionsfor arbitraryrealD, d
andk, soas to havea continuousapproachto the “physical” elasticmembrane
problemD = 2 andk = 2. As is clear from (2.27), the generalobservables
of theform (2.25) dependon the externaldimensiond only through: (i) the
externalinvariantska . kb, (ii) the exponent—d/2 in (2.27).We can therefore,
as usualin field theory,considerd as a continuousparameter.Thesameis true
for theexponentk associatedwith the internallaplacian,whichappearsonly as
a parameterin thepropagator(2.20).Sinceweshallbeinterestedin theranged
closeto d*, it is naturalto substituteto the continuousparametersd and k the
setof continuousparameters� andii. Their relevantrangeis � ~ 0 (where we
expectanon-trivial universalfixed point) and0 < r’ < 1 (where the manifold
is crumpled,that is neithercollapsednor stretched).

The analytic continuationin the internal dimensionD is a new feature of
this modelandrequiresa separateanalysis,namelythatof the signification of
the measurefJ,dDx, for non-integerD. We now discussequivalentgeometric
definitionsof this measure,which havea naturalextensionto non-integerD.

3.2. DISTANCE GEOMETRY IN D DIMENSIONS

We arelookingatgeneralizedintegralsof the type

f dDxi . . . dDXN f(x1,... , XN),

wheref is invariantby rotation in D-dimensionalspaceandthusdependsonly
on the invariant scalarproducts

u11 =x1x1 (3.1)
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E5.3~~2

(a) (b)

(C) (d)

Fig. 3. Equivalentrepresentationsof the positionsof a given setof N interactionpoints (here
N = 6). The points are described(a) by their position x in R°or R~

t or (b) by thesetof
their mutual squareddistancesa-

1 = (x, — x3)
2 or (c) by their relativevectory- = x

1.~.1— x1 in
RD or R~’~(relative to the point x1) or (d) by the line vectors(labeledby cs) of an arbitrary

spanningtreejoining thesepoints.

whichform asymmetricmatrix [u~~].ForD ?~Nwe can reduce the integration
overthe x’s to an integralover the u1’sof the form (seeappendixA)

fÜ~xi~u:i= f fldu~ja~([u1j])f([u1j]), (3.2)
1=1 UNj~j

where

(D) , r SD SD_i SDN+ 1 r 1 (DN 1)/2

~N UU,1J, = ~ 2 ~.uetNLulJJ) .

SD is the volumeof the unit spherein RD, SD = 2ir’~/
2/F(D/2). The domain

of integrationUN for u,
3 is suchthatu~is the actualscalarproductof vectors

in euclideanspace,i.e. [u,~] is apositivematrix.
If moreoverthe integrandis translationallyinvariantin D-dimensionalspace,

we cango to relativevectorsy, = x,÷1— x1 (1 ~ i ~ N — 1) andreduceby
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oneunit the numberof points,i.e. usea~j~([y,

ftdDx, = d°x1 ~ ~

i=i l~i~j~N—l

x (detNI [y~ .~1]) -N)/2 (3.4)

This is equivalentto a measureexpresseduniquelyin termsof the completeset
of N(N — 1)/2 squareddistances(seefig. 3)

a~1= (x~—x1)
2 (3.5)

by simply rewritingy, . y~as

Yi-l~Yj_i = D,
3(a),

D,~(a) ~(a11+ a~1—a,3), 2 ~ i,j ~ N. (3.6)

Finally, afterthesimplechangeofvariables(3.6) we arrive, for atranslationally
androtationallyinvariant integrand,atan integralover distances

fDH~~ =VJ U da~1ji~([a11])f([a~1]), (3.7)

R AN1<j<j.<N

where
(D)(r ~) — ~ SD—N+211N

5a,11 — 2 2 2
(D-N)/2

x (detN_l[D~J(a)]2~~l,J~N) . (3.8)

This last formula is valid for D ~ N — 1. Indeed,D = N — 1 is the smallestdi-
mensionfor whichN linearlyindependentpointscanbeembeddedin euclidean
space.The domainof integrationAN for ~ is then simply the set for which
[D,3(a)] is a positivematrix.

In eq. (3.8) appearsthe importantquantity

PN(a) EdetN_l[D,J(a)] = det~..~[y~.yf] (3.9)

whichis ahomogeneouspolynomialof degreeN — 1 in the~ PN (a) is actually
fully symmetricunderpermutationsof the indices i or j in [a,31~as canbeseen
from its expressionas a Cayley—Mengerdeterminant* well-known in distance
geometry [28],

01 1... 1

( )N 1 0 a12 ... aiN

PN(a) = 2N—i a21 ... a2N . (3.10)

laNlaN2... 0

* Thisdeterminantappears,in adifferentdisguise,in aletterby Descartesto thePrincessElisabeth
of Bohemia (1643), asquotedby Coxeterin ref. [29].
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We havefor instancefor N = 2 and3 points

P2(a) = a12, P3(a) = ~(2a12a23+ 2a23a31 + 2a31a12—a~2—a~3—a~1).

(3.11)

The matrix [D~1]will be positive iff anyborderedprincipal minor PK(a) ~ 0
for anyK ~ N:

01 1...!

(_i)K 1 0 a12 . . . ~
PK(a) = 2K_i 1 a21 0 ... a2K ~ 0. (3.12)

laKlaK2... 0

For K = 2, this is simply the positivity condition a12 ~ 0. For K = 3, one
recoversthe familiar triangularinequality

(a12 —a13—a23)
2 ~ 4a

13a23 ~ Ia~
2— a~2I~ a~2~ a~2+ a~2.

(3.13)

ForK > 3 onegetsmoregeneralinequalitieswhich arethe necessaryandsuffi-
cientconditionsfor thea~to berealizedassquareddistancesbetweenN points
of the euclideanspaceRN_I. Thevolume V(x

1,... , XK) of the (possiblydegen-
erate)parallelotope[30] ((K — 1)-dimensionalparallelepiped)with vertices
X1,X2,... , XK is given by

V
2(x

1,... ,XK) = PK(a). (3.14)

Thus PK(a) = 0 indicates that the first K points are linearly dependent, i.e. can
be embedded in R”~

2.

For D ~ N — 2, the expression(3.8) becomessingulardueto the appearance
of zeroesin the spherevolumes5D-K+2 for D + 2 ~ K ~ N on the one
hand, and due to divergences of the term (PN (a) ) (DN)/2, which occur when
PN(a) vanishes,that is on the boundaryof the domainAN, on the other hand.
Nevertheless~ (a) cannow be consideredas a distribution with a support
in submanifoldsof AN of dimensionD(N — (D + l)/2), which correspond
to D-dimensionaleuclideansubspacesof ~ Onethereforestill reproduces
the naturaleuclideanmeasurein RD, as can be shownby analyticcontinuation,
which we now describe.

3.3. ANALYTIC CONTINUATIONS IN D

3.3.1. Distancegeometryfor non-integerD. Thefirst way to defineintegrals
of the form f dDXi . . . dDXNf (x

1,... , XN) for non integer D is to start from
(3.2) and (3.3) or equivalentlyfrom (3.7) and (3.8).The measures(3.3) and
(3.8) now involve D as a simple parameter andthereforeprovide a natural



F. Davidet a!. / lnleractingcrumpledmanifolds 571

basisfor analyticcontinuation.For real D> N — 2, ~4f)(a) remainsa positive
measuredensityonAN. Thereforeit canbeconsideredasadistribution,overthe
space ~ of all squareddistances~ with support AN (i.e. by definition
it vanishesoutsideAN). As a distribution it can beextendedto 0 ~ D ~ N — 2

by analyticcontinuation.Thisamountsto treatby a finite part prescriptionall
the divergenceswhich occurat the boundariesof AN (see below the spherical
coordinaterepresentationfor moredetails).As a distribution,it is not singular
for positiveintegerD ~ N — 2, but becomesa measuredensityconcentratedon
the submanifoldsuchas the principal minorsPK (a) vanishfor all K suchthat
D + 1 <K ~ N.

As an examplelet usconsiderthe caseof two points.For N = 2 we have the
distribution (denotingx (A) the characteristic function of support A)

D/2
(D) _________ D/2_1

/22 (a)X(A2) = F(D/2)~12I 0(ai2). (3.15)

WhenD —~ 0 the r.h.s. of eq. (3.15) tendsto

F(D/2) Iai2ID/
2_i 0(a

12) ~9 ó(a12). (3.16)

Thusthe supportof the distributionbecomesrestrictedto thezero-dimensional
subspace(whereall pointscoincide).

Similarly for N = 3 we have

(D) 1 ~D/2 ~(D_i)/2
/23 (a)~(A3) = 2f’(D/2)I’((D-l)/2)

x det2DI”
3~’~’2~1O(det

2 D)O(a12)O(a13)O(a23)

~ ~ö(det2D)O(a12)O(a13)O(a23), (3.17)

wheredet2D P3 (a) reads

det2 D = ~ (a~
2+ a~2+ a~2)(a~2+ a~2— a~2)

1/2 1/2 1/2 1/2 1/2 1/2x (a
13 + a23 — a12 ) (a12 + a23 — a13 ) . (3.18)

Separatingthreedifferentboundarysectorsof A3, we get

(i)~.
/13 ~.a,~~.A3)dai2da13da23

= 2o(ag
2 + a~2— a 2)O(a

12)O(a23)O(a13)da
2da~2da~2+ perm.

(3.19)

which representsindeedall possiblerelativepositions of threepointson an
orientedline.

3.3.2. Cartesiancoordinatesin RN_i. RealizingthatN — 1 is the minimal
dimensionof euclideanspacein which one can embedN pointswith given
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squareddistancesa11 (in AN), we can use (3.4) back to reexpress the measure
over the scalarproductsd(y, . yj) as a measureoverN pointsin RN_i

HdN_Iyi = H ~ (det~_I[y1.yf])~
112.

1~i~j~N—i (3.20)

Thus we can implementthe analyticcontinuationin D by modifying the eu-
clideanmeasurein RN_i by asuitableanalyticmeasureterm:

N—I N—I s 5 (DN+i)/2

fi dDy, [Jd”~’y
1 D D-1•~• D-N+2 det[y, . YjIIl~i,j~N-i

i=l i=1 N—i N—2.~~1 (321)

Analyticcontinuationcanthusbesummarizedin thefollowingcompactformula,
which is aformal rewritingof (3.21):

fl dDyj = fi d~y~Q (D, N) (V (O,Yl,...,YN-i ))D_N+i

Q D Vol(S0(D)) 322( ,N) = Vol(S0(D—N + l))Vol(SO(N— 1))’ .

whereVol(SO(D)) is the volume of the specialorthogonalgroupin D dimen-
sions:

Vol(SO(D)) = SD SD—I Si (3.23)

WhenM externalpointsXa arepresent(that is pointsover which we do not
integrate),eq. (3.22) hasto bereplacedby the moregeneralformula

fidD = fi~M+N_iXQ(DMN)

/ \DMN+1
(V(X1,X2,...,XN,Xi,...,XM)\

x~ V(Xl,...,XM) )

QD N Vol(SO(D-M+1)) 324,M, Vol(SO(D—M—N+l))Vol(S0(N)Y ( .

3.3.3. Sphericalcoordinates. A third (equivalent)way toperformananalytic
continuationin D is the useof sphericalcoordinates.We first consideragain
the caseof N pointsin R’

3 with D integerandD ~ N — 1. We takex
1 as the

centerof thesphericalcoordinates,anddescribetheN— 1 otherpointsby their
relativecoordinate,as before

YIXj÷vXi i 1,...,N—1. (3.25)
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Introducinggeneralizedsphericalcoordinatesfor the y~,we write

Yi,l = IY~Icos

Yi,2 = y~sin°j,i cos01,2,

Yi,D—i = YiI sin0,~sin0i,2•• . sinOi,D—2cos0i,D—i,

Yi,D = y~sin°i,i 5~fl0i,2. . . sin 0i,D—2 sin Oi,D—1 , (3.26)

where0,,~E [0, ir] for 1 ~ n ~ D — 2 and 0j,D1 a [0, 2ir). The corresponding
measureis given by

dDy~= yjID_idIyjI fi (sin ~ )D_IndO. (3.27)

For rotationallyinvariantintegrands,we canfurthermorefix successively

= 0, n ~ i. (3.28)

Taking careof the successiverotationalsymmetries,we arriveat

N-i N-i N-il-i

H d’~y
1= SD

5D-i . . . SD_N+2 H y
11D_idIyjI III H ~

i=l i=l i=2 n=i (3.29)
with all the 0,,,~now integratedfrom 0 to ~r.In (3.29),D againappearsonly as a
parameter.This thereforeprovidesanothernaturalpathto analyticcontinuation
in D. Indeed,possiblesingularitiesat integerD arisefrom the negativepowers
of the sin0,~,which diverge at 0,,~= 0 or m. It is clear from the spherical
coordinatesrepresentation(3.26) thatwhensomeof the 0’s areequalto 0 or it

the vectorsy arenot linearly independentandtheNpointsx, arein aeuclidean
subspacewith dimensionsmallerthanN — 1. Away from integervaluesof D
(with 0 < D < N—1), thesedivergencescanbetreatedby thestandardfinite part
prescription(independentlyfor each0,~).To prove that for integerD, (3.29)
remainsadistribution and canbe rewritten as a finite measurelocalizedon
somesubspace(correspondingto sphericalcoordinatesin someD-dimensional
submanifold)requiresa more elaboratediscussion,not presentedhere.

Thisanalytic continuation(3.29) is totally equivalentto the analyticcontin-
uation (3.22), as canbe seenby going backas before to coordinatesin RN_t.
Using (3.29),we haveformally

N—i N—i N—i N—li—i D—N+i

fi dDy~ = fi dN_1y1~~5S1~SD-N2 [fi Iy~Ix [Jfi] (3.30)

wherethe0,,,~’saresphericalanglesin R~’_i.We readon thisequationtheangular
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representationof the squaredparallelotopevolume [281

N-i N-u-i

PN(a) = det[y1 YJ]i~iJ~N—i= H ly~i
2x [JH sin20,,~

i=i 1=2 n=I

= V2(0,y
1,... ,YN-i) (3.31)

andeq. (3.30) is thereforeidenticalto (3.22).

Finally, whenMexternalpointsarepresent,(3.29) hasto be replacedby

~~Xi =

5DM+15DM• . •5D-M-N+2 H IXiID~1dIXi~
N M+i—2

< [I fT (sin0
1,~)D_~u1d01,~, (3.32)

1=1 n=i

wherethe ~ are the M + i — 2 successiverelativesphericalanglesfor x,
necessaryto assignposition to the vector Xi — X~ with respectto the M —

externalvectorsX2 — X1,... , XM — X~ andto the i — 1 internalvectorsx~— X~

for j < i, in a referenceframewhereX1 is at the origin.

3.4. FACTORIZATION

Of course,for integerD, the measurefJ, d’~y,is naturally factorized,when
appliedto a productof functionsof independentvariables:

P÷Qf fi dDykf({yk;ki,p})

= Jñ dDy~f({y~}) . f H dDy1 g({y1}). (3.33)

i=i j=P+i

This importantfactorizationpropertybecomesnon trivial whenextendedto
arbitraryD, as canbe seenfrom (3.21).Still, if we considerthe scalarproduct
matrix [u~1]i~iJ~P+Q anddenoteby [U]p (respectively[u]Q ) the submatrix
[u~1]i~,,1~p(respectively[Ujj]p+i~<i,j~<p+Q), onehas(seeappendixB)

f d[u]a~Q([uJ)f([u]p)g([u]Q) = f d[u]pa~([u]p)f([u]p)
Up~~ Up

x f
(3.34)

which meansthat the integration over the mixed scalarproductsU1, 1 ~ i ~

P <j z~ P + Qcanbeperformedandamountsto factorize into
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Thefactorizationpropertyofthemeasureis thuspreservedunderanalyticcontin-
uation in D.

3.5. THE INTERACTION AS A CAYLEY-MENGER DETERMINANT

The N-point interaction term (detN_u [H11])~
2 dependsexplicitly on D

throughthe occurrenceof the Greenfunction (2.31)andis readily analytically
continuedto non-integerD. Letus recallthatwe considerD, u and� as thethree
independentparametersof the model, so thatd itself is a functionof D given
by d = (D — � )/u. Fromadistinct, geometricalpointof view, it is particularly
interestingto noticethatthe interactionterm alsoinvolvesa determinantofthe
Cayley—Mengertypewith a,

3 replacedby its power (a,3 )‘~‘

01 1... 1

10 a12...alN

PN(a~’) 1 ~ 0 ... a2N . (3.35)
1~’ “ 0

Ni N2

Indeed,from definition (2.24) andfrom (2.31),wehave

H1 = AD(u) D,1(a°), (3.36)

with

D,~(a”)= ~(a~ + ~ —a~) (3.37)

andthe factor
2 [‘(1—u)

AD(V) = 40(4it)D/
2vF(u+D/2)’ (3.38)

andtherefore

detN_I [H~
1]= [AD(u)]~~r_iPN(av). (3.39)

Finally we havethe compactformula, analyticin D, � andu, for the term of

orderN of the partitionfunction (2.10)

ZN = V(2itAD(v))_d1V2fl(~~~2)

xf fi dajj[PN(a)](D_~~/
2[PN(a1/)]_d/2 (3.40)

AN i~i<j~N

with againd = (D—�)/u.



576 F. Davidet al. / Interactingcrumpledmanifolds

3.6. ANALYTIC EXPRESSIONOFZN IN CARTESIAN COORDINATES

An immediatecorollary of the aboveformalism is the following alternative
formulafor ZN, nowin cartesiancoordinatesin RN_I,whichprovidesanequiv-
alentdefinition of the analyticcontinuationof ZN:

ZN = (2ir)~~
12 V fn dN_iy~S~” .SDN+2

(D—N+i)/2 —d/2
x (det [y~ . Y~]i~i,j~N_i) (det [Hif]

2~~f~N)

(3.41)

3.7. DETERMINANT ATTACHED TO TREES

In the following we shall find it useful to expressboth the measureandthe
interactioncontributionsin termsof moregeneralvariables~ obtainedfrom
the positionsx~and attachedto arbitrary orientedtrees. A spanningtree is
a connectedgraph whoseverticesare the previousN points x1, andwithout
loops (see fig. 3d). This graph thereforehas N — 1 internal lines labeledby
a = 1,... , N — 1 for which onealsospecifiesan orientation.An orientedtree
is characterizedby its N x (N — 1) incidencematrix [�,,~] definedby ~ia = 1 if
the line a is incidentto i andpointstoward i, �~= —1 if a is incidentto i and
pointsoutward i, �~= 0 otherwise. One has

= 0. (3.42)

Foreachline a of the treewe definethe line vector(or edgevector)A~,in RN_I

by

= ~�iaXi = ~�j+iaYj, (3.43)

wherethey~’shavebeendefinedin (3.25).
Expressionfor themeasure. Sincethejacobianof the lineartransformation

(3.43)from theyj’s to the A,~’sis

Idet’[�]I = jdet[�ja] 2~i~N I = 1
I~~N—i

and

det[A~.)~p]= (det’[�])
2det[y~•y

1] = det[y,.y~]
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onehasdirectly from (3.21)

=

N—i ~, (D—N+l)/2
— N-i ‘3D D-i..•’3D-N-~-2
= fld 2~, ~, ~, C,

(3.44)

This alsomeansthat one canreplacein (3.4) the integrationover the matrix
elementsu11 = y, . yj by an integrationovermatrix elementsu,-,p =

associatedwith an arbitrarytree.
Expressionfor theinteraction. We nowderivethe expressionof the determi-

nantPN(a°)which entersthe interactionfactorin termsof the~
2~’s.Eq. (2.23)

wasactuallyaparticularrepresentationofthe interaction,associatedwith apar-
ticular choiceof atree,namelythestarcenteredatx

1 andlinespointingtoward
the otherpoints. This canbe seenin our choicek1 = — ~i=2 k, to accountfor
theöd (~ k,) constraintin the momentumintegral (2.18).We cangeneralize
this constructionto an arbitraryorientedtreeT by writing k~as

k~= —~�j~q~. (3.45)

Thesevectorsq~can be seenas flowing alongthe lines of the treewhile the
vectorsk, canbethoughtof asbeinginjectedatthenodesofthetree.Eq. (3.45)
expressesthemomentumconservationatthenodesandmoreover,togetherwith
(3.42),ensures>k1 = 0 for anyset of q~’s.Using then

fld”k1ö”(~k~)= fld”q~, (3.46)

weget for the interactionterm (2.18)

ZN = Vffl dexP[_~ ~ qa~fl~]

a=l

= (2it ) -d(N- ‘~
12V~ H d~a (det [H~~]

1~,fl~N-i )_d/2, (3.47)

wherewe takeadvantageof (3.44)anddefinea newmatrix HT attachedto the
treeT:

~ = ~ �1~G(x~,x1)�1p. (3.48)
i,j = 1
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Indeeddet[H~~] is independentof the choiceof the treeT.
In termsofpairsoforientedlinesa,fi of thetree,with extremities(ia, i’d) and

‘~i~~ eectivety,thematrixelementH~isassociatedwith thequadrilateral
(ia, 1 ~, lp~1 p )

= G(x,~,x,p ) + G(x,’~,x,,~) — G(x,~,x,~) — G(x1~~,x,~) . (3.49)

It can be viewedas an interactionpotentialbetweentwo dipoles,~,and)~pand
hasthe following pictorialrepresentation:

+ i~

H~= + (350)

Expressionforcorrelationfunctions. Forcorrelationfunctions2(M) (Xa, ka)
(2.25) onecan generalizethe aboveconstructionsimply (i) by consideringthe
spanningstartreeTex with line vectorsAa = Xa — X1 (a > 1) for the external

points, (ii) by choosinganarbitrarytree~ with line vectorsAa for the internal
points, and (iii) by attachingthesetwo treesby a line vector A~joining the
externalpoint X1 to an arbitraryinternalpoint. In this way, we obtaina larger
treeT to which we canassociateageneralizedform of (2.27):

Z~M)(Xa,ka) = (2it)~’~

12 f dDAu fi d~ (det [H~~]i~a,fl~N_i)

xexp ~ kakbAab] , (3.51)
a,b= i

/ nT n’T
dt ( ab a/ie N HT HT

\ ab ~/Jab = detN_i(Hc~p)

As discussedabove,the determinantsin (3.52) are independentof the treeT
chosen.In (3.51), the integralover the 2a’s andAi hasto be understood,for
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realD, as

f dDAi fi dDA~= f dM~_iA
1 fJ dM~’_ i,~

/ ~ (D—M—N+ I )/2
j Aa~A~Aa~tpdetN+M_l ( A

\ 1L&11b a~tfl (3.53)
[detM_i (Aa.Ab)2~a,b~M]

and(3.51) is afunctionof theinvariantsaab = (Xa — Xb 2, whicharequadratic
forms in termsof the line vectorsAa.

3.8. THE LIMIT D = 1 AND THE SCHWINGERREPRESENTATION

As an example,for amanifold with internal dimensionD = 1, one can re-
coverthe standardSchwingerrepresentation*of aninteractingfield theorywith
interactionterm (~)2 (0) (seesubsect.6.1 for furtherdetails),herein direct
correspondencewith the continuousEdwards-likemodelfor apolymerinteract-
ing with a single fixed pointat the origin. ChoosingD = 1 andk = 2 in (2.1)
correspondingto the gaussianweightof a brownianchain, onehasv = ~ and
the propagatoralongthe chain

G(x,y) = —~1x—yI. (3.54)

Furthermore,for the perturbativeorderN, the measureterm (3.8) reconstructs
in thelimit D = 1 (like in eq. (3.19)) the measureoverall relativedistancesof
N orderedpointsalongthe chain, as well as all their permutations.Foragiven
permutationx,1 ~ ... ~ x~,the measureterm is simply

fIda~’,
2. (3.55)

ChoosingasaparticulartreeT thesuccessiveorientedlinks (ia, ~‘a) = (ia, 1a-i- u)
the matrix HT (3.49) is diagonal

H~Tp= 5Uöafl with s~= a~2~
1= x1~1—x,~. (3.56)

The s~,are nothingbut the usual Schwingerparameters(propertime) for the
propagatorlinesa, or in polymertheory the lengthsof the successivepolymer
segments.The interactiongives for the partitionfunctionaterm of the form

ZN = fL~1ds~~ ~ (3.57)

* In the contextof polymers,it is also knownas the Fixman representation[3].
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Fig. 4. Thedaisydiagramcorrespondingto the term (3.57)

which is nothingbut the Schwingerrepresentationfor the “daisy” diagramin d
dimensions(fig. 4).

4. Ultraviolet and infrared properties of the integrand

4.1. EXISTENCEAND POSITIVENESSOF THE INTEGRAND

Therulesthatwehaveproposedabovefor definingtheperturbativeexpansion
of the model in non-integerdimensionD remainformal. Indeed,we havenot
shownyet that the integrandsdo existandthatthe integralsareconvergent(for
D largeenough),anddefinean analytic function in D. Let usconcentrateon
the Nth term for the partition function, ZN, which is explicitedby the integral
(3.40) in termsof distancevariablesa3, by the integral (3.41) in termsof
cartesiancoordinatesin R~”~_ior by the integral (3.47)in termsof treevariables
,~.We shall furthermoreassumein the following sectionsthatD 2~N — 1, that
is D largeenoughfor p~j~to be ameasuredensity(similarly, for z~M),we shall
assumeD ~ N + M — 1). We shall discussin sect.9 how our resultscan be
extendedto smallerD.

Schoenberg’stheorem. First, in view of the formula (3.40), the positiveness
of the Cayley—MengerdeterminantPN (av) (3.35) hasto be ensuredinsidethe
domainof integrationAN for thevariablesa~3.For0 < ii ( 1, thisactuallyis just
aconsequenceof aremarkabletheoremin distancegeometrydueto Schoenberg
[31].

Theorem4.1. If we changethe metric of the euclideanspaceR°~from the
euclideandistanced(x,y) = Ix — ~Ito the new distance

d(x,y) = (d(x,y)Y 0<u ~ 1, (4.1)

the new metric spaceR7~)thus arising may be embedded isometrically in the

HubertspaceR~with theL
2-norm.
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A practical (equivalent)statementis thatanysetof N distinct pointsof

canbeembeddedin theeuclideanspaceR’~”~.In ourlanguage,thismeansthat,if
thea,~areactualsquareddistancesof Npointsin ~, thena,~with 0 < ii ~ 1

canalsobe realizedas actualsquareddistancesbetweenN transformedpoints
in RN_I.An immediateconsequenceis that PN(a”) ? 0, aswell asall thelower
rankpolynomialsPK (at’) ~ 0.

We moreoverhavethe usefulrefinedresult for 0 < v < 1 [31]:

Theorem4.2. If Xi,... , XN are N distinct points in R”~, and [a~
3]the cor-

respondingsquareddistancematrix, the matrix D1(a
t’) = 4~(a~+ ~ —

(0 < u < 1), ispositivedefinite.

The positivenessis aconsequenceof theorem4.1. Thenovelty hereconcerns
the definitenessandstatesthat the determinantPN(at’) vanishesif andonly
if two pointsatleastcoincide, that is a

11 = 0 for some i ~ j. Notice that this
propertydoesnot hold for thecaseu = 1 for whichwealreadyknowthatPN(a)
vanishesas soonthe a~3canbe realizedasdistancesbetweenN pointsin RK for
K ~ N — 2, which canbe obtainedwith noneof the a,1 (i ~ j) vanishing.

4.2. SHORT-DISTANCEDIVERGENCES

The aboveresultensuresthat for 0 < u < I the only possibledivergencesin
eq. (3.40)occurwhen somedistancesa,1 go to 0 (UV divergences)or oc (JR
divergences).Let us first discussthe UV behavior.

If onescalesthe distancesby aglobal factorp,

a11 —f p
2aj

1, (4.2)

the measuretermin eq. (3.40) is scaledaccordingto

fi dalj[PN(a)]~°~~
2_~ ~D(N_l) fi dajj[PN(a)]W_~2

i~i<j~N i~i<j~N (4.3)

while the interactionterm scalesas

[PN(at’)]~~2 —. p_(N_i)t/d[PN(au)]_d/2 (4.4)
We thereforeobtainaglobal scalingfactor p(N_l)(D_vd) = p(N_i)r~ Thismeans
that the contributionto ZN of the region of AN suchthat all squareddistances
a

3 t~p

2 is of orderp(Ni ~, indicating that ZN is superficiallyUV convergent
for � > 0, but divergentfor � ~ 0.

Similarly, we expectthatwhenthe squareddistancesbetweensomesubsetof
Ppointsare ~ p2, we get a contributionof orderp(~’~~to ZN. This is indeed
whatoccurs,dueto thefollowing crucialfactorizationpropertyof theinteraction
term.
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Fig. 5. Schematicpictureof theshort-distancefactorizationof theinteractiontermrelativeto some
setQ of N interactionpoints (hereN = 10). Whenthe points of a subset7’ of g arecontracted
towardoneof its point Xi, the interactionterm factorizesinto the productof theinteractionterm

relativeto P andthe interaction term relativeto ~ = (~\ 7’) U {Xi}.

Theorem4.3. Short-distancefactorizationoftheinteraction term.

Considerthe subsetP of (for instance)the first P interactingpoints (consid-
eredas embeddedin RN_I) Xi,... , Xp andlet us contractit towardone of its
points,which wechooseto be Xi. We set

fxu+p(xk—Xi) ifl~k~P 45Xk(p)
1 Xk ifP<k~<N ( . )

This definesa mappingin distancevariables

p
2a,j ifl~i~j~P

a
11(p) = auj—p(auj +aij—ajj)+p

2(aij) ifl ~ i ~ P<j ~ N

a
13 ifP<i~j~N

Then,in thelimit p —~ 0, the determinantofthematrixD,3 (a
t’) (3.37) factorizes

as (fig. 5)

detN_l [D
1~(a

t’(p))] = ~2v(P_i) detp_u [Dij(at’)I
2~1,j~p

I I II’,1 Ii ,-.-~i 2öx etN_pl ~1~a)JP+i~z,1~N~’ + ‘_“.p

(4.6)
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with

ô = min(u,l —v) >0. (4.7)

Proof The matrix D11 transformsunder a contractionaccordingto

p
2t’D

1~(at’) if! ~ i ~ j ~ P

D~~(a
t’(p))= ~{p2t’a~.+ a~ .

— [a
11—p(aij + a11 —a~1)+ p

2(au~)]t’}if1 ~ 1 ~ P <1 ~ N

D
3(a

t’) ifP<i<~j<~N

(4.8)

Forsmallp, the mixed term D,
3, i ~ P<j, hasthe expansion

D1~(a
t’(p)) = p2t’a~’. + pva~~(ai~+ aij —a

11) + 0(p
2)

= pt’Q(pó), (4.9)

since the leading term is ~ ~2v or ~xp, dependingon whetherv is greateror
less than 1/2. Thus we can write the matrix D,

3(a
t’(p)) in blocksassociated

respectivelywith the subsetsP andP = {Xi} U {Xp÷i,... ,XN}

2 P P-~-l N

(p2t’Dp(at’) pt’o(pô)’\ . (4.10)
D(a°(p)) =

\, pt’Q(pô)

Hence*

det(D(at’(p))) = ~2v(P_i) [det(D~(at’))det(D~(at’)) + O(p2o)]

Furthermore,from Schoenberg’stheorem,if det(D~(at’)) or det(D~(at’))van-
ishes,somesubsetof pointsXk(p) coincidesfor anyp andsodet(D (at’ (p)))
alsovanishes.The equivalencein eq. (4.6) andthe theoremfollow.

The consequencesofthistheoremaretwofold.First, as expected,whena sub-
setP of P pointscoalescesto a single pointp, thisgivesa divergencein ZN, as
well as in anycorrelationfunction Z~M),sincefrom (2.27) the sameinterac-
tion determinant(det(H))~’/2is present.Second,this divergenceis formally
equalto the global divergenceof the partition function amplitudeZp for the
Pcontractedpoints timesthe amplitudeobtainedby replacingthosepointsby
the singlecontractionpointp, ZN_P÷u. This is a key point for ensuringrenor-
malizability, sincethis showsthat short-distancedivergencescan be absorbed

* This follows for instancefrom det ~ ~) = det(A)det(C)det(I— A’BC’B’) for invert-

ible matricesA andC.
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into an effective interactionterm,thanksto ashort-distanceoperatorproduct
expansionfor “interactionoperators”

fT ô”(r(x)) ~ Isize(P)l_~~t’~~_Uô0’(r(xp)),(4.11)
iEl’

wheresize(P) is a“typicaldistance”betweenthepointsx, ofP inD-dimensional
space(which dependson the preciseway the limit x1 —~x~is taken).

It is the purposeofthe nextsectionsto givea precisemeaningto theseasser-
tions, to providerigorousarguments,andto discusstheir consequencesfor the
physicsof the model.

Onecan regularizethoseshort-distancedivergencesandmakethe integrals
(3.40), (3.51) UV-finite by changingthe short-distancebehaviorof the prop-
agatorG(x,y). However, it is bothconvenientandnaturalto usedimensional
regularization,that is to considerthe amplitudesas analytic functionsof the
parametersD (the dimensionof internal space),u (the scaling dimensionof
the field r), and� (the scalingdimensionof the interaction).As we shall argue
below,for fixed D and0 < v < 1, the amplitudesareexpectedto be UV-finite,
and thereforeanalyticfunctionsof �, in the half-planeRe(�) > 0. Becauseof
the short-distancebehaviorof its integrand,ZN will exhibit poles at � = 0.
For instance,the singularcontributionto the integral (3.40) arising from the
integration over the global dilation parameterof the N-interactionpoint set
gives a single pole x l/�. More generally, we expect that multiple poles in 11~k

(1 ~ k ~ N — 1) will occur at � = 0, corresponding to the dominant singu-
laritiesappearingwhenk successivesubsetsof interactionpointscoalesce[20].
Apart from thesepolesat� = 0, subdominantdivergenceswill beshownto give
polesin the � planefor Re(�) ~ —ô/ (N — 1). In field theory,the factorization
propertyof the integrandunderpartial contractionsof subdiagramsdetermines
the polestructureof the resultingFeynmanamplitudeandis the key point that
ensuresrenormalizability.Here,althoughthe interactingmanifoldmodel is not
mappedontoastandardfield theory,asimilarpolestructureof ZN will befound,
dueto the factorizationpropertyof the interactionterm thatwejust discussed.

4.3. IR REGULARIZATION

By similarpowercountingarguments(i.e. dimensionalanalysis),it isexpected
thattheintegralswill divergefor largedistancesa11 —~oc (whenRe(�)?~0).As
usualin field theory,we shalldealwith thisproblemby introducingan infrared
regulator,andbyshowingthatsucharegulatordoesnot changetheshort-distance
propertiesandthe renormalizationof the model.

The simplestkind of regulatoris to work in a finite D-dimensionalspace,i.e.
to considera “membrane”of finite size.This is in factwhat is usuallydonefor
the continuouspolymerEdwardsmodel. Indeed,the polymeris takento have
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afinite total “length” 5, which amountsto constrainthe lengthvariabless, in
(3.57) by a measureterm (S— ~a5a) 0(S—

In ourcase,our formulationof themodel in non-integerdimensionrelieson
theinvarianceoftheobservablesundereuclideanmotionsin R’~.A simpleway to
keepasimilarsymmetryoverafinite manifoldis to startfrom theD-dimensional
hypersphereSD with radiusRandvolume VSD = Sm-1RD, so that the groupof
invarianceis now SO(D+ 1). Onecan easilygeneralizetheconceptof distance
geometryon SD, andits analyticcontinuationfor non-integerD. Indeed,we can
embedthe sphereinto Rm-l, andwrite the integralof a SO(D + 1) invariant
functionof N variablesas an integraloverscalarproductsu13 = x, x1:

f ftdD+ixio(IxiI_R)f(uij)=J flduj1a~([uj1],R)f([ujj]),
1=1 U,v(R)1<3 (4.12)

with u13 = R
2 if i = j, andthe measure

= SD+u...SD_N+
2RN (detN[u11])~~~

2, (4.13)

UN(R) beingthe domainof u,
1 (i <j) wherethe matrix [u13] is positive with

all the u11 set equalto R
2. Equivalently we can expressthe integral (4.12) in

termsof squareddistancesa,
1 = 2 (R

2 — u
1) in (D + 1)-dimensionalspace

(thisdefinesthe so-calledcord distanceon SD which differs from the geodesic
distance):

fÜd1xiIxiI_Rfa11=VsDf flda,f/1~(alILR)fUa,f]),
1=I AN(R)1<J (4.14)

with themeasure
(D—N)/2

= 2_ N_i)/
2SD...SDN+

2(~detN[R2 —

(4.15)

and AN(R) the domain of a3 wherethe matrix [R
2 — ~a~

1]is positive. In
particular,the positivenessof the 2 x 2 minorsensuresfor anytwo pointsthe
diameterinequalitya,3 ~ 4R

2. Hence,AN(R) is a bounded subset of R~T~”~UR~
Onecancheckthe identity

detN([R2 — ~a,
1]) = R

2detN_i([D,J(a)]) + detN([—~a1J]), (4.16)

whereD,
1(a) is definedin (3.6) (indeedthe N — 2 highestdegreeterms in

the polynomialexpansionin R
2 ofthe l.h.sof (4.16)vanishidentically!). This

implies thatin the thermodynamiclimit R —* oc onerecoversthemeasure(3.8)
in euclidean (infinite flat) space.Conversely,for a finite R, formula (4.16)
showsthat, atshort distances,the measureis dominatedby the first term of the
r.h.s, i.e. the euclideanone,while the secondterm,which is one degreehigher
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in a,1, becomesrelevantfor distancesof orderR only, henceprovidingan JR
regulator.

It remainsto writethe expressionfor the interactionterm. In fact, thelatteris
thesameas in (2.23),with the matrixH,3 (2.24), or moregenerallythe treema-
trix ~ (3.48),involvingthemasslesspropagatorG(x,y) = [(—A)k/2] —i (x,y)
nowon SD.Thereis howeverno generalsimpleanalyticexpressionfor G(xe,x3)
as afunctionof the distancevariablea,3 definedabovefor generalD and k. For
definiteness,anothersimplepossibilitythenconsistsin keepingapropagatoron
the sphere of the form (2.31)

1 [‘(1—u)
— G(x1,x1) = 4t’(4it)D/2 uF(u + D/2) a~~I. (4.17)

Thisamountsto modifyingthe“elastic” term of the hamiltonian(2.1) by finite-

volumecorrections

r(x). (—A )k/
2r (x) r(x). [(A )k/2 + cstR2(A )(k_2)/2)

+cstR4(—A)~4~12+ ...] r(x) (4.18)

whichchangeitslong-distancebehavior(JRregulator),but not itsshort-distance
behavior.In particular,Schoenberg’stheorem4.2, which is readily satisfiedby
the propagatorG given by (4.17), is expectedto remainvalid for the exact
masslesspropagatoron the sphere.The correctionsin (4.18) vanishin the limit
R—~ oc. In the following, wewill keepin mindthatthemodel is definedwith the
measure(4.15)andthepropagator(4.17).However,sinceweshallbeconcerned
with the UV renormalizationof the model, we shall useformally the simpler
euclidean(R —* oo) limit (3.8) of (4.15). As discussedabove, they actually
sharethe sameshort-distanceproperties.

5. Absoluteconvergencefor � = D — vd > 0

In this section,we want to prove that

Theorem5.1. For � > 0 (i.e. d <d*), the integrals ZN and Z~M)are abso-

lutely (UV) convergent.

As in field theory,thisactuallyis a consequenceof (i) the superficialconver-
genceof Zp for anyP t~ N and(ii) the basicfactorizationproperty (4.6), and
generalizationsthereof. Since the formalism developedabovecan be thought
of as a naturalgeneralizationof the Schwingerrepresentationof Feynmaninte-
grals, theproofof absoluteconvergencewill beinspiredby the standardmethod
basedon decompositioninto Heppsectors [32]. As discussedjust above,we
shallalwaysassumethe (implicit) presenceof an IR regulator.
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(a) (b)

Fig. 6. (a) An example of construction of the orderedtree T = (,~
1,22,,t3,)~4)for a set of

interactionpoints with )~fl~ A21 ~ ~3I~ ~4I.This tree definesthe generalizedHepp sector
to which this setof pointsbelongs. (b) Moving the point x2 towardthe point Xi resuitsin a

changeof generaiizedHeppsector.

5.1. GENERALIZED HEPPSECTORS

We startwith formula (3.41) andpartition the domainof integrationfor the
y,’s into generalizedHeppsectorsasfollows (fig. 6). LetusconsidertheN points
in R~

1with cartesiancoordinates0,Yi,... , YN— i. We first singularizethe pair
of pointshavingthe minimummutualdistance,anddefineA i as the vector in
RN_i joining thesetwo points, with an arbitraryorientation.We define22 in a
similar way, as the vectorassociatedwith the minimal distanceamongall the
remainingmutualdistances.22 can(i) either shareoneof itsextremitieswith 2~,
or (ii) bedisjoint.At thenextstep,wedefine23 asthevectorassociatedwith the
minimal distanceamongall the remainingonesandsuchthat (A i, 22,23) do not
form aclosedloop (thismayoccuronly in case(i)). We iteratethisconstruction,
by requiringateachstepthat no loop everappears,up to the emergenceof the
lastvector2N~i. We thushaveconstructedanorientedorderedtreeT with line
vectors (Au,... ,2Ni)~ which spansthe N pointsandis suchthat (fig. 6)

Au ~ 1221 ~ ... ~ IAN_il. (5.1)

We shalldenoteT = (Au,... 2N— i) althoughthetreeT is not strictly speaking
characterizedby the line vectors2~,but only by the incidencematrix �,,, of the
linear transformationfrom the x

1’s (ory,’s) to the An’s. With anyorderedtree
T, we canthereforeassociatethe Heppsector7~tTdefinedas the domainof the
y’s in RN_I leadingafter thisconstructionto this orderedtreeT, regardlessof
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its orientation.It is clearthatR~v_i= UT NT.
In a given sectorNT, we makea changeof variablesfrom the y,’s to the 2~’s

associatedwith theorderedtreeT (with anarbitrarychoiceof orientation)and,
in particular,useH~flto evaluatethe interactionterm.We parametrizethe 2a’5

by theirsphericalcoordinatesin RN_i,namelyby theirmodulesI1~I andrelative
angles0~,. . . O~_uas in eq. (3.26)and (3.28). ThevariablesI2~lwill playthe
role of the Schwingerparameterss,, in field theory.Since 12u I ~ 1221 ~ ...

12N—u , it is naturalto rewritethe 121’s as

lAil = /31/32... fiN—i,

1221 =

l2N—iI = fiN—i, (5.2)

withO ~ /Ja ~ 1 for 1 ~ a ( N—2and0 ~ /J~yu < oc (intheeuclidean
versionof the problem,thuswithout JR regulator).The domainof integration
VT for the /3 and 0 variableswhich reconstructsthe domain ~T for the Yi’5
in RN_I, dependson the topologyof the orderedtree. For instance,the value
fi~= 1 can in generalbe reachedinside the sectoronly for somedomain of
the angle0 betweenA~,and~ u. Still, the domainVThasthe following general
structure:

0~<0~,~<it 1~n<a~N—l

fit~’~(T;fiyy<,,;0’s)~ fi,~~ fl~nax(T;fiy.y<a;o~s)1 z~a ~ N —2

0 ~ flNi (5.3)

where/3~~”(T;fl’s;0’s)andflrnax(T;/3~s;0’5) are (positiveandpossiblyvanish-
ing) functionsof the 0’s andof the fir’s for y < a. The inequality /3mm> fimax

for some0’s and fly:y<t would indicatethat such a partial configurationof 0’s
andfi

7’s alwayslies outsidethe given sector.The only importantpropertiesof
VT that we shalluseare:

(i) VT is by definition bounded,if oneexceptsthe variable fiN—I, sinceby
construction ~ (T; fl’s; 0’s) ~ 1. The variablefiN—i itself staysboundeddue
to the implicit presenceof an JR regulator;

(ii) det( [H~~] ), whenexpressedin termsofthe/3’s andthe0’s, is acontinuous
function of thesevariablesandvanishesin VT if andonly if one at least of
the fl’s vanishes.Indeed,from Schoenberg’stheorem,det([H~~]) = 0 iff two
pointscoincide,that is if their mutualdistanceis zero. Sincethis distanceis by
constructionlargerthanor equalto IA i I in the sector, this implies IA ii = 0, or
equivalently /31/32... fiN_I = 0.
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5.2. ABSOLUTE CONVERGENCE

It is enoughto provethe absoluteconvergencein eachHeppsectorNT. Omit-

ting global factorsin (3.41) we considerthe integralf dN_ lY~(det [y~ . yj] ) (D-N+ i )/2 (det [H11]) -d/2

N—i N—ia—i

= fT fT (I3a)~
1dfiafi H (sin (Oan))D_i_fldOanV a=i a=2n=i

T , —d/2x (det [Hap(fl s,O’s)]) . (5.4)

As already mentioned,we shall limit ourselvesto the caseD ~ N — 1. We
shalldiscussin sect.9 how our resultscanthenbeextendedto D < N — 1. The
productofsinusesin (5.4) is thusaboundedfunctionon VT. Possibleultraviolet
divergencesmayonly arisefrom the vanishingof det[Hap], that is whensome
/3’s vanish.For � > 0 (d < d* = D/u), it is sufficient to showthat, on VT,

fl(fia)~ (det [H~~])~2 = 0(fl(fla)~). (5.5)

As is clear from its definition, H~
11vanisheswhen

2a and/or2/i vanish.The
key point is that while H~= AD(u)lAal2t’, H~pvanishesmore rapidly than
12a1t’kplt’ if a /3 (seeappendixC). Thispropertyis bestexpressedby intro-
ducingthe “normalized” matrix

FIT
yT_ 1 a/i 56a/i = AD(u) kalt’12p1t’

(suchthat Y~= 1).

In termsof the fl’s, we can write
,-rT A I ~o2t’o2t’ o2t’ ‘t’T11aa = f1D~V)Pa Pa+I~”PN_l’aa~

= AD(v)fl~...fi~_Ifi~t’...flk1iY~(fl’s,0’s) (cv </3) (5.7)

leadingto the identity

detNi ([H~p]) = (AD(u)) fi?t’.../3~t’(~I) detNi ([Y~]). (5.8)

Thisamountstofactorizingoutthemaximalpowersoffl’s. In particular,det( YT)

is independentof fiN—u. In order to obtain (5.5), onehasto showthat on VT

the positivequantity det( yT) in (5.8) cannotvanish andis actuallybounded
from belowby a strictly positive number.This propertyis provenin appendix
C. Indeed, if det( yT) were to vanish,det(HT) would also vanishand, from
Schoenberg’stheorem,somesubsetof the fl’s mustvanish.This correspondsto
contractsuccessivelysomesubsetsof points (by a contractingscalefactor /3)
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to single points. A generalizationof the factorizationproperty (4.6) (see ap-
pendixC) showsthat, in sucha limit, the determinantdet(HT) factorizesinto
aproductof similardeterminantsassociatedwith subtreesof T. Thenormalized
determinantdet( YT) thenbecomesexactly equalto a productof normalized
subdeterminants,eachof them correspondingto a subtreeof T. In the sector,
thesesubtreeshaveno coinciding (with vanishingdistance)pointsandtherefore
their determinantsdo not vanish.Thus,det( yT) doesnot vanishevenin this
limit wheresomefl’s tendto zero.

Fromtheaboveresults,thequantitydet( yT) in (5.8),seenasa functionof fi~
(1 ~ y ~ N—2) andof the 0’s, is a continuouspositivenon-vanishingfunction
on thecompactrestriction of VT obtained by omitting the (here dummy) variable

fiN— i• Thereforeit admitsa strictly positive lower bound on VT and thus (since
d>0)

(detN_u [H~~])~2 <cst.fl...fl’~~, (5.9)

which is equivalentto (5.5).The convergenceof the integral(5.4) in theHepp
sectorNT for � = D — ud > 0 follows.

We thushaveproventhe convergenceof the genericperturbativeterm ZN of
the partition function Z (forD ? N—1). Similarly, the perturbative terms ZJ~JM)

(eq. (2.27)) of the vertexoperatorsZ(M) (eq. (2.25)) canbe shownto be UV

convergentfor � > 0 andD largeenough (D ? N + M — 1). This follows from
the samedecompositioninto Heppsectorsandthe useof (3.51).The proofis
thenexactlythe sameup to the following modifications:

(I) The measure term in (5.4) is replaced by a measure similar to (3.32) for

tree variables. The difference between this measure and that of (5.4) concerns
only angular terms, which are bounded functions on VT (provided now that
D ~ N + M - 1).

(II) The exponential term, depending of the external momenta, has for argu-
ment a negativequadraticform —~ ~ab ka . kbdab, andis thereforebounded
between0 and 1.

The aboveproofthereforecarriesover to this generalizedcase.

6. ThesubtractionoperationR

6.1. RENORMALIZATION: INTRODUCTORY REMARKS

Thepurposeof renormalizationis to showthattheshort-distancedivergences
thatoccurat� = 0 canbeabsorbedinto a redefinitionof thecouplingconstants
of the model. If true, this property allows us (i) to give a meaning to the theory at
� = 0, and(ii) to write arenormalizationgroupequationanddeducethescaling
behaviorof themodelfor � ~ 0. Fromthe analysisof divergences performed in
sects. 4 and 5, we expect that the correlation functions can be made finite by a
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simplerenormalizationof the barecouplingconstantb in the action (2.1) [20]

b = l1~bRZ(bR,�), (6.1)

where,u is an (internal) momentumscaleand~ afinite dimensionlessrenor-
malizedcouplingconstant.In the caseof a finite manifold with volumeVSD, a
convenientandnaturalchoiceof momentumscaleis ~i = R_u x (Vs~)_i/D
The renormalizationfactorZ (bR,�) will bean implicit functionof the param-
etersD (internaldimensionof the manifold) and ii (scalingdimensionof the
r-field). It will bedefinedin perturbationtheoryas

Z(bR,�)= 1 + bRal(�) + b~a2(�)+..., (6.2)

wherethe coefficientsa~diverge as �‘~ when� —* o.
If it is possibleto construct,at leastin perturbationtheory,a functionZ in

such a way that the partition function Z(b) [eq. (2.9)] and the correlation
functionsZ(M) (Xa,ka; b) [eq. (2.25)] areUV-finite in the limit � —~ 0, bR and
,u finite, thenthemodelwill beperturbativelyrenormalizable.Thevalidity ofthe
approachinitiated in refs. [16,17,20] will thenbe ensured,sincethe standard
techniquesof renormalizationgroup theorycan be applied to the model, and
can (in principle) be extendedto all ordersin perturbationtheory.

It is interestingto compareour constructionwith what is usually done for
a “standard”local field theory,such as the 0(n)-symmetric t~theory,whose
actionin D dimensionsis written as

N = fdl)x [1(00)2 + ifl~2 +~(0~] , (6.3)

where 0 = {~‘, i = 1,... , n} is an n-componentfield. Thereare basically
two kindsof approachesto prove renormalizabilityof thistheoryat the critical
dimensionD = 4.

The first approach(a Ia Wilson) consistsin introducingexplicitly a short-
distancecut-off, in integratingover the high momentamodes,andin showing
thattheUV divergenttermsin the effectiveactionwhicharisefrom thisintegra-
tion canbeabsorbedinto aredefinitionof thephysicalcouplingconstantsof the
theory,so thata finite continuumlimit can be reachedby letting the cut-offgo
to zeroandthe barecouplingconstantsflow alongRGtrajectories[33,34].This
approachis physically transparent,appropriatefor the applicationsof renor-
malizationgroupto critical phenomenain statisticalmechanics[61, andhasin
somecasesgainedarigorousstatusat thenon-perturbativelevel [35]. However,
it requiresaformulationof thetheorythroughalatticeregularization,oraphase
spaceformulation,whichis possiblefor integerspacedimensionD only. It does
not seempossible (up to now) to apply thesemethodsin the frameworkof an
analyticcontinuationin nonintegerspacedimensionso asfor instanceto justify
the c-expansionusedin the descriptionof critical phenomenaby a ‘b,~_~theory.
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Thesecond,perturbativeapproachaIa Bogoliubov—Parasiuk—Hepp—Zimmer-
mann(BPHZ) [22] consistsin workingin perturbationtheoryandin construct-
ing, directly or by arecursiveprocess,a subtractionoperationon the Feynman
amplitudesofthe theory,whichmakesall the termsof perturbationtheoryfinite
andwell definedthroughconvergentintegrals;thenoneshowsthat thisopera-
tion corresponds,in the field theorylanguage,to arenormalizationof the action
by local counterterms,andthatit preservestheequationof motionsof thetheory
andthe Wardidentitiesassociatedwith its symmetries.Fromthe statisticalme-
chanicspointof view, this amountsto a changeof variablesfrom microscopic
to effective couplingconstants.Renormalizationgroup equationsandscaling
behaviorsarethenderivedfrom the renormalizedtheory.This BPHZ formula-
tion of renormalizationhasasimpleandgeneralperturbative formulation for
theoriesin non integerdimensionsD, sincetherearenowwell definedrecipesof
“dimensionalregularization”which allow us to constructFeynmanamplitudes
for non-integerD, andto studytheir properties,eitherin therealspacerepresen-
tation,or in the momentumspacerepresentation,or in the so-calledSchwinger
parametrica-representation.The BPHZ subtractionoperationcan theneasily
beextendedto the caseof non-integerspacedimensions,at leastin momentum
spaceor in the a-representation.

For our modelthe action (2.1) canalso be seenalso as thatof a local field
theory in D-dimensionalspacefor a scalard-componentr-field

N = fdDx [~r(x). (_4)k/2r(x) + böd(r(x))] , (6.4)

but the interaction ô-term is singular and non-polynomial, which makes the
perturbative expansion very different from that of the ordinary case, since it
doesnot involve usualFeynmandiagrams.Furthermore,the dimensionof the
interactionterm dependsexplicitly on the numberof componentsof the field,
here d.

In principle,nothingpreventsthe applicationof a renormalizationprograma
Ia Wilson in the physical case of objects describedby (6.4) with integerdimen-
sion (D = 1,2). Somepreliminaryrigorousresultshaveindeedbeenobtained
(for the caseD = 2, d = 1, k = 2) in ref. [27]. However,it is probablyimpos-
sibleto studyby suchmethodsthe renormalizabilityof the modelat (ornear)
its critical dimension D* (eq. (2.3)), since the latter is in general non-integer
(evenfor integerd),andbetween0and2 (for theelasticmembranek = 2 case).
The so-called“functional renormalization”,which is an approximaterenormal-
izationgroup scheme,hasalso been applied to the study of the specific case
d = 1 in ref. [36]. Suchschemesarewell definedby analyticcontinuationat
non-integerD but areonly approximateandhaveno rigorousstatus.

On the otherhand, in sect. 3, we constructeda perturbationtheory for the
model in non-integerdimensionD, via distance geometry, which corresponds
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to adimensionalregularizationschemein (internal) real or positionspace.In
sects.4 and 5, we haveshownthat the structureof the UV divergencesof the
amplitudes(polesin �) is quite similar to thatof Feynmanamplitudesof ordi-
narylocal field theories.It is the purposeof the restof this article to showthat
it is possibleto developaBPHZ-like formalismto prove renormalizabilityof
thismodel. In this Sectionwe shallproposea subtractionoperation,which will
appearto be ageneralizationof the BPHZ subtractionoperationfor ordinary
Feynmanintegrals,with a similarstructurein term of the so-called“Zimmer-
mannforests”.This subtractionoperator,which in ourcaseactsdirectlyon the
integrandsof interactiontermslike (3.40)and (3.47), involving positionsx or
squareddistancesa,1,will be shownto maketheintegralsUV-finite (for � = 0),
andto correspondto a renormalizationof the couplingconstantb. This will en-
sure (in perturbationtheory) the renormalizabilityof the model, the validity
of renormalizationgroup equations,andof an �-expansionabout the critical
dimension.

Anotherfundamentalstructureunderliesourapproach,sincethepositionvari-
ablesx,, (or thea,3’s in distancegeometry)canbethoughtof asaD-dimensional
generalizationof the Feynmana-parametersin theSchwingerrepresentation.In
field theory,this representationconsistsin writing the propagatorsin termsof
anauxiliary aparametervia a Laplacetransformof thefreefield propagator(in
momentumspace)

1 = I dae_a
2+fm2) (6.5)

p2+m2 Jo

and in writing all the Feynmanamplitudesas multiple integralsover thesea-
variables.As wehaveseenfor ourmodel(6.4) in sect.3, the integralsgiving the
perturbativeterms(3.40)of thepartitionfunctionhaveaform generalizingthat
of aFeynmanamplitudein a-representation.Indeed,the subtractionoperation
andthemathematicaltechniquesthatwe shalluseto proverenormalizabilityare
in fact extensionsof techniquesdevelopedby Bergèreand Lam in ref. [23] to
studytherenormalizationoflocal field theoriespreciselyin thea-representation.

This analogyof the internalposition D-spacerepresentationof a statistical
mechanicsmodelwith the a-representationof alocal field theoryis not surpris-
ing. Indeed,for D = 1, it is well knownthattheEdwardsmodelfor self-avoiding
polymer(1.1) embeddedin d dimensionscanbeformulatedasalocal 1” theory
in d-dimensionalspace,with hamiltonian (6.3) (with D now formally replaced
byd), in the limit wherethenumberof componentsof thefield 0, n, goesto zero
(this is the well-known de Gennesequivalence).ThelengthSof thepolymeris
conjugate,via aLaplacetransform,to thesquaredmassm2of the corresponding
n —+ 0 field theory.Similarly, for ourmodel (6.4) (andfor k = 2), in the case
D = 1 (polymer interactingwith an impurity), the samemappingallows to
write it as a n —~ 0 field theory in the externald-dimensionalspaceR°’,with
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hamiltonian
‘1 2 \

N [0] = J d’~r(_(O0)2 + ~ 0~)+ b 02 (r = 0). (6.6)
~d \4 2 ,‘

The interaction between the polymer and the impurity located at the origin is
represented by the last term in the r.h.s. of (6.6), which is a singular mass term
locatedattheorigin. Herealso, thelengthof thepolymerS (which corresponds
to the radiusR of the manifold in the caseD = 1) is conjugate to the squared
massm2 of the field 0 in (6.6). The diagrams associated with (6.6) are “daisy
diagrams” identical to those of fig. 4), with the a-parameters for the propagators
identifiedwith theinternalrelativedistancesin (3.57)sp = lx

1~+1—x1~lbetween
successive vertices ~pandip+ i in the internal one-dimensional manifold, i.e. the
polymer itself (see eq. (3.56)).

Thus,it will appearthatour BPHZ renormalizationschemein positionspace
for the theory (2.1) defined in RD is a generalization to continuousvaluesof D
of the ordinary BPHZrenormalization in a-representation of the theory (6.6)
defined in R’~,with a viewed as a D = 1 relative position ~. Finally let us
stress that this remarkable mathematical analogy makes us hope that in a similar
way, it will bepossibleto developrenormalizationtechniquesin positionspace
for the non-localtheory (1.2) (which describesa self-avoidingD-dimensional
manifold), which would reduce for D = 1 to the ordinary renormalization theory
for the Edwards model (formulated either as a direct renormalization a Ia des
Cloizeauxfor the Edwardsmodel, or equivalentlyasa BPHZ renormalization
for the n = 0 cfr,~field theory in the a-representation).

6.2. THE SUBTRACTION OPERATION

Wefirst give a heuristic presentation of the recursive subtraction process that
we shall use to prove renormalizability. As we have seen, the term of order N of
a M-point correlation function, Z~M)(Xa ka), is given by an integral over the
positions of N internalpoints (2.27), that we write schematicallyomitting the
external momenta ka, andthe parametersD, u and �, and denoting by ~ the set
of these N internal points

Z~M)(Xa)= fHdDxiIc(xl,Xa). (6.7)

icc

To subtract the “superficial UV divergences” which occur in the integral (6.7)
when somesubsetP of pointscollapsestoward a single point, we can use the
factorizationtheoremof sect.4.2 (andappendixC), which implies thatwhen

* For this theory, the renormalizationis quite triviai, since the only divergentdiagram is the

tadpole, i.e. thepetai of the daisy.
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thepointsof the subsetP tendaltogethertowardsome(arbitrary) pointp in P,
the integrandin (6.7) behavesas

Ig(x,,Xa) ~‘Ig/p(X1~Xa) .J~(x,), (6.8)

where denotes the integrand of the “reduced” set ~ with the M external

points (with positions Xa), andthe N — Card(P) + 1 internal points obtained
fromG by removingall thepointsofP but p, andIp is theintegrandforthe subset
Pwith no externalpointsandCard(P) internalpoints.Therefore,we expectthat
by subtractingthe divergencesassociatedwith all families of mutually disjoint
subsets{Pk} in ~, we dealwith all superficialshort-distancedivergences.This
canbe performedby changingin (6.7) the integrandinto

1c(x1,Xa)~1c(xi~Xa)_Ic(x1,Xa)+~1c/{P}{pk}(x1,Xa)HH1Pk(x1)),
{Pk} k (6.9)

wherethe reducedsetg4P~}{Pk}is obtainedby replacingeachsubset Pk by one
of its pointsPk (chosenarbitrarily). To this subtractedamplitude,we associate
the subtractedpartition function term:

Z~M)(Xa)EfHd’~XiI~(Xi~Xa). (6.10)
Icc

Thanksto the factorizationpropertyof the measure(subsect.3.4), wecaninte-
grateseparately‘c4 } ~ overthepositionsof the internalpointsof ~4Pk} {Pk }‘

andeachcounterterm‘~k overthe positionsof all the pointsof Pk but one,Pk,
thusobtainingfor eachof thesecountertermsoneterm of the expansionof the
partitionfunctionZ. Evaluating all subset integrals in (6.9) leads to the explicit
formula:

Z~jM~(Xa) = ~ (N~)!~’~~ ~ fl(N)! ~
N’=i {Nk,k~I N~} k k~k Nk>I

Nk ~I, Nk=N

(6.11)

where VSD is the internal volumeof the manifold.Onecancheckthat thissub-
tractionoperationon integrandscorrespondsto a perturbativeexpansionof the
partition functionsZ(M) with respectto a “renormalized”couplingconstantb.
suchthat

Z(M)

Z(M) = Z(M)(b) = ~(_b)N N

Z~M)
= ZM(b.)~~(_b.)N’ N’! (6.12)
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with b. givenimplicitly by the equation

1 bN

b=b.+~—> ~ ZN. (6.13)

However,thissubtractionis not sufficientto makeZ(M) finite (in termsof b.),
sinceit doesnot dealwith sub-divergencesinsidethe subsetsP. As in standard
renormalizationtheory,onedealswith thatproblemby repeatingthissubtraction
operationinsidethesesubsets,thatis by subtractingfrom each‘~k thedivergent
parts associated with families of mutually disjoint subsets in Pk, and iterating the
process. One thus obtains at a given order N asubtractionoperationexpressed
in terms of the sets F = {Pk } of mutuallydisjointor strictly includedsubsetsPk

0f~. In analogy with renormalization theory in field theory, such a set F will be
calleda forest* of g.

In addition, for a given forestF, at eachsubtractionstep, that is for each
subsetPk of F, we have to specify a root Pk of Pk, towardwhich we contract
Pk, in orderto calculatethe associatedcounterterm.It is quite clearthat, after
integrationover the positionvariables,the result of the subtractionoperation
doesnot dependon the specificchoiceof roots.However,it is naturalto choose
for eachforestasetof roots in a way which is consistentwith the geometrical
pictureofthesubtractionoperationas successivecontractionsof subsetstoward
their root. This leadsto the notion of acompatiblyrooted forest,which will be
discussedbelow.

After thesesomehowheuristicconsiderations,let usgivetheprecisedefinition
of the subtractionoperationthat we shall use.

Let usconsideraset~ of N abstractpoints,that we call vertices.

Definition 6.1. A rootedsubsetof ~ is a couple (P,p) of asubsetP of g and
of avertexp which belongsto P, that we call the root of P.

Definition 6.2. AforestF of g is a set of subsets P, of Q suchthat
(i) two elementsofF aredisjoint or strictly includedinto oneanother,i.e.

Pi�P3 ifi~j

and

PflP3=P,,orP3,orø, Vi,j.

(ii) all elementsofF haveat leasttwo elements,i.e.

Card(P,)= IP,I> l.

Let usnotethat, by convention,the empty set0 is a forest.

* In renormaiization theory, a forest is a family of diagrams
7’k such that for any k ~ I onehas

either 7’k C Pi, or 7’~C 7’k’ or 7’k ~ Pj = 0.
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Definition6.3. A rootedforestFe is a set of rootedsubsets(P,,p,) of g such
that {P,} is a forest.

Definition 6.4. A compatiblyrootedforest is a rootedforest suchthat, if, for
somei,j, P, ~ P3 andp, E P1, then P~= P3.

Definition 6.5. Finally with any rooted forest Fe we associateits compat-
ibly rootedforest CF by simply changingits roots accordingto thefollowing
recursion:

(i) First, replacethe root P1 of eachP, of the forest by the root P3 of the
smallestsubsetP3 of the forest suchthatpj eP~(P3 maycoincidewith ps). One
thusobtainanewrootedforest.

(ii) Then, repeatthis processfor the new forest. Onecaneasily show that
after a finite numberof iterations(~Card(F)), this process will leave the
rootsunchanged,sothatoneobtainsa compatiblyrootedforest cFe.

Of course,a forestFe is compatiblyrooted iffCFe = Fe.
Dilation operation. Forarootedsubset(P,p),we definethe dilation opera-

tion ~ asthetransformationactingon the positionsoftheverticesaccording
to (asin (4.5))

V” x—~x’ fxp+p(xj—xp) ifiEP ~6l4
— lx, if i~P

or equivalentlyin distancespace,accordingto

(p
2ajj ifi~P,j�P

~ : a~
1—* a11(p) = ~ a~3— p(ap, + a~3— a,3) + p

2apj if E P,j ~ P

1a~~ ifi~P,j~P
(6.15)

Moregenerally,for afunction I, expressedas a functionof the positionsx, or
thedistancesa

11,we denote by V~~~1Ithe value of this functionatthe positions
(ordistances)modified accordingto (6.14) (or (6.15)).

Tayloroperator. We thendefinethe “Taylor” operator~ actingon func-
tionsI by

T(pp)1 = limpdt’(II’l~)V~~ )I. (6.16)
p.-.

0
The functionsthat we shall considerarethe integrandsin (2.27) and (2.23),
which areof the form

Ic(xj,Xa) = (det [H (xj,ieg)} )_d/2exp[~~ka . kbAab(xi~i�c~Xa)]

Iç(x,) = (det [H (xi,icg)])~’2 , (6.17)

wherethe H andA matrices,definedin (2.24), (3.49) and (2.28), (3.52), are
functionsof the positionsof the internalverticesi in ~ and external vertices a.
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On such functions, the effect of t(pp) is to keep the most singular term in p
whenperformingthe dilation~ For instance oneoperatorT(

7~,p) factorizes

‘c into

t(p,p)Ic(xi,Xa) = Iv(xi)Ig,~,(x1,Xa) (6.18)

where

g/~PEg\ (P\{p}) (6.19)

is the reducedset obtainedby contractingP into p (\is the usualsubtractionof
sets). This operationcanberepeatedfor rootedsubsetswhichform acompatibly
rootedforest,andthe resultdoesnot dependon the orderof the t operatorsin
thiscase(commutativity).The resultis aproductof integrands1(x,) of reduced
internal subsets, times the integrand I (x,, Xa) of theset~ reduced by all elements
of the forest.

Thesubtractionoperator. With these notations, we define the subtraction
operationR as a sumof subtractionsfor all forests.For a given forestF, sub-
tractionsassociatedwith differentroots give differentresultson the integrand.
We shall sumover the subtractionsfor all compatibly rootedforestsFee, with
some weight factor W(Fec) associatedwith the (compatible) rooting ofF. In
order to ensure the finitenessof the subtractedintegrals,the weights W(Fee)

must be such that the sum of the W’s for all rooted forests which correspond
to the sameunrootedforest F gives 1. A convenientchoice of weight factor
W (Fee) for Fec is to make it proportional to the number of different (not nec-
essarilycompatibly-)rootedforestsFe whichgiveFee by the compatibilization
operation C (i.e. CFe = Fec). Our final definition for R is thereforeexpressed
as a sum over all rooted forests, or equivalently as a sum over all compatibly
rooted forests. It reads*

R=~[ fT
-~F3~ (P,p)c’F~

= ~ W(Fec)[ H (_P~P)]. (6.20)

(P,p)�F~e

The weight factors are given explicitly by a product over all different roots p of
Fee

W(Fec) = ~ ~l’ (6.21)

of

where P~1,is the largest subset of the forest whose root is p.
* In this equation, .F~c denotesan arbitrary compatibly rooted forest, whiie ~ denotesthe

compatiblyrootedforestobtainedfrom the (non necessarilycompatibly)rootedforest.F~by the
compatibilizationprocedureof definition 6.5.
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Subtractedamplitudesandrenormalization. We nowrestrictourselvesto the
caseof amplitudesdefinedin a finite volume, by using the IR regulatorintro-
ducedin subsect.4.3 (D-dimensionalsphere),thatis by definingtheintegration
overthe positionsof theverticesby (4.14) and (4.15).The subtractedcorrela-
tion functionsatorderN aresimplydefinedby applyingthe subtractionoperator
R to the integrandof (6.7)

ZM)(Xa)~fHdDxiR[Ic(xl,Xa)]. (6.22)
1cc

Let usnotethat,sincetheintegrandfor the partitionfunctionis homogeneous
underglobal rescaling,onehas

R[Ig (x,)] = 0 (6.23)

(assoonas ~ 2, of course). This means that with our choice of subtraction,
for N ~ 2, in the absence of external correlation points,

Z~= 0, N ~ 2. (6.24)

The purposeof the next sectionsis to prove that this subtractionoperation
makesall correlationfunctionsfinite, as summarizedin the following theorem:

Theorem6.1. For 0 < ii < 1, the renormalizedintegral (6.22) is convergent

for� = 0 and definesafinitefunctionZ~M) (Xa)forD ~ N + M — 1.

The renormalizedcorrelationfunctionsaredefinedby theirperturbativeex-
pansionin powersof a renormalizedcouplingconstantbR

°°

ZR(M)(xa;bR) = ~ j~ Z’~7~(Xa). (6.25)

As discussedabove,the forest structureof the subtractionoperationR ensures
that for � > 0, thereexists a renormalizedcouplingconstantbR(b) such that
the renormalizedcorrelationfunctions

2R(M) (Xa~bR) areequalto the original
“bare” correlationfunctionsZ (M) (Xa;b) for the model (2.1).

The relationbetweenb andbR canbe obtaineddirectly from the identity of
thepartition functions

Z(b) = Z’~(bR). (6.26)

From (6.24)wehaveZR(bR) (2ir)’~ô”(k = 0) — bRVSD — bRVs0 and
therefore,equatingto Z (b),we get

bR = _~— (Z— V~d), (6.27)

or the explicit seriesexpansionin b:

bR = b — i (_b)N (6.28)
D N~2
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Notice that thefully renormalizedcouplingconstantbR satisfiesthe indentity

b = bR + ~— ~ (_NZN
O N~2

while the formerpartially renormalizedcoupling constantb, (built so as to
absorbthe superficialdivergences)satisfiesthe truncatedequation(6.13),

b = b. + ~ (_b.)NZN
O N~2

obtainedfrom the equationfor bR mentionedjust above,by replacing(—b) by
(—b.) in the r.h.s.

Eq. (6.27) showsthat, in this scheme,renormalizationsimply amountsto
a changeof variable from the microscopicb to an effective couplingconstant
bR, directly proportionalto the connectedpartition function of the manifold
interactingwith a point. This schemeis preciselythat used in ref. [20], and
generalizesthat of the “direct renormalizationmethod” [4] for the polymer
Edwardsmodel.

Let usstressthatbR asdefinedaboveis not dimensionless.Thecorresponding
dimensionlesscouplingconstantcan be convenientlychosenas

—d/2 u dD

g = (2nAD(u)) bRVSDV/ , (6.29)

for which the Wilson function (2.6) hasbeencalculatedexplicitly at oneloop
[20]. In this subtractionscheme,the subtractionscalep of the generalequation
(6.1) is fixed by the D-dimensionalvolume (which fixes the IR cut-off) p
(V50)_uI~~).In thesenotations,this preciselycorrespondsto bR = bR (Vs0)f/D
and

-l _bR 1 ~ N_iZN—p
SON>2

whereb is an implicit function of bR, thus b~.Of course,other subtraction
schemescanbechosenwherethesubtractionscalep is not relatedto thevolume
of internalD-dimensionalspace.Theyareneededin order to definethe theory
(e.g. the normalizedcorrelationfunctions) in the infinite volume limit.

7. Reorganization of the counterterms

7.1. FORMULATIONOFTHE SUBTRACTION OPERATION IN TERMSOF NESTS

As weshallseelater, it will bemoreconvenientin theproofof thefinitenessof
the renormalizedamplitudesto expressthe subtractionoperationR in term of
nestedsubdiagrams.In theformalismofBPHZ renormalizationin the Schwinger
representationin field theory,a subdiagramis a set of lines (propagators)of a
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• ~ •

~..): ~

• • •

Fig. 7. A subdiagram.

I •
• • ( •

/ .\ \~
• • 1.11 .!‘ ~•~_)

Ii • •

•.

Fig. 8. A complete diagram, with connectedcomponentsP,.

Feynmangraph(andhasin generalmanyconnectedcomponents).A nestis then
a family of subdiagrams~k whicharenested,that is includedinto oneanother
(for anyk #1, PkCP1 orP1c Pk).

In ourcasewe shall introducea differentnotion of diagram,now in termsof
vertices,ratherthanlines. Indeed,we haveseenthat the naturalgeneralization
of Schwingerparameters

5a is given by the larger set of all mutual distances
a,

3 betweenpoints on the manifold. In termsof links, we thus would haveto
deal with the large numberof (interdependent)mutual distances,which are
constrainedby triangularinequalities.Therefore,we prefer to definediagrams
in termsof vertices.Denotingagainby ~ a setof N vertices,a diagramof g
will now be a collectionof disjoint vertex-subsetsofG. Eachof thesesubsetsof
verticescanbethoughtofas aconnectedset (which standsfor the the complete
setof its pairwisemutualdistancesin thelink representation).Theseideaswill
be embodiedin the following definitions.

We recall thata partition P of a setSis a set of mutually disjoint non empty
subsets8, ofS, whoseunion is S itself.

Definition 7.1. (Seefigs. 7 and8.) We shallcall a subdiagram(respectively
completediagram) of ~ anypartitionP of somesubsetSof ~ (respectivelyof
g itself). The genericword diagramwill be usedin bothcases.

The elementsof this partition P are called the connectedcomponentsof the
diagramP.
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/ ,,~-, ..,‘•

7’. • . -.

1/ •N’ • • ‘j .. .1:
• . >./ N •

• , ,

Fig. 9. The completediagramwith connectedcomponentsP (dashedline) is containedin the
compietediagramwith connectedcomponentsQ~,(full line).

Fig. 10. The intersectiondiagram(dark-greydiagram)of two diagrams(greyandwhite diagrams).

Definition 7.2. (Seefig. 9.) A diagramP is containedin a diagram Q if any
connectedcomponentof P is includedin oneof the connectedcomponentsof
Q. This will be denotedP -~ Q ~. This definesa partial ordering amongthe
diagramsof ~.

Definition 7.3. (Seefig. 10.) We define the intersection of two diagrams
P and Q as the maximaldiagramwhich is containedin both P and Q (it is
unique),anddenoteit by PA Q. Its connectedcomponentsarenothingbut the
(non-empty)intersectionsof a connectedcomponentof P andoneof Q.

Definition 7.4. (Seefig. 11.) We define the union of two diagramsP and
Q as the minimal diagram which contains both P and Q (it is also unique),
anddenoteit by P V Q. Let usnote thatthe connectedcomponentsofF V Q are
unionsof connectedcomponentsof P and Q, but in generalnot simplythe union
of oneconnectedcomponentof P and of one of Q. Notice that the union and
theintersectionof completediagramsof ~ arecomplete.Themaximalcomplete
diagram of g is G= {~}.Weshall denote by G® the (unique)minimalcomplete

* Let us stressthat P —< Q doesnot meanthat P, consideredasa set (whoseelementsaresubsets

of ~), is includedin Q. Stili if P C Q, then P -< Q.
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‘a,.

Fig. 11. Theunion diagram(dark-greydiagram) of two diagrams(grey andwhite diagrams).

7/! (.
/ ~/~—.(‘.‘~‘

• .~‘ •)
•
• . /

/ .
• ~ 1’• // ~ .7 •

Fig. 12. The minimal completediagram G®.

• •/,(/ ~

Fig. 13. Thesubtractiondiagram(dark-greydiagram)of adiagram (grey diagram)from another
diagram (white diagram).

diagram of g. Its connected components are the N single vertex subsets of g (see
fig. 12). For any complete diagram P, we have G®-< P -~ G.

Definition 7.5 (See fig. 13.) Wedefine the subtractionof adiagramP from
adiagramQ as the (unique)maximaldiagramcontainedin Q andwhoseinter-
sectionwith P is empty,anddenoteit by Q \ P.

Theusualpropertiesof commutativityandassociativityaresatisfiedby A and
V. However these operations are not distributive with respect to one another.
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.
~ /~\( \ • N’

~j ~• ‘.7~/•

N •/

• ‘~. . •~

•

Fig. 14. A rooted subdiagram. The rootsarespecifiedby squares.

•

•

“N
.7” .

/-l~j •‘,“.
j~j

Fig. 15. A complete rooted diagram. Its elements are rooted subsets(P~,p,).

They still satisfythe weakerrelations

PA(QVR) >.- (PAQ)V(PAR),

Pv(QAR)-.<(PvQ)A(PvR). (7.1)

Definition 7.6. (See fig. 14.)

A rooteddiagram Pe is a family {(Pi,pi ),... , (Pk,pk)} of rooted subsets
(P~,p~) of Q suchthatP = {P

1,... ,Pk} is a diagram of g.
We call

P = comp(Pe)= {P1,... ,Pk} (7.2)

the componentdiagramof ~e, and

= root(Pe) = {{Pu},... ~{Pk}} (7.3)

the root diagramof P~.We shallusefor a rooteddiagramthe equivalentnota-
tions:

(comp(Pe),root(Pe)) (P,p). (7.4)

Definition 7.7. (Seefig. 15.) A completerooteddiagramis a rooteddiagram
suchthat its componentdiagramis complete.
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• ‘I~”~~ ~-

‘‘1’ .•~ ~..

N J,j’ /

‘TJ+1,k

Fig. 16. Two successivecompleterooteddiagramsTj~, with connectedcomponentsTj,~(dashed
lines) and Tj+uu with connectedcomponents TJ+1,k (full lines) of arooted nest.The roots of

these two diagramsare not compatible.

• • .

L~1I.•E~
• • ‘• • •

•

,J+1,k

Fig. 17. The two successive diagrams of fig. 16, with compatibleroots. The roots Wj + u.k have
been obtained from the roots of fig. 16 by the constructionof definition 7.11.

Definition 7.8. A nest.Afis a set of T+ 1 completediagrams{T
0, Ti,... , TT}

suchthat

To-.~Tu-<T2-<...-.<TT. (7.5)

Definition 7.9. (Seefig. 16.) A rootednest.iVe is a set of complete rooted di-
agrams{ Toe,Tie,... , TTe} suchthat theassociatedcomponentdiagramsform
anest

comp(To~) -~ comp(Tue) -< ... -~ comp(TTe). (7.6)

Definition 7.10. (See fig. 17.) A rooted nest is said to be compatiblyrooted

if wehavemoreover

root(Toe) >— root(Tie) ~- ... >— root(TTe). (7.7)

(Notice that root(Toe) = Ge.) At level J, thegenericelementof the rooted
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nest.‘~1ereadsexplicitly

Tje = {(Tj,~,tj~),j = 1,... ,Card(Tj)}. (7.8)

Eq. (7.7) meansthatwhenweconsidertwosuccessiverootedcompletediagrams
of the rooted nest, Tje and T~+ u e, if we consider a connected component Yj + u,k
of T~+ i and its root tj + u,~this root must coincide with the root tj,~of the
connected componentTj

3 of Tj to which tj + u ,k belongs (since T~is complete,
+ ,k belongsnecessarilyto someconnectedcomponentof Tj). This property

thenimplies by recursion that, at each level L ~ J, t~i,k coincides with the
root tL,1 of the connected component TL,/ of TL to which it belongs.

Definition 7.11. With any rootednest~ with elements given by (7.8), we
associatethe compatiblyrootednest

CA, ICr
./Ve = 1

CTje = {(Tj1,wj1),j = 1,... ,Card(Tj)}, (7.9)

with thesameconnectedcomponentsTj3 at each level J, and whose roots Wj,1

areobtainedfrom the roots tj,3 by the following recursion:
(i) at level 0, the roots of T0 are fixed since root (Toe) = G®;

(ii) at level 1, we identify w~,iwith the original root t~3,that is set = tu,j

for allj = 1,... ,Card(Tu);
(iii) at level J + 1 and for each connected component IT~+ u ,k, we look for the

component
TJ,j(k) of the complete diagram Tj at the preceding level J to which

the original root tj+ l,k belongs. The root WJ,
3(k) has already been constructed

at level J and we make the roots compatible between level J and J + 1 by
substitutingto the original root tj~ l,k the root Wj~i,k = WJ,3(k) (Notice that,
since I’., -< ~ ~,

7J,j(k) C ~ u,i, and therefore WJ,
1(k) ~ ~+ uk)

By construction, the rooted nest CJ%ife is compatibly rooted. Of course, a rooted
nest.,Ve is compatibly rooted if and only if~EiVe = ~ and in this case, wj,3 tj,3
for all J andj.

With a rooted diagram Te, we associatethe Taylor operatorTT~defined
simply as the product of the Taylor operators t~7-j)of its rooted connected
components:

= fi ~(T~,t3) (7.10)

(Y3,i~ )� ~

with the conventionZ(y,) = II if 121 = 1 (i.e. ~T= {t}), which in particular
implies that ‘CT0~ = II for T0 = G0. We denote by IlTeII the productof the
cardinalsof the connectedcomponents~T’Jof the diagramcomp( Te)

IITeII = II ~jI. (7.11)
1,Ecomp(T,1,)
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Proposition. The subtractionoperatorR (6.20) canbe rewritten as a sum
over rootednests:

R = ~ [e ~ ~ II Jell teTJ
0)]

.N~ TjcE.N~

= ~ W(.iVec) H (—T~,) , (7.12)
.N~c Tj+EJ’/~e

where the second line is a sumover compatibly rooted nests with the appropriate
weight factor

W(J\Iec) = fl~— (7.13)

with 7 being as before the largest connected component (among all connected
components of all diagrams of If) whose root is w. In (7.13) the product is
overall verticesof ~ sinceanypointw of ~ is the root of at least one connected
componentin the nest,namelythe connectedcomponent{w} of T0.

Proof The global (— 1) factor in (7. 12) is introduced to reverse the global
(— I) signcomingfrom thecontribution (— Ii~00) / II ToeII = — II which is present
for eachnest(compatibleor not).

To provethat (7.12) coincideswith (6.20) onecanproceedin two steps,that
we indicatebelow.The detailsareleft to the reader.

We start from (7.12) as a sum over compatiblyrooted nestsJ’fee. First, we
noticethat the family of all distinctrootedcomponents,excludingsingle vertex
components,of the rooteddiagramsof somecompatiblyrootednest.IVec forms
acompatiblyrootedforest.Moreover,if two differentcompatiblyrootednests
yield the samecompatibly rootedforestFec, the productsof t’s for thesetwo
different nestsgive the sameresult, which is nothing but the productof Vs
associatedwith the compatiblyrootedforest Fee. This allows us to regroupall
compatiblyrootednestswhichyield the samecompatibly rootedforest.

Second,we haveto checkthat the (—1) factorsandweightsassociatedwith
eachdiagramof thisgroup of nestssumup in orderto give the correct factor
W(Fec) (6.21) for this forest. This can be seen in two steps: First, the weights
W(AIec) (7.13) are in fact equal to W(Fee) (6.21), for each .J~/eeyielding Fee.
Therefore,at that stage,we canforget aboutthe rootsandthe weights W and
concentrateon the (—1) factorsassociatedwith the diagramsof the nests.It
remainsto showthat, whensummingover all nestsIf which yield a given for-
estF, onehas (—1) < ~ T(~

1) = (_
1)Card(F)~This relationcan be

easilycheckedfor forestsmadeout of two subsets,which areeitherdisjoint or
includedinto oneanother*,andthenextendedby a recursionon thenumberof
* 1fF = {S1,S2}, either S~nS2 = 0 and therearethreenests{G®,G® v {S1,S2}}, ~ V

{S1},G0 v{S1,S2}} and {GV,G® v{S2},G~ v{S~,S2}}, with respectively 2,3 and 3 diagrams;
or S~CS2 and there is only onenest {G@,G® v{Su},G+ v {S2}} with 3 diagrams.
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elementsof the forest.

7.2. SECTORS

Definition 7.12: Saturated nest. A saturatednestS of ~ is a nest with N =

Card(c) (distinct) elements “, which we call R°,...,RN_i.
The cardinal of a saturated nest is therefore maximal. A saturated nest is

actuallyconstructedfrom G0 (the completediagrammadeof N single point
connectedcomponents)by fusing recursivelyat eachlevel R’ exactlytwo con-
nectedcomponentsof the precedinglevel R’’ until G = {~}is obtained.A
saturatednestis thereforecharacterizedas follows:

(i) its minimal diagramis R°= G®,

(ii) its maximaldiagramis RN_I = G = {Q},

(iii) Card(R’~)= Card(R’) — 1 for all I = 0,... ,N — 1
Saturatednestassociatedwithorderedtrees. Thenotion of saturatednestoc-

cursnaturallywhenspanningintegrationpointsby trees,as was doneformally
in subsect.3.7 . Indeed,let usconsidera treeT = (~ a = 1,... , N — 1), con-
sideredas orderedby increasingvaluesof a (this orderwill actuallycorrespond
to increasingmutualdistances,in ageneralizedsenseto bemadeprecisebelow).
Suchan orderedtreeT generatesnaturallyasaturatednestS(T) as follows (see
fig. l8a):

(i) R°= G0

(ii) at level I (1 ~ I ~ N — 1), we considerthe line a = I with end points
~ i’,~andsetR’ = R’’ V {{i0, i’,,}}, which correspondsto the fusion of the
connectedcomponentofR’~containing i,, with that containing “a.

Of course,differenttreesT can yield the same8(T). Thisallows usto classify
trees into equivalence classes, by regroupingall the treesT suchthat8(T) = S

for anygiven saturatednestS. If two orderedtreesT = (2,,; a = 1,... ,N — 1)

and T’ = ~.‘a; a = 1,... , N — 1) are equivalent, then the transformation from
,~to A! is such that

= +A!,, + ~ c~= 0,±l, (7.14)

wherec~are coefficientsequalto 0 or ±1 (which arein generalfurthercon-
strainedso thatT andT’ actuallyspanthe sameset of integrationpoints).

Orientedorderedtreeassociatedwithacompatiblyrootedsaturatednest. Con-
versely, if the saturatednestS is compatiblyrooted, thereis a naturalway to
associatewith

8e an orientedorderedtreeT(Se) (seefig. 1 8b). Indeed,by def-
inition, a saturatednestS = {R’} is constructedby fusing recursivelyateach
level R’ exactlytwo connectedcomponents

7~I1,kandizIl,k’ of the preceding
level R’ Denotingby i1 and i’1 their respectiveroots in R~

1,one of these

* We usesuperscriptshere in R’ ratherthan subscriptsasbeforein T
1 for future convenience.
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2 2

/ N’
/_\ /~\\

~3~3

1 1

(a) (b)

Fig. 18. (a) Saturatednestassociatedwith an orderedtree T = (A
1,1.2,23,A4). The nest is made

of fourdiagrams.Eachdiagramis representedby thecontourof its connectedcomponentswith at
leasttwo vertices(thediagrams1, 3 and4 haveonly onesuchconnectedcomponent,the diagram
2 has two suchconnectedcomponents).(b) Orientedorderedtree associatedwith acompatibly
rootedsaturatednest.We havefirst assignedcompatibleroots to the saturatednestof (a) (here
the diagrams3 and4, andtheconnectedcomponenton the right of the diagram2 havethesame

root) andthen constructedthe orientedorderedtree from theseroots.

roots, say ij, is the root of 1Z1_1,kUi —i,k in R’e, sincethe rootingis compatible.
In this casethe otherroot i’1 canno longer be the root of anyconnectedcom-
ponentof the diagramsR” for I’ ~ I. Therefore,if we defineby )Lj = x,~1— x1,
the orientedline vectorjoining the positionsof the roots ij andi’j, the set of)Lj
for I = 1,... ,N — 1 definesan orientedordered (by I) tree,whichwe denote
by T(Se).Of course,wehaveby constructionS(T(Se)) = S. Moreover,one
caneasilycheckthat the treeT(Se) hasthe following property:for any I and
I’, the path on the treejoining the two origins x1 andx1~of the vectors )~jand
~ passesonly throughvectors tK for K > min(I, I’).

Although this constructiondoesnot playanyrole in the presentsect.7, it will
turn out to beuseful in sect.8.

Definition 7.13: ExtendedHeppsectors. Now we want to associatewith an
unrootedsaturated nest S an extended Hepp sector,defined from the Hepp
sectorsattachedto orderedtreesconstructedin subsect.5.1

If weconsideras in subsect.5.1 the N pointsasbeingembeddedin RN~with

cartesiancoordinatesO,y~,...,YNu, and denote as before NT the domain of
they,’s defining the Heppsectorattachedto the orderedtree* T, we definethe
HeppsectorN

8 as the union of all Hepp sectors attached to all orderedtreesT

* Werecall that the domain
7~1Tcorrespondsto the domain wherethe ..L~’sobtainedfrom theYj’S

by eq. (3.43)areactualsuccessiveminimal distances,andin particularsatisfyI~i I ... ~ i I.
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suchthat5(T) = 5, that is the domainof theYi’~given by

N8 = U NT. (7.15)

T: S(T)=S

ThisextendedHeppsectoris bestdescribedby the vectors,~associated with a
given (arbitrary) treeTsuchthatS(T) = S. Let usstressthatnowthe~‘s areno
longer successiveminimal distanceswhenthe Yi’S moveeverywhereinsideN8,
but aresoonly for Yi’5 insidethe subsetNT of N8.In particular,the inequalities
11a1 ~ u of (5.1) are not necessarilysatisfiedinsideN8. Still, for yj’s inside
N8, one canfind a tree T°such that5(T°) = 5(T) and {yi} E N~.The 2~
associatedwith T°satisfyfor thisset of y,’s the inequalitiesI~~.?I~ ~
By construction,onehasinsideNT° ateachlevel a: I2~I~ ,~and,asin (7.14),
a relationbetweenthe)L

0’s andthe)~‘sof the form )/~= ±2~+ >~<,,c~t~3with
coefficientsc~equalto 0 or ±1. We can thuswrite

I~I=

~ ~ + ~Ic~II)~I

~s~(1 +~Ic~I)I2~I

~aI)L~I. (7.16)

We thushavethe set of inequalities

I’~I ‘~ IA~I~ aIA~I (7.17)

which, togetherwith ,~j~ IA~~ui implies

~ a (7 18)
I~+ul

This is an exampleof constraintssatisfiedby all treevariablescompatiblewith
the nestS in the extendedsectorN

8, which is a relaxedextensionof (5.1).
Anotherconsequenceof (7.17) isthat if T andT’ aretwotreessuchthat8(T) =

S (T’) = 5, theninsideN5 the correspondingline vectorssatisfy
1 A~I

—~--~--- z~a,
a it

0

I~~I /~a for a >a. (7.19)

Theseboundswill beusefulin sect.8.
The correspondingextendedHepp sector A~in the spaceAN of mutual

squareddistancesa~3betweenvertices(seesect.3.2) can bedescribedsimply,
without referenceto orderedtrees.Givena saturatednestS = {R°,..., RN—i },
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let us consider,for agiven diagramR’, the smallestsquareddistancebetween
verticeswhich belongto two differentconnectedcomponentsof the diagramR’
(minimal squareddistancebetweenconnectedcomponents):

amjn(R’) = mm ( mm (a11)
W.k~T~I.IER! \1�IV.ie,j�R.

1I

For the minimal diagramR°= G® one hasobviously

amin(G®) = min(a
1~),

andby conventionfor the maximaldiagramG = {Q} (which hasonly onecon-
nectedcomponent)wesetamjn(G) = oc. Onecancheckthatonehasalways,for
anysaturatednest,amin(R°)~ amin(R

1) ~ ... ~ amjn(RN_2)<amin(RN_i).
TheextendedHeppsectorA~associatedwith thesaturatednestS is thesubset

of AN suchthat

amjn(R°)<amjn(R’) <...<amjn(RN_2) <amin (RN_i). (7.20)

Onecan checkthat the sectorsassociatedwith two differentsaturatednestsare
disjoint A~n A~= 0, andthat AN is the union of the closureof sectorsover
all saturatednests

AN= U A~.
S saturated

7.3. EQUIVALENCE CLASSESOF NESTS: AN EXAMPLE

In orderto provethe finitenessof subtractedcorrelationfunctionsZR~7r) in
(6.22) when� = 0, we shall proceedin a way similar to what wasdonein sect.
5, by decomposingthe domainof integrationoverpositionsinto extendedHepp

sectorsandprove that the integrationof R [Ic (xi, Xa)] inside eachextended
Heppsectoryields a finite result.

We haveseenthatUV divergencesarisegenerallywhensuccessivesubsetsof
pointscoalesce.InsidetheHeppsectorN8, thesesuccessionsmustbecompatible
with the nestedstructureof S. From (7.12) the subtractedintegrandis a sum
of contributionsassociatedwith (rooted) nestsjV~,andmany contributions
(for different nests)give the samedivergencesinsideN8. The generalstrategy
to prove that the subtractedintegrandR[Ic(xj,Xa)] is convergentinsidethe
sectorN8 is to regroupthenestsgiving thesameUV divergencesinto equivalence
classes,andto showthat all divergencescancelwithin eachequivalenceclass.

Let usfirst considerthesimpleexampleofa sectorassociatedwith asaturated
nestS such that,at somelevel jo~the diagramR R’o hasone andonly one
connected component 7Z with I~~I> 1 andlet us focuson the behaviorof the
subtractedintegrandwhenthe pointsof 7~coalesce.More precisely,let uscon-
sider the contributionin R of a rootednest.iV~with onesingle rooteddiagram
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Te whereTe also hasone andonly one element(T,w) with I~I> 1 (notice
thatthe nest~e is automaticallycompatible).The correspondingcontribution
is (up to a factor —l/ITI):

~(T,w)Ic(xi,Xa) = IT(xj)Ic~y(xi,Xa), (7.21)

whereweusedasbeforein (6.19)the short-handnotationc/VT Q\ (T\{w})
whichsimply correspondsto replacingT in ~ by its singlevertexw. We nowask
whicharethenestswhosecontributionleadsto the sameUV behaviorwhenthe
pointsof 7?.coalesce,thatis whenthepositionsx, for i E 7?. tendaltogetherto an
arbitrarypositionx0: we shalldenotethislimit by 7?. —+ 0. In thislimit, the first
term Iy(x,) in the r.h.s.of eq. (7.21) factorizesinto IRnr(xi)IT~(~flT)(x1),

wherethe notation“/0” meansthat the verticesof 7?. fl T havebeenreplacedby
a singlecontractionvertex 0 with positionx0. The factorizationof the second
term

1c~(x,, Xa) dependson whetheror not the point w belongsto 7?..

Case(a): w E 7?..
If w E 7?., thenweget ‘c/~r~”Xa) —~ In/V(1~nT)(x

1) ‘c/0(7~uT)(x1,Xa). The
contributionof Te (7.21) thusbehavesas

t(T,W)Ic(xE,Xa) ~ I~0~(x~)‘T~(~nT)~’~I(Rufl/WT(Xi)

xIc/o(~uT)(x1,Xa), (7.22)

wherewe usedthefact that7?./V(7?nT)= (7?.uT)/~T.In view of (7.22), let us
now considerthe productof Taylor operatorsassociatedwith the largerrooted
nest~e definedas (seefig. 19)

= {{(~nT,w)},{(T,w)},{(~UT,.)}} (7.23)

with “•“ standing for an arbitrary compatible root*. This new nest can be seen as
resultingfrom the superpositionof the two nests~e andS atlevel 1~.Applying
the correspondingthreel’s on the amplitudeIg oneobtains

- ~ lDe[Jc(x1,Xa)] ~ Iinr(xE)IT/V(~flT)(x1)I(~UT)/VT(x1)
T,~�J~/0

xIc/(~uT)(x1,Xa). (7.24)

In the samelimit whenall pointsin 7?. coalesceto the single point 0, w andthe
compatibleroot. arereplacedby 0 sincetheybothbelongto 7?., and (7.24) is
equalto the r.h.s.of (7.22).

* This root is either w or somevertexof R. \ F. We useherethe conventionthat a diagramis

explicited by keepingonly eachof its connectedcomponentshaving morethat oneelement.For
instance, {(T,w)} is a short-handnotationfor (G0 V {T},w) which meansthat the diagram
must becompletedby the setof all remainingisolatedpointsnot already in F, while w consists
of the root w plus theseisolatedpoints. Similarly, Eq. (7.23) is a short-handnotation for

= {(Go,Go),(Gøv{~flT},w),(Gøv{T},co),(Gøv{~uY},.)}
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R~flq~
(a)

~flq~ ‘i~ R\T ‘T
(b)

Fig. 19. Schematic picture of the rootednest‘~+ when the root w of F (a) belongsto 7~,or (b)
does not belong to R.

Case(b): w ~ 7?..
If w ~ 7?., thenweget Ic/Vy(xi~Xa) I(7~\T)(x,) I(c/VT)~(~\y)(x1~Xa)and

the contributionof Te (7.21)behavesas

1~—e0

l(y,W)Ic(x1, Xa) ‘~-~ IRLflT(Xl) I~~(~fl7)(x1) I~\T(x1)
XI(c/VT)/(1~\T) (x,,Xa). (7.25)

The largerrooted nest.,c’~which givesa similar contributionwhen7?. —* 0 is
now definedas (fig. 19)

= {{(~flT,.)},{(T,w)},{(~\T,.),(T,w)}}. (7.26)

Notice that the largest elementof ~‘~‘~eis now a diagramwith two connected
components7?.\TandT. Thetwo cases(a) and (b) canbe unified in a single
formula. If we denoteTe by (T,w) wherew = root(Te) = {{w}}, the nest
J~ecanbe written in bothcasesas

= {(RAT,s),(T,w),(RVcoT,•)}, (7.27)

wherewe introducethe union operation v~of an unrooteddiagramR anda
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-RV~T

Fig. 20. The unrootedcompletediagram Rv~T(thick full lines) obtainedfrom the unrooted
completediagramR (dashedlines) and the completerooted diagramT (thin full lines). The
diagramR v~T is obtainedby fusingeachconnectedcomponentof T to theconnectedcomponent
of R to which its root belongs,andcutting it out from all the otherconnectedcomponentsof R.

rooteddiagram (T,w)

RV~TE[R\(T\w)]vT= [R\{comP(Te)\root(Te)}]vcomP(Te)~
(7.28)

where”\” is the subtractionoperationactingon diagramsas in definition 7.5
in sect.7. The resultof this operationis anunrooteddiagramequalto {7?. U T}
if the root w of T belongsto the connectedcomponent7?. of R, andequalto
{(7Z\T,T)} if w doesnot belongto 7?.:

RVT—’ {7?.UT} ifwEl?. (729)

1{7Z\T,T} ifw~7Z
TheoperationRV~Tthusconsistsin afusionoperationof 7?. andT into 7?.UT,

followed by a cutting out of T from 7?. U T if the root w is not sharedby 7?..
The aboveexpressionfor RV~T canbe appliedto the moregeneralcasewhen
R = {7?.’} and Te = (T,w) = ({21},{w1}) have more thanone connected
component,with the result that eachconnectedcomponent2 of T is fusedto
the connectedcomponent7Z~of Rwhichcontainsits rootw3,andcutout from all
the otherconnectedcomponentsof R whichit intersects(seefig. 20).Note that
theoperationv~crucially dependson thepositionof the rootsof the diagramT
on the right with respectto the connectedcomponentsof the diagramRon the
left, but thattheseroots arenot retainedas rootsof the resultingdiagramRV~T
which by definition is unrooted.Theproductof Tayloroperatorsassociatedwith
the nest.1c’0 as given by (7.27) still correspondsin this caseto the combined
resultof the Taylor operationlT~ followed by the coalescenceof the Card(R)
connectedcomponentsof R towardarbitrarypoints.

Finally, we return to the original questionof finding the nests~‘e which
give the sameUV behavioras T0 whencomponentsof R coalesce.Theseare
the rooted nestswhich build the samefactorizedintegrand (7.22) or (7.25)
(possiblygeneralizedto severalconnectedcomponents).They arecharacterized
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by ~e C j~’eC ~ We thereforeget the four nests

=

= {(RAT,.),(T,w)},

~e3 = {(T,w),(Rv~T,•)},

= {(RAT,•),(T,w),(Rv~T,•)}. (7.30)

Onecancheck(seeappendixD) that the (—1) andsymmetryfactorsassociated
with thesefour nestssumup to give zeroexactly (this includesa sumover the
unspecifiedcompatibleroots •). As a consequence,the divergencesinducedin
the contributionsof the four nestsaboveby the coalescenceof the pointsin the
subset7?. cancel exactly.This propertycan begeneralizedto nests~e with an
arbitrary numberof diagramsas well as to successivecoalescencesassociated
with a saturatednestS. Indeed,from thenest~e, wecanbuild a family ofnests1~T’egiving the samedivergenceswhenpointscoalescesuccessivelyaccordingto
thenestedstructureof8; wethencancheckthatthesedivergencescancelexactly
within the obtainedfamily. Thedetailsof this constructionwill bediscussedin
subsect.7.4.

7.4. EQUIVALENCE CLASSESOF NESTS:GENERAL CONSTRUCTION

In thissection,wepresenta generalprocedurefor classifyingnestsaccording
to the divergingbehaviorof the associatedcountertermin a given sector.Our
constructionis inspiredby aconstructionby BergèreandLam in ref. [23] in the
contextof local field theoriesin the Schwingerrepresentation.Extensivemodi-
ficationsarehowevernecessaryin orderto makethis constructionapplicablein
ourcontext.

We denoteby S = {R°,R’...,RN_i} a saturatednest of c, which will be
keptfixed throughoutthissection.We aregoingto regroupall rootednestsinto
equivalenceclasses,associatedwith S.

Tableauconstruction. Fromnowon anduntil theendof the article, the only
rootednestswhich we shallconsiderwill be compatiblyrootednests.

Let us thus consideran arbitrarycompatibly rootednest~e = { Tj~ J =

0,... ,T} whereTie = (Tj, Wj). For thiscompatiblyrootednest,we definethe
(unrooted) complete diagram

R’jER’V~~Tj~=(R’\(Tj\wj))VTj (7.31)

andbuild thetableau
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T0 R~AT1 R~AT1 ... R~ATu ... R~
2ATu R~’AT

1

Ti R~AT2 R~AT2 ... R{AT2 ... R~
2AT

2 R~iAT2

R~AT~uR~ATj+u ... R~AT~~1... R~
2ATj+u R~_iATj+u

TT R~ATT+u R~ATT+I ... R~ATT+u ... R~2A TT+u R~_iA TT+u

(7.32)

whereby conventionTT+i G = {c}. Notice that for R°= G®, we have
R°~= R3 A T~~

1= Tj. Hencethe first columnT~= R3 A T~~1of the tableau
canbeseenasbeingbuilt from R°,with thesamestructureas theothercolumns.
Notice alsothat sinceRN_i = G, R~~_i= G for anyJ, henceR~_iA Tj+u =

T~+ u. Thereforethe lastelementof a given line of thetableauis identicalto the
first elementof the following line. Finally, since R’ -< R’~~, thenR’~-~ R’7 i

and

A T~~1-.< RI~+iA Tj+u. (7.33)

Therefore,readingthetableauin the naturalorder,i.e. readingsuccessivelines
from the left to the right, we get a totally nestedstructure,which definesan
unrootednest~. This nestA~(S,Ife)dependson both the sectornestS and
the subtractionnest~ By construction,If containsall thediagramsof If. Of
course,it mayhappenthat two successiveelementsof the tableauareidentical
(this is for instancethe casefor the lastelementof a line andthe first element
of the next line), hencethe tableaucontainsredundantinformation.

The nestjç/~is a generalizationof the oneconstructedin the previoussection
(Eq. (7.27)). Indeed,if weconsiderthe nestIfe = {(G0,G®),(T,w)} andset
RIO = R at level I~of the nest8, weobtainin this casethe simpletableau

T0=G0 R~ATu=(RVa~G®)AT=RAT...

Ti = T ... R~A T2 = (R V~T)A G = Rv~T ... (7.34)

whereonlycolumns1 andJ~,arespecified.Thegeneralconstruction(7.32) there-
fore reproducesin this simplecaseexactly the largestnest~ (hereunrooted)
of (7.30).

Reductionofthe tableau. Going backto the generalcase,we arenow inter-
estedin finding thesmallestrootednestIf~which, undera constructionsimilar
to (7.32),gives the samenestI~(thatis J’f(S,If~)= Jc’(S,Ife)). More pre-
cisely, we must removefrom ~e the diagramsT~which are not necessaryto
build j~.SinceTj is involved in the constructionof the two linesJ — 1 andJ,
removing Tj from the nestA

1e amountsto replacethesetwo linesby a single
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line, whichwill bebuilt directly from T~_u and~ u. In thisprocess,N diagrams
will be lost. Therefore,removingT~will be possibleif thetableaucontainsN
redundantdiagrams,which happenswhen at least N + 1 successivediagrams
of the two lines J — 1 andJ areidentical. This implies that thereexists an I~
suchthatthe two verticallyadjacentelementsof the column1o coincide atlevels
J — 1 andJ:

n’o ~r n’s
~j_uA1J~~jAuj+u

that is, on the tableau

T
0 R~ATu ... R~0ATi ... R~_iATu

Tj_uR~_iATj R’f_1ATj R~ATjII (7.36)

T~ R~ATj+u ... R’fATj+u ... R~AT~1

TT R~ATT+! R~T0ATT+1 R~’ATT+!

Then,by theinclusionproperty(7.33),all thediagramsof~betweenR’~0_1A T~
andR’j A T~+ u areidentical,henceequalto T~itself. We thusdo not looseany
information by replacing the two lines J — 1 andJ by the single line

Tj_u,R~_1ATj,..., R’f_1ATj

=

n’s ~r nN—i -i-’

~ Aij+i.
The importantpoint is that this new line is preciselythe onewhich wouldhave
beenconstructeddirectly by (7.32),whenappliedto the nest

If’e = (Toe,Tie,... ,Tj_ue,Tj+ue TTe)

obtainedfrom ~e by removing Tje (notice that the inducedrooting of this
nestremainscompatible).Indeed,the construction(7.32) for If’e simply cor-
respondsto suppressingtheJ-line andto substitutingto the (J — 1)-line the
newline, constructedfrom T~_u e andT~+ I e

Tj_u, R~_~A Tj~u, ... , R~_~A Tj+i, ... , ~ A Tj+i,
(7.38)

the otherlinesremainingunchanged.It is the purposeofappendixE to establish
in detail the statement,on which all our constructionwill rely, that the lines
(7.37) and (7.38) are actually identical when (7.35) is satisfied.As a conse-
quence,the nests.j~(S,Ife)and.‘~(S,If’e)areequal. In particular,we note
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that T~,while absentfrom A[’e, is still presentin .‘~(S,If’e)since

= R’]_1 A ~ (7.39)

The “suppression”of line J from (7.36) when (7.35) is satisfied, consistent
with the constructionof .~~~(S,If’e),canbevisualizedas follows:

J—l ________ ________
J—l I~

J Jo __________ —5

J+l
J+l

wherethe doubleandtriple lines representsuccessivelynested(in generaldis-
tinct) diagrams,while the single line representsa seriesof identicaldiagrams.

We thereforehaveat our disposala reductionprocedure,which allows for
the substitutionto the nest

11e of the reducednestIf’e, with onediagramless,
which still generatesthe samenest.i~.This processcanbeiteratedto suppress
all the diagramsT~of the original nestIf which aresuch that theysatisfy the
coincidence property (7.35) for at leastonejo (1 ~ ~ ~ N — 1). Whentwo
successivelinespossessthis coincidenceproperty,for somejo andIi, the reduc-
tion is associative,thatis its resultis independentof the orderof theoperations,
as representedon the following picture:

~I~j ::::Iu

1~ ,: J~

~1o ::::Iu .... “ 1o ::::Iu

I~ —~ ___________

~‘o ::::Iu

Notice furthermorethata configurationlike

J—l ~

J —II-—--—Io-———

J + 1 lu

which would causeobstructionto associativity,is actually forbidden since it
would imply Tj = T~+ u~which is ruled outby definition.Notice finally thatthe
“suppression”of aline J doesnot createnew coincidences(thatis coincidences
whichdid not existbeforesuppression).Indeed,theonly pairsof verticalneigh-
borswhicharemodifiedby the suppressionarethoseofthe linesJ —2 andJ —



F. David et a!. / Interacting crumpled manifolds 619

for I > Jo on the onehand,andthoseof the linesJ andJ + 1 for I < J~on the
otherhand,as can be seenon the following picture:

J—2
J—2

J—l I~
‘0

J 10
J + 1

J + 1

A new coincidencewould imply Tj_i = Tj in the first (upper right) case,and
T~= Tj+ u in the second(lower left) case,and is thus impossible.Therefore,
after “suppression”of all the lines of the original nestwhich presenta vertical
coincidencewith the precedingline, we endup with atableauwhich no longer
containsany pair of coincidingvertical neighbors.We denoteby If~the nest
resultingfrom thisreductionprocedure,that is the subsetof I~emadeof thedi-
agramsTie for valuesof J correspondingto lineswhich remainafterreduction.

Equivalenceclassesofnests. The above reductionallows to assignto any
compatiblyrootednestIfe auniqueminimal nestIf~,which is asubsetof the
original nestIfe (andin particularwhosecompatiblerootingis therestrictionof
theoriginal rootingof A[e to Ifs), suchthat~ (5,If~)= J~’ (5,Ife), andwhose
tableau(7.32) is “minimal”, i.e. hasnoverticallyadjacentcoincidingelements*.

We definethe equivalenceclassC5 (If~) of aminimal (with respectto 5) nest
If~as the setof all compatiblyrootednestsIfe which leadby reductionof their
S-tableauto thatminimal nest.N~:

Ife E C5(If~) ~ Ife tabI~au~(8,Ife) reduC~on~

Of course,if If~is minimal with respectto 5, onehasIf~~ Cs(If~).For
anyIfe e C5(If~), onehas~(S,Ife) = ~(5,If~).

We havethe following characterization,for any compatiblyrooted nest~e
(with If the correspondingunrootednest):

Theorem7.1. CharacterizationofCs(If~).

Ife EC5(If~) ~ (a)If~ CIfeand(b)IfCIf(S,If~). (7.40)

A nestof the equivalenceclassCs(If~)is thusconstitutedof all the diagramsof
If°plussome ofthe diagramsof~(S,If~)not in If

0. Its rootingis constrained
to be bothcompatibleandsuchthat its restrictionto If0 is the rootingof Ifs.
Conversely,one builds all the elementsof C

8(If~)by completing If~by an
arbitrarynumberof diagramsof~c’(S,If~)\If° (that is diagramsofi~’(S,If,~)

* In general,this tableaustill containsseriesof identicalsuccessiveelements,but not morethan
N successiveelementscanbe identical.
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not in If°),andassigningto theseextraelementsanyroots compatiblewith the
rootsofIf,~.The direct implication (=~~)is immediatesince

(i) thereducedrootednestis alwaysasubsetoftheoriginal rootednest,hence
(a);

(ii) anydiagramof T~of Ife belongsto .i~(S,Ife)andthe reductionprocess
is definedso as to leave~ invariant.Thus Tj E jcf(S,If~),hence(b).

The reverseimplication (.~=)is not immediateandis proven in appendixF.
Notice finally that the diagramG = {~} is alwaysa diagramof.jct(S,If~)

sincethe last element(I = N — 1) of the last line (J =T) of the tableauof
anynest is alwaysequalto G. As a consequence,G is nevera diagramof If,~
sinceit can be rebuilt from If~by the tableauconstruction.Actually, if a nest
containsthe diagramG, the line of its tableaubuilt from G hasall its elements
equalto G, while the precedingline hasits last elementequalto G; this leadsto
the coincidencepropertyfor thesetwo lines for jo = N — 1, indicating thatG
is to be suppressedin the constructionof If~.Therefore,for anyminimal nest
If~,one hasG eJc1(S,If,~)\If°.

7.5. FACTORIZATION OFTHE R OPERATORINSIDE AN EQUIVALENCE CLASS

Aswehaveseenbefore,thereasonfor classifyingnestsinto equivalenceclasses

wasto regroupnestswhosediverging contributionsin a given sectorS in the
R operator (7.12) cancelexactly. Given a sectornest5, it is thereforenatural
to rewritethe R operator,which is a sumoverall compatibly rootednests,as a
sumof reducedoperatorsR~

5~ eachof them involving all the nestsin the

equivalenceclassC5(If~)of aminimal (with respectto 8) nestIf~.This reads

R ~ Rcs(~a), Rc5(~o)=— ~ W(If~) H (—IT0).

minimal .N0EC5(~f~,) T0�A10
w.r.t. 5

(7.41)

EachoperatorR~5(~5/O) canthenbe rewrittenas asumoffactorizedcontributions
associatedwith differentrootingsof theelementsof theequivalenceclass,aswill
now beexplained.

We will needa lemmaaboutpartial sumsover compatiblerootingsof nests.
Let usconsideranestM = {Tj; J = 1,... ,T}. We denoteby ~M a compatible
rooting of M, that is simplythe specificationfor eachdiagramTj of M of aroot
diagramWj such thatMeM {(Tj,wj);J = 1,... ,T} is a compatiblyrooted
nest.

Lemma 7.1. Given a compatiblyrooted nestIfe andan unrootednestM
such that If C M (that is all the diagramsof Al are diagramsof M), we can
considerall the compatiblerootings+M ofM suchthatIfe C Me~,thatis the
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compatiblerootingsof M whoserestrictionto If is the rooting in Ife; we then

havethe usefulsumrule for the weights (7.13):
~ W(MeW) = W(Ife). (7.42)

eM~ CMOM

This lemmais provenin appendixG.
We cannow usethis propertyin the caseof an arbitrarynestIfe C C8 (If,~)

if we choose

M =A7(S,If,~) (7.43)

since,from (7.40),wehaveIf CM. Inserting (7.42) in the formula(7.41)for
Rcs(~’o),we get

RC(~rO) = — ~ W(Me) H (—IT0)

T0�.410
A’~ CM®

= — ~ W(Me) ~ H (_I~r®)
.‘~‘o T®�Jv’®

= — ~ W(Me) [J (—t~) H (11T®),

T°�J~f° T®E(M®\~/°)
0 0 /5

(7.44)

whereMe standsforMeM. In thesecondequation,weusedthecharacterization
(7.40) of C8 (If~). The sum rule (7.42) allows us to reconstructall possible
rootingsof the nestsIf in C5 (If~) with the appropriateweight, by first fixing
therootsofMe by acompatibleextensionofthe rootsof.AI~,andthenrestricting
theserootsof Me to all intermediatesubnestsIf betweenIf°andM (notice
thata given rootingof suchanestIf can comefrom differentrootings of M).
In the last equation,we usedthe fact that the setof rootednestsIfe suchthat
If~C Ife C Me is built by taking necessarily,on the onehandall the diagrams
T~of theminimal nestIf~and,for eachdiagramTe of Me \ If~on the other
hand, decidingwhetherto take it or not, hencechoosing1 or ~

1T® in the
expansionof the productof Taylor operators.

Notice finally that the compatiblyrootednestsM
0 involved in (7.44) can

actuallybecharacterizedindependentlyof theminimalnestIf~from whichthey
arebuilt, by the property

J’~f(5,Me) = M. (7.45)
A compatiblyrootednestsatisfying(7.45)will be calledmaximalwith respect
to S. With this definition, the equations(7.41) and (7.44) can be replacedby
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the single equation

R = ~ W(Me)RM0 (7.46)

M®maximal
w.r.t. S

with

RM®= — H (— ITO) H (1 — ITO)~ (7.47)
T~�J’f~ T®c(M®\.N~)

whereIf~is now the minimal nestobtainedby reducing the tableauof the
maximalnestMe.

8. Proofof UV convergence

We are now in a positionto prove the finitenessof subtractedcorrelation
functionsZR~’) in (6.22) when� = 0. Our strategyis the following:

(I) First we partition the domainof integrationover positionsinto extended
Heppsectors(asdefinedin subsect.7.2), eachof them beingcharacterizedby
a saturatednestS.

(II) In eachsectorS,we reorganizethe R operatorby useof (7.46) as a sum
of operatorsRM,/, associatedwith the differentnestsMe maximalwith respect
to S.

R(M)(III) At the end,onecanwrite Z N as

ZR~(Xa) = ~ w(Me)f H dDxIRMO [Ic(xi, Xa)]. (8.1)
S M®ma*imal icc

wetS

It is thereforesufficient to prove the finitenessof the integral

f H~~XI~M®[Ic(xi,Xa)], (8.2)

icc

wherewe integrateover the domainN
8 definedby (7.15) * with the measure

(3.24), andwhereMe is anynestmaximalwith respectto S.
(IV) Using the factorizedform (7.47) for RM®, we first apply the Taylor

operatorsIT~associatedwith diagramsof the minimalnestA1~.Thisresultsin
factorizing ‘c (x

1, Xa) into a productof amplitudes1/7’ = ~ J~-for suitable
reduceddiagrams1” madeof subsets~tof g.

(V) We showthat the productof the remaining (1 — IT®) operatorsacts
independentlyon eachsubdiagram1’, leadingto a subtractedintegrandfor D.

(VI) We showthat this subtractedintegrand,onceintegratedover pointsin
the HeppsectorN

8, yields a finite resultwhen� = 0.
* More precisely,we integrateoverthe x

1’s suchthat the y’s definedby Yj = X,.~. — x1 are in

7-ta, since a Heppsector is actually definedin termsof relativepositions.
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Points(I)—(III) havebeenalreadydiscussedin sect.7. We now showpoints
(IV)—(VI) in detail.

8.1. FACTORIZATION OF Ig (x
1, Xa)

In order to precisethe actionof RM®on ‘c (x,, Xa), let us first havea closer
look atthetableauM = £~(S,~). We denoteby T~,J = 0,... ,T thediagrams
of If°,andby TJ

Tj=(R’VWoTY)ATY+i 0~<I~<N—1; J=0,...,T (8.3)

the diagramsof M. By convention,we haveset T~+ = G. Startingfrom the
factorizedform (7.47)for RM® (andusingthe fact that the l’s commute),we
first apply the Taylor operatorsITO associatedwith diagramsof the minimal

nestIf~.This resultsin factorizing ‘c (x1, Xa) into

H (~y®) Icxi,Xa = IT~+1(x1,Xa) Ü1i~(xi), (8.4)
T~®cAI~

where

T~ T9/~oT9_1 (8.5)

is the (uncomplete)diagramobtainedfrom T~by replacingby its root each
componentoftheprecedingdiagramT~_1in If,~.EachDj is madeofCard( T9)

connectedcomponentsi~j1andin (8.4) the amplitudefor D~is by definition
equalto

Card(1~)

‘~ H I~. (8.6)
1=1

By convention,if someconnectedcomponentis reducedto one single vertex,
the correspondingamplitudeis 1. Eq. (8.4) establishespoint (IV).

Similarlyto (8.5),it isconvenientto defineD5_1 asthe (uncomplete)diagram
obtainedby reducingin somediagramofthetableauTJ_ theprecedingminimal
diagramT9_1 to its root diagramw3_1:

T/~oTY_u. (8.7)

Notice that D9_1 = ~ andthat D~j’= D~.
From (8.3), the connectedcomponentsof the diagram D~’_1aremadeout of

the intersectionof the connectedcomponents
1~Jjof IT, andof the connected

components 7Z’~of R’

7?.1”fl7j,j. (8.8)
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Furthermore,from the compatibility requirementfor Me, the root in Me of
anyconnectedcomponentof the diagramT~_~automaticallybelongsto thecor-
respondingreducedconnectedcomponentof thereduceddiagram DJ_1. There-
fore, the rootingof Me naturally inducesa rooting for the diagramsDJ_~ We
denoteby w~’~1the rootof andby D5ie the set of all
for varying i andj.

Let us for awhile concentrateon whathappensinsidesomegiven subset~Jj

which we shallassumeto haveat leasttwo vertices(Card(i~j1)> 1). We can
considerthefamily of different(andnonempty) rootedsubsets(~1~u,1’ w~’~11)
for all i = 1,... , Card(R’) (with J andI fixed) as a completerooteddiagram
Dj_u,ie of the subseti~j,1in which we are now working. From (8.8), this is
nothingbut the restrictionof the diagramR’ to this subset~ togetherwith
a set of roots.The family of distinct Dj_uje for varying I formsa compatibly
rootedand saturatednest,

5J,Ie,of ~ which is nothingbut the restrictionof
the saturatednestS to ii,,~,with a given rooting.We define

Ind(J,j) = {J ~ 1: DL~
1� D~II1} (8.9)

as the set of indicesI (of thesectorS)suchthat inside ij,~,a new elementD
appearsat level I in the saturatednestSj,j.

We now againconsiderthe wholediagramD~anddefine,in a way similar to
(8.9):

Ind(J)={J~l:DJi�D}={J~l:TLi�T~} (8.10)

as theset of I’s suchthatanew diagramappears in thetableauatlevelI between
T9_i and T~.Of course,if DJ1 ~ DjH~,thereexistsat least oneJ such that

� D~’ii~~andthus

Card(7~)

1~1(J)= U Ind(J,j). (8.11)
1=i

We moreoverdenote
Jrnin(J) = mm (~j~(J)) Jrnax(J)= max (ii~d(J)) (8.12)

with the propertythat

= min{I : D~5_1= D~}= min{I : TJ_1 = TY} (8.13)

is the index I suchthat T9 appearsat first in the tableau.We set

Ind(J) = Ind(J) \ {Jrnax(J)} (8.14)

(which may beempty).Finally, we define
T+ i

Ind = UInd(J). (8.15)



F. Davidet a!. / Interactingcrumpledmanifolds 625

With thesenotations,the (1—I) operatorsin (7.44)actindependentlyoneach
amplitudeft~,.Theoperator(1 — IT~®)actson ‘D~only jfK = J — 1, andresults
in thiscasein (1 — Ir’)[ir~]. We thuscan express RM®[Ic] as a productof
subtractedamplitudesfor eachreduceddiagramD~.The subtractedamplitude
for i’.j is obtainedby the successiveactionon I~of a (1 —

1r’) operator
for eachI C Ind(J). The caseJ = T + 1 is specialsince, sincein addition to
the (1 — ID’) operator for each I C Ind(T + 1), a (1 — I) operatoris also

associated with D~( T+ i) The factorizationof RM®[Ic] is thenexpressedin
thefollowing equation:

RM
0[Ic(xj,Xa)] = H _1r~®)~÷1t,A~

Ikind(T+ i)

~HE H (
1-ID~ )[ID~(x1)]]. (8.16)

J=i I�Ind(J)

We recall that

Card( T~)

= H I/7~
f—I® J—I,J0

j=1

Card( T~)

= H H I(~1~W). (8.17)
1i ~

We havethus achievedpoint (V). It remainsto show that the subtractions
associated with the (1 — I)’s are sufficient to make (8.16) integrablein the
sector S.

8.2. APPROPRIATETREE VARIABLES

In sect. 5, in order to prove the convergenceof the original (unsubtracted)
integral in some Heppsector (for � > 0), we foundusefulto expressthemeasure
in terms of tree variables for some specific tree (which definedthe sector).
Thosetree variables are no longer adapted to dealwith thesubtractedamplitude
RM®[Ic (x

1,Xa)1 sincetheydo not takeinto accountthe factorization(8.16)
of RM® [Ic (x,, Xa)]. Instead,we shall look for tree variables associated with a
tree that, inside eachsubsetiJj, forms a subtree compatible with the sector.
The basic idea is that, sincethe nest

8J,
1e,which hasbeendefinedaboveas

therestrictionof the sectornestS to ij~, is bothsaturatedin ~tjj and rooted,
it naturally defines a uniqueorientedorderedtree T~,1 spanning the vertices

* Notice that ~ hasonly one connected component.
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J÷1,k

i~i,jj

Fig. 21. Appropriate tree variables. At level J, inside a connectedcomponent/D~~of Dj (dashed
circles),we build an oriented orderedtree with line vectorsA’~.As shownin the framedbox,
this tree is built in a way similar to what was done in fig. (18) (b), now from the rooted
saturatednest Sj

10. This nest is here madeof the three diagramsTJ”1J, DS2 IJ and

(i.e. md(J, j) = { j~,1~,13}) whoseroots arerepresentedby the dashedsquares.At level J + 1,
the connectedcomponentsof Dj arefully contractedtowardtheir roots (big black dots), which
arethe verticesof

11+ ~ An oriented orderedtree with line vectors is then built inside

TJ+u,k The treesat levels J andJ + 1 can befused into a single oriented (but only partially

ordered)largertree contributing to (8.19).

of 1j
1, as discussedin sect. 7.2. The correspondingline vectorsare naturally

orderedby increasingvaluesof I in Ind(J, j) anddenotedby

~ Ielnd(J,j). (8.18)

Fromthe nestedstructureofIf~,we deducethat the union of the treesT~1for
varyingJ andj (including J = T + 1) formsa treeof the set g:

T = UTjj = (2~~ J = 1 T + 1;j = 1,... ,Card(T9); IC Ind(J,J))

(8.19)

(seefig. 21)). In particular,this treehasN — 1 line vectors.We can therefore
usethe correspondingtreevariables as integrationvariables,insteadof the
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N — 1 relativepositionsYi = x1~1— x1 in RN
1 (or RM1 whenM external

pointsarepresent).
Notice that the treeT is not in generalcompatiblewith the sector5, that is

in general,S(T) ~ S. Still, sinceSj,
1 is the restrictionof S to the subset~

the subtreeT~1of T remainscompatiblewith S. By this we meanthatonecan
find ordered trees of c compatible with 5, and which contain ~ as anordered
subtree. Wecan therefore take advantage of the inequalities (7.19) andget the
following bounds for ratios of lengths of ~ insidethe domainNS:

2’
~ ~ ~

l2~l
,,‘~ ~ I for I < I’. (8.20)

I
2J’,j’

This meansthat two 2’s with the sameindex I areof the sameorder,while the
2’s with higher index I’ > I cannotvanishmore rapidly thanthosewith index
I.

Finally, sincethevectors~ definingthesubtreeT~,
1arebuilt from therooted

nest
5J,je’ whoseroots arepreciselythe roots of the subsetsIJ~f~J,the

actionof dilation operations(6.14)

HvJ~WI,~) (8.21)

(for somefixed J andj) on the positionsof the verticesof 1~j,jis exactlyper-

formedby the transformation

I2~~I—* pl2~i~Ifor I’ ~ I (8.22)
on the modulesofthe2-variables.

In a way similar to what we did in subsect. 5.1, it is naturalto rewrite the
vectors2 in termsof realvariables/31whichmeasureratiosof successivemodules
21, togetherwith angularvariables0.

For definiteness,we write the elementsof md (eq. (8.15)) as
md = {Ii <‘2 <... <IE}. (8.23)

For eachI in Ind, we choose one of the ~ of the tree T as a representative
of all the lines which appearat level I, anddenoteit by A’. We thendefine the
fl-variablesas the ratiosof theserepresentatives2’ for successiveI’s in md:

/31k = 215+!’ k= l,...,E-l

filE = I2~El. (8.24)

Fromeq. (8.20) theysatisfy

/315 ~ Ik, k = 1,... ,E— 1. (8.25)
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Eq. (8.24)defines/3’ for I C Ind. We shallalso usethe convention
/31 = 1 if I ~ Ind. (8.26)

In order to compare2’~~to its representative2’, we define

I2~,.I
= —i~i-~ (8.27)

with of course = 1 if hasbeenchosenas a representative.We thushave

I2~,~I= x~,
1fi’fl’~..~fiN_1 (8.28)

andthe bounds

~ ~ 1. (8.29)

Finally, in addition to their moduli, the line vectors~ are characterizedby
asetof relativeangleso~4labeledby someextraindex n. Theseanglescanbe
constructedin differentways,correspondingin particularto differentorderings
of thetreeT. In anycase,as in subsect.5.2,theseanglevariablesdo not actually
play anyrole in theproofof the finitenessof the integral (8.2). Therefore,we
shall not maketheir constructionmoreexplicit.

In termsof the 121- and0-variables,the measureterm canbewritten, up to a
globalnumericalfactor, as in e.g. (3.32), as

T+ i Card(7~)

H H [I [dl2~,~II2~~,~I~)_1(H(smno )P~’n)d0~’~)], (8.30)
Ji j1 IEInd(J,1) ‘I

wherep (D, n) is somepositivenumber(whenD ~ N + M — 1).

8.3. SUBTRACTEDINTEGRAND

The tree variablesof the precedingsection,togetherwith the factorization
(8.16)allow us to work separatelyinsideeachreduceddiagramD~.Indeed,the
amplitudeI~for J ~ T is afunctionof the variables2’~~for the sameJ only,
with I C Ind(J, j) (the caseJ = T + I which is specialsinceit alsoinvolvesthe
set of externalpoints,will be discussedseparately).Goingbackto thedefinition
of the amplitudeI~,we canwrite (8.2) in a form wherethe measureandthe
integrandarefactorizedsimultaneously.For eachD~(with J ~T), we get

Card(1~)

[11 H dI2~,1II2~,1I’~~’ (flsmn(0~ )P(13~’1))

f=’ l�Ind(J,j)

Card(7~) —d/2

x H (l—Iti)[ H det(HTJ.i)] ,(8.31)
lEInd(J) j=i
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whereHTJ,i is the matrix definedby (3.49), (3.50) for the subtreeTj1. Its
elementsHj~ arelabeledby elementsI, I’ of Ind(J,j). As in the convergence
proofof sect.5, weintroducethe normalizedmatrix

— 1 1,1’ (8 32

= AD(v) 2~~lvl2~~lv

which, insertedin eq. (8.31),gives

Card(T~) d2’

H H 2’ ~ (Hsmn(0~)~’~)
j=i IEJnd(J,j) j~j

Card(7~) d 2

x ~ (1 —4’)[ H det(YTJ.i)] / . (8.33)
lEInd(J) j=l

Sincethrough (8.32) we haveextractedthe mostsingular factorof the H ma-
tricesunderrescalingsD’~(seeeq. (6.14)), the Taylor operators10 appearing
in (8.33)arenow definedas

10 = limV’~. (8.34)
p—’

0

The propertiesof det( yT~,,) are the sameas thosementionedin subsect.5.2.
In particular,det( yT~..)is a function of the ratios of2~ffor successiveI’s in
Ind(J,j), whichplaythe role of the fi~variablesof sect.5, andarenowproducts
of the /3 andx variablesdefinedabove.

Then det(YTJ,J) is a boundedfunction of the /3’ andx5,
1 variableson the

domainN
8, andis equalto 1 whenall the fiu~sareset to zero.

Due to our choicefor the2’~~variables,the actionof 4, on

Card(7~)

k”, (det(YTJ,j))~~2

simply correspondsto set /3’ 0 in all the yTi.. for differentI (seeeqs. (8.21)
and (8.22)).Therefore

Card(T9) d 2

(l_4~)[ fi (det(YTJ.i)) 1j

vanisheswhen/31 —+ 0. This isthekeypropertywhichwill ensurethefinitenessof
thesubtractedintegrals.Firstwehaveto generalizethisfact to all the /3variables.
This is containedin the following strongerproperty,as shownin appendixH:
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Proposition
Card(T~) d 2

fi (1— I~~)[ H (det(YTJJ)) / ] = o( H (/31)11)

IEInd(J) 1=1 Jmrn(J)<J<Jma*(J)

(8.35)

with ~ = min(u, 1 — v) as in (4.7).
The abovediscussionholds for J ~ T only. The caseJ = T + 1 (andj = 1)

requiresa separateanalysis.We thenhave

= (det(yTr+i,i )) -d/2 exp ~ ka kbJab] (8.36)

anda propertysimilar to (8.35):

11(1 —4,) [(det(YTT+I1 ))%xp [~ ~ka . kbAab]]

I�Ind(T+i) a,b

= o( H (/31)11) (8.37)

I~>l
m”(T+1)

8.4. PROOFOFFINITENESS

Fromtheabovediscussion,wearriveatthefollowing form for (8.2) at� = 0:

T+lCard(T~) d ~‘

L5 H H H (Hsino~:~1).PUdo~1)H’ -~~-‘J i 1=1 lEInd(J,j) ‘~ JEInd(J,j)

H ~ o( H (/31)11) U ~( H (/31)11)

i�i~ J>Jmill(T+i) J=l Jmi11(J)cJ<Jm~x(J)

(8.38)

where fl’ meansthat we omit the valuesof I suchthat~ is a representative,
andwherethe domainof integrationVS reproducesthe domainof integration
N~for the relativepositionsof internalpoints. InsideV

8, the variables are
boundedfrom belowaccordingto (8.29).Therefore,the integrationover these

variablesand the integrationover the 0~/’]variablesdo not produceany
divergence.For the integral to be convergent,it is actuallysufficient that, for
each I C Ind, atleastone (/31)11 is presentin the productof 0’s appearingin
(8.38), thusmaking the integrationover /31 UV convergent.Thiswill be true if

IndC {U {Immn(J),Imax(J))}U [Immn(T+ l),N— 1]. (8.39)



F. David et aL / Interactingcrumpledmanifolds 631

Now, from their definition (8.12),all the diagramsT5_1 for I ~ I
ma~~(J)and

the diagramsTJ for I < I~l1~~(J + 1) are equaland identical to T9. Since,
by hypothesis,the nest.N~is minimal and thereforeits tableauhasno equal
vertically adjacentdiagrams,wededucethat

~ Irnin(J + 1). (8.40)

Using this inequality for eachJ, it is easyto checkthat the r.h.s of (8.39) is
actuallyequalto

rT+1 1 r
IminIm~(J),N~11 = Imin(Ind),N— 1 (8.41)
1J1 J L

andtherequiredproperty(8.39)follows. Thisprovesthe convergenceof (8.38),
q.e.d.

9. Discussion

9.1. ANALYTIC CONTINUATIONANDCONVERGENCEAT SMALLD

Up to now, the finitenessof ZN (resp. Z~M)) at � > 0 and that of ZRN

(resp.Z’~1~)at� ~ 0 were provenfor largeenoughdimensionD only, that is
D ~ N— 1 (resp.D ~ N + M— 1), v beingfixed. If we nowwantto recoverthe
physicalmodelswith a fixed valueof k (typically k = 2) andof v, this requires
afixed value of D = k — 2v (satisfyingeq. (2.5) so that 0 < v < 1). All the
diagramcontributionsto ZN (resp.Z~7’~)with N ~ D + 1 (resp.D — M + 1)
then haveto be definedby the analytic continuationprocedurediscussedin
sect.3, in a regimewherethe productsof the measure(in the distanceor the
treevariables)by the integrands(resp.the subtractedintegrands)that we have
consideredbecomedistributions.Thatis the casefor all the diagramsbut afinite
numberof these.

To endthis study,wehaveto makesurethat, in this regime,theseintegrals
(resp.subtractedintegrals)arestill finite in the senseof distributionsfor � > 0
(resp.� ~ 0). We shallnot give a rigorousandcompleteproofof this fact, but
we shall ratheroutline the mainstepsof the argument.

First we haveto checkthat the absoluteconvergenceof the unsubtracted
amplitudeZN for � > 0 given in sect.5 extendsto D < N — 1. Considering the
integralrepresentation(5.4) for the contributionto ZN of a given generalized
HeppsectorNT, expressedin sphericalcoordinates,andusing (5.8),weget for
this integral

N—i N—la—I

IT H (/3~)°~1d/3~,H H (sin ~1/’ a=i a=2n=i

x (det [yT(/J~
50~5)])_d/

2 (9.1)
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oneseesthatthe problemof UV convergence(which comesfrom the small/3,.
behavior) is completelydecoupledfrom theproblemof analyticcontinuationof
the measurein D (which comesfrom the behaviorof the integralwhen0,.,,~—s

0 or ir for n > D). Asalreadydiscussedin subsect.3.3,anexplicit representation
of the analytically continuedamplitude canbe written, for non-integerD, by

subtractingthedivergentpowersof 0 andm — 0 (this is the standardfinite part
prescription).The resulting integration over the 0’s areconvergent,for fixed
non-zerofl’s. Fromthe explicit form of the matrix Y,.~,onecan checkthat the
subtractionsin 0 do not introducedangerousnegativepowersof the fl’s (at least
in the sectorNT, i.e. VT), sothat the powercountingargumentin thefl’s stays
valid. Finally onecancheckthat (asalreadydonein subsect.3.3), thepolesthat
occurat integerD arecancelledby the correspondingzeroesof theglobal factor
SDSD_i. . . SD_N+2 in the measure(3.29), so that the unsubtractedamplitude
ZN is finite for anyD> 0 and� > 0.

The sameargumentcan be applied to the subtractedamplitude at � = 0.
Startingfrom the expression(8.38) for the part associatedwith the maximal
nestMe of the subtractedamplitudein an extendedHeppsector,someof the
p (D, n) exponentsbecomenegativefor D < N + M — 1, andthe integration
over the correspondingangularvariables0~/]requiresa finite part subtraction
prescription.Again,onecanarguethat thesesubtractionsdo not interferewith
the powercountingin /3’s andx’s, andthat the small /3 estimates(8.35) and
(8.37) remainvalid for the 0-subtractedintegrands.

Finally, onecanextendthis analysisto smallnegative�, andshowthat for a
subtractedamplitudeof orderN, no UV divergencesoccuras long as Re(�)>

— 1), with 5 = min(u, 1 — ii), as in (4.7). Indeed,for � ~ 0, we must
modify (8.38) by inserting in the integrand

T+l Card(T~)

H H H’ (x~,~)5x H (p1)f~1~ (9.2)Ji ji IEInd(J,j) IElnd

wheren (I) is the numberof line vectors~ with an index I’ ~ I. Onehas
clearlyn(I) ~ I ~ N— 1. Sincethe subtractedinteractiontermis (from (8.38)
and (8.39)) ~ the convergenceat small fl’s is guaranteedfor
Re(�)> —5/(N—1).

Finally, wehavenot discussedthe problemof the convergenceor summability
of the perturbativeseriesfor our model. Since the model is expectedto make
sensefor both b > 0 andb < 0 (with a finite free energyproportionalto the
internalvolume in the latter case),we expectthat the radiusof convergenceof

theseserieswill be non-zero,and in fact infinite for the unrenormalizedseries
(whichexistsfor e > 0, thusdefiningentire functionsof b).
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9.2. UNIVERSAL SCALING PROPERTIESOF THE MANIFOLD

In this subsection,we shallderivesomephysical implicationsof theexistence
of a renormalizedtheory,well definedat � = 0. Weshallconsiderhereexplicitly
thecaseof elasticmembraneswith k = 2 in (2.1).

The main result of the precedingsectionsis that the subtractedamplitudes
(6.22) for the correlationfunctionsremain finite at � = 0. In termsof these,
the full correlationfunctions

, .i~.\ , .i.
-~ ~~Aa,fta,UJ = ~ ~JIa,ILa,UR

N

~ (—bR) ~RMiv ,
= ~ ‘~‘ N ‘~-“a, ‘

1a
N=0

havea seriesexpansionin termsof the effectiveexcludedvolume parameter:

bR = —~--- (V~— Z) , (9.4)
VSD

which representsthe resummedone-point interactionof the manifoldwith the
impurity. As functionsof bR and�, thesecorrelationfunctionsthusstayfinite
at� = 0.

Existenceofa Wilsonfunction. Our renormalizationoperationinvolves a
peculiarrenormalizedcouplingconstantbR (9.4),which is afunction:

bR bR(b,X;�), (9.5)

whereX is the internallinear size of the manifold,definedby

V~
0 XD. (9.6)

As usual,sincethe renormalizationoperatorR dealsonly with local countert-
erms,otherchoicesofthe renormalizedcouplingconstantarepossible,keeping
the correlationfunctionsfinite as in (9.3). In particular,the theorydescribing
the manifoldof a given size X remainsfinite when expressedin termsof the
parameter

bpj2)~bR(b,2X;�), (9.7)

whichcorrespondsto the renormalizedcouplingconstantof a (reference)man-
ifold with different sizeAX. In particular,the original bR (b,X; �) itself canbe
expressedin termsof bR(2) (and2):

bR(b,X;�) = BR(bpjA),A,X;�), (9.8)

whereBR staysfinite at� = 0. This informationis bestexpressedby writing

0 = 2~bR(b,X;�)= 2~b~(2) ~~LXBR + 2~~/JIO(A)XBR~(9.9)
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from which we deducethat the quantity2(d/dA)bR(2)remainsfinite at � = 0
whenexpressedin termsof bR(2),X and2. Thisensuresin particularthefinite-
nessat� = 0 of the Wilson function

0 d
X~j~TbR 1~b~(2)A=i (9.10)

As in (6.29), it is convenientto introducethe dimensionlesscouplingconstants
—d/2

g (2mAD(v)) bRX5,
—d/2

~ bX5, (9.11)

with AD(v) = (SD(2 — D)/2)’ for k = 2. The associatedWilson function
thendoesnot dependon X explicitly andreads

W(g,e) X~~g= �z—. (9.12)

It is finite at� = 0, to all ordersin g, andhasthe first orderexpansion(2.6):

W(g) = �g—~SDg2+0(g3,g2�), (9.13)

with a fixed point at

g* = + Q(~2) (9.14)

Universalityfor theexcludedvolumeandtheosmoticpressure. Letusconsider
the quantity

A=V~d—Z=bRVsD, (9.15)

which hasthe dimensionof a d-volume. For b > 0 (repulsiveinteraction) it
is positiveandrepresentsan effectivehard-spherelike excludedvolumefor the
manifold aroundthe impurity.

Accordingto the definition (9.11) of g, we haveexplicitly

A = g(2~A~(v))~2V~1J. (9.16)

The internal volume of the manifold, V
50, is not directly observable,but, ac-

cordingto (2.31) and (3.38), it is relatedto the geometricalextensionof the
membranein bulk d-dimensionalspace,whenno impurity is present(b = 0).

This extensioncanbe measured,for instance,by the radiusof gyrationHG of
the noninteractingmanifold,definedas

2VSDISDISDO

= Tr’ (~) , (9.17)
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whereTr’ meansthe sum over the non-zeroeigenvaluesof the laplacianA on
the closedmanifold. Consequentlywe have

= CVSD, (9.18)

wherethe dimensionlessconstantc dependson the geometricalshapeof the
manifold (it will be different for a sphere,an ellipsoid, a torus, etc,...), and
requiresthe knowledgeof thetrue masslesspropagatorG(x,y) on the manifold
V, solutionof

—A~G(x,y) = öD(x,y) — ~. (9.19)

We considerexplicitly the casewherethe externalspacedimensionis lower
thand*, so thata repulsiveinteraction (b > 0) is relevant.Whenthe size of the
membranebecomeslarge, g then reachesits (IR stable) fixed point value g*
in(9.16),andwe get the universalscalinglaw:

A = a*R~, (9.20)

wherethe dimensionlessconstanta* = g*(~~~~(v))d/
2c_d/2 dependson the

intrinsic geometricalshapeof the manifold, but neitheron its size,noron the
detailsand the amplitudeof the repulsiveinteraction,andis therefore,in this
restrictedsense,universal.

An ideal solution of ~ identicalmembranesinteractingwith one impurity,
with concentrationC = ~/V~in a box of volume V~a,presentsa shift of the
osmoticpressureP from its ideal gas value. Owing to its relation (9.15) to
the one-manifoldpartition function, the excludedvolume A directly yields, by
standardrulesof thermodynamics,

P/k
8T C C(l+A/V~~+...). (9.21)

1 -A/V~~i

This lawexpressestheincreaseofthepressureduetothepresenceof theimpurity
in thesolutionwith finite volume,andcanbethoughtof asafinite sizeeffect.The
thermodynamiclimit canbereachedfor a finite concentrationC, of impurities.
Onethengetsthe virial expansionof the osmoticpressure,

P/kBT = C + CC,A + ... = C + a~CCjH~+ ... (9.22)

Let usstressthat the dimensionlessquantitya~,which is independentof the
microscopicparametersandappearsin the expressionfor the osmoticpressure,
is directly relatedto the fixed point value g* with the choice (9.11) for the
renormalizedconstantg. This isentirelysimilar to thecaseofapolymersolution
with excludedvolume [2,37].

Pinnedmanifold. Letusintroducethepartitionfunctionofamanifoldpinned
atthe origin at oneof its pointsX~,

JV[r] exp(—N) ôd (r(X1 )). (9.23)



636 F. Davidet a!. / Interactingcrumpledmanifolds

Owingto the internalsphericalsymmetryof the manifold,Z°is independentof
X

1 andactuallyequals

Z°= fv[r]exp(_N) ~ dDxö~~(r(x)). (9.24)
VSD

8D

From (2.9),onehasclearly
Z(bX)— R (925)

— VsDObx ‘ — Ob x~
Notice that,while the unrestrictedpartition function Z hasthe dimensionof
a d-volume,the pinned-manifoldpartition functionZ°is dimensionlessandis
thusa functionZ°(z;�) ofz (and�) only. Accordingto (9.11)and (9.12),we
have

~ 8 dg 1
Z = — bR = — = —W(g(z);�). (9.26)

Obx dz cz
Notice thatZ°itself is not renormalized,i.e. not finite at � = 0 as a functionof
g, but that �zZ° = W(g,�) is renormalized.Whenthe size X becomeslarge
(for � andb positive) zbecomeslargeandg(z) tendsto its limit g* the Wilson
functionvanishingas

W(g(z);�) = (g(z) — g*)W~(g*)+ ... , (9.27)

with

g(z) — g* ~ const~w~(g*)/5~ (9.28)

(NoticethatW’ (g*) <0; seefig. 2.) This finally leadsto the scalinglaw for Z°:

Z° const~_i+W~(g*)/f const (~i/c~)w~(g*)_f (9.29)

At first order in �, W~(g*)= —� + Q(E2), whence

Z° const (b~XY2~. (9.30)

Universalhr repulsionlaw. The pinned-manifoldpartitionfunctionZc~is a
particularcaseof amoregeneralrestrictedpartition function to whichwe now
turn. We introduce

Z0(Xl,r;X,b;�)=fV[r]exp(_N)~(r(Xi)_r) (9.31)

which describesthe partitionfunctionof amanifoldheldby oneof its pointsat
the positionr relativeto the origin. It is the Fouriertransformof the one-point
correlationfunction (2.25) for M = 1, i.e.

Z°(Xi,r;X,b;�)=fddkiexp(_iki.r)ZW(Xi,ki;X,b;�). (9.32)

As above,for a closedmanifold,Z°(X
1,r; X,b ; �) isactuallyindependentofX1

andequalto

Z0(r;X,b;�)=fV[r]exp(_N)~f dDxôd(r(x)_r). (9.33)V50 S~
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The relationsof this partitionfunction to the formeronesare

Z°(O)= Z°,

fRd ddrZo (r) = Z. (9.34)
By rotationalsymmetry,the quantityZ°dependsonly on r In. It is further-
moredimensionless,andthus canbe written as a functionof z andr/X” (and

Z°(r;X,b;�) Z°[r/X”,z;�] . (9.35)

As wehaveseenfor Z° (9.26),Z°[r/X”, z ; �] isnot exactlyrenormalized,when
expressedin termsof g, but �zZ°[r/Xv, z ; �] is. It is interestingto considerthe
limit whenthe interactionparameterb goesto infinity, while keepingthe size
X of the manifold finite. We expectZ°[r/X”, z ; �] to reacha finite limit

Z~[r/Xt’;�] lim Z°[r/X’~,z;�]. (9.36)
z—’~

Accordingto (9.34)and (9.4),we have

f ddr(Z0[r/Xv,z;�] —1) = —~V
50= _g(2~AD(v))~

2x~.

(9.37)

In the limit z—~ cc, g tendsto g*, andwe thereforehave
I / \d/2
/ d’~u(Z~[u;�] —1) = _g*(,~2JTAD(v)) , (9.38)

J~d

which is consistentwith the assumptionthatthe limit in (9.36)actuallyexists.
In the scalingregime r/X~’<< 1, we expectthe markedpoint to be strongly

repelledfrom the origin, andthusZ~to vanishas a powerlaw:

r 8

Z~[r/X”;e] -~const(i—) . (9.39)
This vanishingof Z°[r/X~’, z ; �] in the successivelimits z —~ cc andr —~ 0 is
consistentwith thatobtainedin the reverseddoublelimit r = 0, andz —* cc,

which correspondsto the vanishingof Z°atinfinite zaccordingto (9.29).
The contactexponent0 can be obtainedas follows. For finite b and large

X, we expecta universalX-dependenceof Z°[r/Xv, z ; �], irrespectiveof the
particularvaluegivento r. This dependenceis in particularknownexactlywhen
r = 0, accordingto (9.29). It mustalsobethe samefor r ~ 0 fixed andb —~ cc,
that is abehaviorwhich is givenby (9.39).This leadsto identifying thecontact
exponentwith

= � — W’(g~) (9.40)

Noticethatthe argumentabove,intuitively clearon physicalgrounds,is usually
mathematicallyjustified in field theory from the existenceof a short-distance
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operatorproductexpansion.A rigorousproofof the existenceof sucha short-
distanceexpansionin our caseis beyondthe scopeof this paper.The repeated
appearanceof WI(g*) in (9.29) and (9.40) suggeststhat all scalingbehaviors
in this theoryare controlledby a single scaling anomalousdimension,i.e. the
universalslopeof the Wilson functionat the fixed point.

Eq. (9.39) allows us to derive a universalexpressionfor the repulsiveforce
exertedby the impurity on the membrane,

f(r)/kBT = VrlogZ°(n)= 0-~-. (9.41)

According to the discussionabove,thisforce law is valid in the scalingregime
b~’~<< r << X~,where b_i/f plays the samephysical role as an ultraviolet
cut-off for internaldistances.

Scalinglawsfor the delocalizationtransition. Finally, we haveseenin sub-
sect. 2.1 that for d > d* (that is � < 0), the non-trivial fixed point g* is now
negativeandIR repulsive,andcorrespondsto adelocalizationtransitionwith
non-trivial critical exponents,for a particular negativecritical value b* of the
barecouplingconstantb. In the localizedphase (b < b*), the correlationfunc-
tions suchas (n(x)r(y)) andtheassociatedcorrelationlength~ (in the internal
D-dimensionalspace)shouldbefinite, as well as the averagedistancer = (In)
of the manifold to the attractiveimpurity. At the transition thesequantities
shoulddivergeas

~ii ~ (b* — b)_vD, r ~ (b* — b)”. (9.42)

Standardargumentsleadto
1 1

‘iii = W/(g*) = — + ... (9.43)
and

= t-’~v (9.44)

Indeed,n hasno anomalousdimensionandtherefore,r scalesas ~llh1 with ii =

(2 — D)/2 from (2.2).

10. Conclusion

10.1. SUMMARY

In this last section,we would like to summarizethe main stepsof our con-
structionandoutline the main ingredientswhich ensurethe renormalizability
of the theory.We thendiscusssomepossibleextensionsof our results.

Existence of a perturbativeexpansionanalyticallycontinuedin D.
(I) Thefirst ingredientis the existence,for integerdimensionD of the mani-

fold, of aformalperturbativeexpansionfor the model.The diagramspresentan
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invarianceunderglobal euclideanmotions in RD of the interactionpoints (or
underthe groupSO(D + 1) forfinite volumemanifoldswith the internalgeom-
etry of the sphereSD). The interactionterms,which aredeterminantsinvolving
the internalGreenfunctionsbetweeninteractionpoints, can thenbe expressed
in termsof mutualsquareddistancesonly. On the otherhand,the externaldi-
mensiond appearsonly in the power (—d/2) of the interactiondeterminant.

(II) The secondstep is the constructionof a measureterm, analyticin D,

in termsof the abovesetof internal mutual squareddistances.One canthen
usefor convenienceanyequivalentmeasure,for instancein termsof cartesian
or sphericalcoordinatesin a spacewith a given integerdimension (typically
RN~for a diagramof orderN), D itselfappearingas an analyticvariable.This
measurehasin generalto be understoodasa distribution.

Points(I) and (II) allow usto definea perturbativeexpansionfor themodel,
analyticallycontinuedin D. Its main featuresarethe following:

(i) It can beviewedas ageneralizationof the Schwingerparametricrepresen-
tation of Feynmanamplitudesfor local field theory,with the one-dimensional
cs-parametersreplacedby D-dimensionalparameters.

(ii) It appearsas a string-like theory, in the sensethat it presentsonly one
diagramto eachorderin perturbation.

(iii) It reducesto the expansionof a local field theorywhenD = 1, expressed
in the Schwingercs-representation.The field theoreticdiagrammaticcontribu-
tions arerecoveredin the limit D —* 1 throughthe analyticcontinuationof the
measureterm.

Renormalizability. Theessentialpropertieswhich arekey to renormalizabil-
ity arethe following:

(III) Schoenberg’stheorem:this propertyof the interactiondeterminantsen-
suresthatdivergencesin the integralsof thediagrammaticexpansionoccuronly
at short-distances(UV), as in ordinarylocal field theories.Infrared(IR) diver-
gencesalsocanoccurif the internalspaceis infinite, a problemwhich is dealt
with by consideringa finite membrane,e.g. the sphereSD with finite volume
VS

0.

(IV) Factorizationof the interactionterm: this property statesthat, whena
subsetof interactionpointscontractstowarda vertex, the interactiondetermi-
nantfactorizesinto the productof theinteractionterm of thecontractingsubset
by that simply obtainedby replacingthewholesubsetby its contractionvertex.
The possibility of replacinga set of coalescingpointsby a single contraction
vertex,andof factorizingout the correspondingdivergenceis the keyfor renor-
malizability. Mathematically,it allows us to makethe theory finite by letting
asubtractionoperatoracton the integrand.This operatoressentiallysubtracts
factorizedequivalentssoas to removetheUV divergences.It is constructedfrom
elementaryTaylor operatorsassociatedwith subsetsof points,thenorganizedin
forestsor nests,correspondingto the hierarchicalstructureof the divergences.
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(V) Factorizationof themeasure:thisproperty,obviouslysatisfiedfor integer
D, is preservedby the analyticcontinuationof the measureto non integerD. It
allows usto integrateseparatelythe factorizeddeterminantswhichareto besub-
tractedfrom theoriginal amplitude,andthusto interpretthemas counterterms:
the subtractionoperationis thena simple reexpressionof the partition func-
tion (orcorrelationfunctions)in termsof an effective(renormalized)coupling
constant.

Points (III) and (IV) are propertiesof the interactiondeterminantsthem-
selves,while point (V) is ageneralpropertyof the measure.

10.2. PROSPECTS

Let us finally discusspossibleoutcomesof our results.As alreadydiscussed,
the model (2.1) of a manifold interactingwith a single point servesindeedas
a laboratoryfor studyingthe renormalizabilityof more generalmodelsof in-
teractingcrumpledmanifolds.A prominentmodelof this classis of coursethe
Edwardsmodel (1.2) of a self-avoidingmanifold interactingvia a short range
two-bodypseudopotential.Its perturbativeexpansionis similar in structureto
the onestudiedhere.We indeedbelievethat the mathematicaltechniquesde-
velopedin thisarticlecanbeappliedandgeneralizedto theEdwardsmodel,and
providebothconceptuallyandpracticallya frameworkfor a similarproofof its
renormalizability.

Whenreviewing the generalschemeabove,we notethatpoint (I) is already
knownfor the self-avoidingmodel [21]. Points (II) and (V) areactuallyvalid
for any manifold hamiltonian.The specificity of a given model is actuallyen-
codedin its interactiondeterminants,for which propertiessimilar to thoseof
(III) and (IV) haveto be analyzedin each case,andestablishedin order to
eventuallybuild a subtractionprocedureandprove renormalizability [38].

This schemeshould be directly applicable to a seriesof manifold theories
with interactions,such as many-bodyor long-rangeinteractions... These mod-
elsgeneralizeto arbitraryinternaldimensionD modelsof interactingpolymers
(D = 1). All thelatter modelsareknownto beequivalentto somen-component
field theoriesin the limit n = 0, with standardFeynmandiagramexpansions.
Whenextendedto manifoldsof arbitraryinternaldimension,thesemodelsbe-
cometheorieswith a singlediagramto eachorder in perturbation(a property
whichis sharedwith stringtheories,althoughin ourcasethe manifoldhasafixed
internal metric). Interestinglyenough,the topological complexity of the usual
Feynmandiagramsis encodedin the D-measureon the manifold, and arises
in the limit D = 1 from the ordering constraintsalong the one-dimensional
(polymer) line. Moregenerally,it would be interestingto try andexpressfield
theorieswith an arbitrarynumbern of componentsas D = 1 limits of “mani-
folds” string-likemodels,yet to be invented.
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AppendixA. Fromvectorsto scalarproducts

In thisappendixwederive (3.2) (3.3).First weinsert therelationu11 = x, x1
in the l.h.s. of (3.2)

f fidDxif(xi.xj) = f flduijffldDxi flô(ujj—xj.xj)f([utj]).

i=I I~J I (A.l)

Secondwe usethe fact that the function

(D)() =ffld’~xifl~(u1i_xi.xi) (A.2)

is invariantunderSO(N)rotationsR (u —~ RtuR)to diagonalizeu~1andexpress
(A.2) in termsof theN eigenvalues2,,i = 1,... ,N, of u,~

a(D)(u) = ffld’xifp(2~o~1_x1.x1). (A.3)

Third weperformthe changeof variablesx1 —~ \/)Jx, andget

a(D)(u) = 112(D-N-i)/2 ffldDx~ fl~(ó~i—xt.xj). (A.4)

The remainingintegralover the xi’s gives the volume of SO(D)/SO(D — N)
andwe obtainfinally (3.3)

/ ..~ (D—N—i)/2
(D)~ ~ — (n2.\ Vol(SO(D))

aN kU,J) — ~jj 1) Vol(SO(D—N))

= (det[ujj]) N_i)/2

5D 5D-N+l (A.5)

AppendixB. Factorizationof the measure

To prove (3.34) let usdecomposethe Nx N symmetricpositivedefinitescalar
productmatrix [U]N into blocksof sizeP andQ (P + Q = N):

[U]N = (~]]~[U])~ (B.l)

Eq. (3.34) is equivalentto the fact that, given the positive definite matrices
[u ] p and [u ] ~, whenintegratingover all P x Q matrices [v] such that Eu] N
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(definedby (B. 1)) is positivedefinite, we havefor arbitrarynon-integerD

f d[v]a~f~([u]N) =a~([u]p)a~([u]Q). (B.2)

Since [u] p and [u ] ~ arepositivedefinitewe cantaketheir squareroot [u ] ~,/2

and [u]~j2 andwrite det( [u]N) in the expression(3.3) for ~~P1as

det[u]N = det([u]p) det([u]Q) det(1— [u]2[v][u]~[v]t[u]~2).
(B.3)

Now, one can perform the changeof variable [v] —~ [u]~I2[v][u]~j2 which
inducesajacobianJ = det([u]p)~/2det([u]Q)”/2 in (B.2). We thus obtain
finally that the l.h.s. of (B.2) is equalto the r.h.s.of (B.2), up to aconstantC
which dependson D, P andQ, but not on [U]p and [u]Q, andwhich is given
by

Vol(SO(D)) Vol(SO(D — P)) Vol(SO(D — Q))
C = Vol(SO(D—N)) Vol(SO(P)) Vol(SO(Q))

x fd[v] (det(1 — [v] [v]t))~_N_w2. (B.4)

(Thedomainof integrationfor [v] is nowsuch that

([~t ~~2~) (B.5)

is positivedefinite)
It remainsto prove thatC = 1. This can be donein a simpleway by proving

thatthefactorizationidentity (3.34)holdsfor someparticularfunctionf (Eu]).
As anexamplewe can takethe exponential

f([u]N) =exp[—tr[u]N], (B.6)

sincewe can easilycalculateexplicitly (seebelow)

‘N = fUN exp[—tr([u]N)] = (m)~~2 (B.7)

andthereforefactorizationholdsin this casesince

f([u]N) = f([u]p)f([u]Q) and IN = IPIQ. (B.8)

Thedirectcomputationof IN (eq. (B.7)) foranyD proceedsasfollows. The set
UN is the setof symmetricpositivematrices.By SO (N) orthogonaltransforma-
tions,it can bereducedto the setof diagonalmatriceswith positiveeigenvalues
2~(i = 1,... , N),with the new measure

d[u]N = Vol(SO(N))~fldAiA(2), (B.9)
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wherethe A’s areintegratedfrom 0 to cc and4(2) is thejacobian [39]

4(2) = H 12i—2iI. (B.10)

i~j<l~N

In termsof thesevariables,‘N readsexplicitly

Vol(SO(D))Vol(SO(N))
IN = N! Vol(SO(D—N))

(D-N-i)/2
N N

xf H d2
14(2) exp [_~2~] (112i) . (B.1l)

The calculationis completedby usingthe Selbergintegralformula [39,40]

f(A(2))2Y ft [27~exp(-2j)~1] = ~‘ 1(1 + y±jy)r(a+ jy)

0 1=0 (B.12)

for y = ~ anda = (D — N + l)/2, which leadsfinally to (B.7).

Appendix C. Factorization of detUH~~J)

Let usconsideran orderedtreeT andthe correspondingvectorsA i,... ,
2N— i

with 12i1 ~ ... ~ I2~—iI.We haveby definition

T AD(V) I 2v= — 2
1IR,.~ +AflA~

—IR,.~ + 2p12v — R,.p — 2,.12v + ~~j2v}

(C.l)

whereR,.~is one“basis” of the quadrilateral(seefig. C. 1)

R,.p = x111 — x1. (C.2)

The vectorR,.~is a linearcombinationof the A’s

R,.~= ~c~fl2y, (C.3)

wherec~= 0, ±1.Supposewe makethe following rescaling:

= {P~~ if a ~ P- 1 (C.4)
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Fig. C. 1. The quadrilateralpicturingthe matrix element H,.T
4 andits “basis” vector

for someP, 2 ~ P ~ N andwith acontractionfactorp, 0 ~ p ~ 1. Underthis
rescaling,R,.~becomes

R,.p(p) =

= R,.°~+ pR~fl. (C.5)

We thereforehavetwo possibilities:
(a) R°,.~= 0. ThismeansthatR,.p is formedonly ofvectors2~with y ~ F— 1,

whichareall contracted,henceR,.~itself is contracted.By definition, thisis also
the casewhenR,,p is 0, that is whenx1~ = xlfl.

(b) R°,.~~ 0. ThisoccurswhenR,.~is spannedby atleastoneA~,which is not
contracted,that is with y ~ P.

This allows usto classify the A’s into subtreesas follows (seefig. C.2):
(i) WeregrouptheA,.’s with a ~ P— 1 (i.e. correspondingto contractedlines)

into equivalenceclassesby decidingthat 2,. and~ areequivalentif R
0

0fl = 0.

The equivalenceclassesTi,... , T,.11 (with 2 ~ m ~ P dependingon T)
correspondto the m— 1 distinct connectedsubtreeswhich build the subsetof
the contractedlines.Case (a) abovethuscorrespondsto 2,. and

2p in the same
equivalenceclass,thatis in the sameconnectedsubtreeof contractedlines.Case
(b) correspondsto 2,. and2$ in two distinctequivalenceclasses,that is in two
distinct connectedsubtreesof contractedlines.

(ii) We regroupthe 2,.’swith a ~ P into a single connectedtreeTm obtained
by setting2~= 0 for /3 ~ P — 1 in the original treeT.

We will now showthat for p —* 0

det([HT(p)]) = p2v(P_i)fldet([HTE]){l +0(p211)}. (C.6)

Let usconsidertwo lines2,. and2$.
Case]: a~<P—l,fl<~P—l.
(a) ~ = 0.
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(a)

T-~ 12 (b) Tm3

Fig. C.2. Classification of the line vectors of the tree T into subtrees T~.The dashed lines in (a)
correspondto contractingbranchesof the tree T, andareorganizedinto two connectedsubtrees
T1 and T2 in (b) . Thefull lines in (a) correspondto non-contractingbranchesandareorganized

into asingleconnectedsubtreeT3 in (b), by fully contractingthe dashedlines in (a).

This casecorrespondsto twoA’s in thesamecontractingconnectedsubtreeT
for somei ~ m — 1. In eq. (C.l), 2,., 2~andR,.~all geta factorp; hence

Ti 2v T,.flkP) — ~O ~

It is furthermoreclearthatR,.~is spannedonly by A’s in T, hence

H,.
Tfl(p) = p2V]JT~ (C.8)

(b) R°,.~� 0.
Thiscasecorrespondsto twoA’s in twodistinctcontractingconnectedsubtrees

T, andT
2. SinceR,.~doesnot contractto zero,we can formally expand(C.l)

in powersof A,. and 2$. Thematrix elementii,.T~ is by definition the interaction
betweentwo dipolesA,., A~separated by R,.fl. It is thereforeclearthat the first
term in the multipolarexpansionis of order

H~fl~ IR,.pI
2~22,.. 2~+ ... (C.9)
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Therefore,expandingin p yields immediately

H,.Tp(p) ~ P2IR~~pI2I~_22,..2p+

= 0(p2)
= p2VQ(p211) (C.l0)

(seeeq. (4.7)). Asweshallseebelow,thiselement,whichmixesseveralsubtrees
T,, is vanishingsufficiently fastsoas to disappearin the limit p —~ 0.

Case2: a ~ P — 1, /3 ?‘ P.
In thiscase,we have

H,.T~(p) cxIR,.p(p) +2p _p2,.I2I~ (1)

7) I \ i 2v
—

R I ~— ,.fl~P)P/t,.

+ IRafl(p)12v (4). (C.11)

(a) R,.°~= 0.

SubstitutingR,.p(p) = ~ in (C.l1), the last two terms (3) and (4) are
homogeneousto p2v while the expansionof (1) — (2) in powers of p givesa
leadingterm linear in p. Onthe whole,we canwrite

H,.~=p00(p11). (C.12)

(b) ~ � 0.
This time, the expansionof (1) — (2) on the onehand,and—(3) + (4) on

the otherhand,in formal powersof p2,. leadsimmediatelyto a matrix element
of orderp, hence

= 0(p) = pVQ(pö) (C.13)

Case3. a ~ P, /3 ~ P.
In thiscase,A,. andA~arenot contractedandbelongto Tm. In the limit p —* 0,

R,.~is simply replaced by R°,.~.Whateverthe value of R,.°~,this corresponds
preciselyto

HJ~(p)= H~ + p~0(p11)

= H,.~+ 0(p211). (C.14)

We can summarizeall thesecasesby writing the synoptictable
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/

p
2VHTI p2v

0(p2J)

P
2VHT2 pvo(pö)

det (fl~T(p)) = det __________

p2v
0(p2o) [P2UHT~I

a HT,,, + Q(p2a)p O(p

(C. 15)

wherewe have permutedthe P — 1 first lines andcolumnsso as to regroup
theA’s accordingto their equivalenceclasses.Therefore,eachof the first m —

blockscorrespondsto a connectedfully contractingsubtree,while the lastblock
correspondsto Tm. This rearrangementleavesthe determinantinvariant.The
factorizationproperty (C.6) can now be readfrom the block structureof the
matrix in (C.15)

Consideringthe reducedmatrix yT definedin (5.6),we havea similarblock
structure

/ _____

yTi O(p
2’5)

yT
2 (9(p’

5)

det (YT(p)) = det _________

yTm_i~

yT~+ O(p2’5)

/

(C.16)
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and we can now let p —~ 0 and get

det ([yT(p ~‘ 0)]) = det ([yT~]) (C.17)

which meansthat, in this limit, the tree has beendisconnectedinto several
componentson which its determinantis exactlyfactorized.

Let usnow turn to the variablesfl’s definedin (5.2). Notice thatdueto the
rescaling (5.6), det(YT) is actually independent of the global scale factor flN_i*.

Eachvariablefl~can be associated with a contracting factor p = fl~,.Therefore,
once expressed in term of the fl’s , det(YT) is suchthat, if we let one /3 tendto
zero (say fly), keeping the others non zero, we have

det(YT(fli,...,fly_i,fly~0,fly+I,...,flN_
20T))

= ~~det (yT~(fl’ ,fl~_1OT~))x det (yT~~ ,BN_2OTm)),

(C.18)

where the m— 1 first determinants in the r.h.s. involve /3,. with a < y only, while
the last determinant involves /3,. with a> y only. The angular parameter set 0T

associated with T is left untouched by the rescaling, but simply decomposed into
subsets 0T, associated with the line vectors of the distinct subtrees T1 (see fig.
C.2). Weare now interested in values of fl’s and 0’s varying inside the domain
VT and look at the possible zeroes of det(YT) inside VT. Wealready know that
such zeroes can be reached only when one fi at least goes to zero. We thus fix
all the variables 0, and all the variables /3 non zero except for one of them, fly.
The quantity ~ in (5.3) is therefore fixed, either strictly positive or zero. If it
is strictly positive, this means that fly cannot reach 0 within the domain VT for
this particular configuration of the other variables. This happens when the tree
Tm,obtained by fully contracting the lines 2k,... , A~,of T, is not compatible with
the definition of the sector VT. The only relevant case is therefore /3~= 0.

When fly —~ 0, we can use eq. (C.l8). The trees T,. 1 ~ i ~ m — 1, were
already subtrees of T, hence the associated determinants det ( yT1), which involve
only non vanishing fl’s, do not vanish. The new tree Tm, which appears in the
contraction process, is now compatiblewith the sector, which again implies that
no fortuitous coincidence of its vertices can occur, and det ( yTm) itself cannot
vanish. Thus det ( yT) cannot vanish in this limit fly —* 0. This process can be
iterated on the remaining determinants in (C. 18) for successive /3’s going to
zero. This shows that det ( yT) does not vanish for any number of fl’s going to
zero. Hence we reach the important result that det ( yT) cannot vanish inside the

* This homogeneityproperty holds only for the choice (4.17) for the propagator,evenon the

sphere.Otherwise, both fiN_I andthe IR regulator R would appearand leadto a slightly more
complicateddiscussion.
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whole sector VT. SinceVT is bounded (excluding the variable flNi which does
not enter in det ( yT)) det ( yT) is moreover bounded from below by a strictly
positive number.

Appendix D. Example of cancellationof symmetry factors

Let us consideras in (7.30) the four compatiblenests:

~Ve = {(T,w)},

= {(RAT,.),(T,w)},

~e3 = {(T,w),(Rv~T,.)},

= {(RAT,.),(T,w),(RV~T,s)}, (D.l)

whereR = {Rj, T = {Y} andw = {{w}} with w C T. We want to showthat
thesumof the (—1) andsymmetryfactorsassociatedwith thesenests (taking
into accountthe degeneracycomingfrom theunspecifiedcompatiblerootss) is
equalto 0. We recallthatwith acompatiblenest.N’e is associated the factor in
front of the associatedTaylor operators(herewe forget aboutthe first diagram
T0 = (G®, G®) implicit in all the nestsof (D.1), andthe correspondingglobal
(—1) factor):

(_l)card(N”~)W(~/~e)= ( l)card(.Af’e) H L2T~iu~I (D.2)
to tool

of.’/’

with 7~beingthe largestconnectedcomponent(amongall connectedcompo-
nentsof all diagramsof Af’e) whoseroot is w’.

The factorassociatedwith ~Vein (D. 1) is thus (— ) 7~ Let us now discuss
the three remaining nests in (D.l).

Case (a): w C 7~(seefig. 19)
The root of the connectedcomponent7~fl T of R A T mustbe equalto w.

The factorassociatedwith ~ is then III—’. In .N~3,the root of the connected
component1~U Y of R v,,~T is eitherequalto w, or belongsto R. \ Y. Thefactor
associatedwith .jVe3 is therefore liZ U~I’ in the first case, and III’ I1Z U T~
in the secondcase,with degeneracy liZ \ ~I.Hence,the global factorassociated
with~V~3andits possiblerootingsis IZUTI_i + I~TIi. . I7ZUTLi which,
using liZ \ ~I + liZ n ~I = liZ U T~,is nothingbut TI_i. Thefactorassociated
with ./~eis similarly equal to

1 1 liZ\TIi 1
~iZUTl + ITIIZUTIi = TI.

By summingupall thesefactorsfor all elementsof (D. 1),wegetzeroasexpected.
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Case(b): w ~ 1?. (seefig. (19))
Therootof theconnectedcomponent1Z n T of RA T can now be any vertex of

1ZnT. Thefactorassociatedwith .iVe2 is in this case liZ n TI . 17Z fl TI—1 . ITL1 =

IT1’, since.A1e
2 hasnow two distinct roots. In .Af~,the two roots of the two

connected components T and iZ \T of R v,,~T are respectively w andanyvertex
in iZ \ T. The factor associated with ~~

1e
3is then TI_i liZ \ 71hZ\ TI—’ = ITL’,

while the factorassociatedwith ‘ce is

IiZnTl 1 IiZ\Tl 1
~IiZnTIITIIiZ\TI = ~ITL

Heretoo the sumof thesefactorsgiveszeroas expected.

AppendixE. “Suppression”of areducibleline from the tableaunest

We assumeherethat the coincidence(7.35) holdsin the tableau(7.36). We
thereforehaveas a startingpoint the set of identities:

R’j_iATjTj I>~Io
ITjR~ATj~, I~Io. (E.l)

We want to prove that the lines (7.37) and (7.38) arethen identical, i.e. that
T~canbe skippedin theconstructionof thetableau.We thushaveto provethe
two following setsof identities:

(1) ForI ~ I~

of -r of
~jAij+i =i~~_,ATj+j.

(2) For I ~
1o

I r I

R~_,Aij~,=R~_~Aij.
Thesetwo setsof identitiesareconsequencesof the strongerequality

R’~= R~_,, VI ~ Jo. (E.4)

Indeedeq. (E.4) clearlyimplies (E.2) for case(1). Furthermore,for case(2),
we make the following argument: Weuse (E. 1) to write Tj as

Tj=R~°AT
3~,. (E.5)

Hence,we have

R~_iATj= (R~_1AR~c)ATj~,

= R~_,A ~ q.e.d. (E.6)

wherewehavemadeuseof R~_,-< R~0_sinceI ~ Io, together with R
1J°_

1= R~°
as a particularcaseof (E.4). We arethus left with proving (E.4).
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QI.i

~

Fig. E. 1. An application of the operation of fig. 20: the figure describesa connectedcomponent
7~1,Iof R’ and the correspondingconnectedcomponent~ of R’ ~ I Ti_i, obtainedby

fusing to 7~1,Ithoseconnectedcomponentsof Tj_iw whichhavetheir root inside~ and cutting
out those which do not have their root inside ~ but still intersect7~1,I

Proofof(E.4): It is first usefulto characterizethe connectedcomponentsof
R~_,(or of R’~).Denotingby RI~’the connectedcomponentsof R’, a generic
componentiZ~j’1of R~_,is of the form

= [iZ1~1 U TJik] \ ( U Ti~k~)~ (E.7)
WJ_I,kER” WjIk, ~

which simplystatesthata connectedcomponent~ of R~_,= R’ V~1_T~_1
is obtainedfrom a connectedcomponentRI” of R’ by (see fig. (E.l))

(i) consideringall the connectedcomponentsof Tj_i
(ii) making the union with RI’ of those

TJ—i,k which sharetheir root with

(iii) cuttingout from 7Z~~ithose which do not.
Since the connectedcomponentsof Tj_i are all disjoint, the order of the

union andcutting operationsin (E.7) is indifferent. Notice also that the con-
nectedcomponentsof Tj_i which do not intersect1Z” do not affect iZ~j1~in
theoperationv,.,.,_,. Ofcourse,it mayhappenthat7Z~!,is emptyandR’~_

1has
in generallessconnectedcomponentsthanR’.

For convenience,we introducethe notations

= U TJ—i,k, (E.8)
Wj_ I,kE1?~’’

B~’t
1= U ~ (E.9)

W~lk~~R

1.’

whichare complementarysetsin g since T~_,is a completediagram.With these
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notations,we have

iZ~”i = (iZ1” U A~’i1)\ (i~’~’n B~”~) (E. 10)

andasimilar equationfor the connectedcomponentsiZ~’of R’~.Therefore,to
proveR~_1= R~,it is enoughto prove

41,1 — 41,1
J1J —

B~” = B~”, . (E.lh)

The main ingredientcomesfrom the propertyin (E.l):
I

= R~_~A T~, VI ~ jo~ (E.12)
which implies

Tj—<R~_~. (E.13)

ThismeansthatanyconnectedcomponentTJ,J ofTj whichintersectsa connected
componentlZ~’1is actually entirelyincludedin the latter.

We first proveA’j’1 C A~’.Let usconsidera connectedcomponent
TJ—i,kof

T~_,,suchthatWj_ i,k C iZ”. Fromthenestproperty,thisconnectedcomponent
is includedin a connectedcomponentTJ,J of Tj. By definition, TJ—l,k C

andthereforeYJ,J intersectsiZ~’
1.From (E. 13),

TJ,j is necessarilyincludedin
andin particularits rootwj~j belongsto iZ~’

1,thusto R
1” U A~’,.Onehas

either w.~,
1 C RI”, or Wj1 C

Tj_i,i for someconnectedcomponentTj—i,t (with
I ~ k in general) of Ti_i such that Wi_i,! C iZ”. In the latter case,from the
compatibilityconditionfor the roots,we haveWj,

1 = Wj_i,l C RI”. Therefore,
in any case,Wj,1 C R” andYJ,J c A’j’. This implies

TJ—i,k c A~i’, which leads
to

A’j’~ cA~”. (E.h4)

We nowproveB~”,cB~”:
We can usethe fact that R’ is a completediagram,thuseachroot WJ_i,k of a

connectedcomponentTJ—i,k belongsto oneandonly oneconnectedcomponent
RI’ of R’. The set ~ can thereforebe expressedas

~ = UA’J~I. (E.15)
i,~i

A similarequationholdsfor B~”.Making useof (E.h4)for eachi’ in the r.h.s.
of (E.l5), wedirectly arrive at

~ cBs”. (E.16)

The inclusion properties(E.14) and (E. 16), togetherwith the fact that A’/
1

andB~”, on the one hand, andA~’andB~”on the otherhand, arepairsof
complementarysetsof~,imply (E.ll), hence(E.4).
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AppendixF. Addition of reduciblelinesin the tableaunest

We wantto prove first that, if we considera compatiblyrooted nest.,V~=

{T0~,..., TT~}andbuild the largernest

= {T0~,...,Tj_ie,T~°_ie,TJ~,...,TTW}

by insertingbetweenthe levels J — 1 and J of ~ an extrarooted diagram
T’O — (Tb ‘o
J—,~— ‘. J—i, J—i’

T~°_,=R~,°_iATj=T’ (F.1)

andw~_ w’ an arbitrary set of roots compatiblewith the rooting of ~
(making.M~compatiblyrooted),thenthetableauofjV~canbe reducedto that
of V~.For convenience,we denoteT~_ieby Te’ = (T’,w’). More precisely,
the tableaubuilt from .A”~is

T~_1R~_~A T’ ... R’~°_~A T’ ... R~ A T’

T’ R’
1ATj ... R”°ATj ... R/N_1ATJ (F.2)

where

R”~R’v~~T’. (F.3)

We want to provethat this tableauhasthe coincidencepropertyfor I = Jo:

R1)_
1AT’ = R~I0A T~, (F.4)

andthereforecanbe reducedto the tableauof~/e.Fromthe definition of T’,
the term on the l.h.s. of (F.4) is nothingbut R~,°_1A T~andthe coincidence
propertyis equivalentto

RJ~0_,ATJ=R/IOATJ. (F.5)

This last equationis actuallya consequenceof the strongeridentity

R
1f_

1 = Rho (F.6)

which we provenow.
Proofof(F.6): As in appendix E, we consider atypicalconnectedcomponent

7Z~’~of R’J°_~ definedby

= [iZ1o~io U TJ~1k]\ ( U T~~i~i)~ (F.7)
Wj_1,~ERL’0”0 Wj_1,j~’R!O”O
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or by the equivalentequation

= (1Zb0~’0U A~°’1)\ (~‘o~~ofl B~°”?), (F.8)

where

= U ~I,k, (F.9)

B~’? = U ~ (F.lO)
Wj_

The setsA~0~l~iandB~P”~arecomplementarysubsetsof Q and,as in appendixE,

B~°~?= U ~ (F.ll)
i~io

We thencanwrite for R”° an equation similar to (F.8) with Ahi0~1~iandB~01

replacedby

Ahbo10 = U T’~~ (F.12)

B”°”° = U T’~ (F.l3)

which are complementary subsets of g and satisfy an equation similar to (F.l 1).
In eqs. (F.12) and (F.13),T’~is the genericconnectedcomponentof T’ given
by

~ ‘i,bO,’ ‘-r
~ k = “-~i—i ~

1J,k

andW’~is its root.
In order to prove (F.6), it is sufficient to prove that A1~°”°

1C Ahb0~10. Indeed,
from (F.11) andthe similarequationfor B~b0~b0,this inclusion will imply B~°”?C

Bhbobo. Fromthe complementaritypropertyof AIJ0~~~iandB~°~?on the onehand,
andthatof A~b0~b0andB~b0b0on the otherhand,the two equalities

= A~b0b0, (F. 15)

B~°”?= Bhb0~l0 (F.l6)

follow, leadingto (F.6).
We are thus left with proving A’J°~°1C AtbOb0: Let us considera connected

component
TJ—i,k of T~_

1,such that WJ_,,k C RI°”°.Fromthe nestproperty,
thisconnectedcomponentis includedin a connectedcomponentTJJ of Tj. By
definition,

7J_1,k C 1Z~J9±jand therefore TJ—i,k C 7Z~,9~fl T.j,
1 7h1~0~The root

w’~,°of ~‘7 belongs to ~ thus to iZb0~b0U A
1J°”°~.Onehaseither W’7 C 1Z’O”O

or W’$ C Tj-_i,i for some connected component Tj_i,i (with I ~ k in general)
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of Ti_i such that WJ_l,l C RI0~b0. In the latter case,from the compatibility
condition (in thenestA1~)betweentheroot wh~0andthe rootsof T~_,,one has

w’7 = WJ_l,1 C ~ Therefore,in any case,W’$ C iZ’o’O and T’f C Ahbo’o.

This implies TJ—l,k C A,b0,i0, which leadsto

A’J°l CA”°”°, (F.l7)

which completes the proof.
The abovepropertygeneralizesto anest.Afi~obtainedfrom Aíe by inserting

an arbitrarynumberof diagramsTJ’° ie~Tj”ic,... ,TJ’K

1~ between the levels
J—landfwithl ~ Io ~ Ii ~ ... ~ IK ~ N—2,where,asbefore,

T5_, =R~_,ATj, (F.18)

andwherethe roots of theseextradiagramsare such thatA
1~is compatibly

rooted.Indeed,onecanproceedby recursionby addingfirst T~,= R’J~_ A T~

betweenT~_,and Tj . Thenonecanadd~ A TJ”, between Tj_i and TJIK

1.

From the nestpropertyof the sectornest5, we haveR~J -< R’J’_1 and this

second added diagram is nothing but R~J’~A R’j’_, A T~= R’j~ A Tj = TJ’~’
as wanted.This processcan berepeateduntil the first diagramTJ’01 is inserted.

Finally, the abovepropertyalsogeneralizesto arbitraryinsertionsbetween
severalpairs (J — 1, J), eachpair beingactuallydecoupledfrom the otherpairs.

Whenappliedto aminimal nest.N~,thispropertymeansthat all thenests.iV~

obtainedfrom ~ by insertinganarbitrarynumberofdiagramsof~(5,~ ) \J~f
0

(rootedwith compatibleroots) leadby reductionto A1~,andthereforebelong
to C

5 (A/~).

AppendixG. Sum rule for the weights W

In thisappendix,we prove (7.42).Givena nest.I’f, wefirst giveanalternative
procedureto constructall compatiblerootingsE~~-ofAl, with their weightfactor
W(Al~,)(7.13).

Let a be abijection from {1,2,... ,N} into ~ (it is nothingbut an ordering
of theN verticesof ~). ThereareN! suchorderings.To anysubsetP of g, we
assigna rootp througha by the following definition:

p = a(k) where k = min(n C {l,... ,N}: a(n) EP). (G.l)

We denotethis assignmentprocedureby
aP—~p. (G.2)

It is easyto checkthat,whenapplied~toall connectedcomponentsofall diagrams
of Al, this rootingprocedurebuildsa compatiblerooting of Al. Moreover, all
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compatiblerootingsofAl canbebuilt in thatway. Givensucharooting~‘, the
numberof distinctorderingsa which build ~- is

K(Al~) Card({a : V(T,w) rooted connectedcomp.ofAl~,,T —~-~ w}).

(G.3)

It is simply relatedto the weight W(Al~,1)by

K (j1~.) — is,- r — ri~ 1
— ~‘~‘ k.j~,1) — ~w

Indeed,givenasubsetP of g andavertexp in P, thenumberof a’swhich assign
p to P is N!/IPI (the probabilityforp to be thefirst vertexof P to appearin the
sequencea (1),... , a (N) is 1 / Ph). A compatiblerooting l~-of Al is entirely
knownonceonespecifiesfor eachvertexw the largestconnectedcomponentof
Al, 7,.,, whichhasw as its root.The aboveargumentcanthenbe extendedto all
theselargestconnectedcomponentsof Al containingthe rootsof +~,andleads
to (G.4).

The proofof (7.42) is thenstraightforward.Indeed,the r.h.s. of (7.42) is
simply l/(N!) times

Card({a :V(T,w) rootedconnectedcomp.ofAl~,T—~-~W}), (G.5)

while each term of the sum in the l.h.s of (7.42) is 1/(N!) times

Card({a: V(T, w) rootedconnectedcomp. ofAlE , 7 —~-~ W,

V(T, W) rooted connected comp. of M~Mnot in Al~, 7 —~-* w}).

(G.6)

The sum over ~M in (7.42) relaxesthe secondconstrainton a in (G.6), and
reproduces(G.5). Hence(7.42) follows.

AppendixH. Estimatesof subtractedintegrandsin a Heppsector

In this appendixweprove (8.35) and(8.37).We shallproceedin threesteps:
(I) We first analyzethepropertiesofthe elementsofthe matrixyT~,jin terms

of the fib~variables.
(II) Wethenwrite anintegralrepresentationof the (1— T) operatorsappearing

in the l.h.s. of (8.35)or (8.37).
(III) We finally show (8.35)and (8.37).

(I) Propertiesof yTj,, In this subsection,we shallwork separatelyinside
each connectedcomponent~ of Dj. As explainedin subsect. 8.2, the line
vectors ofthe orientedorderedtree~ spanningij,~areuniquelylabeled
by I e Ind(J, j)~Fromnow on, we shall suppressthe indices (J, j) and thus
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denote~ by A’. A typicalelementof the matrix yTj,j reads

— —1 ~IRKL
2L — 2K 2z’ — RKL ~ 2v

KL — 2IAKIU1I2L1U1

_IR~~L_A~(I
20+ RI~~~I20}, (H.l)

whereRKL is the “basis” of the quadrilateral

RKL = XjL — XiK, (H.2)

with iK and1L beingtheoriginsofA” and
2L~ThevectorRKL is alinearcombina-

tion of theA”s joining XiK andXiL~andsincethetreeTj,3 hasbeenbuilt from the
rootedsectorSjj~,thislinearcombinationinvolvesonlyA”s for I> mm (K,L)
(seesubsect.7.2):

RKL = ~ c~fA’~ (H.3)
M>min (K,L)

withc~= 0,±l.

Proposition 1. det( yTi.i) is apositive, non-vanishingcontinuousfunction
on the compactdomain~ and is thereforeboundedfrom belowon 7-t~by a
strictly positivenumber.In particular,the matrix yTJ.i is invertible.

Proposition 2. Y~’,as a functionof the fi, x and0 variables,dependson
the flI~~ for I in some subset Jj,~(K,L) only, defined as

Jj,~(K,L) = {I: min(K,L) ~ I <max (K,L,max(M: c~j� 0))}
(H.4)

with the conventionthat max(K, L, max(M: cf~~/~� 0)) = max(K, L), if all
thec~/~arezero (that is if RKL = 0).

Proposition3. Insidethe sector7.1S

= o( H (flI)t5) (H.5)
IEJJ,J (K,L)

Proposition 4. The matrix yTi,i is positive, andboundedfrom belowby a
strictly positiveconstant.By this we meanthat thereexists astrictly positive
numberC suchthat (yTj,j — CII) is a positivematrix on

Proposition1 hasalreadybeenprovenin appendixC, in the restrictedcaseof
ageneralizedHeppsector~T attachedto sometreeT. The proofcanbecarried
over to the whole extendedHepp sectorfl

5 attachedto the nestS = S(T).
Indeed,the spirit of theproofis that yT dependsonly on ratiosof successive
2’s (/3 variables);from theboundson thoseratiosinside~T, wededucethat if
somepointscoincidethenoneof theseratiosatleastmustvanish,anddet( YT)

factorizesandremainsstrictly positive. Sincefrom Schoenberg’stheoremthis
is the only casewhendet ( YT) might havevanished,wededucethat it actually
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never vanishes, and remains positive inside
7~1T•Inside i-t’~,we haveweaker

boundson the ratiosof A’s but onecan checkthat this doesnot alter the proof.
To provepropositions2 and3, wefirst considerthe trivial caseK = L. In this

Tj~ . .

case ~ (K, K) = 0 but then ~(K’K) = 1, which satisfiesthesepropositions.
We can thereforeassumethatK < L. Fourdistinct situationsmayoccur:
(a) RKL = 0: thenJj~(K,L) = {I: K ~ 1< L};
If R”-~� 0, we denoteby

P = max(M: c~/L� 0). (H.6)

(b) If P> L, thenJjj(K,L) = {I : K ~ 1< P};
(c) IfK <P < L, thenJj,~(K,L)= {I : K ~ 1< L};
(d) If P = L, thenJj,j(K,L) = {I : K ~ 1< L}.
We shallusethepropertythat, if A > B andA > C, thenthe quantity

+ (~B±AB)+AC12v — 2A + (~B±A~
2~ (H 7)

IAAI2V_ilAdi

is bounded(in module)from aboveinside7..(S This follows from the fact that,
insidethe sector~ the ratios

2B1112~~1,Ac1/12A1and l2’~l/l2’~+ ~B±ABI are
bounded.An upperboundon (H.7) can theneasilybe obtainedby useof the
meanvaluetheorem.

By asimplegeneralizationof thisproperty,onecanshowthat,if A > B, A > C
andA > D, thenthe quantity

[~2A + (~B+2B)±AC+A~
2~_

2A +

HAA + (~B+2B)+A~
2~+ + (~B±A~2~]

2 2 (H.8)
IAAI IACI IADI

is also bounded (in module) from above inside i-(5.
Let usnowconsidercases(a)—(d) above.
Case (a).We can write

— _1 J(~AK ~ — (k~~
KL — ~l~’T) I1~H2”~lIAKl ~l2’H)

1(~A”~~1
=0~~) J~0t~)
= 0 ( H (flI)11~, (H.9)

\K~I<L I
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which provesproposition3 in this case.In (H.9), we used(H.7) andthe fact
that

2K1/12L1 is of the sameorderas fIK~,<L(fl) since

~I~T H (fl’)~ (H.lO)
K~I<L

andsincethex variables (8.28) are bounded from above and from below. From
(H.9), wealsodeducethatY~’dependsonly on 2K1112L1,thatis, from (H.l0),
dependsonly on fiA’ for K ~ I < L, which preciselydefinesJj,j(K,L) in this
case,whenceproposition2.

Case(b): We cannow write

/ ~K \ ~ / ~L \ ~
KL — 2~lAPI) k~~lA~l

[k~ + ~c~2M + 2L AK~2v — A~+ ~c~AM +

— AP + ~c~AM_A~
2~ + A~+ ~c~AM~]

x APl2~_2jAK
1lAL1

- o
1 (I2Kl~ (I2Ll~i~v

- ~l2~l) ~I2~l)

= 0 ( fi (fl1)i_v H (fl1)2~2V)

K~1<L

= 0 ( H (/31)11)
K ~

by use of (H. 8). This proves proposition 3 in this case. Moreover, from (H. 11),
can be written as a function of the ratios

2K1/12P1, 2L1/12P1 and 2M111AP1

SinceK <M, L < P, these ratios involve fl’ for K ~ I < P only. This again
provesproposition2.
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Case(c): We nowwrite

— i (~2”~(jA~I~°
KL _J~F~) ~f~T~)

f~
2p + ~ ~c,f/.AMt

2v

1.
2P12v—i12K~

1 (~AK~°
2 II,JALI)

112L + 2P + >cf~2M_2~~~21*— + AP +

l2Ll
2°112”l

= o{ (~I’)~~(~c’)~}+o{ (~I)’~~}

= o{ H (fl’)~~[I (fl’)~}+ o{ fi (fl’)’°}
K’~1<P P~1<L Kt~1<L

= 0 ( H (fiu)11~, (H.12)
\K~I<L I

which provesproposition2. Hereagain,we canwrite Y~’as a functionof the
ratios AK

1/12L1, 12P1112L1 and 2M1/1AL1. SinceK < M < P < L, we deduce
proposition3.

Case(d): In this caseRKL = ~ + ~ c~/~A~andthe propositionscanbe
obtainedfrom case(c) by simplyinterchangingRKL andRKL +AL. Thisachieves
theproofof propositions2 and3.

Finally, proposition4 is a consequenceof propositions1 and3. Indeed,from
proposition3 andthe fact that the fi”s areboundedfrom aboveinside~ we
obtainauniformupperboundfor I I insidei-I’

5. This upperbound,together
with the lower bound of proposition 1 on det( yTi.j) givesa uniform upper
boundfor the modulesl(YTj,j)~Uof the elementsof the inversematrix. This
implies that (yTJ.i )~1isboundedfrom aboveby apositivenumberC (thatis
(yTJ.j)_l — C II is anegativematrix), and,since(yTi,~)_l is apositivematrix,
that yT~~is bounded from below by the strictly positive number C.

(II) Integral representationof (1 — T). Fromnow on, we shallwork inside
the whole diagram 1”., for fixed J andtreat in parallel its distinct connected
components‘Dj, for varyingj. This isachievedby introducingtheblockdiagonal
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matrix:

yTj,i ... 0

0 yTJ2 ... 0

yJ = (H.13)

yTjjmoo

with j”~ = Card(T9).Thismatrix is such that (for J ~T):

= (det(Y~))”2. (H.14)

Now we must considerthe actionof (1 — ‘r~i ) on I~.For our particular
J~le

choiceof treevariables,the actionof ‘r~, simply correspondsto set /3, = 0

in the matrix yJ~Fromthe propositions2 and 3 of the precedingsubsection,
we know that an elementYK~of the matrix yJ either is independentof /3’
(if I ~ Jj~(K,L) for this valueof j), or vanisheswith fl~at leastas (fl’)11 (if
I E Jj~(K,L) ). Thereforetheactionof4, simplycorrespondsto setto zero

thoseelementsof yJwhichdependon fl’, leavingtheotherelementsunchanged.

In particular,this actionis non trivial (i.e. non reducedto the identity) when
ICJjE U Jj,~(K,L). (H.15)

J,K,L

Conversely,if I ~ Jj, then (1 — T) [ID~I = 0. To performthe actionof

‘r, it is convenientto introducean extravariable t’ which multiplies the

elementsY~ suchthatI E Jj~j(K,L). We thusdefine

Y~({t})—~( H t’~ ~ (H.16)
\beJ,~(K,L) /

andobtainamatrix yJ({t}) whichis afunctionofthet1’s for I E Jj. Theaction
of ‘r~

1 thencorrespondsto set t
1 = 0 (andset the othert1’s equalto 1). We

thenhavethe following integral representationof a (1 — ‘t ) operatorwith
I E 35’:

Card(T~)

(1 — ~ 11 ~ (det(YT” ) ~~d/2] = f dt’ ~ [det (yJ ({t} ) )]d/2
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Now we mustapply aproductof suchTaylor operatorsfor all the I C Ind(J).
We canusethe fact that (1 — ‘V) is a projector,andcan thusbeappliedseveral
timesto thesamediagram.Sinceall the reduceddiagramsD5_1 for

IEJj~{I: Irnin(J) ~I<Irnax(J)} (H.18)

are equal to some D5_~for I C Ind(J), we have

H (l—4~ ~= fl(l_’r~1 ). (H.19)
bEInd(J) IEJj

From their definitions and (8.11) and (8.12), it is clearthat ~Jj C 35’. If
Jj ~ ~j, thenthe aboveproductof (1 — ‘1’), whenacting on I~,gives0, as a
consequenceof thediscussionabove.Eq. (8.35) is thenobviouslysatisfied.We
can thereforeassumethat 35’ = j~.We thenwrite the l.h.s of (8.35) as

Card ( T~)

H (1 — ~ ) [ H (det ( y
TJ )) _d/2]f_lw

bEInd(J) j=i

—d/2
= f fi dt’~—

7[det(Y~’({t}))] , (H.20)
0 I~Tj

with Jj = ~Jj= {I : Jmin(J) ~ I < jmax (J ) }
(III) Proofofestimates(8.35) and (8.37). First we usethe fact that the

property 4 of the matrix yTj,~extendsto the matrix yJ({t}). Specificallywe
have

Proposition5: The matrix yJ({t}) is positiveandboundedfrom below(i.e.
Y~({t})— CII> 0 for somepositiveC) for all 0 ~ t’ ~ 1, IC Jj.

Indeed,thispropertyholdswheneacht’ equals 0 or 1. In this case, each block
yTj,~of the matrix is “factorized” into a productof sub-blocksyT for subtrees
T (seeappendixC) compatiblewith the sector.Eachof thesesub-matricesyT

thensatisfiesproposition4, as well as the matrix Y”. To completethe proofof
proposition 5, we usethe fact that the matrix yJ({t}) is a linear functionof
each t’, andthat it is thus sufficientto havea lower boundateachcornerof the
hypercube 0 ~ t’ ~ 1 (I C 35’) to havethis boundinsidethe wholehypercube.

A direct consequenceof proposition5 is thatyJ ({t}) is invertible, andthat

(Y~({t}))’ is positiveandboundedfrom aboveuniformly in the sector. In

particular,the module of all the elements(Y~’({t}))~ is also boundedfrom
above.Anotherconsequenceof proposition5 is thatdet (Y~({t})) is uniformly
boundedfrom belowby a strictly positivenumber.

Finally, if S is somesubsetof 35’, it is clear from proposition3 andthe def-
inition (H.16) of Y~({t})that, in the consideredHeppsector,the partial set-
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derivative

öEYKL= (ut) YAL({t}) = o(Hfl111) (H.21)
ice Ice

for the ti’s between 0 and 1.
To prove (8.35), we now performexplicitly the derivativeswith respectto

the t1’s in the r.h.s.of (H.20).This leadsto an integralover the t1’s of a finite
sumof termsof the form

Tr(aeiY.Y_l...aeiY.Y_i)...

x . . .Tr (8enY.y-’ . ~ y-1) (det(Y))_d12, (H.22)

madeof a productof an arbitrarynumbern of traces (the ith trace involving a
productof k, set-derivatives)andwherethe setof all E~’sformsa partition of
J.i (here, Y stands for Y~({t})). From the estimates (H.21), from the upper
boundon (Y~({t}))1 andfrom the lower boundon det (Y~({t})),we deduce
that in the Heppsector:

Card(T~) /

H (1 — ~tT.~_iED)[ H (det(YTJ.i))1~2] = 0 ( fi (/31)11

IEInd(J) j=i \IEJj (H.23)
which is just the announcedestimate(8.35).

It is not very difficult to extend the above analysis to the case of the largest
diagramDT+i which contains the external points. Indeed, the action of the Ta’s
on the extraterm exp(—~~a,b ka kbjab) can also be implemented through the
t variables,andonecancheckthat the quadraticform Aab ({t}) is still definite
positive. This ensuresthat the estimate(8.37) is valid, q.e.d.
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