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We consider a continuous model of D-dimensional elastic (polymerized) manifold fluctu-
ating in d-dimensional euclidean space, interacting with a single impurity via an attractive
or repulsive d-potential (but without self-avoidance interactions). Except for D = 1 (the
polymer case), this model cannot be mapped onto a local field theory. We show that the
use of intrinsic distance geometry allows for a rigorous construction of the high-temperature
perturbative expansion and for analytic continuation in the manifold dimension D. We
study the renormalization properties of the model for 0 < D < 2, and show that for
bulk space dimension d smaller that the upper critical dimension d* = 2D/(2 — D), the
perturbative expansion is ultraviolet finite, while ultraviolet divergences occur as poles at
d = d*. The standard proof of perturbative renormalizability for local field theories (the
Bogoliubov-Parasiuk-Hepp theorem) does not apply to this model. We prove perturbative
renormalizability to all orders by constructing a subtraction operator R based on a general-
ization of the Zimmermann forests formalism, and which makes the theory finite at d = d*.
This subtraction operation corresponds to a renormalization of the coupling constant of the
model (strength of the interaction with the impurity). The existence of a Wilson function,
of an e-expansion a la Wilson-Fisher around the critical dimension, of scaling laws for
d < d* in the repulsive case, and of non-trivial critical exponents of the delocalization
transition for 4 > d* in the attractive case, is thus established. To our knowledge, this study
provides the first proof of renormalizability for a model of extended objects, and should
be applicable to the study of self-avoidance interactions for random manifolds.

1. Introduction

One general problem arising in statistical physics is the understanding of the
effect of interactions on the thermodynamical properties of extended fluctuating
geometrical objects. These objects may be (one-dimensional) lines, like long lin-
ear macromolecules or polymers, (two-dimensional) surfaces, like membranes
or interfaces, or even (three-dimensional) volumes, like gels. The interactions
involve in general two-body attractive or repulsive forces, and one may in gen-
eral reduce such problems into two different classes: (i) either one deals with
self-interactions between distinct points of the same fluctuating object, or mutual
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interactions between several fluctuating objects; (ii) or one deals with the in-
teraction of a single freely fluctuating object with another non-fluctuating fixed
object. Case (i) includes for instance self-avoiding polymers or membranes,
polyelectrolytes and charged gels, as well as the description of intersections of
random walks. Case (ii) includes the problems of binding/unbinding of a long
molecule or a membrane on a wall, the wetting of an interface. One can also
reduce to this class the problems of unbinding of two membranes or interfaces,
and that of the steric repulsions between membranes in a lamellar phase.

Among the many different generic situations one can think of, one case is
now well understood, namely that where the fluctuating objects are only one-
dimensional objects. Indeed, many problems in case (ii) can then be solved by
simple analogy with quantum mechanics, i.e. by use of a diffusion equation. The
situation is more complicated in case (i), a paradigm of which is the celebrated
problem of self-avoiding polymers. Still in this case, the use of perturbative ex-
pansions and renormalization group techniques allows for explicit resuits on
the thermodynamics of these objects. For instance, a self-avoiding polymer em-
bedded in a d-dimensional external space can be described by the continuous
Edwards hamiltonian [1,2]

1 S, /dr dr b S S ,
H=§/O d3(5'5)+ 5/0 ds/0 ds’d%(r(s) —r(s")). (1.1)

This model can then be viewed as a one-dimensional field theory, with position
field r(s) at abscissa s along the chain of size S, and with a non-local interac-
tion term. This field theory then has a formal perturbative expansion in b: this
point of view dates back the work of Fixman [3] and has been developed by
des Cloizeaux [2,4]. The terms of this expansion are in general integrals over
the internal coordinates s of the interaction points and may diverge when these
interaction points come close to each other (|s — s’| — 0). The theory can then
be regularized by analytic continuation in d > 2, and the natural expansion
parameter is then 5S2-9/2 hence large in the thermodynamic limit S — oo for
d < 4. For dimensional reasons, the corresponding long-distance divergences are
twinned with the short-distance divergences, and appear as poles in d at d = 4.
Within a double expansion in b and € = 4—d, the structure of these poles is such
that the theory is renormalizable for € > 0. This means that the poles ate = 0
can actually be absorbed into redefinitions of the parameters of the model, and
that a scaling limit is obtained for the thermodynamical properties of the poly-
mer when e > 0. Still, a rigorous proof of renormalizability requires the use of
the famous equivalence of the Edwards model with the O(n) model for n = 0,
that is a model with a n-component field @ (r) in the d-dimensional external
space, as shown by de Gennes [5]. From this different point of view, which was
the first to be developed in the 70’s, the self-avoiding polymer problem is seen
as a d-dimensional local field theory, that is a theory with local interactions, and
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amenable to the standard renormalization group treatments for critical phenom-
ena [6,7]. Again, this field theory can be studied via a perturbative expansion,
the terms of which may diverge when two external interaction points r and r’
come close to each other (|r—r’| — 0). Now the general renormalization scheme
for local field theories applies and ensures (perturbative ) renormalizability, from
which one deduces a posteriori the renormalizability of the direct approach “ala
des Cloizeaux” [8-10]. This equivalence with a local field theory also holds for
one-dimensional problems in case (ii), and methods of perturbative field theory
can also be applied in this case. Although they are in general more complicated
than the simple diffusion equation, they give comparable results (see ref. [11]).

Beside the perturbative framework, one should notice that rigorous non-pertur-
bative results have been obtained for the Edwards model and related models:
the mathematical construction of the measure on random paths associated with
(1.1) [12]; the large distance behavior of intersection properties of independent
random walks at d = 4 [13]; the large distance behavior of weakly self-avoiding
polymers at d = 4 in constructive field theory [14]. These non-perturbative
studies always corroborate the results of the perturbative renormalization group
analysis.

The existence of an underlying local field theory in the external d-dimensional
space, which is crucial to ensure renormalizability and allows for predictions
from the perturbative expansion, is however directly related to the one-dim-
ensional nature of the object. When we now consider a D-dimensional object with
D # 1, embedded in d dimensions, no such equivalence with a d-dimensional
local field theory exists. Still, the approach “a la des Cloizeaux” can be gener-
alized, by considering a D-dimensional field theory. For instance, the Edwards
hamiltonian reads for a D-dimensional manifold with internal coordinate x
[15-17]

M= %/dl)x (Var- Var) + g/de/de’ad(r(x)—r(x ). (1.2)

This describes a polymerized or “tethered” manifold with a fixed internal met-
ric (to be distinguished from the case of fluid membranes, with a fluctuating
metric). The self-avoidance interaction term leads to a perturbative expansion
in b, with poles in € = 4D — d (2 ~ D). This method has been used to first order
in € [16,17], and leads to first-order estimates of critical exponents [16-19],
assuming that renormalizability holds and that a renormalization group equation
can thus be used.

Two crucial questions remain however open, which show that new mathemat-
ical developments are required:

(I) A perturbative approach cannot be performed directly at D larger or equal
to 2. Indeed, for D > 2 (and d > 0), € is never small (¢ > 8). The double
expansion in b and € requires to consider the case of real non-integer D (typically
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1 € D < 2). The term of order N in the perturbative expansion being an integral
over 2N (resp. N) interaction points in case (i) (resp. case (ii)) in internal D-
dimensional space, the meaning of these integrations for non integer D has to
be defined.

(II) Since, as a D-dimensional field theory, the theory is either non local (case
(1)) or local (case (ii)) but with a singular potential with explodes at the origin
r = 0 (typically 1/|r|” or 64 (r)), standard methods of local field theory do not
apply. Since furthermore, as mentioned above, we cannot rely (as for D = 1)
on an equivalence with a d-dimensional local field theory, the question arises
of the actual renormalizability of the theory, and in particular of the validity of
the use of a (for instance first order) renormalization group equation to predict
a scaling behavior.

Beyond the one-loop calculations of refs. [ 16—-19] for the model of self-avoiding
random manifold, which assume renormalizability, a next step in a general anal-
ysis of the problem of renormalization for interacting extended object with di-
mensionality D # 1 has been performed by one of the present authors in ref.
[20]. In ref. [20] a model describing the simple avoidance interaction of a D-
dimensional fluctuating manifold with a fixed euclidean element was considered.
The leading UV divergences of the model were analyzed in perturbation theory
and resummed, so that the consistency of a renormalization group equation at
one loop was established for this model. A similar direct approach has been ap-
plied to the Edwards manifold model (1.2}, and the one-loop renormalizability
established [21].

The purpose of this paper is to present a general, mathematically rigorous,
framework to study these questions, and to analyze the renormalizability of
models of interacting objects to all orders in perturbation theory. In this paper,
we shall discuss the simple model of ref. [20], of a D-dimensional fluctuat-
ing manifold interacting with a single fixed point (or more generally a fixed
euchidean element), defined by the following hamiltonian:

H = %/de (er(x)-vxr(x)) + b/deéd(r(x)). (1.3)

We prove perturbative renormalizability for this model, to all orders in pertur-
bation theory, from the internal-space formulation of ref. [20]. For that pur-
pose we rely on methods devised in perturbative field theory, in particular by
Bergere and Lam, for renormalizing the Feynman amplitudes in the so-called
a-parameter or Schwinger representation. Indeed, our construction can be seen
as a generalization of renormalization theory in Schwinger representation to the
case of a D-dimensional a-parameter space.

This paper is organized as follows.

In sect. 2 we present the model of a D-dimensional manifold interacting with
a single fixed point, discuss its physical relevance for the problem of entropic
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as long as the integration over the squared distances a;; is given by a measure,
while in sect. 9 we show that this remains true in the general case where the
measure term is a distribution. This ends the proof of the renormalizability of
the model. The rest of sect. 9 is devoted to some physical consequences of this
renormalizability property, such as the existence of a Wilson-Fisher e-expansion
and of universal scaling behaviors.

In sect. 10 we summarize our work and discuss various prospects, in particular
for the problem of self-avoiding random manifolds.

A lot of technical points are relegated into various appendices.

The reader not interested in the details of the proof of renormalizability may
skip (at least in a first reading. .. ) sections 5, 7 and 8.

2. The model

2.1. THE ACTION

We first define the model that we shall study and the formal structure of its
perturbative expansion, without taking care of the possible infinities which may
arise from short and/or large distance divergences. It is the purpose of next
sections (in particular sect. 4) to define proper regularization schemes.

We start with the manifold hamiltonian [20]

H =/de [lr(x).(—A)k/zr(x) + b (r(x))], (2.1)
¥ 2

where x labels the internal position in the D-dimensional manifold with vol-
ume V and r(x) is the corresponding position in the d-dimensional euclidean
space. For the physical case k = 2, the first term in (2.1) corresponds to the
elastic energy of the gaussian manifold (the internal tension is set to unity). For
reasons of mathematical convenience, which will be clear in the following, we
shall consider in full generality the more general class of elastic hamiltonians
with k > 2. This allows in particular to define in a proper way a consistent ana-
lytic continuation in the internal dimension D. The case k = 4 corresponds to a
manifold with vanishing tension but with bending rigidity. The absence from eq.
(2.1) of a two-point self-avoidance interaction term (as compared to eq. (1.2))
means that we are dealing with a “phantom” manifold which can intersect itself
freely. The second term in (2.1) corresponds to the interaction of the manifold
with a fixed impurity, that is a single point in the external d-dimensional space,
here at the origin r = 0 (fig. 1). The coupling constant » may be either positive
(repulsive interaction) or negative (attractive interaction).

As mentioned in sect. 1, this model is interesting as a toy model for the more
complex problem of self-avoiding manifolds. In both cases the interaction term
is a singular d-function, and similar mathematical techniques can be used to
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Fig. 1. A D-dimensional fluctuating manifold (here D = 2) interacting: (a) with a point at the

origin in R? (here d = 3), (b) with a fixed D'-dimensional euclidean subspace of RY" (here

D =2d=1,d =d+ D' =3). (c) A “directed” manifold interacting with a “parallel” flat
subspace of same dimension D in R? "

write perturbative expansions and to study their properties. In the present case
the interaction is much simpler, since it corresponds to a one-body interaction,
instead of a two-body interaction in the case of self-avoidance. This model is
also interesting in its own, since the hamiltonian (2.1) can also be used to
describe the (attractive or repulsive) interaction of a fluctuating D-dimensional
manifold with a fixed D’-dimensional euclidean subspace in a d’-dimensional
euclidean space [20], with d’ = d + D’ (fig. 1b). In this case r describes the
d coordinates of the fluctuating manifold orthogonal to the fixed euclidean D’-
subspace. The case D = 1, corresponding to a polymer interacting with some
fixed object, has been already considered by several authors [11,24,25]. The
case D = 1, d = 2 corresponds for instance to a polymer interacting with a
rigid rod in three-dimensional space. If D = D’ this model can also be used to
describe a “directed manifold” (parallel to a flat euclidean subspace) (fig. 1c¢).
In this case the coordinates in the external d’-dimensional space of the point
with internal coordinate x are (x,r(x)), and the first D = D’ longitudinal
degrees of freedom are fixed. For instance the case D = D’ = 1 describes a
“directed polymer” interacting with a parallel rod in d’-dimensional space; the
case D = D' = 2,d = 3 (d = 1) describes a SOS-like fluctuating interface
interacting with a parallel plane, ...

The “engineering” dimensions of the position field r and of the coupling con-
stant b are respectively

k —

2 b
(6] = [x7¢], e =D-vd. 2.2)

™

[rl=[x], wv=

Therefore the interaction is expected to be relevant (that is to change the large
distance properties of the manifold) if € > 0, that is if D > D*, where D* is the
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(D = 1), exact solutions corroborate this picture. Finally, let us mention the
exact treatment of the renormalization group flow for small b (b ~ 0) for the
problem of interface pinning of ref. {27]. This corresponds to the case D = 2,
d=1landk =2 (¢ = 2).

2.2. THE PARTITION FUNCTION

The partition function Z for the model is defined by

Z = /D[r]exp(—H). (2.9)
Its perturbative expansion in the coupling constant b is
© (P3N
PR ol Gl (2.10)
N!
N=0
where
N
N = (/ [1d%xi6¢ (r(xi))), (2.11)
v i=1

and (... )¢ is the average with respect to the gaussian measure
1
exp [—/ dPx=r- (—A)k/zr] i
v 2

The evaluation of Zy is best performed in Fourier space by introducing the
vertex function

Vi(x,k) =exp(ik-r(x)), (2.12)
with k a d-dimensional vector, and by writing Zy as
ZN = <,1:[1/Vd xi/WV(x,-,ki»o. (2.13)

We compute the above functional average by taking care of the overall displace-
ment of the manifold ( zero-mode):

re = %/vdl’xr(x). (2.14)

We have explicitly

N
(TIV ik = [ atro [D1r(x)16% (6 = o)
i=1

1 -
X exp [_/\;dbxir' =)y + i3 ki-r(x)

i=1

(2.15)
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Performing the shift r = rg + r, we get

/ddro/D[r(X)léd("G)exp[ [ i - A 4 1S ke (O3 + )

i=1

(2.16)

Integrating over the displacement rg, and performing the gaussian average, with
normalization

/D[;(x)]ad(;c)exp [—%/ Pxi (—A)"/2;] 1,  (217)
%

we finally get

D
/Hdé‘d)dk (2n )ddd(zk)exp [—— > kik; G(x”x’)} ’
i,j=1

(2.18)

where G (x,y) is the propagator, solution (in infinite flat D-dimensional space)
of

(=4)*2G(x,y) = 6P (x - ), (2.19)
namely
1 T'((D-k)/2)
2k gD/2 I'(k/2)

This propagator, which is a Coulomb-like potential, will play a fundamental role
in what follows. In the range of parameters (2.5), it vanishes at |[x — y| = 0.

The first term of the expansion of Z (N = 0) is simply the (infinite) volume
of external space

G(x,y) = Ix — y[=P (2.20)

2o = 2n)%%k = 0) = /der = Va . (2.21)

But the next terms are finite. Indeed, for N > 0 we can deal with the ¢ con-
straint in eq. (2.18) by setting k| = — vaz » k;. The integration over k becomes
gaussian and leads for N = 1 to

2, = / dPx; = V (2.22)

and for N > 1 to the basic formula [20]

N
/2
N = (2n)—d(N—1)/2/Hde,- (det (Tylpgijan) > (223)
i=1



566 F. David et al. / Interacting crumpled manifolds

where I1;; (2 < i,j < N)isthe (N—1) x (N — 1) matrix
II;; = G(xj,xj) = G(x1,x;) = G(xi,x1) + G(x1,x1). (2.24)

Notice that I7;; is function of the point x; which acts as a reference point, and
that G (x;, x1) is actually equal to zero.

2.3. CORRELATION FUNCTIONS

Similarly, all expectation values of observables can be obtained from the par-
tition functions with inserted vertex operators (2.12)

M
20 (Xorka) = 2 ([ V (Xurka) = [Dirlexp
a=1

M
—“H+ Y ike-r(X)| .
a=1

(2.25)
Each term of their perturbative expansion
o< —b N
200 (Ko ko) = 3 0200 (x4 k) (2.26)
N=0 ’

can be computed by the same techniques. The final result is for N > 1

N )
Z0 (Xg k) = (2m)~dN-112 / [T % (det (T, 5cn)
i=1

X exp | —
a

where A4, is a ratio of determinants:

Hab Haj
det (Hib 11 )
dety_; (I1;;)
with an obvious extension of the definition of the 77 matrix (2.24) to iaclude
external points (in particular IT,, = G(Xg Xp) — G(x1, Xp) — G( X x1) +
G(x1,x1)). The cases N = 0 and N = 1 require a specific analysis. For N = 0

we get simply

M| —
Tk

ka ky Aabjl , (2.27)

1

Ay = : (2.28)

M M
28 (Xooka) = 21)?64(Y_ ko) exp [—% > ka-kbG<Xa,Xb)} ,

a=1 ab=1 (229)
and for N =1
1 M
ZM (X, ky) = /del exp |—5 > ka-ky Il | - (2.30)
a,b:l

(Notice in this last equation that I7,, actually depends on x;).
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2.4. MEAN SQUARED DISTANCES
From eq. (2.29) one can in particular derive the mean squared distance be-
tween any two points x and y for the free model (b = 0):

1 I'(l-v)
4v(4r)P2 yI' (v + D/2)

Ix —y*,

1
—((r(x) —r(), = -G(x,p) =
2d ’ (2.31)

which is IR- and UV-finite and positive forO<v <1 (k-2 < D < k).

3. Analytic continuation in the internal dimension D

3.1. INDEPENDENT PARAMETERS: D,v AND ¢

We now want to give a meaning to the above expressions for arbitrary real D, d
and k, so as to have a continuous approach to the “physical” elastic membrane
problem D = 2 and k = 2. As is clear from (2.27), the general observables
of the form (2.25) depend on the external dimension d only through: (i) the
external invariants k, - k, (ii) the exponent —d/2 in (2.27). We can therefore,
as usual in field theory, consider d as a continuous parameter. The same is true
for the exponent k associated with the internal laplacian, which appears only as
a parameter in the propagator (2.20). Since we shall be interested in the range ¢
close to d*, it is natural to substitute to the continuous parameters ¢ and k the
set of continuous parameters € and v. Their relevant range is ¢ ~ 0 (where we
expect a non-trivial universal fixed point) and 0 < v < 1 (where the manifold
is crumpled, that is neither collapsed nor stretched).

The analytic continuation in the internal dimension D is a new feature of
this model and requires a separate analysis, namely that of the signification of
the measure H[dei for non-integer D. We now discuss equivalent geometric
definitions of this measure, which have a natural extension to non-integer D.

3.2. DISTANCE GEOMETRY IN D DIMENSIONS
We are looking at generalized integrals of the type
/dD)q e dPxn O, LX),

where f is invariant by rotation in D-dimensional space and thus depends only
on the invariant scalar products

Uij = Xi- Xj (31)
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(c) (d)

Fig. 3. Equivalent representations of the positions of a given set of N interaction points (here

N = 6). The points are described (a) by their position x; in R? or R¥~! or (b) by the set of

their mutual squared distances a;; = (x; — X; )2 or (c) by their relative vector y; = Xip1 — X in

RP or R¥-! (relative to the point x;) or (d) by the line vectors (labeled by «) of an arbitrary
spanning tree joining these points.

which form a symmetric matrix [u;;]. For D > N we can reduce the integration
over the x;’s to an integral over the u;,’s of the form (see appendix A)

N
JT @ sw) = [ TTduo® @) fuh. G2
i=1

Nigj

where

SpSp-1 Sp_ny1

>t ... = (dety[u;;1)P~V-D2 (3.3)

o ([uy]) =

Sp is the volume of the unit sphere in R?, Sp = 2222/ (D/2). The domain

of integration Uy for u;; is such that u;; is the actual scalar product of vectors
in euclidean space, i.e. [#;;] is a positive matrix.

If moreover the integrand is translationally invariant in D-dimensional space,

we can go to relative vectors y; = x;,1 — X (1 < 1 < N — 1) and reduce by
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one unit the number of points, i.e. use alffi )1 (lyi-y;iD),

N
i];[ldDXi =& 1<i<1;£1v-1d(yi 'yj)%D—SDZ_I "'SD_2N+2
x (dety s [y; -y, 1) P72 (3.4)
This is equivalent to a measure expressed uniquely in terms of the complete set
of N(N — 1)/2 squared distances (see fig. 3)
aij = (x;i - x;)* (3.5)
by simply rewriting y; - y; as
Vi-1-yj-1 = Dij(a),
Dij(a) = Y(ay + aji — aij), 2<Lj<N. (3.6)

Finally, after the simple change of variables (3.6) we arrive, for a translationally
and rotationally invariant integrand, at an integral over distances

N
[ exs@n=v [ T daul @) s ), 6
RP 1 AN 1<i<j<N
where
(N N=2 /29D Sp_ Sp_
) (lay]) = 27 W-DW-D2ZR Dol Speiia
—N)/2
x (dety_1 [Dij (@) 1acijen) O™V (3.8)
This last formula is valid for D > N — 1. Indeed, D = N — 1 is the smallest di-
mension for which N linearly independent points can be embedded in euclidean
space. The domain of integration Ay for g;; is then simply the set for which
[Dij(a)] is a positive matrix.
In eq. (3.8) appears the important quantity

Py(a) =dety_ [D;j(a)] = dety_([yi-yj] (3.9)

which is a homogeneous polynomial of degree N — 1 in the a;;. Py (a) is actually
fully symmetric under permutations of the indices i or j in [a;;], as can be seen
from its expression as a Cayley-Menger determinant * well-known in distance
geometry [28],

01 1 |
1 0 ap ... N
_1\N
Py(a) = (21\11—)1_ Lay 0 ... an|. (3.10)
1 any aynz ... 0

* This determinant appears, in a different disguise, in a letter by Descartes to the Princess Elisabeth
of Bohemia (1643), as quoted by Coxeter in ref, [29].
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We have for instance for N = 2 and 3 points

Py(a) = ai;, P3(a) = 1 2anay; + 2anas + 2as a1, — a, — ady — ad)).
(3.11)

The matrix [D;;] will be positive iff any bordered principal minor P (a) > 0
forany K < N:

01 1 1
1 0 ap ... dig
( ])K
Px(a) = S (Lam O @) > 0. (3.12)
1 axy aga ... 0

For K = 2, this is simply the positivity condition a;; > 0. For K = 3, one
recovers the familiar triangular inequality

2 12 172 1/2 12 1/2
(ap—apz—an)” < 4apan & lalé —ay S an S a3 +ax.
(3.13)

For K > 3 one gets more general inequalities which are the necessary and suffi-
cient conditions for the a;; to be realized as squared distances between N points
of the euclidean space RV—!. The volume V(x,, ..., xx) of the (possibly degen-
erate) parallelotope [30] ((K — 1)-dimensional parallelepiped) with vertices
X1,X2,..., Xk 1s given by

Vz(xl,...,xK) = Px(a). (3.14)

Thus Px (a) = 0 indicates that the first K points are linearly dependent, i.e. can
be embedded in RX—2,

For D < N — 2, the expression (3.8) becomes singular due to the appearance
of zeroes in the sphere volumes Sp_g,» for D + 2 < K < N on the one
hand, and due to divergences of the term (Py (a))®~¥)/2 which occur when
Py (a) vanishes, that is on the boundary of the domain .4y, on the other hand.
Nevertheless ,uI(VD )(a) can now be considered as a distribution with a support
in submanifolds of Ay of dimension D(N — (D + 1)/2), which correspond
to D-dimensional euclidean subspaces of R¥~1. One therefore still reproduces
the natural euclidean measure in RP, as can be shown by analytic continuation,
which we now describe.

3.3. ANALYTIC CONTINUATIONS IN D

3.3.1. Distance geometry for non-integer D. The first way to define integrals
of the form [dPx;...dPxy f(x),...,xy) for non integer D is to start from
(3.2) and (3.3) or equivalently from (3.7) and (3.8). The measures (3.3) and
(3.8) now involve D as a simple parameter and therefore provide a natural
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basis for analytic continuation. For real D > N — 2, ,u}(VD ) (a) remains a positive

measure density on Ay. Therefore it can be considered as a distribution, over the
space RV (N-1)/2 of all squared distances a;;, with support Ay (i.e. by definition
it vanishes outside Ay ). As a distribution it can be extendedto0 < D < N -2
by analytic continuation. This amounts to treat by a finite part prescription all
the divergences which occur at the boundaries of Ay (see below the spherical
coordinate representation for more details). As a distribution, it is not singular
for positive integer D < N — 2, but becomes a measure density concentrated on
the submanifold such as the principal minors Px (a) vanish for all K such that
D+ 1<K < N.

As an example let us consider the case of two points. For N = 2 we have the
distribution (denoting y (A) the characteristic function of support .4)

w2 (@) (Ay) = 18(ayy). (3.15)

nD/
VYo |012|D/
Irpj/2)
When D — 0 the r.h.s. of eq. (3.15) tends to

Wmlalzﬁ’” '0(a1) 2= 8 (an) . (3.16)
Thus the support of the distribution becomes restricted to the zero-dimensional
subspace (where all points coincide).
Similarly for N = 3 we have

WP A = s
x |det, D727 g (det, D)6 (a12)60(a13)6 (a23)
2=} 15(det; D)0(a12)0(a13)0 (azs), (3.17)
where det; D = P3(a) reads
dety D = §(a))" +a)f’ + &) (@) + af - a))?)

x (@} + ) —a) @) +a) —althy. (3.18)

Separating three different boundary sectors of A3, we get
13" (a)x (As)dayrdaisday;
=20 (allé2 + azléz — allgz)0(alz)H(a23)0(a13)da:42da21§2da11§2 + perm.
(3.19)

which represents indeed all possible relative positions of three points on an
oriented line.

3.3.2. Cartesian coordinates in R¥~!. Realizing that N — 1 is the minimal
dimension of euclidean space in which one can embed N points with given
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squared distances a;; (in Ay ), we can use (3.4) back to reexpress the measure
over the scalar products d(y; - y;) as a measure over N points in RN-1

N Sn_1S S
[Ta" = I doepp=752 5 Wetya by D)7
i=1 1<i<jgN—-1 (3.20)

Thus we can implement the analytic continuation in D by modifying the eu-
clidean measure in R¥~! by a suitable analytic measure term:

N-1 N-1 SpSp_i...Sp_N+2 (D—-N+1)/2
I %= [ d"vi— | detlyi - yilicijen-i :
i=1 i=1 N-1ON=2..-21 (3.21)

Analytic continuation can thus be summarized in the following compact formula,
which is a formal rewriting of (3.21):

N-—-1 N-1
1 d%: = T d""'%: 2D, N) (V (0,y1,...,.yn-1))° "V,
i=1 i=1

Vol(SO(D))

Vol(SO(D — N + 1))Vol(SO(N - 1))’ (3.22)

Q(D,N) =

where Vol (SO(D)) is the volume of the special orthogonal group in D dimen-
sions:;

SpSp_1  Si
D)) = ——— ... —.
Vol(SO(D)) > "2 >
When M external points X, are present (that is points over which we do not
integrate), eq. (3.22) has to be replaced by the more general formula

(3.23)

N N
[1d°x: = J[a**"~'x;2(D,M,N)
i=1

i=1

b

(V(x1,x2,... XN, X1y n e ,XM))D—-M_N_H
V(Xi,..., Xu)
Vol(SO(D - M + 1))

Vol(SO(D — M — N + 1))Vol(SO(N)) * (3.24)

Q(D,M,N) =

3.3.3. Sphericalcoordinates. A third (equivalent) way to perform an analytic
continuation in D is the use of spherical coordinates.-We first consider again
the case of N points in R? with D integer and D > N — 1. We take x; as the
center of the spherical coordinates, and describe the N — 1 other points by their
relative coordinate, as before

Vi = Xip1 — X1 i=1...,N—-1. (3.25)
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Introducing generalized spherical coordinates for the y;, we write

Viq = |yilcos;;,
Via = |yilsinf; cosb;,,

Vip—1 = |yi|sin@;,sin@;,...sin;p_»cosb,p_;,
Yip = |yilsin@;;sin6;,...sin6; p_»sinb;p_, (3.26)
where 0, € [0,n] for 1 < n < D-2and 0;p_, € [0,27). The corresponding
measure is given by

D-1

Pyi = |yilP~'dlyil [ (5in 6,2) 77" ~"d6;s . (3.27)
n=1

For rotationally invariant integrands, we can furthermore fix successively

0in =0, nzi. (3.28)
Taking care of the successive rotational symmetries, we arrive at
N-1 N—1i-1
IT d®vi = SpSp-1-..Sp-N+2 H il®~tdlyil T] ] (sin6:0)°~'"d6;,n
i=1 i=1 i=2 n=1 (3. 29)

with all the 8, , now integrated from 0 to z. In (3.29), D again appears only as a
parameter. This therefore provides another natural path to analytic continuation
in D. Indeed, possible singularities at integer D arise from the negative powers
of the sin@;,, which diverge at 8;, = 0 or =. It is clear from the spherical
coordinates representation (3.26) that when some of the 8’s are equal to 0 or 7
the vectors y; are not linearly independent and the N points x; are in a euclidean
subspace with dimension smaller than N — 1. Away from integer values of D
(with0 < D < N-1), these divergences can be treated by the standard finite part
prescription (independently for each 6;,). To prove that for integer D, (3.29)
remains a distribution and can be rewritten as a finite measure localized on
some subspace (corresponding to spherical coordinates in some D-dimensional
submanifold) requires a more elaborate discussion, not presented here.

This analytic continuation (3.29) is totally equivalent to the analytic contin-
uation (3.22), as can be seen by going back as before to coordinates in R¥-1,
Using (3.29), we have formally

N-1

N-1 ShS S N—-1i-1 D-N+1
IT 62 = [T @ty SoSecte oo [T o T [sineun]

i=1 i=1 i=1 i=2 n=1 (3.30)

where the 6; ,’s are spherical angles in R¥~1. We read on this equation the angular
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representation of the squared parallelotope volume [28]
N—1 N—1i—
Py(a) = det[y;-y;licijen—1 = [ vil* H H sin” 6,
i=1 i=2 n=
= V20, p1,...,¥n- ) (3.31)

and eq. (3.30) is therefore identical to (3.22).
Finally, when M external points are present, (3.29) has to be replaced by

N N
1 4°x: = Sp-prs1Sp-sr-- - Sp—p—w+2 [ 1xlP~ dlxil
] i=1

N Mii-

2
<[ II Gsin6:n)?~'="d0;n, (3.32)
=1 n=1

where the 6;,’s are the M + [ — 2 successive relative spherical angles for x;
necessary to assign position to the vector x; — X| with respect to the M — 1
external vectors X» — Xi,..., X3 — X and to the { — | internal vectors x; — X,
for j < i, in a reference frame where X is at the origin.

3.4. FACTORIZATION

Of course, for integer D, the measure [, dPy; is naturally factorized, when
applied to a product of functions of independent variables:

P+Q
/ H Py f kk=1,}) §{Vkk=prs1.r+0})
k=1
P+Q
/Hd’)y,ﬂ{y,}) J 1L @vetnn. 333)
j=P+1

This important factorization property becomes non trivial when extended to
arbitrary D, as can be seen from (3.21). Still, if we consider the scalar product
matrix [u#;;]i1<;j<p+o and denote by [u]p (respectively [u]p ) the submatrix
[uijli<ij<p (respectively [u;;lpy1<ij<p+@), One has (see appendix B)

[ o (s (wipettule) = [ dtulrol (ule) £ (Tulp)
Upyo Up

x Lgd[u]gaéD’<[u]Q)g<[u]Q)
(3.34)

which means that the integration over the mixed scalar products u;;, 1 < [ <

P < j < P + Q can be performed and amounts to factorize a},’fr)Q nto a,(,D )aéD ),
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The factorization property of the measure is thus preserved under analytic contin-
uation in D.

3.5. THE INTERACTION AS A CAYLEY-MENGER DETERMINANT

The N-point interaction term (dety_; [/7; ,-])_d/ 2 depends explicitly on D
through the occurrence of the Green function (2.31) and is readily analytically
continued to non-integer D. Let us recall that we consider D, v and € as the three
independent parameters of the model, so that 4 itself is a function of D given
by d = (D —¢€)/v. From a distinct, geometrical point of view, it is particularly
interesting to notice that the interaction term also involves a determinant of the
Cayley-Menger type with a;; replaced by its power (a;;)”

o1 1 ...1
v |10 afy ... aly
Py(a¥) = (2_1\11—)1 Laj, 0 ...a5y|, (3.35)
Laly ay ... 0
Indeed, from definition (2.24) and from (2.31), we have
II;; = Ap(v) Dj;(a”), (3.36)
with
Dij(a”) = 3(af) + aj) — ay)) (3.37)
and the factor
Aplv) = 4"(43:)0/2 VFI—;I(/I-;;;2) ’ (3.38)
and therefore
dety_; [1T;;] = [Ap(v) ]V~ 'Py(a”). (3.39)

Finally we have the compact formula, analytic in D, € and v, for the term of
order N of the partition function (2.10)

N
—d (N~ Sp_
Zy = V 2rap(w)) U] ( gxlffz)
k=2

x [T dayPx(@) 1PV [Py(a*)]™4?  (3.40)

AN 1<icj<N

with againd = (D —€)/v.
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3.6. ANALYTIC EXPRESSION OF Zy IN CARTESIAN COORDINATES

An immediate corollary of the above formalism is the following alternative
formula for Zy, now in cartesian coordinates in R¥ !, which provides an equiv-
alent definition of the analytic continuation of Zy:

N-1
Zy = (27t)_d(N—”/2V/HdN—‘y,-SD"'SD—N+2

el £
INT---91

i=1

)(D—NH)/Z (det [Hijlzsi,jsN) "

(3.41)

X (det {yi 'yj]1<i,jsN—1

3.7. DETERMINANT ATTACHED TO TREES

In the following we shall find it useful to express both the measure and the
interaction contributions in terms of more general variables A, obtained from
the positions x; and attached to arbitrary oriented trees. A spanning tree is
a connected graph whose vertices are the previous N points x;, and without
loops (see fig. 3d). This graph therefore has N — 1 internal lines labeled by
a = 1,...,N — 1 for which one also specifies an orientation. An oriented tree
is characterized by its N x (N — 1) incidence matrix [€;,] defined by €;, = 1 if
the line « is incident to i and points toward i, €;, = —1 if « is incident to i and
points outward I, €¢;, = 0 otherwise. One has

N
> € = 0. (3.42)

For each line o of the tree we define the line vector (or edge vector) A, in RV !
by

N N-1
ha =D €iaXi= Y €ir1alis (3.43)

i=1 i=1

where the y;’s have been defined in (3.25).
Expression for the measure. Since the jacobian of the linear transformation
(3.43) from the y;’s to the A,’s is

|det’[€]] = |det[€ia] 2<icn | =1

I1<ag<N-1

and

det[Aq-Ag] = (det'[e])*det[y; - y;] = det[y;-y,]
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one has directly from (3.21)

N-1
IT ¢®»
i=1

I
—
(o
)
&

N-1 (D~N+1)/2
SpS Spo

= 2oL Do RE  det[dg - Aplicapen-t :

SN_ISN_z...Sl

I
—
o
2
;?T

(3.44)

This also means that one can replace in (3.4) the integration over the matrix
elements u;; = y; - y; by an integration over matrix elements u,g = 4, Ag
associated with an arbitrary tree.

Expression for the interaction. We now derive the expression of the determi-
nant Py (a”) which enters the interaction factor in terms of the 4,’s. Eq. (2.23)
was actually a particular representation of the interaction, associated with a par-
ticular choice of a tree, namely the star centered at x; and lines pointing toward
the other points. This can be seen in our choice k; = — YN , k; to account for
the 64 (3, k;) constraint in the momentum integral (2.18). We can generalize
this construction to an arbitrary oriented tree T by writing k; as

- z_: €ialla- (3.45)

These vectors ¢, can be seen as flowing along the lines of the tree while the
vectors k; can be thought of as being injected at the nodes of the tree. Eq. (3.45)
expresses the momentum conservation at the nodes and moreover, together with
(3.42), ensures 3 _k; = 0 for any set of ¢,’s. Using then

1

N

N N-1
[1d%%: 6% ki) = [] d%4a, (3.46)
a=1

i=1 i=1

we get for the interaction term (2.18)

dPAad?q, 1 =
/H “am? P |73 2 44l

a,f=1

ZN

—-d/2
(2n)_d(N—l)/2v/HdD,1 (det [7738) ) coopen— 1) ", G

where we take advantage of (3.44) and define a new matrix /77T attached to the
tree T:

Y = Z €iaG (Xi, X )€ 5 - (3.48)

ij=1
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Indeed det[[7 :ﬂ] is independent of the choice of the tree T.
In terms of pairs of oriented lines o, # of the tree, with extremities (i, i’,) and
(ig,1'g) respectively, the matrix element HaTﬁ is associated with the quadrilateral

(ia9 ila; lﬂ, l,ﬂ)
I}y = G(xi,, Xiy) + G(xir,, Xiry) — G(Xip, Xy) — G(Xirg, x5) . (3.49)

It can be viewed as an interaction potential between two dipoles 4, and Ag and
has the following pictorial representation:

(3.50)

Expression for correlation functions. For correlation functions 2™ (X, k,)
(2.25) one can generalize the above construction simply (i) by considering the
spanning star tree T, with line vectors 4, = X, — X; (a > 1) for the external
points, (ii) by choosing an arbitrary tree Tj, with line vectors A, for the internal
points, and (iii) by attaching these two trees by a line vector A, joining the
external point X, to an arbitrary internal point. In this way, we obtain a larger
tree T to which we can associate a generalized form of (2.27):

N-1

—d/2
ZM (Xg ky) = (2m) W=D /dDA1 I ¢°4a (det [H(,TB]KQ)KNA)
a=1
1 M
xexp | =5 > ko kpda)| (3.51)
a,b=l

nar ar
dCtN ab "“af
(Ufb 3,

dety - (HQT/;)

Agp = (3.52)

As discussed above, the determinants in (3.52) are independent of the tree T
chosen. In (3.51), the integral over the A,’s and A, has to be understood, for
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real D, as

/ Iﬁl N Nl:IlMNISDM-H Sp_M-_N+2
24, TT dPa, = /dM+ 14, T] aM+N-13,2D=M+1 - OD_M-N+
=1

Sn...8

a=1

AaAb Aaiﬂ (D-M-N+1)/2
detN-I-M—l llaAb iallﬂ

y , , (3.53)
[detM_1 (Aa‘Ab)2<a,b$M]

and (3.51) is a function of the invariants a,, = (X,— X})?, which are quadratic
forms in terms of the line vectors A,.

3.8. THE LIMIT D = 1 AND THE SCHWINGER REPRESENTATION

As an example, for a manifold with internal dimension D = 1, one can re-
cover the standard Schwinger representation* of an interacting field theory with
interaction term (@ )2 (0) (see subsect. 6.1 for further details), here in direct
correspondence with the continuous Edwards-like model for a polymer interact-
ing with a single fixed point at the origin. Choosing D = l and &k = 2 in (2.1)
corresponding to the gaussian weight of a brownian chain, one has v = % and
the propagator along the chain

G(x,y) = —3lx —y|. (3.54)

Furthermore, for the perturbative order N, the measure term (3.8) reconstructs
in the limit D = 1 (like in eq. (3.19)) the measure over all relative distances of
N ordered points along the chain, as well as all their permutations. For a given
permutation x;, < ... € X;,, the measure term is simply

N-1

11 da'’? . (3.55)

lalay1
a=1

Choosing as a particular tree T the successive oriented links (I,, o) = (g, ig41)
the matrix 17T (3.49) is diagonal

Y = 5,05 with 5o =a}”? =X

laiu+]

(3.56)

The s, are nothing but the usual Schwinger parameters (proper time) for the
propagator lines «, or in polymer theory the lengths of the successive polymer
segments. The interaction gives for the partition function a term of the form

Zy = /;ij: dsa ... )(j]i[: so,)—d/2 (3.57)

* In the context of polymers, it is also known as the Fixman representation [3].

a+1 - xia M
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Fig. 4. The daisy diagram corresponding to the term (3.57)

which is nothing but the Schwinger representation for the “daisy” diagram in ¢
dimensions (fig. 4).

4. Ultraviolet and infrared properties of the integrand

4.1. EXISTENCE AND POSITIVENESS OF THE INTEGRAND

The rules that we have proposed above for defining the perturbative expansion
of the model in non-integer dimension D remain formal. Indeed, we have not
shown yet that the integrands do exist and that the integrals are convergent (for
D large enough), and define an analytic function in D. Let us concentrate on
the Nth term for the partition function, Zy, which is explicited by the integral
(3.40) in terms of distance variables a;;, by the integral (3.41) in terms of
cartesian coordinates in R¥~! or by the integral (3.47) in terms of tree variables
Aq. We shall furthermore assume in the following sections that D > N — 1, that
is D large enough for ,uI(VD ) to be a measure density (similarly, for Z }VM ), we shall
assume D > N + M — 1). We shall discuss in sect. 9 how our results can be
extended to smaller D.

Schoenberg’s theorem. First, in view of the formula (3.40), the positiveness
of the Cayley-Menger determinant Py (a”) (3.35) has to be ensured inside the
domain of integration Ay for the variables q;;. For 0 < v < 1, this actually is just
a consequence of a remarkable theorem in distance geometry due to Schoenberg
[31].

Theorem 4.1. If we change the metric of the euclidean space R™ from the
euclidean distance d (x,y) = |x — v| to the new distance

d(x,y) = (d(x,y))” O<v<l, (4.1)

the new metric space Ry, thus arising may be embedded isometrically in the
Hilbert space R with the L*-norm.
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A practical (equivalent) statement is that any set of N distinct points of R},
can be embedded in the euclidean space R¥ 1. In our language, this means that, if
the a;; are actual squared distances of N points in RY-1 then aj; withO<v < 1
can also be realized as actual squared distances between N transformed points
in R¥—!. An immediate consequence is that Py (a”) > 0, as well as all the lower
rank polynomials Px (a”) = 0.

We moreover have the useful refined result for0 < v <1 [31]:

Theorem 4.2. If xi,...,xy are N distinct points in R™, and [a;;] the cor-
responding squared distance matrix, the matrix D;j(a") = %(a;.’1 +a¥ - az;),
(0 < v < 1), is positive definite.

The positiveness is a consequence of theorem 4.1. The novelty here concerns
the definiteness and states that the determinant Py (a¢”) vanishes if and only
if two points at least coincide, that is a;; = 0 for some i # j. Notice that this
property does not hold for the case v = 1 for which we already know that Py (a)
vanishes as soon the g;; can be realized as distances between N points in RX for
K < N -2, which can be obtained with none of the a;; (i # j) vanishing.

4.2. SHORT-DISTANCE DIVERGENCES

The above result ensures that for 0 < v < 1 the only possible divergences in
eq. (3.40) occur when some distances a;; go to 0 (UV divergences) or co (IR
divergences). Let us first discuss the UV behavior.

If one scales the distances by a global factor p,

ajj — Pzaz‘j, (4.2)
the measure term in eq. (3.40) 1s scaled according to

[T daylPy(@)]®M2 — pP@0 ] day[Py(a)] P07
I<i<j<N I<Ii<j<N (4.3)

while the interaction term scales as
[Py (a)]~4% — p= W=D Py (a¥) ]9/, (4.4)

We therefore obtain a global scaling factor pN—DP~vd) = p(N=1)¢ This means
that the contribution to Zy of the region of Ay such that all squared distances
a;; < p?is of order p¥=1¢ indicating that Zy is superficially UV convergent
for € > 0, but divergent for ¢ < 0.

Similarly, we expect that when the squared distances between some subset of
P points are < p?, we get a contribution of order pf~1¢ to Zy. This is indeed
what occurs, due to the following crucial factorization property of the interaction
term.
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P —

P

Fig. 5. Schematic picture of the short-distance factorization of the interaction term relative to some

set G of N interaction points (here N = 10). When the points of a subset P of G are contracted

toward one of its point x|, the interaction term factorizes into the product of the interaction term
relative to P and the interaction term relative to P = (G \ P) U {x}.

Theorem 4.3. Short-distance factorization of the interaction term.

Consider the subset P of (for instance) the first P interacting points (consid-
ered as embedded in R¥~!) x,,..., xp and let us contract it toward one of its
points, which we choose to be x;. We set

This defines a mapping in distance variables
plaij iflg<i<j<P
aij(p) =S aj; —play + arj —aij) + p*(ay;)) f1<i<P<j<N
a; fP<i<j<N

Then, in the limit p — 0, the determinant of the matrix D;; (a”) (3.37) factorizes
as (fig. 5)

dety_i [Dij (@"(p))] = p*F=V detp_ [Dy; (@) la<ij<p

xdety_p[Dij(a”)pr1<ij<n {1 + (9(,025)}
(4.6)
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0 = min(y,1 —v) >0. 4.7)
Proof: The matrix D;; transforms under a contraction according to
p¥ D;j(a”) ifl<i<j<P
Dyt (o = | H1P i+ . o
~layj—play +ayj—aij) + pP@) " }if 1l <i<P<j
D;j(a”) fP<i<j<N

For small p, the mixed term D;;, i < P < j, has the expansion
Dij(a”(p)) = p*a; + pral; (ay + aj — ay) + O(p?)
= p’0(p?), (4.9)

since the leading term is o« p?” or x p, depending on whether v is greater or
less than 1/2. Thus we can write the matrix D;;(a”(p)) in blocks associated
respectively with the subsets P and P = {x,} U {xp41,..., XN}

21/D v v ) . (410)
D@ (p)) = (p p(c; ) pOlp ))
pro(p’)y  Dy(a)

Hence*
det(D(a” (p))) = p* @1 [det(Dp (a”)) det(D5(a")) + 0 (p%)] .

Furthermore, from Schoenberg’s theorem, if det (Dp (a”) ) or det(D5(a”)) van-
ishes, some subset of points x; (p) coincides for any p and so det(D(a” (p)))
also vanishes. The equivalence in eq. (4.6) and the theorem follow.

The consequences of this theorem are twofold. First, as expected, when a sub-
set P of P points coalesces to a single point p, this gives a divergence in Zy, as
well as in any correlation function Z }VM ), since from (2.27) the same interac-
tion determinant (det([7))~%/2 is present. Second, this divergence is formally
equal to the global divergence of the partition function amplitude Zp for the
P contracted points times the amplitude obtained by replacing those points by
the single contraction point p, Zy_p, . This is a key point for ensuring renor-
malizability, since this shows that short-distance divergences can be absorbed

* This follows for instance from det (g, g ) = det(A4) det(C) det(1 — A~ BC~1B) for invert-

ible matrices 4 and C.
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into an effective interaction term, thanks to a short-distance operator product
expansion for “interaction operators”

[16%r(xi)) ™ [size(P)~# P16 (r(x,)), (4.11)
ieP
where size (P) is a “typical distance” between the points x; of P in D-dimensional
space (which depends on the precise way the limit x; — X, is taken).

It is the purpose of the next sections to give a precise meaning to these asser-
tions, to provide rigorous arguments, and to discuss their consequences for the
physics of the model.

One can regularize those short-distance divergences and make the integrals
(3.40), (3.51) UV-finite by changing the short-distance behavior of the prop-
agator G (x,y). However, it is both convenient and natural to use dimensional
regularization, that is to consider the amplitudes as analytic functions of the
parameters D (the dimension of internal space), v (the scaling dimension of
the field r), and € (the scaling dimension of the interaction). As we shall argue
below, for fixed D and 0 < v < 1, the amplitudes are expected to be UV-finite,
and therefore analytic functions of ¢, in the haif-plane Re(e) > 0. Because of
the short-distance behavior of its integrand, Zy will exhibit poles at ¢ = O.
For instance, the singular contribution to the integral (3.40) arising from the
integration over the global dilation parameter of the N-interaction point set
gives a single pole o 1/¢. More generally, we expect that multiple poles in 1/¢*
(1 € k < N-1) will occur at ¢ = 0, corresponding to the dominant singu-
larities appearing when k successive subsets of interaction points coalesce [20].
Apart from these poles at ¢ = 0, subdominant divergences will be shown to give
poles in the € plane for Re(e¢) < —J/(N — 1). In field theory, the factorization
property of the integrand under partial contractions of subdiagrams determines
the pole structure of the resulting Feynman amplitude and is the key point that
ensures renormalizability. Here, although the interacting manifold model is not
mapped onto a standard field theory, a similar pole structure of Zx will be found,
due to the factorization property of the interaction term that we just discussed.

4.3. IR REGULARIZATION

By similar power counting arguments (i.e. dimensional analysis), it is expected
that the integrals will diverge for large distances @;; — oo (when Re(¢) = 0). As
usual in field theory, we shall deal with this problem by introducing an infrared
regulator, and by showing that such a regulator does not change the short-distance
properties and the renormalization of the model.

The simplest kind of regulator is to work in a finite D-dimensional space, i.e.
to consider a “membrane” of finite size. This is in fact what is usually done for
the continuous polymer Edwards model. Indeed, the polymer is taken to have
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a finite total “length” .S, which amounts to constrain the length variables s, in
(3.57) by a measure term (S — >, 5,) 0(S —~ >, 5a)-

In our case, our formulation of the model in non-integer dimension relies on
the invariance of the observables under euclidean motions in R”. A simple way to
keep a similar symmetry over a finite manifold is to start from the D-dimensional
hypersphere Sp with radius R and volume Vs, = Sp,R”, so that the group of
invariance is now SO(D + 1). One can easily generalize the concept of distance
geometry on Sp, and its analytic continuation for non-integer D. Indeed, we can
embed the sphere into R?+! and write the integral of a SO(D + 1) invariant
function of N variables as an integral over scalar products u;; = Xx; - x;:

N
JTLer ot = R)f ) = [ TLduy ol (lug) R)f (L)
i=1 Un(R) g (4.12)

with u;; = R?if i = j, and the measure
P ([ui;1,R) = Spa1...Sp_ni2 RY (dety[u;; 1) P72 (4.13)

Uy (R) being the domain of u;; (i < j) where the matrix [u;;] is positive with
all the u;; set equal to R2. Equivalently we can express the integral (4.12) in
terms of squared distances a;; = 2(R? - u; ;) in (D + 1)-dimensional space
(this defines the so-called cord distance on Sp which differs from the geodesic
distance):

N
ST+ xbxl = RIS @) = s, [ TTday s (lag].R) S (Las),
i=1 AN (R) (4.14)

with the measure
(D) 1 (D-N)/2
iy ([aij],R) = 27VN=DI2g, L Sh vys (ﬁ dety [R* — %atj])
(4.15)

and Ay (R) the domain of a;; where the matrix [R? — %a,-j] is positive. In

particular, the positiveness of the 2 x 2 minors ensures for any two points the

diameter inequality a;; < 4R%. Hence, Ay (R) is a bounded subset of RV (V—=1)/2,
One can check the identity

dety ([R* — ja;;]) = R*dety_i ([Dij(a)]) + dety ([-3ai;1), (4.16)

where D;;(a) is defined in (3.6) (indeed the N — 2 highest degree terms in
the polynomial expansion in R? of the Lh.s of (4.16) vanish identically!). This
implies that in the thermodynamic limit R — oo one recovers the measure (3.8)
in euclidean (infinite flat) space. Conversely, for a finite R, formula (4.16)
shows that, at short distances, the measure is dominated by the first term of the
r.h.s, i.e. the euclidean one, while the second term, which is one degree higher
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in a;;, becomes relevant for distances of order R only, hence providing an IR
regulator.

It remains to write the expression for the interaction term. In fact, the latter is
the same as in (2.23), with the matrix I7;; (2.24), or more generally the tree ma-
trix /7], (3.48), involving the massless propagator G (x,y) = [(-4 )k/2) “x, )
now on Sp. There is however no general simple analytic expression for G (x;, x;)
as a function of the distance variable a;; defined above for general D and k. For
definiteness, another simple possibility then consists in keeping a propagator on
the sphere of the form (2.31)

1 I'l-v)
4v(4r)P2yI' (v + D/2)

— G(X,‘,Xj) = |a,~j|”. (4.17)
This amounts to modifying the “elastic” term of the hamiltonian (2.1) by finite-
volume corrections

r(x) - (=¥ (x) = r(x)- [(_A)k/z 4 ostR2 (—4)%-2)12)
+est R74H(—4) k=972 4 ] r(x) (4.18)

which change its long-distance behavior (IR regulator), but not its short-distance
behavior. In particular, Schoenberg’s theorem 4.2, which is readily satisfied by
the propagator G given by (4.17), is expected to remain valid for the exact
massless propagator on the sphere. The corrections in (4.18) vanish in the limit
R — oo. In the following, we will keep in mind that the model is defined with the
measure (4.15) and the propagator (4.17). However, since we shall be concerned
with the UV renormalization of the model, we shall use formally the simpler
euclidean (R — oo) limit (3.8) of (4.15). As discussed above, they actually
share the same short-distance properties.

5. Absolute convergence fore = D —vd >0

In this section, we want to prove that

Theorem 5.1. Fore > 0 (i.e. d < d*), the integrals Zy and ZI(VM) are abso-
lutely (UV) convergent.

As in field theory, this actually is a consequence of (i) the superficial conver-
gence of Zp for any P < N and (ii) the basic factorization property (4.6), and
generalizations thereof. Since the formalism developed above can be thought
of as a natural generalization of the Schwinger representation of Feynman inte-
grals, the proof of absolute convergence will be inspired by the standard method
based on decomposition into Hepp sectors [32]. As discussed just above, we
shall always assume the (implicit) presence of an IR regulator.
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Fig. 6. (a) An example of construction of the ordered tree T = (41,42,43,44) for a set of

interaction points with |4;] < |42 < [A3] < |A4]. This tree defines the generalized Hepp sector

‘HT to which this set of points belongs. (b) Moving the point x, toward the point x; results in a
change of generalized Hepp sector.

5.1. GENERALIZED HEPP SECTORS

We start with formula (3.41) and partition the domain of integration for the
yi’s into generalized Hepp sectors as follows (fig. 6). Let us consider the N points
in R¥—! with cartesian coordinates 0, y;, ... , yy_;. We first singularize the pair
of points having the minimum mutual distance, and define 4, as the vector in
RN-! joining these two points, with an arbitrary orientation. We define 4, in a
similar way, as the vector associated with the minimal distance among all the
remaining mutual distances. A, can (i) either share one of its extremities with 4;,
or (ii) be disjoint. At the next step, we define A5 as the vector associated with the
minimal distance among all the remaining ones and such that (4, 4,,43) do not
form a closed loop (this may occur only in case (i) ). We iterate this construction,
by requiring at each step that no loop ever appears, up to the emergence of the
last vector Ax_,. We thus have constructed an oriented ordered tree T with line
vectors (Ay,...,Anx_1), which spans the NV points and is such that (fig. 6)

) < Aol < ... < JAvoi] (5.1)

We shall denote T = (4;,...,Ay_;) although the tree T is not strictly speaking
characterized by the line vectors 1, but only by the incidence matrix ¢;, of the
linear transformation from the x;’s (or y;’s) to the 1,’s. With any ordered tree
T, we can therefore associate the Hepp sector HT defined as the domain of the
yi’s in R¥~! leading after this construction to this ordered tree T, regardless of
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its orientation. It is clear that RV~! = |J, HT.

In a given sector HT, we make a change of variables from the y,’s to the 1,’s
associated with the ordered tree T (with an arbitrary choice of orientation) and,
in particular, use HOtT/9 to evaluate the interaction term. We parametrize the A,’s
by their spherical coordinates in R¥~!, namely by their modules |1,| and relative
angles 0, 1,...0,0—1 asineq. (3.26) and (3.28). The variables |4, | will play the

role of the Schwinger parameters s, in field theory. Since |A;] < |43] € ... <
|Ax_1], it 1s natural to rewrite the |A|’s as
il = BiB2... Ba-1,
[A2| = Ba2...Bn—1,
Av_1l = Bn-1, (5.2)

withO < B, < lforl €< a < N-2and0 € fy_; < oo (in the euclidean
version of the problem, thus without IR regulator). The domain of integration
DT for the B and @ variables which reconstructs the domain HT for the y;’s
in R¥~1, depends on the topology of the ordered tree. For instance, the value
B. = 1 can in general be reached inside the sector only for some domain of
the angle 6 between A, and 4, . Still, the domain DT has the following general
structure:

OSHQJ,SR' I<n<ags N-1
ﬂ;nin(T;ﬁy:}Ka;H’s) < flo < ﬂénax(T;ﬂy:y<a;0’5) l<a<s N-2

0< fBno (5.3)

where ™" (T; B’s; 8’s) and BP2(T; B’s; 6’s) are (positive and possibly vanish-
ing) functions of the 6’s and of the f,’s for y < a. The inequality gi® > pmax
for some §’s and f,.,<. would indicate that such a partial configuration of 8’s
and B,’s always lies outside the given sector. The only important properties of
DT that we shall use are:

(i) DT is by definition bounded, if one excepts the variable By_;, since by
construction S (T; ’s; @’s) < 1. The variable f§y_ itself stays bounded due
to the implicit presence of an IR regulator;

(11) det( [HJB] ), when expressed in terms of the £’s and the 8’s, is a continuous
function of these variables and vanishes in DT if and only if one at least of
the f’s vanishes. Indeed, from Schoenberg’s theorem, det( [/ aTﬂ]) = 0 iff two
points coincide, that is if their mutual distance is zero. Since this distance is by
construction larger than or equal to |4| in the sector, this implies |4;| = 0, or
equivalently 818,...By_1 = 0.
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5.2. ABSOLUTE CONVERGENCE

It is enough to prove the absolute convergence in each Hepp sector HT. Omit-
ting global factors in (3.41) we consider the integral

N-1
[ TL 6%y et 7,1 @77 (et 11,1)
MY o

N-1 N—1lao—1
= [ T (Ba)ape T] T Gsin (Ban)) ™' ~"d00s
DT 421 a=2n=1
T D s ~d/2
x (det [Haﬁ(ﬂ s,0s)]) . (5.4)
As already mentioned, we shall limit ourselves to the case D > N — 1. We
shall discuss in sect. 9 how our results can then be extended to D < N — 1. The
product of sinuses in (5.4) is thus a bounded function on DT. Possible ultraviolet
divergences may only arise from the vanishing of det[/,z], that is when some
B’s vanish. For ¢ > 0 (d < d* = D/v), it is sufficient to show that, on DT,

N-—1 N-1
[T (B)22 (det [IT5]) ™% = O(T] (B)™). (5.5)
a=1 a=1

As is clear from its definition, HaTﬁ vanishes when A, and/or A4 vanish. The
key point is that while /T, = Ap(v)|4.|*, II]; vanishes more rapidly than
|Aal”|4p]" if @ # B (see appendix C). This property is best expressed by intro-
ducing the “normalized” matrix

T
YT = L HO‘B
*F = Ap (W) |Aal"As]"

(5.6)

(such that Y = 1).
In terms of the f’s, we can write

g = ApW) BB BYAY o

Iy = Ap (W) BY.. B \Bg" .. . BF Y (B, 0s) (a<pB) (5.7)
leading to the identity

dety_ ([IT%]) = (Ap(w )N g2 g V" dety_, ([¥E]) . (5.8)

This amounts to factorizing out the maximal powers of ’s. In particular, det (Y T)
is independent of Sy_1. In order to obtain (5.5), one has to show that on DT
the positive quantity det(YT) in (5.8) cannot vanish and is actually bounded
from below by a strictly positive number. This property is proven in appendix
C. Indeed, if det(YT) were to vanish, det(/IT) would also vanish and, from
Schoenberg’s theorem, some subset of the £’s must vanish. This corresponds to
contract successively some subsets of points (by a contracting scale factor f)
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to single points. A generalization of the factorization property (4.6) (see ap-
pendix C) shows that, in such a limit, the determinant det (/7T) factorizes into
a product of similar determinants associated with subtrees of T. The normalized
determinant det(YT) then becomes exactly equal to a product of normalized
subdeterminants, each of them corresponding to a subtree of T. In the sector,
these subtrees have no coinciding (with vanishing distance) points and therefore
their determinants do not vanish. Thus, det(¥T) does not vanish even in this
limit where some £’s tend to zero.

From the above results, the quantity det(YT) in (5.8), seen as a function of 8,
(1 € y € N-2) and of the 0’s, is a continuous positive non-vanishing function
on the compact restriction of DT obtained by omitting the (here dummy) variable
Bn—_1. Therefore it admits a strictly positive lower bound on DT and thus (since
d>0)

(dety_ TN 1) 4% <est- prev.. gy~ "%, (5.9)

which is equivalent to (5.5). The convergence of the integral (5.4) in the Hepp
sector HT for € = D — vd > 0 follows.

We thus have proven the convergence of the generic perturbative term Zy of
the partition function Z (for D > N —1). Similarly, the perturbative terms Z ,(\,M )
(eq. (2.27)) of the vertex operators Z‘™) (eq. (2.25)) can be shown to be UV
convergent for ¢ > 0 and D large enough (D > N + M — 1). This follows from
the same decomposition into Hepp sectors and the use of (3.51). The proof is
then exactly the same up to the following modifications:

(I) The measure term in (5.4) is replaced by a measure similar to (3.32) for
tree variables. The difference between this measure and that of (5.4) concerns
only angular terms, which are bounded functions on DT (provided now that
Dz=N+M-1).

(II) The exponential term, depending of the external momenta, has for argu-
ment a negative quadratic form —% > apka kpdap, and is therefore bounded
between 0 and 1.

The above proof therefore carries over to this generalized case.

6. The subtraction operation R

6.1. RENORMALIZATION: INTRODUCTORY REMARKS

The purpose of renormalization is to show that the short-distance divergences
that occur at € = 0 can be absorbed into a redefinition of the coupling constants
of the model. If true, this property allows us (i) to give a meaning to the theory at
€ = 0, and (ii) to write a renormalization group equation and deduce the scaling
behavior of the model for ¢ < 0. From the analysis of divergences performed in
sects. 4 and 5, we expect that the correlation functions can be made finite by a
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simple renormalization of the bare coupling constant b in the action (2.1) [20]
b = ubrZ (bg.€), (6.1)

where u is an (internal) momentum scale and br a finite dimensionless renor-
malized coupling constant. In the case of a finite manifold with volume Vg, a
convenient and natural choice of momentum scale is 4 = R~! o« (Vs, )~ /P,
The renormalization factor Z (Z}R, € ) will be an implicit function of the param-
eters D (internal dimension of the manifold) and v (scaling dimension of the
r-field). It will be defined in perturbation theory as

Z(bg,€) = 1 + bray(€) + Blay(e) + ..., (6.2)

where the coefficients a, diverge as e =" when € — 0.

If it is possible to construct, at least in perturbation theory, a function Z in
such a way that the partition function Z(b) [eq. (2.9)] and the correlation
functions Z2M) (X,, ka;b) [eq. (2.25)] are UV-finite in the limit e — 0, bg and
4 finite, then the model will be perturbatively renormalizable. The validity of the
approach initiated in refs. [16,17,20] will then be ensured, since the standard
techniques of renormalization group theory can be applied to the model, and
can (in principle) be extended to all orders in perturbation theory.

It is interesting to compare our construction with what is usually done for
a “standard” local field theory, such as the O(n)-symmetric @; theory, whose
action in D dimensions is written as

2
H = /de [1(a¢)2 e 2oy (6.3)
, 4 2 7

where @ = {®‘, i = 1,...,n} is an n-component field. There are basically
two kinds of approaches to prove renormalizability of this theory at the critical
dimension D = 4.

The first approach (a /a Wilson) consists in introducing explicitly a short-
distance cut-off, in integrating over the high momenta modes, and in showing
that the UV divergent terms in the effective action which arise from this integra-
tion can be absorbed into a redefinition of the physical coupling constants of the
theory, so that a finite continuum limit can be reached by letting the cut-off go
to zero and the bare coupling constants flow along RG trajectories [33,34]. This
approach is physically transparent, appropriate for the applications of renor-
malization group to critical phenomena in statistical mechanics [6], and has in
some cases gained a rigorous status at the non-perturbative level [35]. However,
it requires a formulation of the theory through a lattice regularization, or a phase
space formulation, which is possible for integer space dimension D only. It does
not seem possible (up to now) to apply these methods in the framework of an
analytic continuation in non integer space dimension so as for instance to justify
the e-expansion used in the description of critical phenomena by a cb;‘_c theory.
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The second, perturbative approach a4 la Bogoliubov—Parasiuk~Hepp-Zimmer-
mann (BPHZ) [22] consists in working in perturbation theory and in construct-
ing, directly or by a recursive process, a subtraction operation on the Feynman
amplitudes of the theory, which makes all the terms of perturbation theory finite
and well defined through convergent integrals; then one shows that this opera-
tion corresponds, in the field theory language, to a renormalization of the action
by local counterterms, and that it preserves the equation of motions of the theory
and the Ward identities associated with its symmetries. From the statistical me-
chanics point of view, this amounts to a change of variables from microscopic
to effective coupling constants. Renormalization group equations and scaling
behaviors are then derived from the renormalized theory. This BPHZ formula-
tion of renormalization has a simple and general perturbative formulation for
theories in non integer dimensions D, since there are now well defined recipes of
“dimensional regularization” which allow us to construct Feynman amplitudes
for non-integer D, and to study their properties, either in the real space represen-
tation, or in the momentum space representation, or in the so-called Schwinger
parametric a-representation. The BPHZ subtraction operation can then easily
be extended to the case of non-integer space dimensions, at least in momentum
space or in the a-representation.

For our model the action (2.1) can also be scen also as that of a local field
theory in D-dimensional space for a scalar d-component r-ficld

H = / dPx [4r(x) - (~a)2r(x) + b0 (r ()], (6.4)
v

but the interaction J-term is singular and non-polynomial, which makes the
perturbative expansion very different from that of the ordinary case, since it
does not involve usual Feynman diagrams. Furthermore, the dimension of the
interaction term depends explicitly on the number of components of the field,
here d.

In principle, nothing prevents the application of a renormalization program a
la Wilson in the physical case of objects described by (6.4) with integer dimen-
sion (D = 1,2). Some preliminary rigorous results have indeed been obtained
(forthecase D = 2,d = 1,k = 2) inref. [27]. However, it is probably impos-
sible to study by such methods the renormalizability of the model at (or near)
its critical dimension D* (eq. (2.3)), since the latter is in general non-integer
(even for integer ¢ ), and between 0 and 2 (for the elastic membrane & = 2 case).
The so-called “functional renormalization”, which is an approximate renormal-
ization group scheme, has also been applied to the study of the specific case
d = 1 in ref. [36]. Such schemes are well defined by analytic continuation at
non-integer D but are only approximate and have no rigorous status.

On the other hand, in sect. 3, we constructed a perturbation theory for the
model in non-integer dimension D, via distance geometry, which corresponds
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to a dimensional regularization scheme in (internal) real or position space. In
sects. 4 and 5, we have shown that the structure of the UV divergences of the
amplitudes (poles in €) is quite similar to that of Feynman amplitudes of ordi-
nary local field theories. It is the purpose of the rest of this article to show that
it is possible to develop a BPHZ-like formalism to prove renormalizability of
this model. In this Section we shall propose a subtraction operation, which will
appear to be a generalization of the BPHZ subtraction operation for ordinary
Feynman integrals, with a similar structure in term of the so-called “Zimmer-
mann forests”. This subtraction operator, which in our case acts directly on the
integrands of interaction terms like (3.40) and (3.47), involving positions Xx; or
squared distances a;;, will be shown to make the integrals UV-finite (fore = 0),
and to correspond to a renormalization of the coupling constant b. This will en-
sure (in perturbation theory) the renormalizability of the model, the validity
of renormalization group equations, and of an e-expansion about the critical
dimension.

Another fundamental structure underlies our approach, since the position vari-
ables x;, (or the g;;’s in distance geometry) can be thought of as a D-dimensional
generalization of the Feynman a-parameters in the Schwinger representation. In
field theory, this representation consists in writing the propagators in terms of
an auxiliary o parameter via a Laplace transform of the free field propagator (in
momentum space)

1 ®© 2,2
——— =/ doem W Hm?) (6.5)
pc+m 0

and in writing all the Feynman amplitudes as multiple integrals over these a-
variables. As we have seen for our model (6.4) in sect. 3, the integrals giving the
perturbative terms (3.40) of the partition function have a form generalizing that
of a Feynman amplitude in a-representation. Indeed, the subtraction operation
and the mathematical techniques that we shall use to prove renormalizability are
in fact extensions of techniques developed by Bergére and Lam in ref. [23] to
study the renormalization of local field theories precisely in the a-representation.

This analogy of the internal position D-space representation of a statistical
mechanics model with the a-representation of a local field theory is not surpris-
ing. Indeed, for D = 1, it is well known that the Edwards model for self-avoiding
polymer (1.1) embedded in d dimensions can be formulated as a local @* theory
in d-dimensional space, with hamiltonian (6.3) (with D now formally replaced
by d), in the limit where the number of components of the field @, », goes to zero
(this is the well-known de Gennes equivalence). The length S of the polymer is
conjugate, via a Laplace transform, to the squared mass m? of the corresponding
n — 0 field theory. Similarly, for our model (6.4) (and for k = 2), in the case
D = 1 (polymer interacting with an impurity), the same mapping allows to
write it as a n — 0 field theory in the external d-dimensional space R?, with
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with b, given implicitly by the equation

1 (
b= Vs,, Z : (6.13)

However, this subtraction is not sufficient to make Z ™ finite (in terms of b, ),
since it does not deal with sub-divergences inside the subsets P. As in standard
renormalization theory, one deals with that problem by repeating this subtraction
operation inside these subsets, that is by subtracting from each Ip, the divergent
parts associated with families of mutually disjoint subsets in P, and iterating the
process. One thus obtains at a given order N a subtraction operation expressed
in terms of the sets 7 = {P,} of mutually disjoint or strictly included subsets Py,
of G. In analogy with renormalization theory in field theory, such a set F will be
called a forest* of G.

In addition, for a given forest F, at each subtraction step, that is for each
subset P, of F, we have to specify a root p; of Py, toward which we contract
Py, in order to calculate the associated counterterm. It is quite clear that, after
integration over the position variables, the resuit of the subtraction operation
does not depend on the specific choice of roots. However, it is natural to choose
for each forest a set of roots in a way which is consistent with the geometrical
picture of the subtraction operation as successive contractions of subsets toward
their root. This leads to the notion of a compatibly rooted forest, which will be
discussed below.

After these somehow heuristic considerations, let us give the precise definition
of the subtraction operation that we shall use.

Let us consider a set G of N abstract points, that we call vertices.

Definition 6.1. A rooted subset of G is a couple (P, p) of a subset P of G and
of a vertex p which belongs to P, that we call the root of P.

Definition 6.2. A forest F of G is a set of subsets P; of G such that
(i) two elements of F are disjoint or strictly included into one another, i.e.

Pi# P ifi#j
and
P;NP; = P;,or Pj,or G, Vi, j.
(i1) all elements of F have at least two elements, i.e.
Card(P;) = |Pi} > 1.
Let us note that, by convention, the empty set O is a forest.

* In renormalization theory, a forest is a family of diagrams P, such that for any k # / one has
either P, C Py, or P CPr,or P NP = Q.



F. David et al. / Interacting crumpled manifolds 597

Definition 6.3. A rooted forest Fg is a set of rooted subsets (P;, p;) of G such
that {P;} is a forest.

Definition 6.4. A compatibly rooted forest is a rooted forest such that, if, for
some I, j, P; D P; and p; € Pj, then p; = p;.

Definition 6.5. Finally with any rooted forest Fg we associate its compat-
ibly rooted forest °Fg by simply changing its roots according to the following
recursion:

(i) First, replace the root p; of each P; of the forest by the root p; of the
smallest subset P; of the forest such that p; € P; (p; may coincide with p;). One
thus obtain a new rooted forest.

(ii) Then, repeat this process for the new forest. One can easily show that
after a finite number of iterations (< Card(F)), this process will leave the
roots unchanged, so that one obtains a compatibly rooted forest Fg,.

Of course, a forest Fg is compatibly rooted iff °Fg = Fg,.

Dilation operation. For a rooted subset (P, p), we define the dilation opera-
tion D” p.py asthe transformation acting on the positions of the vertices according
to (as 1 1n (4.5))

Xp+p(xi—xp) fi€P
Xi ifi¢7>

or equivalently in distance space, according to

Dl Xi—xi(p) = { (6.14)

praij ifieP,jeP

Dippy: @ij~ aij(p) = apj— p(@pi + apj — a;j) + p*api if i€P,jgP
a,-j ifi&’P,j ¢P

(6.15)

More generally, for a function I, expressed as a function of the positions x; or
the distances a;;, we denote by D” p 1 the value of this function at the positions
(or distances) modified accordmg to (6.14) (or (6.15)).

Taylor operator. We then define the “Taylor” operator T (p ;) acting on func-
tions / by

Topnl = ;%pd"(lpi_l)Dfp’p)I. (6.16)

The functions that we shall consider are the integrands in (2.27) and (2.23),
which are of the form

]

- 1
Ig (xi, Xo) = (det [T (x1,1e6)1) ™ exp | =5 3 kakp dap(xi,icg Xa)

a,b
Ig(xi) = (det [IT (xi i)™, (6.17)

where the /7 and 4 matrices, defined in (2.24), (3.49) and (2.28), (3.52), are
functions of the positions of the internal vertices { in G and external vertices a.



598 F. David et al. / Interacting crumpled manifolds

On such functions, the effect of T (p,) is to keep the most singular term in p
when performing the dilation D, »)- For instance one operator T p ;) factorizes
Ig into

Tonle(xi Xa) = Ip(x) g 5 (X, Xa) (6.18)
where
GpP =6\ (P\{p}) (6.19)

is the reduced set obtained by contracting P into p ( \ is the usual subtraction of
sets). This operation can be repeated for rooted subsets which form a compatibly
rooted forest, and the result does not depend on the order of the T operators in
this case (commutativity). The result is a product of integrands 7 (x;) of reduced
internal subsets, times the integrand I (x;, X;) of the set G reduced by all elements
of the forest.

The subtraction operator. With these notations, we define the subtraction
operation R as a sum of subtractions for all forests. For a given forest F, sub-
tractions associated with different roots give different results on the integrand.
We shall sum over the subtractions for all compatibly rooted forests Fge, with
some weight factor W (Fgc) associated with the (compatible) rooting of F. In
order to ensure the finiteness of the subtracted integrals, the weights W (Fge)
must be such that the sum of the W’s for all rooted forests which correspond
to the same unrooted forest F gives 1. A convenient choice of weight factor
W (Fge) for Fge is to make it proportional to the number of different (not nec-
essarily compatibly-) rooted forests Fg which give Fgc by the compatibilization
operation © (i.e. “Fg = Fgc). Our final definition for R is therefore expressed
as a sum over all rooted forests, or equivalently as a sum over all compatibly
rooted forests. It reads*

R = Z[ 10 171;|(—T(7>,p))}

Fo L(P.p)eFg
=3y W(}'@c)[ I (- T(p,,,))]. (6.20)
]‘-@c (P,p)ef@c

The weight factors are given explicitly by a product over all different roots p of
Foe

W(Fe) = ] #, (6.21)

p root
of}'@c

where P, is the largest subset of the forest whose root is p.

* In this equation, Fge denotes an arbitrary compatibly rooted forest, while °Fg denotes the
compatibly rooted forest obtained from the (non necessarily compatibly) rooted forest Fg by the
compatibilization procedure of definition 6.5.



id nt_al_/ Intovactina rvimanlpd sanifalde

Subtracted amplitudes and renormalization. 'We now restrict ourselves to the
case of amplitudes defined in a finite volume, by using the IR regulator intro-
duced in subsect. 4.3 (D-dimensional sphere), that is by defining the integration
over the positions of the vertices by (4.14) and (4.15). The subtracted correla-
tion functions at order N are simply defined by applying the subtraction operator
R to the integrand of (6.7)

" ) = [ []PxR U (i Xo) 1 (6.22)

i€g
Let us note that, since the integrand for the partition function is homogeneous
under global rescaling, one has
R[lg(x;)] =0 (6.23)

(as soon as |G| > 2, of course). This means that with our choice of subtraction,
for N > 2, in the absence of external correlation points,

28 =0, N>2. (6.24)

The purpose of the next sections is to prove that this subtraction operation

makes all correlation functions finite, as summarized in the following theorem:

Theorem 6.1. For QO < v < 1, the renormalized integral (6.22) is convergent
for e = 0 and defines a finite function ZR,(VM) (X,)forD = N+ M1,

The renormalized correlation functions are defined by their perturbative ex-
pansion in powers of a renormalized coupling constant hg

22 () = 3 2 ]bVR,) 22 (x,). (6.25)
N=0

As discussed above, the forest structure of the subtraction operation R ensures

that for € > 0, there exists a renormalized coupling constant bg (b) such that

the renormalized correlation functions 2R’ (Xg; br) are equal to the original
“bare” correlation functions 2 (X,; b) for the model (2.1).

The relation between b and br can be obtained directly from the identity of
the partition functions

Z(b) = ZR(bR). (6.26)
From (6.24) we have ZR(bg) = (27)99¢ (k = 0) — br Vs, = Vge — br Vs, and
therefore, equating to Z(b), we get

bR = (2 —You), (6.27)
VSD

or the explicit series expansion in b:

ZN. (6.28)
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Notice that the fully renormalized coupling constant by satisfies the indentity

N
b=>b+ Z(b) Zn,

while the former partially renormalized coupling constant b, (built so as to
absorb the superficial divergences) satisfies the truncated equation (6.13),

(-
b = N>
VSD NZ>:2

obtained from the equation for bg mentioned just above, by replacing (—b) by
(—=b,) in the r.h.s.

Eq. (6.27) shows that, in this scheme, renormalization simply amounts to
a change of variable from the microscopic & to an effective coupling constant
bgr, directly proportional to the connected partition function of the manifold
interacting with a point. This scheme is precisely that used in ref. [20], and
generalizes that of the “direct renormalization method” [4] for the polymer
Edwards model.

Let us stress that bR as defined above is not dimensionless. The corresponding
dimensionless coupling constant can be conveniently chosen as

—dj2
= (2nap)) " bwvy, P, (6.29)

for which the Wilson function (2.6) has been calculated explicitly at one loop
[20]. In this subtraction scheme, the subtraction scale u of the general equation
(6.1) is fixed by the D-dimensional volume (which fixes the IR cut-off) x4 ~
(Vs,)~Y/P. In these notations, this precisely corresponds to bx = bg (Vs,)</P
and
: b
-1 _ Or N-1Z
Z7 (bp,€) = 5 = DZ( bV S
N2

where b is an implicit function of bg, thus br. Of course, other subtraction
schemes can be chosen where the subtraction scale u is not related to the volume

of internal D-dimensional space. They are needed in order to define the theory
(e.g. the normalized correlation functions) in the infinite volume limit.

7. Reorganization of the counterterms

7.1. FORMULATION OF THE SUBTRACTION OPERATION IN TERMS OF NESTS

As we shall see later, it will be more convenient in the proof of the finiteness of
the renormalized amplitudes to express the subtraction operation R in term of
nested subdiagrams. In the formalism of BPHZ renormalization in the Schwinger
representation in field theory, a subdiagram is a set of lines (propagators) of a
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Fig. 8. A complete diagram, with connected components P;.

Feynman graph (and has in general many connected components). A nest is then
a family of subdiagrams P, which are nested, that is included into one another
(forany k # [, P, C Por P, C P,).

In our case we shall introduce a different notion of diagram, now in terms of
vertices, rather than lines. Indeed, we have seen that the natural generalization
of Schwinger parameters s, is given by the larger set of all mutual distances
a;; between points on the manifold. In terms of links, we thus would have to
deal with the large number of (interdependent) mutual distances, which are
constrained by triangular inequalities. Therefore, we prefer to define diagrams
in terms of vertices. Denoting again by G a set of N vertices, a diagram of ¢
will now be a collection of disjoint vertex-subsets of G. Each of these subsets of
vertices can be thought of as a connected set (which stands for the the complete
set of its pairwise mutual distances in the link representation). These ideas will
be embodied in the following definitions.

We recall that a partition P of a set S is a set of mutually disjoint non empty
subsets S; of S, whose union is S itself.

Definition 7.1. (See figs. 7and 8.) We shall call a subdiagram (respectively
complete diagram) of G any partition P of some subset S of G (respectively of
G itself). The generic word diagram will be used in both cases.

The elements of this partition P are called the connected components of the
diagram P.
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Fig. 9. The complete diagram with connected components P; (dashed line) is contained in the
complete diagram with connected components Q; (full line).

Fig. 10. The intersection diagram (dark-grey diagram) of two diagrams (grey and white diagrams).

Definition 7.2. (See fig. 9.) A diagram P is contained in a diagram Q if any
connected component of P is included in one of the connected components of
Q. This will be denoted P < Q *. This defines a partial ordering among the
diagrams of G.

Definition 7.3. (See fig. 10.) We define the intersection of two diagrams
P and Q as the maximal diagram which is contained in both P and Q (it is
unique), and denote it by P A Q. Its connected components are nothing but the
(non-empty) intersections of a connected component of P and one of Q.

Definition 7.4. (See fig. 11.) We define the union of two diagrams P and
Q as the minimal diagram which contains both P and Q (it is also unique),
and denote it by P Vv Q. Let us note that the connected components of P v Q are
unions of connected components of P and Q, but in general not simply the union
of one connected component of P and of one of Q. Notice that the union and
the intersection of complete diagrams of G are complete. The maximal complete
diagram of G is G = {G}. We shall denote by G the (unique) minimal complete

* Let us stress that P < Q does not mean that P, considered as a set (whose elements are subsets
of G), is included in Q. Still if P C Q, then P < Q.
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Fig. 13. The subtraction diagram (dark-grey diagram) of a diagram (grey diagram) from another
diagram (white diagram).

diagram of G. Its connected components are the N single vertex subsets of G (see
fig. 12). For any complete diagram P, we have G < P < G.

Definition 7.5 (See fig. 13.) We define the subtraction of a diagram P from
a diagram Q as the (unique) maximal diagram contained in Q and whose inter-
section with P is empty, and denote it by Q \ P.

The usual properties of commutativity and associativity are satisfied by A and
V. However these operations are not distributive with respect to one another.
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Fig. 15. A complete rooted diagram. Its elements are rooted subsets (P;, p;).

They still satisfy the weaker relations

PA(QVR) - (PANQ)V(PAR),
PV(QAR) < (PVQ)A(PVR). (7.1)

Definition 7.6. (See fig. 14.)

A rooted diagram Pg is a family {(P,p1),..., (Pr,pr)} of rooted subsets
(Pi,p;) of G such that P = {Py,..., P} is a diagram of G.
We call

P = comp(P@) = {'Pl,... ,'Pk} (7.2)
the component diagram of Pg, and

p =r100t(Pg) = {{pP1},... . {Px}} (7.3)

the root diagram ef Pg. We shall use for a rooted diagram the equivalent nota-
tions:

Pg = (comp(Pg),100t(Pg)) = (P, p). (7.4)

Definition 7.7. (See fig. 15.) A complete rooted diagram is a rooted diagram
such that its component diagram is complete.
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o ‘2:]+1, k

Fig. 16. Two successive complete rooted diagrams 7 g, with connected components T;; (dashed
lines) and T, g with connected components 7, 14 (full lines) of a rooted nest. The roots of
these two diagrams are not compatible.

|
4J+i,k

Fig. 17. The two successive diagrams of fig. 16, with compatible roots. The roots wy, . have
been obtained from the roots of fig. 16 by the construction of definition 7.11.

Definition 7.8. A nest N is a set of T + 1 complete diagrams {7y, Ty,... , T}
such that

TO = G@s
To < TY'<Th<...<Tr. (7.5)

Definition 7.9. (See fig. 16.) A rooted nest Ng is a set of complete rooted di-
agrams {7Tyg, T, .- . , TTe } such that the associated component diagrams form
a nest

comp (Tpg ) < comp(Tig) < ... < comp(Trg). (7.6)

Definition 7.10. (See fig. 17.) A rooted nest is said to be compatibly rooted
if we have moreover

root(Tpg) = root(Tig) = ... > root(Trg). (7.7)
(Notice that root(Tpg) = Gg.) At level J, the generic element of the rooted



606 F. David et al. / Interacting crumpled manifolds

nest N reads explicitly
Tie = {(T1),15;), J = 1,...,Card(T})}. (7.8)

Eq. (7.7) means that when we consider two successive rooted complete diagrams
of the rooted nest, T and T} 1, if we consider a connected component T | 4
of Ty and its root ¢, , this root must coincide with the root ¢;; of the
connected component 7 ; of T, to which ¢; ., , belongs (since 7 is complete,
t7+1 belongs necessarily to some connected component of 7). This property
then implies by recursion that, at each level L < J, ;. coincides with the
root ¢ ; of the connected component 7; ; of 7; to which it belongs.

Definition 7.11. With any rooted nest Ng with elements given by (7.8), we
associate the compatibly rooted nest

No = {*Tsa},
‘Trg = {(T1j,wy;), j =1,...,Card(Ty)}, (7.9)

with the same connected components 7 ; at each level J, and whose roots wy ;
are obtained from the roots 7;; by the following recursion:

(1) at level 0, the roots of Tj are fixed since root(7yg) = Go;

(1) at level 1, we identify w, ; with the original root 7, ;, that is set w; ; = 1} ;
forall j = 1,...,Card(7});

(iii) at level J + 1 and for each connected component 75, ; x, we look for the
component 7 ;) of the complete diagram 77 at the preceding level J to which
the original root ;. belongs. The root w, ;) has already been constructed
at level J and we make the roots compatible between level J and J + 1 by
substituting to the original root ;; ; the root w; 1 x = wy ) (Notice that,
since Ty < Tyy41, Ty k) C Ty414 and therefore wy i) € Tyo14) -

By construction, the rooted nest NV, is compatibly rooted. Of course, a rooted
nest Mg is compatibly rooted if and only if N, = Ng, and in this case, wy; = t;;
for all J and j.

With a rooted diagram T, we associate the Taylor operator Tr, defined
simply as the product of the Taylor operators T(7; of its rooted connected
components:

Tre = [ Taw (7.10)
(T;,t;)eTy

with the convention Tz, = N if |7| = | (i.e. T = {t}), which in particular
implies that Ty, = 1l for Ty = G. We denote by || Tg|| the product of the
cardinals of the connected components 7; of the diagram comp(7g)

ITell = IT 171 (7.11)

T;ccomp(Ty )
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Proposition. The subtraction operator R (6.20) can be rewritten as a sum
over rooted nests:

1
S E—
2 [CTJQCN@( el
=-> W(N@c)[ 11 (—‘cT,@)], (7.12)
N&BC Tj@e./\/@c

where the second line is a sum over compatibly rooted nests with the appropriate
weight factor

W (Nge) =H|?1wl (7.13)

with 7, being as before the largest connected component (among all connected
components of all diagrams of A”) whose root is w. In (7.13) the product is
over all vertices of G since any point w of G is the root of at least one connected
component in the nest, namely the connected component {w} of Tp.

Proof: The global (—1) factor in (7.12) is introduced to reverse the global
(—1) sign coming from the contribution (~Ty,, )/[|Tog|| = — 1 which is present
for each nest (compatible or not).

To prove that (7.12) coincides with (6.20) one can proceed in two steps, that
we indicate below. The details are left to the reader.

We start from (7.12) as a sum over compatibly rooted nests Nge. First, we
notice that the family of all distinct rooted components, excluding single vertex
components, of the rooted diagrams of some compatibly rooted nest Mg forms
a compatibly rooted forest. Moreover, if two different compatibly rooted nests
yield the same compatibly rooted forest Fqc, the products of T’s for these two
different nests give the same result, which is nothing but the product of T’s
associated with the compatibly rooted forest Fgc. This allows us to regroup all
compatibly rooted nests which yield the same compatibly rooted forest.

Second, we have to check that the (—1) factors and weights associated with
each diagram of this group of nests sum up in order to give the correct factor
W (Fge) (6.21) for this forest. This can be seen in two steps: First, the weights
W (Nge) (7.13) are in fact equal to W (Fge) (6.21), for each Ny yielding Fege.
Therefore, at that stage, we can forget about the roots and the weights ¥ and
concentrate on the (—1) factors associated with the diagrams of the nests. It
remains to show that, when summing over all nests A/ which yield a given for-
est F, one has (—1) x 3, - (—1)CdN) = (_1)Card(F) This relation can be
easily checked for forests made out of two subsets, which are either disjoint or
included into one another*, and then extended by a recursion on the number of
*If F = {81, 5,:}, either S} NS, = @ and there are three nests {Gg, Go V {S1,82}}, {Ge,.Ge V

{$1}, Go vV {S1,5:}} and {Ge, G V {2}, Go Vv {S], S2}}, with respectively 2, 3 and 3 diagrams;
or §; C S, and there is only one nest {Gg, G Vv {S1}, Ge V {S2}} with 3 diagrams.
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elements of the forest.

7.2. SECTORS

Definition 7.12: Saturated nest. A saturated nest S of G is a nest with N =
Card(G) (distinct) elements *, which we call R?, ..., RN-1,

The cardinal of a saturated nest is therefore maximal. A saturated nest is
actually constructed from G, (the complete diagram made of N single point
connected components) by fusing recursively at each level R! exactly two con-
nected components of the preceding level R/~! until G = {G} is obtained. A
saturated nest is therefore characterized as follows:

(i) its minimal diagram is R® = G,

(ii) its maximal diagram is RV~! = G = {G},

(iii) Card(R!*!') = Card(R!) — 1 forall/ = 0,... ,N—1

Saturated nest associated with ordered trees. The notion of saturated nest oc-
curs naturally when spanning integration points by frees, as was done formally
in subsect. 3.7 . Indeed, let us consideratree T = (A,;a = 1,... ,N—1), con-
sidered as ordered by increasing values of o (this order will actually correspond
to increasing mutual distances, in a generalized sense to be made precise below).
Such an ordered tree T generates naturally a saturated nest S(T) as follows (see
fig. 18a):

(i) R® = Go;

(ii) atlevel I (1 < I € N — 1), we consider the line « = I with end points
ia, i'q and set R = RI-1v {{i,,i',}}, which corresponds to the fusion of the
connected component of R/~! containing i, with that containing i’,.

Of course, different trees T can yield the same S(T). This allows us to classify
trees into equivalence classes, by regrouping all the trees T such that S(T) = S
for any given saturated nest S. If two ordered trees T = (A,;a=1,... ,N—1)
and T = (A, @ = 1,..., N — 1) are equivalent, then the transformation from
A to A' is such that

ho = o+ Y Iy, ] =0,%1, (7.14)
7<a

where ¢ are coefficients equal to 0 or +1 (which are in general further con-

strained so that T and T’ actually span the same set of integration points).
Oriented ordered tree associated with a compatibly rooted saturated nest. Con-
versely, if the saturated nest S is compatibly rooted, there is a natural way to
associate with Sg an oriented ordered tree T(Sg) (see fig. 18b). Indeed, by def-
inition, a saturated nest S = {R!} is constructed by fusing recursively at each
level R! exactly two connected components R/=1% and R/=1*" of the preceding
level R’~!. Denoting by i; and i'; their respective roots in R% ', one of these

* We use superscripts here in R! rather than subscripts as before in 7 for future convenience.
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Fig. 18. (a) Saturated nest associated with an ordered tree T = (4,,45,43,44). The nest is made

of four diagrams. Each diagram is represented by the contour of its connected components with at

least two vertices (the diagrams 1, 3 and 4 have only one such connected component, the diagram

2 has two such connected components). (b) Oriented ordered tree associated with a compatibly

rooted saturated nest. We have first assigned compatible roots to the saturated nest of (a) (here

the diagrams 3 and 4, and the connected component on the right of the diagram 2 have the same
root) and then constructed the oriented ordered tree from these roots.

roots, say iz, is the root of R/~"¥URI~'K" in RL, since the rooting is compatible.
In this case the other root i’y can no longer be the root of any connected com-
ponent of the diagrams R!' for I’ > I. Therefore, if we define by 4; = x; ;= Xi,
the oriented line vector joining the positions of the roots iy and i';, the set of 4;
for I = 1,...,N — 1 defines an oriented ordered (by I') tree, which we denote
by T(Sg ). Of course, we have by construction S(T(Sg)) = S. Moreover, one
can easily check that the tree T(Sg) has the following property: for any I and
I’, the path on the tree joining the two origins x; and x; of the vectors A; and
Ap passes only through vectors Ax for K > min(Z,1).

Although this construction does not play any role in the present sect. 7, it will
turn out to be useful in sect. 8.

Definition 7.13: Extended Hepp sectors. Now we want to associate with an
unrooted saturated nest S an extended Hepp sector, defined from the Hepp
sectors attached to ordered trees constructed in subsect. 5.1 .

If we consider as in subsect. 5.1 the N points as being embedded in R¥~! with
cartesian coordinates 0,y;,...,Vny_;, and denote as before HT the domain of
the y;’s defining the Hepp sector attached to the ordered tree* T, we define the
Hepp sector 1S as the union of all Hepp sectors attached to all ordered trees T

* We recall that the domain HT corresponds to the domain where the A,’s obtained from the y,’s
by €q. (3.43) are actual successive minimal distances, and in particular satisfy |4,] < ... < JAx_ ]
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such that S(T) = S, that is the domain of the y;’s given by

= U n. (7.15)
T:8(T)=8

This extended Hepp sector is best described by the vectors 1, associated with a
given (arbitrary) tree T such that S(T) = S. Let us stress that now the A,’s are no
longer successive minimal distances when the y;’s move everywhere inside HS,
but are so only for y;’s inside the subset HT of HS. In particular, the inequalities
|Aa| < |Aas1]Of (5.1) are not necessarily satisfied inside H®. Still, for y;’s inside
#S, one can find a tree T° such that S(T°) = S(T) and {y;} € HT". The A2
associated with T satisfy for this set of y;’s the inequalities [A%] < ... < |A%_,I.
By construction, one has inside HT at each level a: |29 < |4, and, asin (7.14),
a relation between the 1,’s and the AQ’s of the form 2, = £A% + 3 c2A% with

coefficients c¢2 equal to 0 or £1. We can thus write

Mol = [£40 + D chis)|

y<a

< A+ D ledliag)

y<a

<+l

y<a

< a)iY). (7.16)

y<a

We thus have the set of inequalities
4] < Mol < a2 (7.17)
which, together with |43] < |22 || implies
Mol o)
a1l

This is an example of constraints satisfied by all tree variables compatible with
the nest S in the extended sector HS, which is a relaxed extension of (5.1).
Another consequence of (7.17) is that if T and T are two trees such that S(T) =
S(T') = &, then inside H® the corresponding line vectors satisfy

(7.18)

Ul
a M T
||;:a|| <« for o > a. (7.19)

These bounds will be useful in sect. 8.

The corresponding extended Hepp sector A;SV in the space Ay of mutual
squared distances a;; between vertices (see sect. 3.2) can be described simply,
without reference to ordered trees. Given a saturated nest S = {R?,... ,RN-1},
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let us consider, for a given diagram R/, the smallest squared distance between
vertices which belong to two different connected components of the diagram R!
(minimal squared distance between connected components):

Amin (RY) = min min  (a;) ).
R"k#R'»'ER’ iE'R”‘,jER“

For the minimal diagram R® = G one has obviously

Gmin (Ge) = min(a;;),
i#]

and by convention for the maximal diagram G = {G} (which has only one con-
nected component) we set dmin (G) = oo. One can check that one has always, for
any saturated nest, dmin (R®) < @min (R!) < ... € @min (RY"2) < @min (RY™1).

The extended Hepp sector A$, associated with the saturated nest S is the subset
of Ay such that

Qmin (RO) < Qmin (Rl) <...< amin(Rth) < @min (RN_-I) . (7.20)

One can check that the sectors associated with two different saturated nests are
disjoint Af, NAS = @, and that Ay is the union of the closure of sectors over
all saturated nests

Av=|J A%

S saturated

7.3. EQUIVALENCE CLASSES OF NESTS: AN EXAMPLE

In order to prove the finiteness of subtracted correlation functions ZRI(VM) in
(6.22) when € = 0, we shall proceed in a way similar to what was done in sect.
5, by decomposing the domain of integration over positions into extended Hepp
sectors and prove that the integration of R[/g(x;, X,)] inside each extended
Hepp sector yields a finite result.

We have seen that UV divergences arise generally when successive subsets of
points coalesce. Inside the Hepp sector ¥, these successions must be compatible
with the nested structure of S. From (7.12) the subtracted integrand is a sum
of contributions associated with (rooted) nests Vg, and many contributions
(for different nests) give the same divergences inside 7S. The general strategy
to prove that the subtracted integrand R[Ig (x;, X;)] is convergent inside the
sector 1 is to regroup the nests giving the same UV divergences into equivalence
classes, and to show that all divergences cancel within each equivalence class.

Let us first consider the simple example of a sector associated with a saturated
nest S such that, at some level I, the diagram R = R’ has one and only one
connected component R with |R| > 1 and let us focus on the behavior of the
subtracted integrand when the points of R coalesce. More precisely, let us con-
sider the contribution in R of a rooted nest A/ with one single rooted diagram
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Ty where Tg also has one and only one element (7,w) with |7| > 1 (notice
that the nest Vg is automatically compatible). The corresponding contribution
is {(up to a factor —1/|7):

Tz ulo(Xi, Xa) = I (xi) gy - (X, Xa) (7.21)

where we used as before in (6.19) the short-hand notation G4, 7 = G\ (7 \ {w})
which simply corresponds to replacing 7 in G by its single vertex w. We now ask
which are the nests whose contribution leads to the same UV behavior when the
points of R coalesce, that is when the positions x; for i € R tend altogether to an
arbitrary position xg: we shall denote this limit by R — 0. In this limit, the first
term I7(x;) in the r.h.s. of eq. (7.21) factorizes into Ir~7 (X;) I,%(RHT) (x:),

where the notation “/,” means that the vertices of R N7 have been replaced by
a single contraction vertex 0 with position xy. The factorization of the second
term / G hoT (xi, X,) depends on whether or not the point w belongs to R.

Case (a): w € R.
If w € R, then we get Ig,{UT(xf’ Xg) — IRA; (ROT) (x)1

g/o(’RUT) (xi, Xa). The
contribution of T (7.21) thus behaves as

Tarwle(xis Xa) "~ Inar (x) It rory XD Ligog f,r (X0
XIg[,(RUT)(xi’Xa)’ (7.22)

where we used the fact that R/, (RNT) = (RUT) /7. Inview of (7.22), let us
now consider the product of Taylor operators associated with the larger rooted
nest Ng defined as (see fig. 19)

Ny = {{@RNT,w)}, {((T.w)},{(RUT,9)}} (7.23)

with “e” standing for an arbitrary compatible root*. This new nest can be seen as
resulting from the superposition of the two nests Vg and S at level Iy. Applying
the corresponding three T’s on the amplitude /g one obtains

H T, [Ig(xi, Xa)] ox IRmT(xt)IT/w(RmT)(Xi)I(RuT)AﬂT(Xi)
T@GN@

<1 oy (% Xa) - (7.24)

In the same limit when all points in R coalesce to the single point 0, w and the
compatible root e are replaced by 0 since they both belong to R, and (7.24) is
equal to the r.h.s. of (7.22).

* This root is either w or some vertex of R \ 7. We use here the convention that a diagram is
explicited by keeping only each of its connected components having more that one element. For
instance, {(7,w)} is a short-hand notation for (Ge V {7}, w) which means that the diagram
must be completed by the set of all remaining isolated points not already in 7, while w consists
of the root w plus these isolated points. Similarly, Eq. (7.23) is a short-hand notation for
No = {(Go,Gp), (Gg V {”Rr‘uT},w), (GoVv{T}w),(GoV{RUT}, e)}.
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RNT T RNT T
(b)

Fig. 19. Schematic picture of the rooted nest Ny when the root w of 7 (a) belongs to R, or (b)
does not belong to R.

Case (b): w ¢ R.
If w ¢ R, then we get Ig/wT(x,»,Xa) — Iir\1) (Xi) I(gAUT),é(R\T) (xi, Xz) and
the contribution of 7 (7.21) behaves as

T e (xis Xa) "=° Irar (xi) L7 ror) () Tryt (X0)

XI(Q/L,,T)/,(R\T)(XiaXa)~ (7.25)

The larger rooted nest Nz which gives a similar contribution when R — 0 is
now defined as (fig. 19)

Ko = {{RNT, 0} {T )L {R\T,0),(Tw)}}.  (7.26)

Notice that the largest element of N is now a diagram with fwo connected
components R\7 and 7. The two cases (a) and (b) can be unified in a single
formula. If we denote Ty by (7, w) where @ = root(Tg) = {{w}}, the nest
Ng can be written in both cases as

No = {(RAT,0),(T,0), (RVT, )}, (7.27)

where we introduce the union operation V,, of an unrooted diagram R and a
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Fig. 20. The unrooted complete diagram R\, T (thick full lines) obtained from the unrooted
complete diagram R (dashed lines) and the complete rooted diagram 7 (thin full lines). The
diagram R \;, T is obtained by fusing each connected component of 7" to the connected component
of R to which its root belongs, and cutting it out from all the other connected components of R.

rooted diagram (7, w)

RV,T = [R\ (T\w)] VT = [R\ {comp(Ts) \root(T@)}] v comp(Ts) ,
(7.28)

where “\ 7 is the subtraction operation acting on diagrams as in definition 7.5
in sect. 7. The result of this operation is an unrooted diagram equal to {R U7}
if the root w of T belongs to the connected component R of R, and equal to
{(R\T,T)} if w does not belong to R:

{RUT} if weRr

{(R\T,T} ifw¢Rr (7.29)

RV T = {

The operation R V,, T thus consists in a fusion operation of R and 7 into RUT,
followed by a cutting out of T from R U 7 if the root w is not shared by R.
The above expression for RV, T can be applied to the more general case when
R = {Ri}and Ty = (T,w) = ({7}, {w;}) have more than one connected
component, with the result that each connected component 7; of T is fused to
the connected component R’ of R which contains its root w;, and cut out from all
the other connected components of R which it intersects (see fig. 20). Note that
the operation Y, crucially depends on the position of the roots of the diagram T
on the right with respect to the connected components of the diagram R on the
left, but that these roots are not retained as roots of the resulting diagram R \,, 7"
which by definition is unrooted. The product of Taylor operators associated with
the nest Ny as given by (7.27) still corresponds in this case to the combined
result of the Taylor operation Tr, followed by the coalescence of the Card (R)
connected components of R toward arbitrary points.

Finally, we return to the original question of finding the nests AN'q which
give the same UV behavior as 75 when components of R coalesce. These are
the rooted nests which build the same factorized integrand (7.22) or (7.25)
(possibly generalized to several connected components). They are characterized



Napid ot alel Jotoracting copanlod v amifalde A18

by Ng C N C Ng. We therefore get the four nests
No = {(T,)},
Nez = {(RAT, %), (T )},
Ney = {(T,0), (RVWT, o)},
No

{(R/\ T,o),(T,w),(vaT,o)}. (7.30)

One can check (see appendix D) that the (—1) and symmetry factors associated
with these four nests sum up to give zero exactly (this includes a sum over the
unspecified compatible roots e). As a consequence, the divergences induced in
the contributions of the four nests above by the coalescence of the points in the
subset R cancel exactly. This property can be generalized to nests A with an
arbitrary number of diagrams as well as to successive coalescences associated
with a saturated nest S. Indeed, from the nest Vg, we can build a family of nests
N4 giving the same divergences when points coalesce successively according to
the nested structure of S; we then can check that these divergences cancel exactly
within the obtained family. The details of this construction will be discussed in
subsect. 7.4.

7.4. EQUIVALENCE CLASSES OF NESTS: GENERAL CONSTRUCTION

In this section, we present a general procedure for classifying nests according
to the diverging behavior of the associated counterterm in a given sector. Our
construction is inspired by a construction by Bergére and Lam in ref. [23] in the
context of local field theories in the Schwinger representation. Extensive modi-
fications are however necessary in order to make this construction applicable in
our context.

We denote by S = {R% R'... RN~} a saturated nest of G, which will be
kept fixed throughout this section. We are going to regroup all rooted nests into
equivalence classes, associated with S.

Tableau construction. From now on and until the end of the article, the only
rooted nests which we shall consider will be compatibly rooted nests.

Let us thus consider an arbitrary compatibly rooted nest Ng = {Tyg;J =
0,...,7} where Ty = (77, wy). For this compatibly rooted nest, we define the
(unrooted) complete diagram

R =R, Ty = (RI\N(Ty\w))) VT, (7.31)

and build the tableau



616 F. David et al. / Interacting crumpled manifolds

To RIANTy  RIANTy ... RIAT, ... RYZZAT, RY'AT

T\, RIAT, RIANT, ... RIAT, ... RV72AT, RMI'AT,

Ty RyAT ;0 RAANT oy oo ROAT .. RYTEAT . RYTIAT,

Tr Rl7~/\TT+1 R%w/\TT_H Rlzv/\TT+1 R¥—2ATT+1 RIT\{_I ANTry
(7.32)

where by convention 77, = G = {g } Notice that for R® = G, we have
RY = RY ATy, = T;. Hence the first column 7; = RY A Ty of the tableau
can be seen as being built from R, with the same structure as the other columns.
Notice also that since R¥~! = G, RY~! = G forany J, hence R "' AT, =
T; ;1. Therefore the last element of a given line of the tableau is identical to the
first element of the following line. Finally, since R < R’*!, then R}, < Ri*!
and

R‘I,/\TJ+1 4R|1]+1/\T_]+1. (7.33)

Therefore, reading the tableau in the natural order, i.e. reading successive lines
from the left to the right, we get a totally nested structure, which defines an
unrooted nest &. This nest N (S, Ng) depends on both the sector nest S and
the subtraction nest M. By construction, A contains all the diagrams of V. Of
course, it may happen that two successive elements of the tableau are identical
(this is for instance the case for the last element of a line and the first element
of the next line), hence the tableau contains redundant information.

The nest A is a generalization of the one constructed in the previous section
(Eq. (7.27)). Indeed, if we consider the nest Np = {(Go, Go), (T, w)} and set
R> = R at level I of the nest S, we obtain in this case the simple tableau

To=Go ... ROAT) = (RVG,Go)ANT = RAT...
T\=T ... ROAT, = (RVLT)ANG = RV,T ... (7.34)

where only columns 1 and I are specified. The general construction (7.32) there-
fore reproduces in this simple case exactly the largest nest A (here unrooted)
of (7.30).

Reduction of the tableau. Going back to the general case, we are now inter-
ested in finding the smallest rooted nest N which, under a construction similar
to (7.32), gives the same nest N (that is N (S, N3) = N (S,Ng)). More pre-
cisely, we must remove from N, the diagrams 7; which are not necessary to
build N. Since 77 is involved in the construction of the two lines J — 1 and J,
removing 77 from the nest Ay amounts to replace these two lines by a single
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line, which will be built directly from 7;_, and 7, . In this process, N diagrams
will be lost. Therefore, removing 7 will be possible if the tableau contains N
redundant diagrams, which happens when at least N + 1 successive diagrams
of the two lines J — 1 and J are identical. This implies that there exists an /;
such that the two vertically adjacent elements of the column Iy coincide at levels
J—1and J:

R ATy =RPAT (7.35)
that is, on the tableau
To RYANTy ... RPAT, ... RYT'AT
1o N-1

T, RY_ AT RY ATy RY-IAT,
J—1 "¥J—1 J ... J-1 (7.36)
Ty RYAT;, ...| ROATw | RN-'AT,,,
Tr R17~/\TT+1 R;Q/\TT_H RJYY_I/\TT+1

Then, by the inclusion property (7.33), all the diagrams of N’ between RIJO_l ATy

and Rﬁ’ A T, are identical, hence equal to T itself. We thus do not loose any
information by replacing the two lines J — 1 and J by the single line

T)_1,RS_ ATy,..., RO ATy
=Ty
=RoAT RY-TAT (7.37)
J FAS EREEEEEAN { J+1- .

The important point is that this new line is precisely the one which would have
been constructed directly by (7.32), when applied to the nest

Nl@ = (TOeB,TI@,--- ,TJ—1$,TJ+1®,--- ,TT@)

obtained from Ny by removing Ty4 (notice that the induced rooting of this
nest remains compatible). Indeed, the construction (7.32) for A simply cor-
responds to suppressing the J-line and to substituting to the (J — 1)-line the
new line, constructed from 7,_;q and T, q:

Ty_1, R_l,vl/\T_]_*,l, cees Rﬁo_l/\T_]_*_l, cee R.],V:ll/\T_]_'_],
(7.38)

the other lines remaining unchanged. It is the purpose of appendix E to establish
in detail the statement, on which all our construction will rely, that the lines
(7.37) and (7.38) are actually identical when (7.35) is satisfied. As a conse-
quence, the nests ' (S,Ng) and N (S,N"'g) are equal. In particular, we note
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that T, while absent from A, is still present in AV (S, N”g) since
T;=RY ATy (7.39)

The “suppression” of line J from (7.36) when (7.35) is satisfied, consistent
with the construction of N (S, Ng), can be visualized as follows:

J-1l ———1

J-1 Iy
J IOI_’

J+1

where the double and triple lines represent successively nested (in general dis-
tinct) diagrams, while the single line represents a series of identical diagrams.

We therefore have at our disposal a reduction procedure, which allows for
the substitution to the nest g of the reduced nest Ay, with one diagram less,
which still generates the same nest AV. This process can be iterated to suppress
all the diagrams 7 of the original nest AV which are such that they satisfy the
coincidence property (7.35) for at least one Iy (1 € Iy < N —1). When two
successive lines possess this coincidence property, for some Iy and I, the reduc-
tion is associative, that is its result is independent of the order of the operations,
as represented on the following picture:

=1y ::::dy ...
— I e I, ==
— I I, - =1 I ==
............ = - —1
— Iy | =
Notice furthermore that a configuration like
J-1 ——1
J I Iy
J+1 I

which would cause obstruction to associativity, is actually forbidden since it
would imply Ty = Ty, which is ruled out by definition. Notice finally that the
“suppression” of a line J does not create new coincidences (that is coincidences
which did not exist before suppression ). Indeed, the only pairs of vertical neigh-
bors which are modified by the suppression are those of the lines J —2 and J — 1
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for I > I on the one hand, and those of the lines J and J + 1 for I < I, on the
other hand, as can be seen on the following picture:

J=2 Triiiiizioio:
J-2 tirriiziiiio:
J -1 Iy #
— J -1 Io
J Iy #
J 41 iz
J 41 i

A new coincidence would imply 7;_; = T in the first (upper right) case, and
T; = Ty, in the second (lower left) case, and is thus impossible. Therefore,
after “suppression” of all the lines of the original nest which present a vertical
coincidence with the preceding line, we end up with a tableau which no longer
contains any pair of coinciding vertical neighbors. We denote by NV the nest
resulting from this reduction procedure, that is the subset of A’z made of the di-
agrams T g for values of J corresponding to lines which remain after reduction.

Equivalence classes of nests. The above reduction allows to assign to any
compatibly rooted nest NV a unique minimal nest N2, which is a subset of the
original nest Mg (and in particular whose compatible rooting is the restriction of
the original rooting of Ng to A’?), such that N'(S,NQ) = N'(S,Ng), and whose
tableau (7.32) is “minimal”, i.e. has no vertically adjacent coinciding elements*.

We define the equivalence Class Cs (./\/'6% } of a minimal (with respect to S) nest
Ng as the set of all compatibly rooted nests Ny which lead by reduction of their
S-tableau to that minimal nest N3

No €CsW0) = N 2 {7 (S, Np) "2 AQ.

Of course, if N is minimal with respect to S, one has N3 € Cs(N3). For
any Ng € Cs(NJ), one has N (S, Vg ) = N (S,NQ).

We have the following characterization, for any compatibly rooted nest NVg
(with A the corresponding unrooted nest):

Theorem 7.1. Characterization of Cs(N3).
Ng €Cs(VQ) <= (a) N CNgand (b) N CN(S,ND). (7.40)

A nest of the equivalence class Cs (V) is thus constituted of a// the diagrams of
N plus some of the diagrams of V' (S, NQ) not in A’°. Its rooting is constrained
to be both compatible and such that its restriction to A’ is the rooting of V3.
Conversely, one builds all the elements of Cs(NJ) by completing N by an
arbitrary number of diagrams of A/ (S, N3) \ N° (that is diagrams of A (S, N3)

* In general, this tableau still contains series of identical successive elements, but not more than
N successive elements can be identical.



620 F. David et al. / Interacting crumpled manifolds

not in A?), and assigning to these extra elements any roots compatible with the
roots of Q. The direct implication (=) is immediate since

(1) the reduced rooted nest is always a subset of the original rooted nest, hence
(a);

(i) any diagram of T of Ng belongs to N' (S, Ng) and the reduction process
is defined so as to leave N invariant. Thus T, € N'(S,NQ), hence (b).

The reverse implication (<) is not immediate and is proven in appendix F.

Notice finally that the diagram G = {G} is always a diagram of N (S ,Ng)
since the last element (/ = N — 1) of the last line (J =7) of the tableau of
any nest is always equal to G. As a consequence, G is never a diagram of N’G%
since it can be rebuilt from A2 by the tableau construction. Actually, if a nest
contains the diagram (, the line of its tableau built from G has all its elements
equal to G, while the preceding line has its last element equal to G; this leads to
the coincidence property for these two lines for J; = N — 1, indicating that G
is to be suppressed in the construction of 3. Therefore, for any minimal nest
N, one has G € N (S,N3) \ N

7.5. FACTORIZATION OF THE R OPERATOR INSIDE AN EQUIVALENCE CLASS

As we have seen before, the reason for classifying nests into equivalence classes
was to regroup nests whose diverging contributions in a given sector S in the
R operator (7.12) cancel exactly. Given a sector nest S, it is therefore natural
to rewrite the R operator, which is a sum over all compatibly rooted nests, as a
sum of reduced operators R ND ) each of them involving all the nests in the

equivalence class Cs (V3) of a minimal (with respect to ) nest N3. This reads

R= Z Rcs(/\/g))’ Rcswg))=— Z W (Ng) H (—TT@).

N minimal Ng€Cs(NY) To €N
wri §

(7.41)

Each operator R ~2) can then be rewritten as a sum of factorized contributions
associated with different rootings of the elements of the equivalence class, as will
now be explained.

We will need a lemma about partial sums over compatible rootings of nests.
Let us consider a nest M = {Ty;J = 1,...,7}. We denote by &4 a compatible
rooting of M, that is simply the specification for each diagram 7y of M of a root
diagram w; such that Mg,, = {(Ty,w,);J = 1,...,T} is a compatibly rooted
nest.

Lemma 7.1. Given a compatibly rooted nest Mg and an unrooted nest M
such that A/ C M (that is all the diagrams of A are diagrams of M), we can
consider all the compatible rootings &4 of M such that Ng C Mg,,, that is the
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compatible rootings of M whose restriction to A/ is the rooting in Ng; we then
have the useful sum rule for the weights (7.13):

> WMg,) =W(Ng). (7.42)

@MIN@CM@M

This lemma is proven in appendix G.
We can now use this property in the case of an arbitrary nest N € Cs(N3)
if we choose

M = RSN (7.43)

since, from (7.40), we have AV C M. Inserting (7.42) in the formula (7.41) for
R., w2)s We get

Resvg) = -~ > > WMe) I (-7z)

Ng€Cs (VD) N@?]&‘é ToENy
=- > WMe) > ][ (-Trn)
M Ng: T@EN@
N§ Mg Ny cNgTMg
= Z WwiMe) [ (=Tr) [  (1-Tz).
N%CM@ oM Te€(Ma\NG)

(7.44)

where Mg stands for Mg, . In the second equation, we used the characterization
(7.40) of Cs (Ng). The sum rule (7.42) allows us to reconstruct all possible
rootings of the nests A/ in Cs (./\/6%) with the appropriate weight, by first fixing
the roots of Mg by a compatible extension of the roots of V', and then restricting
these roots of Mg, to all intermediate subnests A" between A? and M (notice
that a given rooting of such a nest A’ can come from different rootings of M).
In the last equation, we used the fact that the set of rooted nests Ay such that
N§ C Ng C Mg is built by taking necessarily, on the one hand all the diagrams
T3 of the minimal nest V3 and, for each diagram Ty of Mg \ N2 on the other
hand, deciding whether to take it or not, hence choosing 1 or —T7, in the
expansion of the product of Taylor operators.

Notice finally that the compatibly rooted nests Mg involved in (7.44) can
actually be characterized independently of the minimal nest N from which they
are built, by the property

N(S,Mg) = M. (7.45)

A compatibly rooted nest satisfying (7.45) will be called maximal with respect
to §. With this definition, the equations (7.41) and (7.44) can be replaced by
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the single equation
R = z W (Mg)Rum,, (7.46)

Mg maximal
wrt 8§

with

Ruo=— ] (%) II (1-7zn), (7.47)

T2 ey Te€(Mg\NQ)

where Ne% 1s now the minimal nest obtained by reducing the tableau of the
maximal nest Mg,.

8. Proof of UV convergence

We are now in a position to prove the finiteness of subtracted correlation
functions Z“;VM) in (6.22) when € = 0. Our strategy is the following:

(I) First we partition the domain of integration over positions into extended
Hepp sectors (as defined in subsect. 7.2), each of them being characterized by
a saturated nest S.

(IT) In each sector S, we reorganize the R operator by use of (7.46) as a sum
of operators Ry, associated with the different nests Mg maximal with respect
to S.

(ITI) At the end, one can write ZR,(VM) as

ZR](VM)(Xa) — Z Z W(MEB)/HS HdeiRM@ [Ig(xi>Xa)]-(8-1)

S Mg maximal icg

w.rt.S

It is therefore sufficient to prove the finiteness of the integral

| T1 6% Rasg s ot Xa . (8.2)
H® jeg

where we integrate over the domain ‘HS defined by (7.15) * with the measure
(3.24), and where Mg 1s any nest maximal with respect to S.

(IV) Using the factorized form (7.47) for Ruq,, we first apply the Taylor
operators T o associated with diagrams of the minimal nest M. This results in
factorizing Ig (x;, X,) into a product of amplitudes I = []J#.7 /7 for suitable
reduced diagrams 7 made of subsets 7 of G.

(V) We show that the product of the remaining (1 — Ty, ) operators acts
independently on each subdiagram T, leading to a subtracted integrand for 7.

(VI) We show that this subtracted integrand, once integrated over points in
the Hepp sector H®, yields a finite result when € = 0.

* More precisely, we integrate over the x;’s such that the y,’s defined by y; = x;, — x; are in
HS, since a Hepp sector is actually defined in terms of relative positions.
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Points (I)-(II1) have been already discussed in sect. 7. We now show points
(IV)=(VI) in detail.

8.1. FACTORIZATION OF Ig(x;, X4)

In order to precise the action of Raq, on I (x;, X,), let us first have a closer
look at the tableau M = N'(S,N)). We denote by 79, J = 0,... ,7 the diagrams
of N9, and by T/

T)= (R'VpTHAT),y  O<ISN-L J=0,..,7 (83

the diagrams of M. By convention, we have set TT0 +1 = G. Starting from the
factorized form (7.47) for Ry, (and using the fact that the T°’s commute), we
first apply the Taylor operators TT?@ associated with diagrams of the minimal

nest V2. This results in factorizing I (x;, X;) into
&

T
I (Tn,) It Xo) = Iy, (0 Xo) T[] 1060, (84)

70 0 —
Jo €N$ J=1
where

TJE T-?/“’(},IT})_I (85)

is the (uncomplete) diagram obtained from T}) by replacing by its root each
component of the preceding diagram 79_| in . Each 7 is made of Card(77)
connected components 7;; and in (8.4) the amplitude for 77 is by definition
equal to

Card(T7)
Iy, = H Iz, . (8.6)
j=1

By convention, if some connected component is reduced to one single vertex,
the corresponding amplitude is 1. Eq. (8.4) establishes point (IV).

Similarly to (8.5), it is convenient to define T}_l as the (uncomplete) diagram
obtained by reducing in some diagram of the tableau 77 _, the preceding minimal
diagram T9_, to its root diagram w9 _:

1], = T;fl/w(}ilT?AI- (8.7)

Notice that T9_, = 9_, and that T ! = 7.

From (8.3), the connected components of the diagram T}_l are made out of
the intersection of the connected components 7}, j of T, and of the connected
components R of R!

T = RN, (8.8)
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Furthermore, from the compatibility requirement for Mg, the root in My of
any connected component of the diagram T}_l automatically belongs to the cor-
responding reduced connected component of the reduced diagram T}_l. There-
fore, the rooting of Mg, naturally induces a rooting for the diagrams T’ . We
denote by wj’il’j the root of Tf’_il’j and by TJI the set of all (T’ ’l j,wj 1j)
for varying i and j.

Let us for a while concentrate on what happens inside some given subset 7 ; X
which we shall assume to have at least two vertices (Card(7; ;) > 1). We can
consider the family of different (and non empty) rooted subsets (T ’1 e wﬁ’ i ,)
foralli = 1,...,Card(R!) (with J and j fixed) as a complete rooted diagram
TJ’_I’ o of the subset 7},1- in which we are now working. From (8.8), this is
nothing but the restriction of the diagram R’ to this subset 77 ;, together with
a set of roots. The family of distinct TJ 1,jg for varying I forms a compatibly
rooted and saturated nest, Sy ja, of 17 j, which is nothing but the restriction of

the saturated nest S to 77, with a given rooting. We define
Todq( 7 i .l =11
nd(, ) = {1 > 1:7]_, # T]71} (8.9)
as the set of indices / (of the sector S) such that inside 7}, a new element T
appears at level / in the saturated nest Sy ;.
We now again consider the whole diagram T, and define, in a way similar to
(8.9):
g _ .l #I—1] _ .l I—1
md)={1>1:T_ 2T} = {1>1:7]_ 2 171} 8.10)
as the set of I’s such that a new diagram appears in the tableau at level I between
TY9_| and TY. Of course, if 77 | # T}7|, there exists at least one j such that
TJI—I,J‘ # TJI }J and thus
Cardu}’)___
Ind(J) = |J Ind(J.)). (8.11)
j=1
We moreover denote
() = min (Tnd(/)), 1™ (J) = max (Tnd(/)) ~ (8.12)
with the property that
() =min{l: T)_, = Ty} =min{7: T)_, =79} (8.13)

is the index I such that 79 appears at first in the tableau. We set

Ind(J) = Ind(J) \ {I™(J)} (8.14)
(which may be empty). Finally, we define
T+1

Ind = U nd(J). (8.15)
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With these notations, the (1—T) operatorsin (7.44) act independently on each
amplitude I7,. The operator (1-T TL, )actson I, only if K = J—1, and results
inthiscasein (1 -7 (A YT, ] We thus can express Ry, [/g] as a product of

subtracted amphtudes for each reduced diagram 7. The subtracted amplitude
for T is obtained by the successive action on Iy, ofa (1-T T}_l®) operator

for each I € Ind(J). The case J = 1 + 1 is special since, since in addition to
the (1 — TTI ) operator for each I € Ind(r + 1), a (1 — T) operator is also

associated W1th TT “(T+1) « The factorization of R Mg [1g] is then expressed in
the following equation:

R llg(i, Xo)] = [T (0 =Tp ) ry,, (xi, Xa)
IeInd(T+1)

xH[ [I -ty )Un 0l (8.16)

J=1 I€lnd(J)

We recall that

Card(77)
TTL@ = I—‘I; TT§—IJEB
J=
Card(7T7)

II II Toap oty B17)

= F1,i 1i I
J=b @y eyt DET e

We have thus achieved point (V). It remains to show that the subtractions
associated with the (1 — T)’s are sufficient to make (8.16) integrable in the
sector S.

8.2. APPROPRIATE TREE VARIABLES

In sect. 5, in order to prove the convergence of the original (unsubtracted)
integral in some Hepp sector (for € > 0), we found useful to express the measure
in terms of tree variables for some specific tree (which defined the sector).
Those tree variables are no longer adapted to deal with the subtracted amplitude
R, [1g (xi, X4) ] since they do not take into account the factorization (8.16)
of R, [1g(xi, X)) ]. Instead, we shall look for tree variables associated with a
tree that, inside each subset 7 7,j» forms a subtree compatible with the sector.
The basic idea is that, since the nest Sy jg, which has been defined above as
the restriction of the sector nest S to 77, is both saturated in 77; and rooted,
it naturally defines a unique oriented ordered tree T;; spanning the vertices

* Notice that 77| has only one connected component.
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Fig. 21. Appropriate tree variables. At level J, inside a connected component 7, 7 of 77 (dashed
circles), we build an oriented ordered tree with line vectors }.5, ;- As shown in the framed box,
this tree is built in a way similar to what was done in fig. (18) (b), now from the rooted
saturated nest Sy jg. This nest is here made of the three diagrams TJI‘_ 1L TJIZ_ ,; and TJI3_ L
(i.e. m(J,j) = {I,,I,,15}) whose roots are represented by the dashed squares. At level J + 1,
the connected components of 7 are fully contracted toward their roots (big black dots), which

are the vertices of 7y, . An oriented ordered tree with line vectors /15' 414 18 then built inside

T +1k- The trees at levels J and J + 1 can be fused into a single oriented (but only partially
ordered) larger tree contributing to (8.19).

of 75 i, as discussed in sect. 7.2. Thgorresponding line vectors are naturally
ordered by increasing values of I in Ind(J, j) and denoted by

AL ITelnd(J,)). (8.18)
From the nested structure of N2, we deduce that the union of the trees T s, for
varying J and j (including J = 7 4 1) forms a tree of the set G:

T=JT, = (A’,,j; J=1,...,r+1;j=1,...,Card(T?); Iem(f,j))
JJ

(8.19)

(see fig. 21)). In particular, this tree has N — 1 line vectors. We can therefore
use the corresponding tree variables /15’ ; s integration variables, instead of the
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N — 1 relative positions y; = x;,; — x; in R¥~! (or RN +¥ -1 when M external
points are present).

Notice that the tree T is not in general compatible with the sector S, that is
in general, S(T) # S. Still, since Sy is the restriction of S to the subset ’7}, i
the subtree T, ; of T remains compatible with S. By this we mean that one can
find ordered trees of G compatible with §, and which contain T, ; as an ordered
subtree. We can therefore take advantage of the inequalities (7.19) and get the
following bounds for ratios of leagths of % ; inside the domain #°:

ey
l < IIJ,jl < 1,
I 2
|’1.Ilj| I
ST for I< T (8.20)
7]

This means that two A’s with the same index I are of the same order, while the
A’s with higher index I’ > I cannot vanish more rapidly than those with index
I.

Finally, since the vectors /15’ j defining the subtree T, ; are built from the rooted
nest Sy @, Whose roots are precisely the roots w}”_l ; of the subsets 7}1 ’_il i the
action of dilation operations (6.14)

D
HD(T,‘,-I o) (8.21)
i

J-LpTI- L

(for some fixed J and ;) on the positions of the vertices of 77, ; 1s exactly per-
formed by the transformation

AL — plAL |

for I' <1 (8.22)
on the modules of the A-variables.

In a way similar to what we did in subsect. 5.1, it is natural to rewrite the
vectors A in terms of real variables ! which measure ratios of successive modules
|4], together with angular variables 6.

For definiteness, we write the elements of Ind (eq. (8.15)) as
Ind={l, < <...<Ig}. (8.23)
For each [ in E&, we choose one of the /l’J’ j of the tree T as a representative

of all the lines which appear at level I, and denote it by A/. We then deﬁE the
B-variables as the ratios of these representatives A/ for successive I’s in Ind:

Lo 1A% _
Bl = e k=1,... , E—-1
Bl = |21z, (8.24)

From eq. (8.20) they satisfy
Bl < Iy, k=1,...,E—1. (8.25)
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Eq. (8.24) defines g/ for I € Ind. We shall also use the convention

Bl =1 if I¢Ind. (8.26)
In order to compare A ; to its representative A’, we define
45,1
b= —M;’l : (8.27)

with of course 7 ; = 1if A} ; has been chosen as a representative. We thus have

o= x5BT g (8.28)
and the bounds
1
I
Finally, in addition to their moduli, the line vectors lﬁ, ; are characterized by
a set of relative angles 651;5 labeled by some extra index #. These angles can be
constructed in different ways, corresponding in particular to different orderings
of the tree T. In any case, as in subsect. 5.2, these angle variables do not actually
play any role in the proof of the finiteness of the integral (8.2). Therefore, we
shall not make their construction more explicit.
In terms of the |4|- and §-variables, the measure term can be written, up to a
global numerical factor, as in e.g. (3.32), as

<idisr (8.29)

T+1 Card(7})
—_ - s N I,
II TI TII [awdihP(TIsinesnr®massr)], (8.30)
J=1 Jj=1 [elnd(J,)) n
where p (D, n) is some positive number (when D > N + M —1).

8.3. SUBTRACTED INTEGRAND

The tree variables of the preceding section, together with the factorization
(8.16) allow us to work separately inside each reduced diagram 7. Indeed, the
amplitude I, for J <7 is a function of the variables /15’ ; for the same J only,
with I € Ind(J, j) (the case J = T + 1 which is special since it also involves the
set of external points, will be discussed separately). Going back to the definition
of the amplitude /7,, we can write (8.2) in a form where the measure and the
integrand are factorized simultaneously. For each 7; (with J <7), we get

Card(T9)

- o nlayp(D,
II II abas, P (T]sine3)7 ")
J=1 Ielnd(J./) "

Card(77)

< ]I (1—171,_@)[ 11 det(HT”)]_d/z,(S.Z%l)
j=1

Ielnd(J)
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where I77% is the matrix defined by (3.49), (3.50) for the subtree T;;. Its
elements HIT}’,f are labeled by elements 7,1’ of Ind(J, j). As in the convergence
proof of sect. 5, we introduce the normalized matrix

T,
T, 1 1,y
Y, = = (8.32
LI Ap(v) |’15,j|"|}“5,j|'/ )
which, inserted in eq. (8.31), gives
C
ard(Tj d‘ ,Iljl . (el,n)p(D,n))
H II FLANIES: (H SIntoy;
Jj=1 JcInd(J,j)
Card(T?) —d)2
< I -t )] T detx™)] . (833
I€nd(J) j=1

Since through (8.32) we have extracted the most singular factor of the /7 ma-
trices under rescalings D? (sece eq. (6.14)), the Taylor operators T 0 appearing
in (8.33) are now defined as
7% = lim D”. (8.34)
p—0
The properties of det(YT+/) are the same as those mentioned in subsect. 5.2.
In particular, det(Y"//) is a function of the ratios of 1/ ; for successive I’s in
Ind(J, j), which play the role of the 8, variables of sect. 5, and are now products
of the f and y variables defined above.
Then det(Y™) is a bounded function of the 8/ and x/ 7 variables on the

domain H¥, and is equal to 1 when all the 8%°s are set to zero

Due to our choice for the A} ; variables, the action of 75 T1_,, O

Card(7Y)

[T (dety™))

j=1

—d/2

simply corresponds to set 7 = 0 in all the YT for different j (see egs. (8.21)
and (8.22)). Therefore

Card(7?)

o=y [T (ewom) ™)

j=1

vanishes when 8/ — 0. This is the key property which will ensure the finiteness of
the subtracted integrals. First we have to generalize this fact to all the 8 variables.
This is contained in the following stronger property, as shown in appendix H:
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Proposition

Card(T%) _ap
M-ty o[ T (e0™) ™) =0( I "
Ielnd(J) Jj=1 Jmin (J) < J<Jmax(J)

(8.35)

with § = min(v,1 —v) asin (4.7).
The above discussion holds for J <7 only. Thecase J = r+ | (and j = 1)
requires a separate analysis. We then have

—dJ2 1
ITT+1&B = (det(YT”M)) exp |:_§Zka 'kbAab] (8.36)
ab

and a property similar to (8.35):

H(l—r‘};@)[(det(YTw)) exp[ Zk k,,AabH

I€nd(T+1)
=o( II (ﬁ’)é) (8.37)

I=I™0 (T4 1)

8.4. PROOF OF FINITENESS

From the above discussion, we arrive at the following form for (8.2) ate = 0O:

T+1Card(TY) ,dyd
LTI | I (Temogronans) 1 %2

j=t  Licindj) * Ietnd(s,j) ~7

I T
<M Sro( I ) Io( I ")
Ielnd Iz Imia(T41) J=1 Imin(J) < Jmax(J)

(8.38)

where []' means that we omit the values of / such that 1/, ; is a representative,
and where the domain of integration D° reproduces the domam of integration
HS for the relative positions of internal points. Inside DS, the variables y § ;are
bounded from below according to (8.29). Therefore, the integration over these
x5 J variables and the integration over the 84" 7 variables do not produce any
divergence. For the integral to be convergent, it is actually sufficient that, for
each I € Ind, at least one (B7)% is present in the product of O’s appearing in
(8.38), thus making the integration over 7 UV convergent. This will be true if

Ind C { LTJ [Imiﬂ(J),ImaX(J))} U [Imi“(r+ 1),N — 1]. (8.39)
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Now, from their definition (8.12), all the diagrams 77_, for I > I™#(J) and
the diagrams T} for I < I™in(J 4+ 1) are equal and identical to T}). Since,
by hypothesis, the nest N'g is minimal and therefore its tableau has no equal
vertically adjacent diagrams, we deduce that

™2 (J) > [™n(J 4+ 1). (8.40)

Using this inequality for each J, it is easy to check that the r.h.s of (8.39) is
actually equal to

T+1 . -
[x}mll[mm(./) N — 1] - [min(lnd),N— 1 (8.41)

and the required property (8.39) follows. This proves the convergence of (8.38),
q.e.d.

9. Discussion

9.1. ANALYTIC CONTINUATION AND CONVERGENCE AT SMALL D

Up to now, the finiteness of Zy (resp. ZI(VM ) ) at € > 0 and that of ZRy

(resp. ZR}VM)) at ¢ = 0 were proven for large enough dimension D only, that is
D= N—1 (resp.D = N+ M—1), v being fixed. If we now want to recover the
physical models with a fixed value of & (typically & = 2) and of v, this requires
a fixed value of D = k — 2v (satisfying eq. (2.5) so that 0 < v < 1). All the
diagram contributions to Zy (resp. ZR,(VM)) with N =2 D+ 1 (resp. D—-M + 1)
then have to be defined by the analytic continuation procedure discussed in
sect. 3, in a regime where the products of the measure (in the distance or the
tree variables) by the integrands (resp. the subtracted integrands) that we have
considered become distributions. That is the case for all the diagrams but a finite
number of these.

To end this study, we have to make sure that, in this regime, these integrals
(resp. subtracted integrals) are still finite in the sense of distributions for ¢ > 0
(resp. € = 0). We shall not give a rigorous and complete proof of this fact, but
we shall rather outline the main steps of the argument.

First we have to check that the absolute convergence of the unsubtracted
amplitude Zy for ¢ > 0 given in sect. 5 extends to D < N — 1. Considering the
integral representation (5.4) for the contribution to Zy of a given generalized
Hepp sector HT, expressed in spherical coordinates, and using (5.8), we get for
this integral

N-1 N-la-1
/DT H (Ba)*'dBa H H (sin (0an)) 277" A0,
a=1 a=2n=1

x (det [YL (85, 08)]) % (9.1)
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one sees that the problem of UV convergence (which comes from the small g,
behavior) is completely decoupled from the problem of analytic continuation of
the measure in D (which comes from the behavior of the integral when 6, , —
0 or n forn > D). As already discussed in subsect. 3.3, an explicit representation
of the analytically continued amplitude can be written, for non-integer D, by
subtracting the divergent powers of 6 and 7 — @ (this is the standard finite part
prescription). The resulting integration over the 6’s are convergent, for fixed
non-zero f’s. From the explicit form of the matrix Ya 4> one can check that the
subtractions in 8 do not introduce dangerous negative powers of the #’s (at least
in the sector HT, i.e. PT), so that the power counting argument in the f#’s stays
valid. Finally one can check that (as already done in subsect. 3.3), the poles that
occur at integer D are cancelled by the corresponding zeroes of the global factor
SpSp_1...Sp_n42 in the measure (3.29), so that the unsubtracted amplitude
Zy is finite for any D > 0 and € > 0.

The same argument can be applied to the subtracted amplitude at ¢ = 0.
Starting from the expression (8.38) for the part associated with the maximal
nest Mg of the subtracted amplitude in an extended Hepp sector, some of the
p (D, n) exponents become negative for D < N + M — 1, and the integration
over the corresponding angular variables 05:;? requires a finite part subtraction
prescription. Again, one can argue that these subtractions do not interfere with
the power counting in £’s and x’s, and that the small 8 estimates (8.35) and
(8.37) remain valid for the f-subtracted integrands.

Finally, one can extend this analysis to small negative ¢, and show that for a
subtracted amplitude of order N, no UV divergences occur as long as Re(¢) >
—0/(N —1),withd = min(r,1 — v), as in (4.7). Indeed, for ¢ # 0, we must
modify (8.38) by inserting in the integrand

T+|Card(TJ 1)6
1 0w~ Ie 52
J=1 Jj=1 [eTnd(J,)) feind

where n(I) is the number of line vectors /15’ ; with an index I’ < I. One has
clearly n(I) < I < N —1. Since the subtracted interaction term is (from (8.38)
and (8.39)) O(Hlem(ﬁ’ %), the convergence at small §’s is guaranteed for
Re(e) > =0 /(N - 1).

Finally, we have not discussed the problem of the convergence or summability
of the perturbative series for our model. Since the model is expected to make
sense for both b > 0 and b < 0 (with a finite free energy proportional to the
internal volume in the latter case), we expect that the radius of convergence of
these series will be non-zero, and in fact infinite for the unrenormalized series
(which exists for € > 0, thus defining entire functions of ).
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9.2. UNIVERSAL SCALING PROPERTIES OF THE MANIFOLD

In this subsection, we shall derive some physical implications of the existence
of a renormalized theory, well defined at ¢ = 0. We shall consider here explicitly
the case of elastic membranes with k = 2 in (2.1).

The main result of the preceding sections is that the subtracted amplitudes
(6.22) for the correlation functions remain finite at ¢ = 0. In terms of these,
the full correlation functions

Z0D (X kayb) = 2R (X kg3 br)
_ Z he)” b“) 2R (Xa ko) (9.3)

have a series expansion in terms of the effective excluded volume parameter:

bR=L(I/|Rd—Z), (9.4)
Vs
which represents the resummed one-point interaction of the manifold with the
impurity. As functions of br and ¢, these correlation functions thus stay finite
ate = 0.

Existence of a Wilson function. Our renormalization operation involves a
peculiar renormalized coupling constant br (9.4), which is a function:

bREbR(b,X;G), (95)
where X is the internal linear size of the manifold, defined by
VSD = XD. (96)

As usual, since the renormalization operator R deals only with local countert-
erms, other choices of the renormalized coupling constant are possible, keeping
the correlation functions finite as in (9.3). In particular, the theory describing
the manifold of a given size X remains finite when expressed in terms of the
parameter

br (1) = br(b,AX;¢€), (9.7)

which corresponds to the renormalized coupling constant of a (reference) man-
ifold with different size AX. In particular, the original bg (b, X;¢) itself can be
expressed in terms of br (1) (and 1):

br(b,X;€) = Br(br(4),4,X;€), (9.8)
where Bg stays finite at ¢ = 0. This information is best expressed by writing
7]
0= id/le(b X 6) = 1= bR().) 6bR lXBR + ﬂﬁ bR(}.),XBR’ (99)
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from which we deduce that the quantity 4(d/dA)br (L) remains finite at ¢ = 0
when expressed in terms of bg (A1), X and A. This ensures in particular the finite-
ness at € = 0 of the Wilson function

ax‘ br = A bR(/l)| (9.10)
As in (6.29), it is convenient to introduce the dimensionless coupling constants
—dj2
g = (27[AD(1/)> brX€,
—dj2
z = (27rAD(1/)) bXe, (9.11)

with Ap(v) = (Sp(2 — D)/2)~! for k = 2. The associated Wilson function
then does not depend on X explicitly and reads

3] dg
W(g,e)_Xﬁ' g=crgs. (9.12)
It is finite at ¢ = 0, to all orders in g, and has the first order expansion (2.6):
W(g) = eg—1Spg* + 0(g g%), (9.13)
with a fixed point at
¢ = 2 L o). (9.14)
Sp

Universality for the excluded volume and the osmotic pressure. Let us consider
the quantity

A= V-2 =0bVs,, (9.15)

which has the dimension of a d-volume. For » > 0 (repulsive interaction) it
is positive and represents an effective hard-sphere like excluded volume for the
manifold around the impurity.

According to the definition (9.11) of g, we have explicitly

= g(2n Ap(w))*PVEIP. (9.16)

The internal volume of the manifold, Vs,, is not directly observable, but, ac-
cording to (2.31) and (3.38), it is related to the geometrical extension of the
membrane in bulk d-dimensional space, when no impurity is present (b = 0).
This extension can be measured, for instance, by the radius of gyration Rg of
the noninteracting manifold, defined as

2 1 D D 2

Tr <$) , (9.17)
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where Tr' means the sum over the non-zero eigenvalues of the laplacian 4 on
the closed manifold. Consequently we have

RZ = ¢ Vs, /P, (9.18)
G D

where the dimensionless constant ¢ depends on the geometrical shape of the
manifold (it will be different for a sphere, an ellipsoid, a torus, etc,... ), and
requires the knowledge of the true massless propagator G (x, ) on the manifold
V, solution of

—4.G(x,y) = 6D<x,y>—%. (9.19)
D

We consider explicitly the case where the external space dimension is lower
than d*, so that a repulsive interaction (b > 0) is relevant. When the size of the
membrane becomes large, g then reaches its (IR stable) fixed point value g*
in(9.16), and we get the universal scaling law:

A = a*RY, (9.20)

where the dimensionless constant a* = g*(2nAp(v))?/2¢~9/2 depends on the
intrinsic geometrical shape of the manifold, but neither on its size, nor on the
details and the amplitude of the repulsive interaction, and is therefore, in this
restricted sense, universal.

An ideal solution of N identical membranes interacting with one impurity,
with concentration C = N/} in a box of volume I44, presents a shift of the
osmotic pressure P from its ideal gas value. Owing to its relation (9.15) to
the one-manifold partition function, the excluded volume A directly yields, by
standard rules of thermodynamics,

P/ksT = =C +A/Vea +...). (9.21)

1 - A/VRd
This law expresses the increase of the pressure due to the presence of the impurity
in the solution with finite volume, and can be thought of as a finite size effect. The
thermodynamic limit can be reached for a finite concentration C; of impurities.
One then gets the virial expansion of the osmotic pressure,

P/kgT =C + CC/A + ... = C + a*CC/RE + ... (9.22)

Let us stress that the dimensionless quantity a*, which is independent of the
microscopic parameters and appears in the expression for the osmotic pressure,
is directly related to the fixed point value g* with the choice (9.11) for the
renormalized constant g. This is entirely similar to the case of a polymer solution
with excluded volume [2,37].

Pinned manifold. Let usintroduce the partition function of a manifold pinned
at the origin at one of its points X,

z° E/D[r]exp(—H) o (r(Xx,)). (9.23)
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Owing to the internal spherical symmetry of the manifold, Z° is independent of
X and actually equals

/D[r]exp( H) v deéd(r(x)). (9.24)
Sp
From (2.9), one has clearly
o _ abR
20 = vspab’ 2(0,X) = 52 (9.25)

Notice that, while the unrestricted partition function 2 has the dimension of
a d-volume, the pinned-manifold partition function Z° is dimensionless and is
thus a function 2°(z;¢) of z (and €¢) only. According to (9.11) and (9.12), we
have

Z2° = ;—b Xb = —?—é = ELW(g(z) €). (9.26)
Notice that Z¢ itself is not renormalized, i.e. not finite at ¢ = 0 as a function of
g, but that ezZ° = W (g,¢) is renormalized. When the size X becomes large
(for € and b positive) z becomes large and g (z) tends to its limit g*, the Wilson

function vanishing as

Wi(g(z);e) = (g(z) - g IW'(g") + ..., (9.27)
with
g(z) — g* ~ const 2V (&")/e (9.28)
(Notice that W' (g*) < 0; see fig. 2.) This finally leads to the scaling law for Z°:
Z° ~ const z~ 1+ (& L const (Bl X)WV (8¢ (9.29)
At first order in €, W' (g*) = —€ + O(e?), whence
Z° ~ const (b€ X)) (9.30)

Universal 1/r repulsion law. The pinned-manifold partition function Z° is a
particular case of a more general restricted partition function to which we now
turn. We introduce

Z°(X1, X, be) = /D[r]exp(—m Mr(X)—r)  (931)

which describes the partition function of a manifold held by one of its points at
the position r relative to the origin. It is the Fourier transform of the one-point
correlation function (2.25) for M =1, i.e.

Z(Xy, X, bie) = /ddklexp(-ikl ) ZW (X, ky; X, bye). (9.32)

As above, for a closed manifold, Z° (X, r; X, b;€) is actually independent of X,
and equal to

Z°(r; X, b €) —/D[r]exp( H) — v de(Sd(r(x)—r). (9.33)
Sp
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The relations of this partition function to the former ones are
Z°(0) = Z°,
drz°(r) = Z. (9.34)
R4
By rotational symmetry, the quantity Z° depends only on r = |r|. It is further-
more dimensionless, and thus can be written as a function of z and /X" (and
€),

Z°(r X, be)=2°[r/X",z;¢€]. (9.35)

As we have seen for 2° (9.26), Z°[r/ X", z; €] is not exactly renormalized, when
expressed in terms of g, but ezZ°[r/ X", z ;€] is. It is interesting to consider the
limit when the interaction parameter b goes to infinity, while keeping the size
X of the manifold finite. We expect Z°[r/X?, z; €] to reach a finite limit

Z2 [r/XY;e]l = lim 2°[r/XY,z;€]. (9.36)
According to (9.34) and (9.4), we have

/ ddr(Z"[r/X",z;e] —1) = —bRrVs, = —g(27zAD(u))d/2X”d.
R (9.37)

In the limit z — oo, g tends to g*, and we therefore have

d/2
, (9.38)

d%u (23 luse]l—1) = —g*(27zAD(1/))
R4
which is consistent with the assumption that the limit in (9.36) actually exists.
In the scaling regime /X” <« 1, we expect the marked point to be strongly
repelled from the origin, and thus Z2_ to vanish as a power law:

[’
22 [r/X" ;€] ~ const (XL) . (9.39)

This vanishing of Z°[r/ X", z ;€] in the successive limits z — oo and r — 0 is
consistent with that obtained in the reversed double limit » = 0, and z — oc,
which corresponds to the vanishing of Z¢ at infinite z according to (9.29).
The contact exponent 6 can be obtained as follows. For finite 4 and large
X, we expect a universal X-dependence of Z°[r/ X", z; €], irrespective of the
particular value given to r. This dependence is in particular known exactly when
r = 0, according to (9.29). It must also be the same for  # 0 fixed and » — oo,
that is a behavior which is given by (9.39). This leads to identifying the contact
exponent with
e-W'(g")
—
Notice that the argument above, intuitively clear on physical grounds, is usually
mathematically justified in field theory from the existence of a short-distance

0 = (9.40)
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operator product expansion. A rigorous proof of the existence of such a short-
distance expansion in our case is beyond the scope of this paper. The repeated
appearance of W' (g*) in (9.29) and (9.40) suggests that all scaling behaviors
in this theory are controlled by a single scaling anomalous dimension, i.e. the
universal slope of the Wilson function at the fixed point.

Eq. (9.39) allows us to derive a universal expression for the repulsive force
exerted by the impurity on the membrane,

£ (1) /keT = V,log 2°(r) = eriz. (9.41)

According to the discussion above, this force law is valid in the scaling regime
b~vle « r < X¥, where b~1/¢ plays the same physical role as an ultraviolet
cut-off for internal distances.

Scaling laws for the delocalization transition. Finally, we have seen in sub-
sect. 2.1 that for d > d* (that is ¢ < 0), the non-trivial fixed point g* is now
negative and IR repulsive, and corresponds to a delocalization transition with
non-trivial critical exponents, for a particular negative critical value b* of the
bare coupling constant b. In the localized phase (b < b*), the correlation func-
tions such as (r(x)r(y)) and the associated correlation length ¢ (in the internal
D-dimensional space) should be finite, as well as the average distance r = (Jr|)
of the manifold to the attractive impurity. At the transition these quantities
should diverge as

& o (b*=b)y™"n, roc (b* = b))Vt (9.42)
Standard arguments lead to
1 1
V”:W:_E*—W (9.43)
and
Vv, = I/” 14 (944)

Indeed, r has no anomalous dimension and therefore, r scales as f”" with v =
(2-D)/2 from (2.2).

10. Conclusion

10.1. SUMMARY

In this last section, we would like to summarize the main steps of our con-
struction and outline the main ingredients which ensure the renormalizability
of the theory. We then discuss some possible extensions of our results.

Existence of a perturbative expansion analytically continued in D.

(I) The first ingredient is the existence, for integer dimension D of the mani-
fold, of a formal perturbative expansion for the model. The diagrams present an
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invariance under global euclidean motions in R? of the interaction points (or
under the group SO (D + 1) for finite volume manifolds with the internal geom-
etry of the sphere Sp). The interaction terms, which are determinants involving
the internal Green functions between interaction points, can then be expressed
in terms of mutual squared distances only. On the other hand, the external di-
mension 4 appears only in the power (—d/2) of the interaction determinant.

(II) The second step is the construction of a measure term, analytic in D,
in terms of the above set of internal mutual squared distances. One can then
use for convenience any equivalent measure, for instance in terms of cartesian
or spherical coordinates in a space with a given integer dimension (typically
RY-! for a diagram of order N), D itself appearing as an analytic variable. This
measure has in general to be understood as a distribution.

Points (I) and (II) allow us to define a perturbative expansion for the model,
analytically continued in D. Its main features are the following:

(1) It can be viewed as a generalization of the Schwinger parametric represen-
tation of Feynman amplitudes for local field theory, with the one-dimensional
a-parameters replaced by D-dimensional parameters.

(i1) It appears as a string-like theory, in the sense that it presents only one
diagram to each order in perturbation.

(ii1) It reduces to the expansion of a local field theory when D = 1, expressed
in the Schwinger a-representation. The field theoretic diagrammatic contribu-
tions are recovered in the limit D — 1 through the analytic continuation of the
measure term.

Renormalizability. The essential properties which are key to renormalizabil-
ity are the following:

(IIT) Schoenberg’s theorem: this property of the interaction determinants en-
sures that divergences in the integrals of the diagrammatic expansion occur only
at short-distances (UV), as in ordinary local field theories. Infrared (IR) diver-
gences also can occur if the internal space is infinite, a problem which is dealt
with by considering a finite membrane, e.g. the sphere Sp with finite volume
Vs,-

(IV) Factorization of the interaction term: this property states that, when a
subset of interaction points contracts toward a vertex, the interaction determi-
nant factorizes into the product of the interaction term of the contracting subset
by that simply obtained by replacing the whole subset by its contraction vertex.
The possibility of replacing a set of coalescing points by a single contraction
vertex, and of factorizing out the corresponding divergence is the key for renor-
malizability. Mathematically, it allows us to make the theory finite by letting
a subtraction operator act on the integrand. This operator essentially subtracts
factorized equivalents so as to remove the UV divergences. It is constructed from
elementary Taylor operators associated with subsets of points, then organized in
forests or nests, corresponding to the hierarchical structure of the divergences.
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(V) Factorization of the measure: this property, obviously satisfied for integer
D, is preserved by the analytic continuation of the measure to non integer D. It
allows us to integrate separately the factorized determinants which are to be sub-
tracted from the original amplitude, and thus to interpret them as counterterms:
the subtraction operation is then a simple reexpression of the partition func-
tion (or correlation functions) in terms of an effective (renormalized) coupling
constant.

Points (III) and (IV) are properties of the interaction determinants them-
selves, while point (V) is a general property of the measure.

10.2. PROSPECTS

Let us finally discuss possible outcomes of our results. As already discussed,
the model (2.1) of a manifold interacting with a single point serves indeed as
a laboratory for studying the renormalizability of more general models of in-
teracting crumpled manifolds. A prominent model of this class is of course the
Edwards model (1.2) of a self-avoiding manifold interacting via a short range
two-body pseudopotential. Its perturbative expansion is similar in structure to
the one studied here. We indeed believe that the mathematical techniques de-
veloped in this article can be applied and generalized to the Edwards model, and
provide both conceptually and practically a framework for a similar proof of its
renormalizability.

When reviewing the general scheme above, we note that point (I) is already
known for the self-avoiding model [21]. Points (II) and (V) are actually valid
for any manifold hamiltonian. The specificity of a given model is actually en-
coded in its interaction determinants, for which properties similar to those of
(IIT) and (IV) have to be analyzed in each case, and established in order to
eventually build a subtraction procedure and prove renormalizability [38].

This scheme should be directly applicable to a series of manifold theories
with interactions, such as many-body or long-range interactions ... These mod-
els generalize to arbitrary internal dimension D models of interacting polymers
(D = 1). All the latter models are known to be equivalent to some n-component
field theories in the limit »# = 0, with standard Feynman diagram expansions.
When extended to manifolds of arbitrary internal dimension, these models be-
come theories with a single diagram to each order in perturbation (a property
which is shared with string theories, although in our case the manifold has a fixed
internal metric). Interestingly enough, the topological complexity of the usual
Feynman diagrams is encoded in the D-measure on the manifold, and arises
in the limit D = 1 from the ordering constraints along the one-dimensional
(polymer) line. More generally, it would be interesting to try and express field
theories with an arbitrary number n of components as D = 1 limits of “mani-
folds” string-like models, yet to be invented.
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Appendix A.  From vectors to scalar products

In this appendix we derive (3.2) (3.3). First we insert the relation u;; = x;-X;
in the Lh.s. of (3.2)

/HdDle(X, xj) = /Hduu /Hd X Hé(uu Xi Xj V(I uu]

i<j i<j (A.1)
Second we use the fact that the function
o) (ui;) = /Hde, T8 —xi-x) (A.2)
i<j

isinvariant under SO (N) rotations R (¥ — R'uR) to diagonalize u;; and express
(A.2) in terms of the N eigenvalues 4;, i = 1,... , N, of u;;

oy’ (uij) _/Hde,H.s Aibij = Xi- X)) (A3)
i<y
Third we perform the change of variables x; — \/}Tixi and get
N
P (uy) = [[AP-172 /Hdel [[6y—xi-x)).  (A4)
i=1 i<j

The remaining integral over the x;’s gives the volume of SO(D)/SO(D — N)
and we obtain finally (3.3)

P=N=DR Yolso(D))
o) _ . i °
(uij) = (H’l) Vol(SO(D — N))

(det[uij])<D~N—”/2%D... Sp-N+1 N*‘ (A.5)

Appendix B.  Factorization of the measure

To prove (3.34) let us decompose the N x N symmetric positive definite scalar
product matrix [u]y into blocks of size P and Q (P + Q = N):

_ ( [ulp [v]
fuly = ( (0]t [u]Q) . (B.1)

Eq. (3.34) is equivalent to the fact that, given the positive definite matrices
[ulp and [u]p, when integrating over all P x Q matrices [v] such that [u]y
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(defined by (B.1)) is positive definite, we have for arbitrary non-integer D

[ w1 uin) = o () o ([ulo). (B.2)

Since [u]p and [u]g are positive definite we can take their square root [u]},/ 2

and [u]g2 and write det([#]x) in the expression (3.3) for alf,D) as

det{u]y = det([u]p) det([ulg) det(1— [ulp'?[v]{ulg (v] [u];"?).
(B.3)

Now, one can perform the change of variable [v] — [u]},/ 2[v] [u] lQ/ 2 which
induces a jacobian J = det([u]p)?/?det([u]g)F/? in (B.2). We thus obtain
finally that the Lh.s. of (B.2) is equal to the r.h.s. of (B.2), up to a constant C
which depends on D, P and Q, but not on [#]p and [u]gp, and which is given
by
C - Vol(SO(D)) Vol(SO(D - P)) Vol(SO(D - Q))
Vol(SO(D — N)) Vol(SO(P)) Vol(SO(Q))

X /d[U] (det(1—[v] [U]t))(D—N—l)/z _

(B.4)

(The domain of integration for [v] is now such that
1p [v]
([v]‘ 10 > (B.5)
is positive definite)

It remains to prove that C = 1. This can be done in a simple way by proving
that the factorization identity (3.34) holds for some particular function f ([u]).
As an example we can take the exponential

f([uly) = exp[—tr{uln], (B.6)
since we can easily calculate explicitly (see below)
Iv = | dluly o (Quly) expl-tr([ulp)] = (W22, (B.7)
Uy
and therefore factorization holds in this case since

Suly) = f({ulp) f([ulg) and Iy = Iply. (B.8)
The direct computation of Iy (eq. (B.7)) for any D proceeds as follows. The set
Uy is the set of symmetric positive matrices. By SO(N) orthogonal transforma-
tions, it can be reduced to the set of diagonal matrices with positive eigenvalues
A (i =1,...,N), with the new measure

N
dluly = Vol(SO(N))% Hd/l,-A(/l), (B.9)

Ti=1
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where the A’s are integrated from 0 to oo and 4(4) is the jacobian [39]

a@y=J[ 1i-4l. (B.10)

I<j<I<N
In terms of these variables, Iy reads explicitly

Vol(SO(D))Vol(SO(N))
N!Vol(SO(D - N))

N N (D—N-1)/2
/ Hd/lA(/l) exp [—Z,@J (Hij) . (B.11)
= j=1

Iy =

The calculation is completed by using the Selberg integral formula [39,40]

N—1

/ (A(/l))zyH e texp(-4,)dA;] = ] ra +V+JV)F(a+jy)

e iZo I'(+7) (B.12)

fory = Jand a = (D — N + 1)/2, which leads finally to (B.7).

Appendix C.  Factorization of det([H ])

Let us consider an ordered tree T and the corresponding vectors Ay,... ,Ay_;
with [1;] < ... € |Ay_1]- We have by definition
_Ap (V )
my {IRap + Ag = 2|

~[Rag + 25 = [Rap = 2l + |Rop|* }.

(C.1)
where R,z is one “basis” of the quadrilateral (see fig. C.1)
Ra/g = X,'ﬁ — X, . (C2)
The vector R, is a linear combination of the A’s
Rop =Y Clphy, (C.3)

where cg 5= 0, +1. Suppose we make the following rescaling:

[ phe if a<P-1
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iy R i

Fig. C.1. The quadrilateral picturing the matrix element H()Tﬁ and its “basis” vector R,g.

for some P, 2 < P < N and with a contraction factor p, 0 < p < 1. Under this
rescaling, R, becomes

N-1 P-1
Rap(p) = Z Cophy + P Z Cophy
y=P y=1
= R); + pRy. (C.5)

We therefore have two possibilities:

(a) R® s = 0. This means that R, is formed only of vectors 4, with y < P—1,
which are all contracted, hence R, itself is contracted. By definition, this is also
the case when R,z 1s 0, that is when x;, = x;,.

(b) RY; # 0. This occurs when R,y is spanned by at least one 4, which is not
contracted, that is with y > P.

This allows us to classify the A’s into subtrees as follows (see fig. C.2):

(1) Weregroup the 1,’s witha < P—1 (i.e. corresponding to contracted lines)
into equivalence classes by deciding that 4, and A4 are equivalent if R, = 0.
The equivalence classes Ty,...,T,_; (with 2 € m < P depending on T)
correspond to the m — 1 distinct connected subtrees which build the subset of
the contracted lines. Case (a) above thus corresponds to 4, and A in the same
equivalence class, that is in the same connected subtree of contracted lines. Case
(b) corresponds to 4, and A in two distinct equivalence classes, that is in two
distinct connected subtrees of contracted lines.

(ii) We regroup the A,’s with a > P into a single connected tree T,, obtained
by setting Ag = 0 for § < P — 1 in the original tree T.

We will now show that for p — 0

m
det ([T7(p)]) = p> -V [Tdet (T™) {1+ 0™} . (C6)
i=1
Let us consider two lines A, and Ag.
Casel: a < P-1,8<P—-1.

(a) R%; = 0.
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.":: T
(a)
T, T Tea
(b)

Fig. C.2. Classification of the line vectors of the tree T into subtrees T,. The dashed lines in (a)

correspond to contracting branches of the tree T, and are organized into two connected subtrees

T, and T, in (b) . The full lines in (a) correspond to non-contracting branches and are organized
into a single connected subtree T3 in (b), by fully contracting the dashed lines in (a).

This case corresponds to two A’s in the same contracting connected subtree T;
forsome i < m — 1. Ineq. (C.1), 44, A5 and R4 all get a factor p; hence

Iy (p) = p* 1. (C.7)
It is furthermore clear that R,z is spanned only by A’s in T;, hence
Y (p) = p™ Y. (C.8)

(b) Rgﬁ # 0.

This case corresponds to two A’s in two distinct contracting connected subtrees
T;, and T;,. Since R,p does not contract to zero, we can formally expand (C.1)
in powers of A, and 45. The matrix element /1], is by definition the interaction
between two dipoles A,, Ag separated by R,z. It is therefore clear that the first
term in the multipolar expansion is of order

T} o |Rog|*  2ha- g + ... (C.9)
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Therefore, expanding in p yields immediately

I3 (p) o p*|R1» %ha-2p + ...
= 0(p*)
= p?0(p*) (C.10)

(see eq. (4.7)). As we shall see below, this element, which mixes several subtrees
T;, is vanishing sufficiently fast so as to disappear in the limit p — 0.
Case2:a < P-1,8>=P.
In this case, we have

Y (p) x|Rap(p) + g — phaf® (1)
~[Rap (p) + Ag|* (2)
—[Rap(p) = plal™  (3)
+ |Rag (P)1* (4). (C.11)

(a) RY s = 0.

Substituting R,p(p) = pR}lﬂ in (C.11), the last two terms (3) and (4) are
homogeneous to p?”, while the expansion of (1) — (2) in powers of p gives a
leading term linear in p. On the whole, we can write

Y% = p*0(p%). (C.12)

(b) Rg s 7 0.

This time, the expansion of (1) — (2) on the one hand, and —(3) + (4) on
the other hand, in formal powers of pi, leads immediately to a matrix element
of order p, hence

1% = 0(p) = pr0(p°). (C.13)

Case3:a 2 P, B8 > P.

In this case, 4, and A are not contracted and belong to Ty,. In the limit p — 0,
R, is simply replaced by Rg 5 Whatever the value of Rg 5> this corresponds
precisely to

Y (p) = M7 + p* 0(p°)
= ITI}; + O(p®). (C.14)

We can summarize all these cases by writing the synoptic table
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p21/ an

det (11" (p)) = det

p2uo(p26 )

pZI/ HT2

pZVO (pZJ )

pZVHTm_l

prO(p?)

p*O(p%)

I + 0(p*)

(C.15)

where we have permuted the P — ] first lines and columns so as to regroup
the A’s according to their equivalence classes. Therefore, each of the first m — 1
blocks corresponds to a connected fully contracting subtree, while the last block
corresponds to T,,. This rearrangement leaves the determinant invariant. The
factorization property (C.6) can now be read from the block structure of the

matrix in (C.15) .

Considering the reduced matrix YT defined in (5.6), we have a similar block

structure

YT

det (YT(p)) = det
0(p¥)

0(p*)

YTm—l

Op?)

0(p%)

YTm 4 0(p?)

(C.16)
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and we can now let p — 0 and get

m
det ([Y"(p — 0)]) = [ det ([Y™]), (C.17)
i=1
which means that, in this limit, the tree has been disconnected into several
components on which its determinant is exactly factorized.

Let us now turn to the variables #’s defined in (5.2). Notice that due to the
rescaling (5.6), det(YT) is actually independent of the global scale factor Sy_;*.
Each variable f, can be associated with a contracting factor p = f,. Therefore,
once expressed in term of the B’s , det(Y'T) is such that, if we let one S tend to
zero (say fi,), keeping the others non zero, we have

det (YT (B, s Byt By = 0, Byt s Bn-2:0T))
m—1i
= H det (YTi (ﬁl,... ,,By_l;HT")) x det (YT'” (ﬂy+1,... ,BN_Z;BT'")) N
i=1

(C.18)

where the m — 1 first determinants in the r.h.s. involve 8, with a < y only, while
the last determinant involves 8, with a > y only. The angular parameter set 6T
associated with T is left untouched by the rescaling, but simply decomposed into
subsets §Ti associated with the line vectors of the distinct subtrees T; (see fig.
C.2). We are now interested in values of f’s and 8’s varying inside the domain
DT and look at the possible zeroes of det(YT) inside DT. We already know that
such zeroes can be reached only when one f at least goes to zero. We thus fix
all the vanables 0, and all the variables f non zero except for one of them, 3,.
The quantity ﬂ;“i“ in (5.3) is therefore fixed, either strictly positive or zero. If it
is strictly positive, this means that 8, cannot reach 0 within the domain DT for
this particular configuration of the other variables. This happens when the tree
T,,, obtained by fully contracting the lines 4, ... , 4, of T, is not compatible with
the definition of the sector PT. The only relevant case is therefore ﬂ;’“““ = 0.
When 8, — 0, we can use eq. (C.18). The trees T;, | < i < m — 1, were
already subtrees of T, hence the associated determinants det (Y T:), which involve
only non vanishing $’s, do not vanish. The new tree T,,, which appears in the
contraction process, is now compatible with the sector, which again implies that
no fortuitous coincidence of its vertices can occur, and det(Y ™) itself cannot
vanish. Thus det(YT) cannot vanish in this limit By — 0. This process can be
iterated on the remaining determinants in (C.18) for successive f§’s going to
zero. This shows that det(YT) does not vanish for any number of f’s going to
zero. Hence we reach the important result that det(YT) cannot vanish inside the

* This homogeneity property holds only for the choice (4.17) for the propagator, even on the
sphere. Otherwise, both S5_; and the IR regulator R would appear and lead to a slightly more
complicated discussion.
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whole sector DT. Since DT is bounded (excluding the variable 8y_; which does
not enter in det(YT)), det(YT) is moreover bounded from below by a strictly
positive number.

Appendix D.  Example of cancellation of symmetry factors
Let us consider as in (7.30) the four compatible nests:
No = {(T, w) } ;
Ney = {(RAT,®),(T,0)},
Nos = {(T,0), (RVLT,®)},
No = {(RAT,0),(T,0), (RVT,9)}, (D.1)

where R = {R}, T = {7} and w = {{w}} with w € 7. We want to show that
the sum of the (—1) and symmetry factors associated with these nests (taking
into account the degeneracy coming from the unspecified compatible roots ) is
equal to 0. We recall that with a compatible nest A4 is associated the factor in
front of the associated Taylor operators (here we forget about the first diagram
Ty = (Ge, Go) implicit in all the nests of (D.1), and the corresponding global
(~1) factor):
Card(N'g) g _ Card(N'g) 1
(-1) W N'g) = (1) o 1] T (D.2)

w'root
’
of N/ gy

with 7,,- being the largest connected component (among all connected compo-
nents of all diagrams of A”g ) whose root is w’.

The factor associated with Mg in (D.1) is thus (—)|7|!. Let us now discuss
the three remaining nests in (D.1).

Case (a): w € R (see fig. 19)

The root of the connected component R N7 of R A T must be equal to w.
The factor associated with NVg, is then |7|~!. In Ng;, the root of the connected
component R U7 of R\, T is either equal to w, or belongs to R\ 7. The factor
associated with NV is therefore |[R UT|~! in the first case, and |7|~! - [RUT|~!
in the second case, with degeneracy |R \ 7|. Hence, the global factor associated
with Mg and its possible rootings is [RUT|~! + |7]~!-|R\ T|-|[RUT|~! which,
using [R\ 7| + |JRN 7| = |R UT]|, is nothing but |7|~!. The factor associated
with N is similarly equal to

1 1 ’R}T] 1
(_)[|RUT tiRoTN T A

By summing up all these factors for all elements of (D.1), we get zero as expected.
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Case (b): w ¢ R (see fig. (19))

The root of the connected component RN7T of RA T can now be any vertex of
R NT. The factor associated with N, is in this case [RNT|-[RNT|~ ! |7|7! =
|7|~!, since Mg, has now two distinct roots. In N5, the two roots of the two
connected components 7 and R\ 7 of RV, T are respectively w and any vertex
in R\ 7. The factor associated with Ng5 is then [7|7 R\ T||R\ T|~! = |T]7},
while the factor associated with N is
ROT| LRAT| )L
IRONTIITIR\T] 17|

Here too the sum of these factors gives zero as expected.

(=)

Appendix E.  “Suppression” of a reducible line from the tableau nest
We assume here that the coincidence (7.35) holds in the tableau (7.36). We
therefore have as a starting point the set of identities:

RI_ ATy =T, 121
T; = RE ATy, I<I. (E.1)

We want to prove that the lines (7.37) and (7.38) are then identical, i.e. that
T; can be skipped in the construction of the tableau. We thus have to prove the
two following sets of identities:

(1) Forl = I

RUAT o = RE_ ATy (E.2)
(2)ForI < I
RY ATy =R, [ ATy (E.3)
These two sets of identities are consequences of the stronger equality
Ry =RY |, vI> . (E.4)

Indeed eq. (E.4) clearly implies (E.2) for case (1). Furthermore, for case (2),
we make the following argument: We use (E.1) to write 7 as

Ty = ROAT;, . (E.5)
Hence, we have

R, ATy = (RY_, ARYY ATy,
R _\AT;,1, qed. (E.6)

where we have made use of RY,_| < Rﬁ’_l since I < I, together with Rﬁ’_l = Rg"
as a particular case of (E.4). We are thus left with proving (E.4).
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Fig. E.1. An application of the operation of fig. 20: the figure describes a connected component
R4 of R and the corresponding connected component Rﬂ‘_l of R! \w,_,Ty_, obtained by

fusing to R/ those connected components of 7;_,q which have their root inside R’>* and cutting
out those which do not have their root inside R/+, but still intersect RY-.

Proof of (E.4): It is first useful to characterize the connected components of
R!_, (or of R}). Denoting by R the connected components of R’, a generic
component RIJ”_I of RY,_, is of the form

Li 1i
Ry =R U T

wy_ 1k ERL

\( U TM) (E.7)

¢ Li
Wy w &R

which simply states that a connected component Rg’il of Rg_l =Rlv,, T,
is obtained from a connected component R’ of R! by (see fig. (E.1))

(i) considering all the connected components of 7;_; ;

(ii) making the union with R’ of those 7;_,4 which share their root with
RIi:

(iii) cutting out from R’ those T;_, ,, which do not.

Since the connected components of T;_, are all disjoint, the order of the
union and cutting operations in (E.7) is indifferent. Notice also that the con-
nected components of 7;_, which do not intersect R’ do not affect % | in
the operation \,,,_,. Of course, it may happen that RIJ{I 1s empty and R5_1 has
in general less connected components than R.

For convenience, we introduce the notations

Ag’il = U T5-1k» (E.8)
wy_ 1k ERY

B.Il,il = U Ty 1 (E.9)
w 1! gRM

which are complementary sets in G since T;_, is a complete diagram. With these
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notations, we have
Li Li Li 1i Li
Ry = (RMUAY )\ (RN BY) (E.10)

and a similar equation for the connected components R’ of R}. Therefore, to
prove R, _| = RY, it is enough to prove

Li Li
AJl = AJl-l >
B} = Bl . (E.11)
The main ingredient comes from the property in (E.1):
Ty =RY_ ATy, VIZ I, (E.12)
which implies
Ty <Rj_,. (E.13)

This means that any connected component T; ; of Ty which intersects a connected
component R$’1—1 is actually entirely included in the latter.

We first prove Aﬂ’il C Aﬂ’i . Let us consider a connected component 7;_; ; of
T;_y,suchthatw;_; ; € R'. From the nest property, this connected component
is included in a connected component 7 ; of T;. By definition, 7;_, 4 C Rﬂ’il
and therefore 7 ; intersects R51_1 From (E.13), 75 is necessarily included in
RIJ{I and in particular its root wy ; belongs to Rﬂ’il, thus to RY+ UAg’il. One has
either wy; € R, or wy; € 7;_;, for some connected component 7;_;; (with
[ # k in general) of T;_; such that w;_,; € R’ . In the latter case, from the
compatibility condition for the roots, we have wy; = w;_; € R". Therefore,
in any case, wy; € R" and 7;; C A%". This implies 7;_;; C A%, which leads
to

1i Li
Ab oAbt (E.14)

We now prove Bﬁ’il C Bj’i:

We can use the fact that R! is a complete diagram, thus each root wy_; 4 of a
connected component 7;_; x belongs to one and only one connected component
R of R!. The set Bﬁ’il can therefore be expressed as

BY = |4t (E.15)
i#i
A similar equation holds for Bj’i. Making use of (E.14) for each i’ in the r.h.s.
of (E.15), we directly arrive at
B} < BY. (E.16)
The inclusion properties (E.14) and (E.16), together with the fact that Aﬂ’il

and B;{l on the one hand, and Aﬂ’i and Bﬁ’i on the other hand, are pairs of
complementary sets of G, imply (E.11), hence (E.4).
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Appendix F.  Addition of reducible lines in the tableau nest

We want to prove first that, if we consider a compatibly rooted nest Ng =
{Tog,- .- I're} and build the larger nest

! 1
2>} = {TO@,... ,Tj_lea, TJO—IGB’ T_]@,... ,TT@}

by inserting between the levels J — 1 and J of Ng an extra rooted diagram

I .
TP o = (TP, 0% ) with

Tl

J-1 ZR?—lATJETI (F.1)

and w?_l = @' an arbitrary set of roots compatible with the rooting of Ng
(making Vg compatibly rooted), then the tableau of Mg can be reduced to that
of Mg. For convenience, we denote T}"_l@ by T’ = (T',w'). More precisely,
the tableau built from N is

Tyt Ry_ AT ... RY AT ... RIZIAT
T R'AT; ... RPATy ... RV 'ATy (F.2)
1y

where
R' =R\, T. (F.3)
We want to prove that this tableau has the coincidence property for I = Ij:

R AT' =R™ATy, (F.4)

and therefore can be reduced to the tableau of Ng. From the definition of T,
the term on the Lh.s. of (F.4) is nothing but Rﬁ’_l A Ty and the coincidence
property is equivalent to

Rlo AT, =R™ATy. (F.5)
This last equation is actually a consequence of the stronger identity
Rb =R (F.6)

which we prove now.
Proof of (F.6):  As in appendix E, we consider a typical connected component
Rﬁ”_"; of Rii’_l, defined by

Riv = |Rleio | Tl—l,k:| \ ( U 7}—1,1) : (E.7)

wy_y kR0 wy_1 g R0
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or by the equivalent equation

R = (Rivo u ) \ (R 0 o), (F.8)
where
A = U T, (F.9)
wy_ 1, ERI0o
BM = U T (F.10)
wy_y ¢RI

The sets Aj“_"i and B}";“; are complementary subsets of G and, as in appendix E,
Bt = |4y (F.11)
i#i
We then can write for R'" an equation similar to (F.8) with Aﬁ”_’"} and B§°f‘f
replaced by

a1, (F.12)
w'l eRTo

gl = \J T (F.13)
w:;enlo,io

which are complementary subsets of G and satisfy an equation similar to (F.11).
In eqs. (F.12) and (F.13), 77 is the generic connected component of T’ given
by

T =Rl 0T, (F.14)
and w'}, is its root. _ »

In order to prove (F.6), it is sufficient to prove that Aﬁ‘)’_"} C A% Indeed,
from (F.11) and the similar equation for B”°”°, this inclusion will imply B§°f‘l’ -
B’ From the complementarity property of A?jﬁ and B;"f‘f on the one hand,
and that of 47" and B'™*% on the other hand, the two equalities

Aloin gl (F.15)
Blvio = prloo (F.16)

follow, leading to (F.6). ‘

We are thus left with proving Aﬁ"’_i‘i c A'M%; Let us consider a connected
component 7;_; x of T,_y, such that w;_,; € R%. From the nest property,
this connected component is included in a connected component 75 ; of 7;. By
definition, 7;_, % C Rﬁ’j‘)l and therefore 7;_; 4 C Rg"’_’"’l NT;,; =7 ’;". The root
w’j-“ of ’T’;" belongs to Rﬁ’f"l, thus to Ry A?—’(i One has either w’j»" € Rlolo

or w’j-" € Ty, for some connected component 7;_,; (with / # k in general)
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of T;_, such that w;_;; € R%¥. In the latter case, from the compatibility
condition (in the nest A} ) between the root w’j-‘) and the roots of 7,_;, one has
w’j" = wy_;; € Rloh, Therefore, in any case, w’;" € Rloio and T’;" c Ao,
This implies 7;_, , C 4'™, which leads to

Al gt (F.17)

which completes the proof.
The above property generalizes to a nest NV} obtained from Ng by inserting

an arbitrary number of diagrams TJI"_1 & TJI'—1 G TJI"_ 1 Detween the levels
J—land Jwithl € Iy < I} £ ... € Ix € N -2, where, as before,
Ti_,=Ri_, ATy, (F.18)

and where the roots of these extra diagrams are such that A is compatibly
rooted. Indeed, one can proceed by recursion by adding first 775, = R’ ATy
between 7;_; and T; . Then one can add Rﬂ":ll AT between Ty_; and T |
From the nest property of the sector nest S, we have Rﬂ"_’l‘ =< R5K_1 and this
second added diagram is nothing but Rﬂ"_‘f AR AT, = Ri"_‘l‘ ANTy = TJI’:‘
as wanted. This process can be repeated until the first diagram T;"_l is inserted.
Finally, the above property also generalizes to arbitrary insertions between
several pairs (J — 1,J), each pair being actually decoupled from the other pairs.
When applied to a minimal nest V3, this property means that all the nests Vg
obtained from N3 by inserting an arbitrary number of diagrams of N (S, N ) \\/°

(rooted with compatible roots) lead by reduction to N3, and therefore belong
to Cs (N, 6% ).

Appendix G.  Sum rule for the weights W

In this appendix, we prove (7.42). Given a nest A/, we first give an alternative
procedure to construct all compatible rootings & of A/, with their weight factor
W(Ng,) (7.13).

Let o be a bijection from {1,2,..., N} into G (it is nothing but an ordering
of the N vertices of G). There are N! such orderings. To any subset P of G, we
assign a root p through o by the following definition:

p=o(k) where kK =min(ne€{l,..,,N}: a(n) € P). (G.1)
We denote this assignment procedure by
P - p. (G.2)

It is easy to check that, when applied,fo all connected components of all diagrams
of A, this rooting procedure builds a compatible rooting of A. Moreover, all
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compatible rootings of A’ can be built in that way. Given such a rooting @, the
number of distinct orderings ¢ which build @, is

K (Ng, ) = Card({g : V(T,w) rooted connected comp. of Ny, , T — w}).

(G.3)
It is simply related to the weight W (N, ) by
KWNg, ) _ _ 1
N = W Wey) = 1;[@ (G.4)

Indeed, given a subset P of G and a vertex p in P, the number of ¢’s which assign
p to P is N!/|P| (the probability for p to be the first vertex of P to appear in the
sequence g (1),...,0(N) is 1/|P|). A compatible rooting @, of A/ is entirely
known once one specifies for each vertex w the largest connected component of
N, T, which has w as its root. The above argument can then be extended to all
these largest connected components of A containing the roots of &, and leads
to (G.4).

The proof of (7.42) is then straightforward. Indeed, the r.h.s. of (7.42) is
simply 1/(N!) times

Card ({0 : ¥(7,w) rooted connected comp. of Ng, 7 -= w}), (G.5)
while each term of the sum in the Lh.s of (7.42) is 1/(N!) times

Card({c : V(T,w) rooted connected comp. of Ng,7T — w,
Y(7T,w) rooted connected comp. of Mg, notin Ng,7 —— w}).
(G.6)

The sum over @, In (7.42) relaxes the second constraint on ¢ in (G.6), and
reproduces (G.5). Hence (7.42) follows.

Appendix H. Estimates of subtracted integrands in a Hepp sector

In this appendix we prove (8.35) and (8.37). We shall proceed in three steps:

(I) We first analyze the properties of the elements of the matrix YT+ in terms
of the B/ variables.

(IT) We then write an integral representation of the (1—7) operators appearing
in the Lh.s. of (8.35) or (8.37).

(II1) We finally show (8.35) and (8.37).

(I) Properties of YT+i. In this subsection, we shall work separately inside
each connected component T]’ j of T;. As explained in subsect. 8.2, the line
vectors /15, j of the oriented ordered tree T ; spanning i}’ ;j are uniquely labeled

by I € Ind(J, j). From now on, we shall suppress the indices (J, j) and thus



F. David et al. / Interacting crumpled manifolds 657
denote 1} ; by A’. A typical element of the matrix Y7/ reads

Yiy 1

_ KL L K2v KL L2
T =W{|R + AL = pK2v _ |RKL 4 L

_lRKL _/'LK|21/ + |RKL|2V}’ (H.1)

where RKL is the “basis” of the quadrilateral

RKL = Xj;, — Xig > (H2)

with ig and i; being the origins of AX and AL. The vector RXL is a linear combina-
tion of the A°s joining x;, and x;,, and since the tree T ; has been built from the
rooted sector S je, this linear combination involves only A’s for I > min (K, L)
(see subsect. 7.2):

REL = %" cftaM (H.3)
M>min(K,L)

with Cf/‘ =0,%1.

Proposition 1.  det(Y'%/) is a positive, non-vanishing continuous function
on the compact domain 4%, and is therefore bounded from below on HS by a
strictly positive number. In particular, the matrix Y% is invertible.

Proposition 2. Y;f, as a function of the S, ¥y and 6 variables, depends on
the B%°s for I in some subset Jy; (K, L) only, defined as

Jnj(K,L) = {I :min(K,L) < I < max (K,L,max(M : cff # 0))}
(H4)

with the convention that max (K, L, max(M : cXf # 0)) = max(K, L), if all
the cX are zero (that is if RKL = 0).
Proposition 3. Inside the sector HS,

ree=o( II #H) (H.5)

1€7;;(K,L)

Proposition 4. The matrix Y% is positive, and bounded from below by a
strictly positive constant. By this we mean that there exists a strictly positive
number C such that (Y% — C1I) is a positive matrix on H5.

Proposition 1 has already been proven in appendix C, in the restricted case of
a generalized Hepp sector HT attached to some tree T. The proof can be carried
over to the whole extended Hepp sector HS attached to the nest S = S(T).
Indeed, the spirit of the proof is that YT depends only on ratios of successive
A’s (B variables); from the bounds on those ratios inside AT, we deduce that if
some points coincide then one of these ratios at least must vanish, and det(YT)
factorizes and remains strictly positive. Since from Schoenberg’s theorem this
is the only case when det(YT) might have vanished, we deduce that it actually
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never vanishes, and remains positive inside HT. Inside HS, we have weaker
bounds on the ratios of A’s but one can check that this does not alter the proof.
To prove propositions 2 and 3, we first consider the trivial case K = L. In this
case J;;(K,K) = @ but then YTK”K) = 1, which satisfies these propositions.
We can therefore assume that K < L. Four distinct situations may occur:
(a) RKE = 0:then J,;(K,L) = {I: K < I < L};
If RKL £ 0, we denote by

P = max(M : c L£0). (H.6)

(b)IfP>L,then J;;(K,L) ={I: K <1< P}
(c)IfK<P<L,thenJ;;(K,L) ={I:K <I<L}
(d)IfP=L,then 7,;(K,L) ={I: K <I<L}

We shall use the property that, if 4 > B and 4 > C, then the quantity

|24 (o aBy g C2v A (5 LBV
v \yay ;4 J I 1 M \LsD J1

|AA|2V—1 MC'

(H.7)

is bounded (in module) from above inside H°. This follows from the fact that,
inside the sector K5, the ratios |4%|/|A4], |AC|/|A4] and |A4]/]A4 + 35 £A5| are
bounded. An upper bound on (H.7) can then easily be obtained by use of the
mean value theorem.

By a simple generalization of this property, one can show that,if 4 > B, 4 > C
and 4 > D, then the quantity

“W‘ (55 :tiB)iACiiD' -+ (ZBi/lB):th)zy

~ ]+ (s ilB)ilD‘ + ]+ (2 ﬂB)[ ]
(H.8)

144)% 72 1A€A

is also bounded (in module) from above inside HS.
Let us now consider cases (a)-(d) above.
Case (a). We can write

t-v 2v 2v v
YTJ,j - _- M’K' !JL J—Kﬁl ‘1L'LL'J| _ llKl
KL 2 |AL]| Mleu—l IAK]| |AL]
1] A1\
- { |AL| }*O{(WT

II 89 ) (H.9)

K<I<L
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which proves proposition 3 in this case. In (H.9), we used (H.7) and the fact
that [AX|/|AL| is of the same order as []x ,, (B7) since

K

K<I<L

and since the y variables (8.28) are bounded from above and from below. From
(H.9), we also deduce that Y,;ri”' depends only on |1X|/|AL|, that is, from (H.10),
depends only on g7 for K < I < L, which precisely defines 7, ;(K, L) in this
case, whence proposition 2.

Case (b): We can now write

1—v
yXi - _ I}‘K} Bﬂ
KL 4P| 27|

[‘AP_*_ZCKL}LM_*_AL AK’ ‘/IP+ ZCKL)’M_I_}’L‘

L DT S LT L
|1P|2U—211K||/1L|

o (%) () )

O( H (ﬂ])l—u H (ﬂ1)2~2u>

K<i<L Lgi<P

X
t
| I ]

O( II (ﬂ’)‘5>, (H.11)

K<I<P

by use of (H.8). This proves proposition 3 in this case. Moreover, from (H.11),
Y43 can be written as a function of the ratios [AX|/|A7|, |A£|/|AP] and [AM|/|A7).
Since K < M, L < P, these ratios involve 8/ for K < I < P only. This again
proves proposition 2.



660 F. David et al. / Interacting crumpled manifolds

Case (c): We now write

1—v v
Yy — 1 m ﬂ
KL = 2\ |a?| |AL]
P KL;M_)KIZ"_I)P_{_E,,II‘(/ILQM{Z"
x: |/1P|2u—1MK| }
LN
2\ |AE|
|/1L +AP 4 ZC}IE{L/IM_AKVV_ |,1L+/1P + ZCﬁL1M|2V
al LT K

- 5)” (5 1)
=of I ¢~ IT shr}+of 1 '}

K<I<P P<I<L K<I<L

0( I1 (ﬁ’)‘*), (H.12)

K<I<L

which proves proposition 2. Here again, we can write Y;,’f as a function of the
ratios |AX|/|A%|, |AP|/|AL] and [AM|/|AL|. Since K < M < P < L, we deduce
proposition 3.

Case (d): In this case RXL = —3L + 5~ ¢KLiM and the propositions can be
obtained from case (c) by simply interchanging RXL and RXL 4+ AL This achieves
the proof of propositions 2 and 3. ,

Finally, proposition 4 is a consequence of propositions 1 and 3. Indeed, from
proposition 3 and the fact that the 8’s are bounded from above inside H°, we
obtain a uniform upper bound for |Y,¥,’f| inside HS. This upper bound, together
with the lower bound of proposition 1 on det(Y T+ ), gives a uniform upper
bound for the modules |(Y T+ )¢} | of the elements of the inverse matrix. This
implies that (Y7+/)~! is bounded from above by a positive number C~! (that is
(YTs)~! — C-'1 is a negative matrix), and, since (YT )~! is a positive matrix,
that Y12 is bounded from below by the strictly positive number C.

(I1) Integral representation of (1 — T). From now on, we shall work inside
the whole diagram 7 for fixed J and treat in parallel its distinct connected
components 7 ; for varying j. This is achieved by introducing the block diagonal
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matrix:
YT 0 .. 0
0 YT .. 0
Yl = (H.13)
0 0 .. ¥ o jmex

with j™* = Card(77). This matrix is such that (for J <r):

—d)2

I, = (det(Y”)) (H.14)

Now we must consider the action of (1 — T OT; 1 ) on I7,. For our particular
—1&
choice of tree variables, the action of T 2"‘,’ l simply corresponds to set 8/ = 0
-1

in the matrix Y“. From the propositions 2 and 3 of the preceding subsection,
we know that an element Yy}’ of the matrix Y either is independent of g’
(if I ¢ J;,;(K, L) for this value of j), or vanishes with Bl at least as (B7)¢ (if
I € J5;(K,L)). Therefore the actionof T (%,’ o simply corresponds to set to zero

those elements of Y7 which depend on f7, leaving the other elements unchanged.
In particular, this action is non trivial (i.e. non reduced to the identity) when
Iegy= | Ju,(K L). (H.15)
JK,L
Conversely, if I ¢ Jy, then (1 — T %’ 1 )[I7,] = 0. To perform the action of
—-l@
T(}J,_le, it is convenient to introduce an extra variable ¢/ which multiplies the

elements Y;};’ such that I € J;; (K, L). We thus define

YEE({t})E( IT t’) Yei’s (H.16)

IeJ;;(K,L)
and obtain a matrix Y7 ({¢}) which is a function of the /s for I € ;. The action
of T %’—le then corresponds to set t = 0 (and set the other t/’s equal to 1). We
then have the following integral representation of a (1 — T TJ’—IEB) operator with
IeJ;:

Card(T?)

1
iy [T eormy ] = [ e & faer )

j=1

]—d/z
(H.1.7)
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Now we must apply a product of such Taylor operators for all the I € Ind(J).
We can use the fact that (1 — T) is a projector, and can thus be applied several
times to the same diagram. Since all the reduced diagrams TJI_1 for

TeJy={I:I™(J) <I<I™(J)} (H.18)

are equal to some 77_, for 7 € Ind(J), we have

11 (1—1%1,_1@) = H(I—T(};_@). (H.19)

Ielnd(J) 1ed;

From their definitions and (8.11) and (8.12), it is clear that 7, ¢ 7. If
Js & J;, then the above product of (1 — T), when acting on / 7,, gives 0, as a
consequence of the discussion above. Eq. (8.35) is then obviously satisfied. We
can therefore assume that J; = J;. We then write the L.h.s of (8.35) as

Card(7T9) i
[ a-th [ T )™
I€lnd(J) j=1
dz’ det (Y’ ({t}) /2, (H.20)
= [T o' [ae (v i)

IeJg,

with 7y = J7 = {I: ™2 (J) < I < I™*(J)}.

(III) Proof of estimates (8.35) and (8.37). First we use the fact that the
property 4 of the matrix Y1/ extends to the matrix Y7 ({¢}). Specifically we
have

Proposition 5:  The matrix Y7 ({1}) is positive and bounded from below (i.e.
Y7 ({t}) — C1l > 0 for some positive C) forall 0 < /! < 1,1 € Jj.

Indeed, this property holds when each ¢! equals O or 1. In this case, each block
YT of the matrix is “factorized” into a product of sub-blocks YT for subtrees
T (see appendix C) compatible with the sector. Each of these sub-matrices YT
then satisfies proposition 4, as well as the matrix Y. To complete the proof of
proposition 5, we use the fact that the matrix Y7 ({r}) is a linear function of
each ¢/, and that it is thus sufficient to have a lower bound at each corner of the
hypercube 0 < t/ < 1 (I € J;) to have this bound inside the whole hypercube.

A direct consequence of proposition 3 is that Y7 ({¢}) is invertible, and that
(v’ ({t}))“1 is positive and bounded from above uniformly in the sector. In

particular, the module of all the elements (Y’ ({t}));lL is also bounded from
above. Another consequence of proposition 5 is that det (YJ ({#})) is uniformly
bounded from below by a strictly positive number.

Finally, if £ is some subset of 7, it is clear from proposition 3 and the def-
inition (H.16) of Y’ ({¢}) that, in the considered Hepp sector, the partial set-
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