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A particular U(N) gauge theory defined on the three dimensional dodecahedral lattice is shown to correspond to a model of 
oriented self-avoiding surfaces. Using large N reduction it is argued that the model is partially soluble in the planar limit. 

The example of  three d imens iona l  abel ian gauge 
theory provides  the best unders tood mechanism for 
conf inement  at weak coupling [ 1-5 ] and,  therefore,  
a natura l  place to look for an equivalent  descr ipt ion 
in terms o f  a theory of  real strings. As in any gauge 
theory,  a possible place to start  from when looking 
for string-like exci tat ions is the strong coupling ex- 
pansion of  the model  regularized by discretizing space 
to a regular lattice. Roughly, the closed surfaces that  
generically appear  in the expansion can be thought of  
as space - t ime  histories of  closed strings. Depending  
on the nature of  the gauge group these strings may be 
or iented or  not. 

The part icular  case of  U(  1 )3 pure gauge theory with 
a single plaquet te  act ion of  the Villain form [4] is 
exactly dual  to a three d imens iona l  spin ferromagnet;  
the spin degrees of  f reedom are integers and for this 
reason the model  is somet imes  referred to as the 27_ 
ferromagnet  [ 5 ]. The strong coupling expansion in 
the gauge formula t ion  is, by duali ty,  related term by 
term to the weak coupling expansion of  the Z-ferro- 
magnet.  The most  commonly  s tudied case is defined 
on a cubic latt ice whose sites we denote  by x, x '  and 
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whose bonds  we represent  by their  end points,  (x ,  
x '  ) .  The par t i t ion  function is given by 

Z =  ~ e x p ( - - ~ f l  Y, [ n ( x ) - n ( x ' ) ] 2 ) .  
{n~x)}_+~ \ <_~,x' > 

(1) 

The surfaces are made  out of  square plaquettes  that  
live on the cubic latt ice dual  to the original one and 
can be associated with indiv idual  spin configurat ions 
{n (x)}  by providing walls that  separate the original 
latt ice into connected,  non-empty,  clusters on which 
n has a constant  value. Any bond  (x ,  x '  ) for which 
n ( x )  # n ( x '  ) is cut by a dual  plaquette.  

It is well known that  in most  gauge theories the sur- 
face in terpre ta t ion of  these wall conglomerates  can 
become involved,  necessitat ing some ad hoc defini- 
tions, and becoming quite cumbersome [6,7];  to 
main ta in  faith in the existence of  a cont inuum string 
theory descr ipt ion of  these surfaces one must  assume 
that  many of  the above compl ica t ions  are irrelevant.  
It would be nice to find special forms of  the gauge 
models  that  avoid  some of  the complexi t ies  already 
at the regularized level. 

Even in the simple case of  U ( 1 ) 3 on a cubic latt ice 
the surfaces suffer from complications:  plaquettes can 
be mul t ip ly  excited in the sense that  n j u m p s  by an 
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amount  larger than uni ty across them and singular 
lines are possible where three or  more  plaquet tes  jo in  
at a c o m m o n  link. We wish to get rid of  these cases 
and obta in  a much cleaner geometrical  descr ipt ion of  
the surfaces that  appear .  We first deal with the mul- 
t iply excited plaquet tes  by replacing the act ion by ~ 

/n~x)l_~ 2fl <x,x' > [n(x)--n(x') 
(2)  

and taking the l imit  k - , ~ ;  this has the effect of  per- 
mi t t ing only j u m p s  o f  + 1 across a surface and the 
two cases can be geometr ical ly in terpreted as being 
associated with the overall  or ienta t ion  of  a closed 
connected surface enclosing a given spin cluster ( the 
surfaces are or ien table) .  This  restr ict ion also elimi- 
nates cases where three plaquet tes  share a c o m m o n  
link. However,  singular lines where four plaquet tes  
meet  are still possible.  To avoid  these configurat ions 
we place the 7/-ferromagnet on an fcc latt ice rather  
than on a cubic one. The geometry of  this latt ice is 
such that  its dual  has exactly three plaquet tes  meet-  
ing at each link; thus the bad  cases we were left with 
disappear .  The single case we need to make a slightly 
ad hoc decision for is when surfaces touch at a vertex: 
for reasons that  will become clear later on we decide 
not to regard the touching o f  two otherwise separated 
pieces of  surface as something that  connects them; in 
other  words, when two surfaces touch at a vertex we 
view the vertex as split in two, one vertex for each 
surface and a very small  space open between them. 

We ended up with a model  of  r andom self-avoiding 
or ientable  surfaces that  is very s imilar  to the system 
shown to be equivalent  to the Ising model  on the fcc 
lat t ice in previous  work [ 9 ]. The difference is that  in 
our case we have to sum over independent  orienta-  
t ions for each  connected componen t  o f  the set o f  do- 
main  walls. This  difference is significant because it 
enhances the ent ropy of  configurat ions made out  of  
many  small d isconnected  bubbles.  Due to self-avoid- 
ance a gas of  such bubbles will exercise a pressure on 
a surface spanning a Wilson loop, keeping it flat, and  
pushing the deconf inement  t ransi t ion present  in the 
Z2 gauge theory dual  to the Ising model  to much lower 

~ This is a generalization of an action written down by Emery 
and Swendsen for an SOS model [ 8 ]. 

temperatures ,  possibly all the way down to zero 
temperature .  

We now proceed to write down the U(  1 )3 gauge 
theory dual  to our  model:  

Zaual=i! l-~p Il+2gcos(~pOQ)]" (3) 

Here the 0z are angles on the links ~ and the p 's  are 
rhombic  plaquettes  on the dodecahedra l  lattice dual  
to the fcc lattice. The coupling g is given by g =  
exp( - 1/2fl) .  This act ion is the simplest  generaliza- 
t ion of  the 772 act ion wri t ten down in ref. [ 9 ]. 

It was shown in the Ising case that  7/2 could be re- 
placed by O ( N )  and, by appropr ia te ly  scaling g with 
N, a double expansion in g and N could be viewed as 
a sum over surfaces weighted by their  total area and 
by the sum of  the Euler characterist ics o f  their  con- 
nected components  i f  surface touching at a site is 
t reated as defined above. In our  case the generaliza- 
t ion will be to the gauge group U ( N )  with 

ZV~N)= f pI~I[ l+2gNRe(Tr(~I~Ip U ~ ) ) ] .  (4)  

In terms of  surfaces we have 

ZU~N) = ~ gZsA~S)NZsZ~S)2Zsl (5)  
{S} 

In the above equat ion S denotes a connected com- 
ponent  of  the set of  self-avoiding surfaces {S} and A, 
Z are functions of  S giving the area in plaquet tes  and 
the Euler characterist ic.  

The new model  can be subjected to another  dual i ty  
t ransformat ion.  The resulting expression is some- 
what  compl ica ted  by the addi t ional  curvature terms. 
We shall not  write down the explicit  expression (it  
can be found by generalizing refs. [ 9,1 0 ] ); all we wish 
to stress here is that  the new terms have a coupling 
log (N) and are local in the spin variables. Hence, their 
effect should not be dramat ic  for N small enough. 

As for pract ical ly any gauge theory, one can extend 
the s tandard  arguments  ~2 to show that  large N fac- 
tor izat ion will hold to any order  in the coupling g. 
Since the group is now U ( N )  one can embed  in the 
link variables the group of  latt ice t ranslat ions and 

~2 See appendix B in ref. [6]. 

135 



Volume 269, number 1,2 PHYSICS LETTERS B 24 October 1991 

achieve Eguchi-Kawai reduction [ 11 ]. Because of  the 
non-exponential structure o f  the action, quenching 
should not be needed for any value o fg .  Quenching 
does appear to be necessary in the usual case when 
some of  the new U(1 ) symmetries o f  the reduced 
model get spontaneously broken by the attraction be- 
tween the eigenvalues of  the link matrices overcom- 
ing their kinematical repulsion [ 12 ]. Here this can- 
not happen because the action will have too weak an 
effect. The additional U ( 1 ) 's have to be preserved in 
order to ensure that closed reduced loops have van- 
ishing expectations when they correspond to open 
original loops. The reduced model will consist of  
a finite number  of  matrices, with an action resem- 
bling the action o f  the original model. Thus the par- 
tition function of  the reduced model will be a poly- 
nomial in N and g. As a result, the purely planar con- 
tribution to the free energy per unit volume, (1 /  
N 2 ) log ( Zreduce d ), will vanish. 

Let us now describe the reduction of  the model in 
some more detail. The main new point to realize when 
generalizing from (hyper)cubic  lattices is that reduc- 
tion can eliminate only the degrees of  freedom that 
are copies of  each other by pure translations; one has 
therefore to identify the fundamental  set of  lattice 
points that generate the whole crystal by translations 
only. 

We visualize the fcc lattice as a cubic structure 
(with no sites yet) to which we add vertices at the 
centers of  all links and all cubes [ 13 ]. Each of  the 
original cubes can be cut into eight smaller cubes, each 
of  which has four of  its corners occupied and the other 
four free. Any two adjacent small cubes are mirror 
images of  each other. The dual lattice is made out of  
vertices that sit at the unoccupied corners of  the little 
cubes and at their centers. The bonds on this lattice 
connect these new centers to the new corners. Two 
adjacent cubes have two new corners in common  and 
together with the two new centers they build up an 
elementary rhombic plaquette. The smallest shape 
enclosed by the rhombi is a dodecahedron and the 
dodecahedra fill the space exactly. 

It is clear now that the dodecahedral lattice has at 
least two kinds of  vertices, one with eight links con- 
nected to it (a little cube corner) and another with 
only four (a little cube center). What is slightly less 
obvious is that there are really two kinds of  links with 
coordination number  equal to four, related to each 

other by reflection through a plane. These two kinds 
cannot be mapped one into the other by a pure trans- 
lation. We therefore end up with a reduced model 
consisting of  three vertices and eight oriented links. 
The eight links start from a central vertex, C, and are 
connected in two groups o f  four to two additional 
sites, referred to as L(eft)  and R( ight) .  On each of  
the links we have a U ( N )  matrix or its hermitian 
conjugate, depending on the direction we traverse the 
link. Denoting the C - L ( R )  four link variables by U, 
(V~) the partition function of  the reduced model 
becomes 

f 4 4 
Zreduced = H l~ {dU~ dVp 

ot=l fl=l 

× [1 + 2gN Re(Tr  U, U~ V, V~) ]}.  (6) 

Any loop on the original lattice can, modulo transla- 
tions, be identified by a sequence of  link traversals 
after an arbitrary starting point has been picked on 
the loop. A C - R ( L )  link traversal must be followed 
by an R ( L ) - C  one, but an R ( L ) - C  link traversal can 
be followed either by a C - R  or a C - L  one. The se- 
quence o f  link passages can he taken over to the re- 
duced lattice. We only need to make sure now that 
sets of  links that would correspond to a curve with 
different end points on the original lattice can be dis- 
tinguished, even after reduction, from the reduced 
image o f  an originally closed curve. For this we need 
additional U (1) symmetries in the reduced model 
under which only the reduced images of  closed curves 
will give a singlet after taking the U ( N )  trace. To en- 
sure that a curve indeed closes there are three condi- 
tions corresponding to the three independent coor- 
dinates of  the "end point" that must be identical with 
the "starting point".  Hence we need three additional 
U(  1 )'s. The U(  1 ) "count ing" goes as follows: The 
reduced model has five U ( 1 )'s, 

~ -~exp ( i0 ,  + i~,,,) g~ ,  

V, --+ exp ( - i~, + i~,/L.) V~. (7) 

The original model had two non-gauge U ( 1 )  sym- 
metries corresponding to the multiplication by a 
phase of  all the C - R  link variables and by another 
phase of  all the C - L  link variables. These two U ( 1 ) 's 
are obviously present in the reduced model too, leav- 
ing 5 - 2 = 3  new U(  1 )'s, the exact needed number. 

Armed with the knowledge that factorization holds, 
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one can now simply replay the Eguch i -Kawai  [1 1 ] 
der iva t ion  of  the equivalence of  the reduced model  
to the original one. As we a l ready ment ioned,  there is 
no reason to suspect that  the addi t iona l  U ( 1 ) 's  will 
break spontaneously and therefore quenching will not 
be necessary. In view of  the po lynomia l  form of  the 
act ion it is plausible that  the model  is essentially sol- 
uble and that  explici t  expressions for the expectat ion 
values of  the traces of  many  Wilson loop operators  
can be written down. We are not going to pursue these 
mat ters  any further here. 

Instead we turn to making several observat ions  
about  the structure of  the model.  

The par t i t ion  function of  the original model  would 
not change if  we change the space the link variables 
take values in from U (N)  to SU (N)  as long as N>~ 4. 
Moreover ,  no change in Wilson loop averages will oc- 
cur if  the Haar  integrat ion measure  for each link vari-  
able is altered by mult ipl icat ion by exp [p(U~) ] where 
p is a class function also invar iant  under  mult ipl ica-  
t ion of  its argument  by an e lement  of  the center  of  
the group. A similar  remark  holds for the model  of  
ref. [ 9 ]. This shows that  we have real sensi t ivi ty only 
to the center  of  the group, in accordance with one of  
the more  popular  mechanisms for confinement .  Note  
that there is a difference between the case that  the 
center is strictly 712 and when the center  contains  774. 
The Z3 case seems special and  indeed its dual  would 
be a 773 spin model  which, in three dimensions,  in the 
s imple cases, will have no cont inuous  phase transi- 
tions. 

There is a non-t r ivia l  issue that  has to be brought 
up regarding the expected impor tance  of  the restric- 
tion I n ( x ) - n ( x ' )  [ ~< 1 on the magni tude of  the j u m p  
between nearest  neighbors in the 77-ferromagnet. We 
would like the restr ict ion to have no dramat ic  effect 
when fl is very large, in par t icular  not to have a de- 
conf inement  t ransi t ion at a finite ft. Superficial ly it 
seems that the restriction, if  anything,  will only a id  
conf inement  because it helps the n ( x ) - ~  
n(x) +no symmetry  of  the dual  spin system to stay 
broken. However,  there might be a flaw in the argu- 
ment  because the model  can also be viewed as a re- 
stricted 774 spin model  ~3. To see this, let us work for 
the moment  in a finite volume with free boundary  
condi t ions  and fix n (Xo) at some site Xo to zero. Con- 
sider the set of  "pure  gauge fields" (on the fcc lat- 

~3 Here we generalize some observations made in ref. [ 14]. 

t ice) consisting of  the differences n(x) -n(x '  ) across 
or iented bonds  and associate to each such link the 
angle O(x, x ' )=ln[n(x ) -n (x ' ) ] .  One can think 
about  these angles as a set o f " p u r e  gauge f ields" for 
the gauge group Y4. Setting O(xo)=0 one can con- 
struct a unique 714 spin configuration that would gauge 
t ransform O(x, x') to zero everywhere. The set 
{O(x)}o~xo)=o is in one to one correspondence with 
the set {n(x)}n(xo)=0 if  the angle O(x) is not  al lowed 
to rotate by more than ninety degrees along any bond. 
The difference between the restr icted and unre- 
stricted model  can also be seen in another  way: in the 
restr icted model  averages of  Wilson loops that  carry 
a charge larger than two vanish exactly. 

I f  one thinks about  the model  as a model  o f  real 
surfaces representing boundary  free membranes  in a 
fluid one may interpret  the addi t ional  factor of  two 
per connected componen t  as arising from the aver- 
aging over  a degree of  f reedom internal  to the sur- 
face. For  example,  one could imagine that  on each 
surface there lives an interact ing two d imens iona l  Is- 
ing system whose self-coupling is infinite, but  whose 
degrees of  f reedom are otherwise decoupled from the 
medium.  The surface ent ropy factor arises from sum- 
ming over  the two possible states of  the magnet iza-  
t ion in each connected component  of  the mem- 
brane ~4. F rom this point  of  view one can generalize 
the Zz model  of  ref. [ 9 ] even further  by admi t t ing  p 
states per  surface and increasing thus the entropy fac- 
tor to p per connected component .  When formula ted  
in terms of  bulk spin variables this model  can be 
viewed as consist ing o f  spins that  can take values on 
a homogeneous Bethe lattice of  coordinat ion p. When 
moving across an e lementary  bond  a spin value can 
at most  j u m p  to a nearest  neighbor on the Bethe lat- 
tice. The case we descr ibed in more  detail  in this note 
corresponds to p = 2. 

Suppose that  the class of  models  discussed in the 
present  note, as well as more  t rad i t ional  formula-  
tions, all are related to each other  by admi t t ing  a con- 
t inuum limit  that is descr ibed by a string theory. 
Polyakov has conjectured that the three d imensional  
Ising model  is described in the crit ical regime by a 
fermionic  free string theory [ 1,1 6 ]. These two situa- 
tions are different: While  the Ising string would de- 
scribe a system that  is known to be completely de- 

,4 This case would represent a particular limit of a model stud- 
ied in ref. [ 1 5 ]. 
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scribed by an ordinary (but strongly interacting) field 
theory, the U ( 1 ) gauge case probably admits  no con- 
t inuum field theoretical description in the limit where 

the scale is set by the string tension (the regularized 
form of the field theory is more or less a three dimen- 
sional s ine-Gordon model, hence perturbatively non- 
renormalizable) .  There exists a decorated loop op- 
erator in the ?72 case (at least on the cubic lattice) 
that obeys a l inear loop equat ion (up to self-intersec- 
tions, and these are not rapidly generated);  there ex- 
ists no known analogue in the U ( 1 )  case (the 
Schwinger-Dyson equation for the Wilson loop will 

rapidly generate self-intersections). Our present note 
and the previous paper on the 772 case [ 9 ] have shown 
that the models admit  the introduct ion of a parame- 
ter that might be interpreted as a "bare"  string cou- 
pling constant; the critical properties of the models 
seem insensitive to small variations in this coupling 
in both cases, indicating that if a "physical" string 
coupling does make its appearance eventually, it will 
have an intrinsically determined value that cannot  be 
tuned at will. 

It would be interesting to formulate precise numer-  
ical tests for the conjectures that either theory is rep- 
resented by a self-consistent complete string theory. 
Some attempts in this direction have been made in 
ref. [ 17 ]. The simplest approach conceptually would 
be to try to see some sign of Regge behavior, for ex- 
ample by identifying a few low lying resonances of 
moderate spin. The U ( 1 ) case seems to be under  good 
control numerically, beyond bulk properties, as the 
basic ideas about conf inement  have recently been 
convincingly tested quanti tat ively [18],  so there is 
some hope. Since the fcc lattice is a stack of two di- 
mensional  triangular lattices the identification of 
states of higher spin might be easier here than in the 

cubic case. 
Our main  purpose in the present note was to show 

that three dimensional  gauge theories are an interest- 
ing place to look for new understandings of systems 
of fluctuating surfaces or of string theories. 
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