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The intrinsic geometry of 2D quantum gravity is discussedwithin the framework of the
semi-classicalLiouville Theory. We show how to define local reparametrization-invariantcorre-
lation functions in termsof the geodesicdistance.Such observablesexhibit strong non-logarith-
mic short-distancedivergences,If oneregularizesthesedivergencesby a finite-part prescription,
thereare no correctionsto KPZ scaling, the intrinsic fractal dimensionof space-timeis two, and
nocascadeof babyuniversesoccurs.Howeverwe show that thesedivergencescanbe regularized
in a covariant way and have a physical interpretation in tcrms of ‘~pinning”of geodesicsby
regions where the metric is singular. This raises issuesrelated to the physics of disordered
systems(in particularof the2D randomfield Ising model), suchas the possibleoccurrenceof
replica symmetry breaking,which make the interpretationof numericaland analytical resultsa
subtleand difficult problem.

1. Introduction

Despitethe recentspectacularprogressin the elaborationof quantumtheories
of gravity in two dimensions[1], in particular at the non-perturbativelevel (sum
over all topologies) [2,31,some important issuesremain to be understoodeven
whenno fluctuationsof topology areallowed.The most importantoneis probably

the c > 1 problem: in which phasedoes2D quantumgravity live whencoupledto
unitary matterwith central chargec larger than one?Another issue is to clarify
the quantum geometryof space-timein the weak-couplingphase(c < 1). The
striking agreementbetweenthe exactresultsobtainedfrom the discretizedversion
of thetheorybasedon dynamicaltriangulationsandrandommatrix modelson one
hand,andthe resultsobtainedfrom the continuumtreatmentsof 2D gravity based
on conformal field theories [4—6]or topological field theories [71on the other
hand, indicates that the theory has indeed some two dimensional character.
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However both the random matrix models and the topological gravity approach
allow only to computeglobal observablessuch as expectationvaluesof operators
integratedover the whole 2D space.Recentnumericalsimulationsof dynamical
triangulations[8] havefocused on the behaviorof local observableswhich probe
the “intrinsic” geometryof space-timeat short distance.For technicalreasonsthe
mostsignificant simulationsdeal only with pure gravity (c = 0), but are performed
on verylarge lattices(up to ‘~ i0~triangles).Their resultsareat variancewith the
abovepicture andindicate that the intrinsic geometryof 2D space-timemight be
fractal. For instancethe volume of the disk with radius r (the set of points at a
geodesicdistanced <r from the origin) is found to grow muchfasterthat r2, and
is arguedto grow fasterthan any powerof r. This indicatesthat spacemight have
an “intrinsic fractal dimension”much largerthan 2 (possiblyinfinite). Similarly the
numberof connectedcomponentsof the circle of radius r (the boundaryof the
disk) was found to grow with r. The picture advocatedin ref. [81to explain those
results is that space-timehasa “spiky” structuremuch closerfrom thestructureof
a tree or a branchedpolymer than from that of ordinaryflat 2D space.We think
that it is importantto havea betterunderstandingof theseproblems,in particular
to checkto which extent the semi-classicalconceptsarevalid in quantumgravity.

In this paperwe try to discusstheseproblemswithin the continuumformulation
of 2D gravity basedon the Liouville model, whichhasprovedto be very successful
to computeglobal observables.

In sect.2 we recall somebasicfactsabout2D gravity andLiouville theory. Then

we show how reparametrization-invariantlocal observablescanbe definedin terms
of the geodesicdistanceand how they canbe calculatedin the conformal gauge.
However, while global observablesoften reduceto productsof vertex operators
integratedover the wholespace,the local correlationfunctionsthat we discussare
non-local and much more complicatedto deal with. In this paperwe shall only
presentthe resultsof oneloop calculations,which are valid in the “semiclassical

approximations”(c —‘ —

In sect.3 we discussthe short-distance(UV) andlong-distance(IR) divergences
which are presentin thoseobservables.The IR divergencesare shown to cancel
becauseof reparametrizationinvariance.In additionto the usual logarithmic UV
divergenceswhich are present in global observablesand signal the change of
anomalousdimensionsdue to the coupling to gravity, we show that local observ-
ableshave additional linear UV divergenceswhich appearto be non-covariant
(they dependon the backgroundfiducial metric used in quantizingthe Liouville
theory).

In sect.4 we treatthosedivergencesin a naiveway by a finite-partprescription.
Thenit appearsthat logarithmicUV divergencescancelcompletelyat oneloop, so

that no anomalousscalingoccurs for the internal geometry.The intrinsic dimen-
sion of space-timeis found to be two, correlationsof operatorsin terms of the

geodesicdistancebetweenthe pointswhere they are located obey KPZ scaling,
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finally the Euler characteristicof the ball with radius r doesnot grow with r and
thereforeno “cascadeof babyuniverses”occurs.

In sect.5 we treatthosedivergencesin a differentway. We regularizethem in a
covariantwayby definingthe geodesicdistancethroughthe short-timebehaviorof
the heat-kernel, i.e. through the “semi-classical” propagationof very massive
“phantom” particles in the fluctuating metric. We show that those divergences
survive this regularization,although in a slightly different form, and that they
inducea singularnon-analyticbehaviorof the local observablesthat we compute.

In sect. 6 we discussthe physical interpretationof thosedivergences.We show
that they are associatedto the “trapping” of the “phantom particles” by region
where the Liouville field P is very large and negative,which correspondsto
domains where the metric g11 is singular in the conformal gauge. This phe-

nomenon is very similar to what occurs in a well known classof problemsof the
statistical mechanicsof disorderedsystems,namely the problem of randommani-
folds in randommedia. In fact we show that at the order where we work (first
order in Liouville theory) our problem is closely related to the two-dimensional
random-field Ising model (2D RFIM).

Finally in sect. 7 we discussthe possibleconsequencesof this phenomenon.In
fact we argue that this makesthe whole approachof defining local observahiesin
termsof geodesicdistancesin continuum2D gravity quite problematic,especially

if spontaneousreplica symmetry breaking occurs. We also discussbriefly how
“branching” might occur in 2D gravity: we suggestthrougha heuristiccalculation
that baby-universesare liberated only for c > I and we recall that the intrinsic
dimensionof branchedpolymersis not infinite, but two.

2. Geodesicdistancesand invariant observablesin the Liouville theory

The basichypothesiswhich underlinesthe formulation of 2D gravity as Liouville
field theory is the following [5,9]. Startingfrom the action for 2D gravity coupledto
some matterfields V’ with centralchargec and action Sm~t

S(g, ~‘) =fd2x ~fl +S~~.1~(g,~), (2.1)

andfixing the conformalgauge

g11(x) =~ ~ (2.2)

where ~ is a fiducial metric, we assumethat theeffectivetheoryafter gaugefixing

is of the form

Sett(~,b, c, if’; ~)= SL(~ ~)+ Sgh(b, c; ~)+ Sm.it(if’; ~) (2.3)
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where SL is the Liouville action

SL(~ ~)= ~fd2x ~{~gui ~ ~•~+ (/3 + 1)~ ~ e~}~ (2.4)

where we havenormalized~Psuch that the term proportionalto the renormalized
cosmologicalconstant ~rR is e~”.Sgh is the action for the ghostsin the fiducial
metric

Sgh(b,c; ~)= fd2x ~ (2.5)

and Smat is the action for the matter fields in the fiducial metric. Assumingthat
the fields ‘P, b, c and if’ are quantizedwith a regulatordependingonly on the
fiducial metric g (this ensuresthat thereare no diffeomorphismanomalies)and
that the total central chargeof the effective theory vanishes(this ensuresthat
thereare no conformalanomalies)fixes the valueof the coupling constant/3

13—c + v(25 —c)(1 —c)
/3= . (2.6)

12

/3 is nothing but 1 — YOring• At that stagewe deal carelesslywith the ghostsand
antighostszero modes, which are associatedrespectivelyto conformal Killing
vectors(and thereforeto the 1 modesassociatedto global conformal diffeomor-

phisms,which shouldnot be takeninto accountin the quantizationof Id), and to
Teichmuller deformations(associatedto the moduli dependenceof the fiducial
metric ~). Indeedthey do not play any role in mostof the discussion.

Non-global reparametrization-invariantobservablescanbe constructedby con-
sidering correlation between two points x and y at fixed geodesic distance
d(x, y; g). The geodesicdistanceis definedfor a fixed metric g

1~in the standard
way as the minimumof the length ((~)over all paths i~’goingfrom x to y.

d(x, y; g) = min(((~~)) (2.7)

In the conformalgauge(2.2), taking as fiducial metric the euclideanmetric

(2.8)

and assumingthat the conformal field ‘1 is small, it is in principle possible to
computeorder by order in J this distance,since for infinitesimal ~ there is only
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one geodesicswhich joins x to y. Startingfrom the formula for the length of the
path *

(= f’ds i(s) I e~’©2, (2.9)

expandingto secondorder in 1 andsolving the equationfor the geodesicswe get
explicitly

d(x, y; ~) = x -y ftds[1 + ~(x(s)) + ~2(x(s))]

—x—yPf’duJ1dva±~(x(u)) [u,c]0
1~(x(L’)), (2.10)

where I x — y is the distancebetween x and y in the euclidean metric ~,
x(s) = x(1 — s) + ys interpolateslinearly between x and y, 3 ~ representsthe
partial derivativeorthogonalto y — x,

y~—x~
= ajI~ (2.11)

Iy—x~

and finally the kernel [u, i’] is the ID propagatorwith Dirichlet boundarycondi-
tions on the interval [0, 1], namely

[u, i’] =t’(l —u)O(u—L’) +u(1 —L’)O(L’ —u). (2.12)

From eq. (2.10) we can calculate to order O(/3_l) various reparametrization
invariantobservables.For instance,the v.e.v.of thevolume of the disk with radius
r, V(r), shouldbe given by

(V(r)~= (fd2x ~F~(d(o, x; g))), (2.13)

where I~.is the stepfunction

J~(d)= O(r — d). (2.14)

o is some arbitrarypoint takento be the origin. In the conformal gauge(2.2) and

It is not obvious how this formula getsrenormalizedby quantumfluctuations.However a renormal-
ization of cxp(h/2) into exp(aP)shouldaffect only the two-loops terms.
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usingeq.(2.10) we obtain, expandingto secondorder in i

= V10~(r)+ V~°(r)+ V~2~(r), (2.15a)

V10~(r)=fd2XFr( x~), (2.15b)

V°~r)=fd2x{Fr( xI)(~(x)~

+ x Fr’( I x )f’d(~(()))} (2.15c)

V12~(r)=fd2XFr( xK~2(x)~

+fd2x ~:( x ){ x ftds{ ~(x)~(x(s))) + ~2(x(s))~}

_xI3f1duf1dL[u,t](aI~(x(u))aI~(x(L))~}

+ fd2x ~“( x )~x 2flduf’dL,K~(x(u))~(x(v))~. (2.15d)

Similarly one cancalculatethe v.e.v. for the numberof connectedcomponents
of the “circle” of radius r, N(r). Indeed,it is related to the Euler characteristicof
the disk, ~(r), by

~(r)=2—n(r). (2.16)

We work at the level of the planartopology,andthereforethe numberof handles

of the disk is zero.Since the disk is the set of points x such that d(x) = d(o, x; ~)
~ r, we can usethe formula

1 d r Ek dkd E

1 0,d
x(r)=—-—J d

2x3
101d , (2.17)

2~ dr (/~r a,,,d0,~d

where 3~is the partial derivativewith respectto x’ and everythingis expressedin
the fiducial euclideanmetric ~. After somewhatlengthy calculations, involving
integrations by part, and using translation invariance for the propagator
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we obtain

= — ~(X~°~(r) + Xm(r) +X12~(r)), (2.18a)

X~°~(r)=fd2x~f(jxI)~, (2.18b)

XW(r) = fd2x Fr’( x 2 x I f’dsK~(x(s)))

+~IxIf1dss2(a~(x(s)))}

- fd2x Fr”( I x I )~f1ds(~(x(s))~, (2.18c)

X12>(r) = fd2x F( I x ){ -

+ 411 fdufdLK~(x(u))~(x(v)))

-~IxIJ’dss(B~(x(s)) h~~(x))

+ ~Jx f’duf’dc ~[u, L’](d
1~(x(u)) B1~(x(v)))

+ ~ x I ~f’duf’di ~[u, c](3~(x(u)) 3~(x(L))

+fd2x Fr”( I x ){~f1dufldL~(x(u))~(x(V)))

+ ~f’dsK~2(x(s))>

~IxI2fldufldc[u, V](0±~(X(U))~(X(L)))}

+fd2x ~“( I x I)~Ix If’duf’dr’(~(x(u))~(x(v))), (2.18d)
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wherein eq.(2.18d) 1~fand ~‘ are given by

8 3

~[u, L] = ut — 4[u, t’] + (2i’ — 3u) ~—[u, c] + (2u — 3v)—[u, il,

~‘[u, v] = [u, v](u — v)2. (2.19)

3. IR and UV divergences

If we want to compute(2.15) and(2.18), we must treat carefully the potential

divergenceswhich arise from the Liouville action (2.4). Indeed the v.e.v. for ~P
must be computedin the flat fiducial metric (2.8) and for ~R = 0 (sincewe are
interestedin the critical propertiesof 2D gravity). Thus (2.4) reducesto the action

of a free scalarfield in two dimensions.The divergencesareof two kind: lnfrared
divergencesand ultraviolet divergences.

3.1. INFRARED DIVERGENCES

The propagatorof the free scalar field in 2 dimensionsis known to be JR
divergent.We can introducean IR regulatorby fixing the total volume of the 2D
universe to be some constant A, once we have chosen a fiducial metric g
correspondingto some compactmanifold with given genus h and fixed moduli.
Following ref. [10]we canintroducethis constraintas a s-functionin the partition
function for the Liouville field

ZL(A) = f.~[~]6(A — fd2x ~e~) e’~L~©. (3.1)

Splitting D into the laplacianzero mode I~andthe fluctuatingpart ~

c~5(x)=rI~)+c!(x), fd2x \/~i=0, (3.2)

we can integrateout explicitly the zero-modecP
0 andwe get, usingthe fact that

fd
2x ~/~R = 8~(1— h),

ZL(A) = (A) _l/2(A/A)_I_(P±l)(l_h)

(p± I Xl— Ii)

x f~4[~](A~fd2x ~e~) e~
5’-~, (3.3)
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where A = fd2x ~ is the backgroundarea. In the semiclassicallimit /3 —* ~ the
fluctuationsof cP areof order/3 1/2 Thereforethe non-localterm in (3.3) reduces
to a local interactionterm

- (p+ 1)0 —h) /3(1 — h) —

(A_tfd2x~ej ~ex~( 2A fd2x~~2). (3.4)

In the one-loopapproximation,we can thereforecomputecorrelationfunctions
at fixed genush, moduli and total volume A by choosingas fiducial metric ~ a
representativeof this class,for instancethe metric with R = constant,A =A, and

by usingas effectiveaction for ~I the free field action

- /3 - - 8ir(1—h) -

Sett(ti)) = ~~_fd2x ~ ~‘ a,1 ~4— ,. 12J. (3.5)
A

The effective mass term m~
11=—(1— h)8~r/Ais larger than or equal to 0 for

h > 0. For h = 0 it is negative,but exactlyequal to the first non-zeroeigenvalueof
the scalarlaplacian ~ on the spherewith constantcurvature.The threeassociated
zero modes are the I = 1 spherical harmonics I~= }‘~, m = — 1, 0, 1, which
correspondsto global conformal diffeomorphismson the sphere.Thereforethey
shouldnot betakeninto accountwhen integratingover the cP fluctuationsand the

quadraticform (3.5) is still strictly positive.
In fact the IR problem simplifies drastically if oneconsidersreparametrization

invariant observableslike (2.13) or (2.17). Indeed it appearsthat (at least at one
loop) they are JR finite. This is in fact quite natural and should follow from
general results on IR divergencesin Goldstone models in 2 dimensions[11].
Indeed the fact that 1 is masslessfollows from the invarianceof the Liouville

action (2.4) undera global shift

cP(x) —s ‘i(x) + çp0 (3.6)

(for p~= 0 and asymptoticallyflat ~). Reparametrizationinvariant observables
shouldbe invariant undersuch a shift, since it may be absorbedinto a changeof
coordinates

x x e~t/
2. (3.7)

This is confirmed by explicit one-loopcalculations.For instance,assumingthat I~
gets a non-zero v.e.v. KcD~,(2.15c) and (2.18c) still vanish identically through
partial integration

V~(r) = (P)2irf dXX(Fr(X) + ~xF~’(x)) =0,

= — ~(~)2~f dX(Fr’(X) +xF’(x)) = 0. (3.8)
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This implies that we can perform all calculations in infinite flat space, without
worrying about IR problems. The IR regularized propagator, which is of the form

(cP(x)~5(y)~ -(2//3) ln(Ix-y12/A) if i~-~i2<<A, (3.9)

leads for invariant observables to results which do not depend on the IR regulator
A. Thus we can shift the propagator by an arbitrary amount and replace eq. (3.9)

by

(3.10)

where A is some finite mass scale.

3.2. ULTRAVIOLET DIVERGENCES

The problem of the short distance divergences is more delicate. In the original

2D gravity theory, discretized for instance by dynamical triangulations, the UV
“proper cut-off” a expresses the fact that one should not consider fluctuations of
the metric with intrinsic scale length ~2 = dx’ dx~g

11(x)<a
2. In our treatment of

the effective Liouville theory, a is now considered as a “fiducial cut off”. This
means that fluctuations of all the fields, including the Liouville field c1, must have
scale length, expressed with respect to the fiducial metric ~, larger than a
(f2 = dx’ dx~~

1~(x)<a
2). The expectation values of the physical observables,

when computed with this prescription, have in general UV divergences and
therefore they depend on a. However they must not depend on the background
metric ~. This requirement follows from a diffeomorphism anomaly consistency
condition (absence of diffeomorphism anomalies) and fixes the conformal weight
of the vertex operators which “dress” the local primary fields which are integrated
over space in the calculations of global observables.

Let us concentrate on the observable V(r) given by (2.15.)There are two kinds

of divergences. The first one comes from the propagator at coinciding points. From
eq. (3.9) it gives the logarithmic divergence

= -(4/f3) ln(a2/A) (3.11)

(note that it dependson the fiducial metric through A). It is the usual kind of
divergencewhich is already presentin the computation of global quantities
involving vertexoperators.The secondkind of divergencecomesfrom

4 1
(a

1cP(x) 81~(y))= — 2~ (3.12)
13 Ix—y~
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Indeed this term gives in the double integral over u and i’ in eq. (2.15d) a linear
divergence at u = i: of the form

1f du dc [u, v]K8
1~(x) 81~(y)) fdu dL’ [u, t] 2 2~ (3.13)

xl (u—c)

If one follows the general recipe, one must regularize this linear divergence by
cutting off the integral over u and i’ as soon as the two points x(u) and x(i’) are at
a distance less than the fiducial cut-off a, i.e. for I u — i’ I <a/I x I ~ This gives a
linear divergence in the fiducial cut-off, and a straightforwarddimensionalanalysis
shows that this gives a singular term in the one-loop contribution to the volume of
the ball V(r), (2.15d), of the form

V’
2~(r)ar3/a, (3.14)

with a positive coefficient. However one has to rememberthat r is a physical
distance,expressedin term of the physical fluctuating metric, and V a physical

area,while a is a fiducial cut-off. Thereforethecoefficientin (3.14) shoulddepend
on the fiducial metric. An explicit calculation,usingthe IR cut-off discussedabove,
shows that in fact

Vt2~(r)a —Il — — (3.15)
6/3 V A a

where A is the total areaand A the fiducial area.Thus, becauseof this strange
linear divergence,the dependenceon the fiducial metric andthe IR regulatordoes
not disappear,contrary to what has beenarguedbefore. In the next sectionswe
discusstwo waysto get out of this contradiction.

4. The finite-part regularization

The first, and somewhatnaive, point of view consistsin arguing that since this
divergenceis i-dependent,it signalsthat the observableswe are interestedin are
not reparametrizationinvariant and that some countertermshave to be addedto
make them physical. An often usedregularizationprocedureto deal with such
power-like divergencescausedby mixing of operatorsconsistsin usinga finite part
integrationprescriptionto deal with all but the logarithmic singularities.At that
stagewe have no better justification for this procedurebut it gives interesting
results that we now describe.

In our case,whenevaluatingV(r), this consistsin treatingthe linear divergence
at u = u by the finite-part prescription

f du 2 = 0. (4.1)

—~ (u —
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We are then left with logarithmic divergences of the form fdu I u — I — I that we
regularizein the standardway with the fiducial cut-off a. We shall not give the
details of the calculations.The varioustermsin eq. (2.15d)contributeto logarith-
mic divergences,which by dimensionalanalysisshould amount to a term of the
form r2 ln(a). Similarly, the variouspropagators(3.9) andthe integrationsover u
and v give logarithms of the distance,which amounts to terms of the form
r2 ln(r). The coefficient in front of this logarithmic term is universal, namely it
does not depend on the exact form of the regulator.

In factthe final result for V(r) is that there areno logarithmic corrections.The
various logarithmswhich comefrom the various terms in eq. (2.15d) canceleach

other at the endof the calculation. Thus the volume of the ball with radius r is
given at one loopby

(V(r)) = ~r2 + (C//3)r2 + ..., (4.2)

with C some constant.
The sameconclusioncan be drawn, within this finite-part prescription,for the

Euler characteristicsof the disk (2.18) which gives the number of connected

componentsN(r) of the circle with radius r (this correspondsin ref. [8] to the
“numberof baby-universes”generatedat “time” r). Whenlooking at eq. (2.18d) it

seemsthat the existenceof operatorswith four 3 L implies that thereare diver-
gencesin a3 and a2. However the explicit calculationshows that thesediver-
gencescanceland that we are left with the familiar a~and ln(a) divergences.
Using the f.p. prescriptionto get rid of the a — divergences,we found after a
somewhatlengthy calculationthat

= 1+ (D//3) + .... (4.3)

Finally we have checkedfor consistencythat if we compute the correlation
function of two primary operators~I’with conformal weight LI00 at fixed geodesic
distancer, that we define for instanceas

(fdxfdy lf’(x)~f’(y)O(r-d(x,

(4.4)
(fdxfdY O(r-d(x,

it still obeysKPZ scaling,namelythat

r4~ r ~, (4.5)

with LI = LI~t0 + (1/f3)z.1”0(I — LI10~)which correspondto leadingorder in 1//3 with
the KPZ formula for the scaling dimension LI of if’ dressedby gravitation.
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Unfortunately in sect. 5 we shall seethat this cancellationof logarithmic diver-
gences,althoughquite interesting,is not the endof the story.

5. The covariant regularization

We now propose a covariant definition of the geodesicdistancebetweenpoints
which should regularize to all orders the singularities that we have discussed
before. Let us considera massivescalarfield if”(a = 1, n), coupledto the metric
by the standard action

S(g, if’) = ~fd2x ~/~(g” 0~if’3jlI’+m2if’if’) (5.1)

In a classical metric the geodesic distance can be obtained through the large-mass
limit of the propagator

d(x, y; g) = lim( —(1/rn) ln((if-’(x)if’(y)))) (5.2)

where here K...) meansthev.e.v. over if’. This follows easily from the random-walk
representation of the propagatorfor a scalarfield

= f dTfn(y~[r(U)I exp(_rn2r_ fTdu I~) I/4)~(5.3)
(1 r(O) =x 1)

where r is the proper time.
The K ) may be takenout of the logarithmby the well-known replicatrick. We

introducen replica ~ a = 1, n of if’ andwe write

a ~,
ln°((l1’(x)lf’(y))) = lim ~ fl if10(x)ift(~(y)). (5.4)

n’() ~fl a In

One advantage of this formulation is that if the metric g fluctuates, this
definition of the geodesic distance stays valid, since we only haveto takethe v.e.v.
over both if” and over the gravitationalfield. For instancethe observableV(r)
becomes

KV(r)) = ,~L~fd2x~(- ~ ~ (5.5)where if’= 11
01,,if”’. The fact that we takethe limit n = 0 means that the metricg is quenched when averaging over the massivefield if’, insteadof being annealed

as in ordinary global observables.
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Another advantageof this procedure is that the geodesicdistance is now
expressedin term of correlatorsof matterfields coupledto gravity, which canbe
treated as the other matter fields. In the conformal gauge(2.2) we obtain the
effectiveaction for the if”’,

S(if-’, ~ ~)= ~fd2x \/~{~“31if”’ 31if”’ +m
2 e~’lI”’if”’}. (5.6)

Finally the most importantpoint is that the largemass rn plays the role of an
UV regulatorwhich smoothesthe linear divergencesthat we discussedbefore.
Indeed, in the functional sum over paths (5.3) for large but finite mass the
dominant contributionsare peaked around the saddlepoint (a particle moving
along the geodesicwith constantproperseedrn/2) but fluctuateby an amount of
order 1/rn. Sincern is a physicalmassit correspondsto a covariantshort distance
regulator.We expectthe metric to be probedonly at length-scaleslarger than the
cut-off scale1/rn.

A fully covariant definition of the observablesis therefore obtained by first
quantizing the whole Liouville theory (~, ghosts,matter and replica if”’), taking
the continuum limit a —s 0, and then looking at the limit m —s ~. Note that in
doing so the matter central charge is shifted by c —s c + n. The corresponding

changein the Liouville coupling constant1/13 is of order 1//32. Possible contribu-
tions in (5.5) from this renormalizationof /3 comefrom (3/3’/an)I ,,..~ andare at

leastof order 1/132.

In practice this procedure leads already at one loop to somewhatlengthy
calculations. We give below the formula for (V(r)) at one loop in terms of
Feynmandiagrams

Vt2~(r)= fd2x Fr(dn,(X))~ ~ x

rn
m-

+fd2xFr~(dm(x)) 2 rn3

— rn + —i-

rn2~
+fd2x F

1”(d~,(x))-~-- (5.7)
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The thick lines representthe massiveif’ propagator,the wavy line the c1 propaga-
tor for the Liouville field (3.9). Finally d,~(x)= —(1/rn) ln((if’(o)if’(x))) is the
“regularizeddistance” in flat spacegiven by eq. (5.2). One should notice that in

the perturbation expansion ratios of Feynman diagrams appear. Each thick line
represents in fact one replica propagating in the fluctuating metric and the
quantumfluctuations of P induce interactionsbetweendifferent replica, as is
clear from the last two diagrams.

For finite m, as discussed before, (5.7) is IR finite. It is also UV finite. Indeed,
the only UV divergencescomefrom the first and third diagrams,which contain a
Liouville “tadpole”. It is easy to see that they cancelexactly(throughan integra-
tion by part). Therefore(5.7) does not depend on the fiducial cutoff, nor on the
fiducial metric, as expected.

Now one hasto studythe large rn limit of (5.7). This amountsto studyfor fixed

rn the large I x I behaviorof the diagrams,or equivalently in momentumspacethe
structure of the Landau singularity at the first cut at p2 = —rn2 (for one-replica
diagrams) or at p2 = —4m2 (for the two-replica diagram). This can be done
explicitly, for instance by using a multiple Mellin representationfor the diagrams
[12]. Details on the calculationsare given in appendixA. The final result is the
following:

The second and sixth diagrams contribute to (5.7) by terms at most of order
r2 ln(rrn) and are therefore at most logarithmically divergent.The importantterms

are the fourth and fifth diagrams, which appear to be linearly divergent. More
precisely

p —0
rn4 ~(A ln(~)+B)(nt~)2+O(nt~), (5.8)

while

~
(A ln(rnx) + B)(rnx)2+ C(rnx)3”2 + O(rnx), (5.9)

with A, B, C some constants(C = — %/~/64 <0). Thus the linear divergence
cancel and we are left with a square-root divergence in the UV cut-off rn. The
final result is

1 ~3/2
(V(r)) ~~-r2+ — —~—r5”2rn”2+... + .... (5.10)

This non-analytic divergence has in fact the same origin as the linear divergence
in the fiducial cut-off discussed in sect. 4. As discussed in appendix A, it occursat
coinciding proper-time for the two internal vertices of the diagram in eq. (5.9), that
is when the two internal vertices comes close to each other. In other words, it
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comesfrom the short-distancesingularbehaviorof the interactionbetweenreplica
inducedby the fluctuationsof the metric. The fact that oneobtainsa square-root
divergence ‘~ (rrn)~2insteadof a linear divergence‘~ r/a (asexpectedfrom sect.
3) is not really surprising.Indeedin flat space(‘1 = 0) the randomwalk haslateral

fluctuationsof order (rnr)”2. Hencethe “effective length-cut-off” beyondwhich
the metric is probedis (r/rn)’~2 instead of 1/rn, as naively expected.Sincesimilar
diagrams should appear also in the expression for other local covariant quantities
such as (~(r)),we expect (although we have not done the explicit calculations),
that such square-root singularies are generic. Wediscuss the significance of these
singularitiesin sect. 6.

6. Geodesicsin random metrics and directed polymers in random media

At first sight eq. (5.10) means that the metric is so singular that the average
volume of a ball with radius r growsmuch faster than r2. Since oneexpectsthat
much strongerdivergenceswill appearat higherordersin the perturbativeexpan-
sion in 1/13, this seemsto corroborate the idea put forward in ref. [8] that
space-time in 2D gravity has a fractal structure. However in our opinion one
should get a betterunderstandingof the preciseorigin of thesedivergencesbefore
drawing definite conclusions.For that purposelet us comeback to the random
walk representation(5.3) for the propagator.When analyzing the origin of the

divergencein eq.(5.9) onecan seethat it is containedneitherinto the fluctuations
of the proper-time of the two replica, nor in the longitudinal fluctuationsof r
along the directions of the geodesic.Therefore we keep only the transverse
fluctuationsin the definition of thedistance(5.2) andwe replacein the propagator
(5.3) the action quadraticin r simply by the length L of thewalk, that is

f~[~(z)] e’~, (6.1)

where

L[E] = + ~2)I/2 e’~f©2, (6.2)

z is the coordinate in the x direction and E the coordinateorthogonalto z (in flat
space). Moreover at leading order in 1/13, and for the purpose of studying the
leadingdivergence,one may expand(6.2) and keepthe terms quadraticin E and
linear in 1, thusgetting

Leff[E1 =x + ~fdz(é(z)2+ ~(z, �(z))). (6.3)
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In doing so we have broken explicitly general covariance but this is not
importantfor the analysisof the leadingdivergence.To find the pathwith minimal
length between o and x is reduced to find the configurationfor E which minimizes
the action functional (6.3). This form of action is exactly the one which appears in
the continuousformulation of the problem of directed polymers in random media
[131.This problem, and its extensionto random manifolds in randommedia,has
beenrecentlythe subjectof numerousinvestigations.It is related to interfacesin
the presenceof quenchedrandominpurities [14], to surfacegrowth through the
KPZ equation [15] (not to be confusedwith the KPZ of ref. [4]), to randomly

stirred fluids through the Burgersequation[16], andmany questionsand physical
issuesin theseproblems are similar to those encounteredin spin glasses[171.In

(6.3) e representsthe transverse position of a one-dimensionalinterface with
tensionunity, subject to the randompotential if’, and rn is the inversetempera-

ture. Howeverthereare importantdifferences.Most studiesof directedpolymers
dealwith correlationsfor the disorderwhich aregaussianandlocal, andcharacter-
izedby the 2-pointscorrelatorof the form

~(z, e)cP(z’, E’) = A~(z—z’)f(� — �‘), (6.4)

with f some function which is generally of the form

f(E—E’)~ IE—E’I2~~ IE—E’I~ (6.5)
1—y

(TT meansthe averageover the disorder).In our casethe correlationsfor cP are
non-local, sincegiven by eq. (3.10). Moreover (6.3) is only an approximationvalid
to leadingorder in the “disorder strength” A 1/13 and to higherorder therewill
be morecomplicatedn-pointcorrelationsfor the disorder.

The importantphenomenonfor randomdirected-polymersis that at low tem-
perature there is competition between the tension, which tends to make the

polymerstraight(E const.),andthe randompotential,which attractsthepolymer
in the regionswhere 1 is large and negative.Simple dimensionalanalysisshows
that for y < 2, that is for long-range correlations, the disorder is a relevant
perturbation,since A has engineeringdimension z~2.Thereforeit is expected
that the disorderwill always(no matterhow small A is) roughenthe polymer,since
the gain in energyobtainedby visiting regionswith largenegativeI~,evenif they
are locatedat largee, will alwaysovercomethe cost in tensionenergy.The difficult
questionis to characterizethe state(s)of the polymer, in particularthe valueof the
“wandering exponent”~ which relatesthe transversefluctuationsof the polymer
(LIe)2 to its longitudinal extendx by

(LIe)2 -~x2~. (6.6)
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In our case, that is for geodesics in random metrics, the concept of wandering
exponent is not covariant but one can look at other observables which are
reparametrizationinvariantand which probethe fluctuationsandthe correlations

betweenrandomwalks. First the averageeffective-lengthof the walk betweeno
and x, KLeff) (whereK...) and denoterespectivelythe averageover the path
position e andover the metric 1), correspondsto the averagefree energyand is
found to be,by the very calculationwhich gives eq.(4.2),

_ 1 v~
KL.~1)=x + — — ~rn~

2x372 + ... + .... (6.7)/3 64

This means that the path indeed goes through domains where the potential energy

1(z, e) is negative and overcomesthe kinetic energy ~ Another interesting
quantity is the numberof intersections(in the spin-glassterminologythe overlap)
betweentwo walks. If one considerstwo independentrandomwalks a and b, the
overlap is definedas

Q~h = f ~(�a(Z) — Eh(z)). (6.8)

This definition is not covariantbutmay easily be madecovariantwithout affecting

the most divergent terms we are interestedin. The calculation is detailed in
appendixB. We obtain at oneloop

1/2 2
(Qab) a (n~v) + (C/13)(rnx) + ..., (6.9)

with C a positiveconstant.The classical(rnx)”2 term correspondsto the probabil-
ity for two randomwalks to havemet after x steps.The fluctuationterm is much
larger. This means that the two random walks are much more correlated. This is
consistent with the idea that they are pinned by the regions with largenegative1,
in which they intersect more often. The same conclusion may be drawn from
computingthe averageminimal (geodesic)distancebetweentwo paths(which in
some sense measures the transverse fluctuations).

In fact, as far as theleadingdivergencein mr is concernedandif we stay at the

semi-classicallevel in Liouville, we shall seethat the exactcorrelator(3.10) for the
Liouville field is equivalentto a local correlator(in z) of the form (6.4), (6.5) with
-y = 1/2! A hint to this fact is provided by the explicit results (6.7), (6.9). Indeed
the first-order correction in the disorder strength scales as ,~3/2/p times the
leading term (the x-term in (6.7) is a zero-point energy in (6.3) which has to be
subtracted). This means that the disorder strength 1/13 ‘~ A had dimensionz3”2.

This is corroboratedby the following generalargument.We havearguedthat the
divergencecomes from the short-distancebehavior of the Liouville correlator
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betweentwo different replica a and b. Sucha Liouville correlatorcanbe written
as

_ln[(x —x’)2 + (E~(x) — eh(x))}

d t’’ ,
= dt e—t((x —x’)±(�,(.,)—E

1,(x ~ I
ds F(s)

d t’
1 dq

= dt e_t(v_v’~ ~ I _~ (6 10)
ds F(s) VI— ~_

andtaking the averageover E of the vertex operators e”~ leads to some integrand
which depends,among other variables, on x and x’. The singular term arises
becauseas rn goes to ~, the regionwhere x’ ~x, q and t arelarge, so that t in2
and t(x —x’)2 ‘-~q2/t 0(1) dominatessomepart of the integrand(see appendix

B). This meansthat we canassumethat the term efl” is slowly varying andthat the
gaussianintegrationover x’ can be performed.We are left with the distribution

d 1 t’2
— ~(x — x’) ~ ~ dt~F(s) fdq e’ ~ ~ I

= —~(x—x’)~e~(x)— e,,(x’) , (6.11)

which correspondto the form (6.5) for y = 1/2.

We havethus obtaineda betterphysical understandingof the non-logarithmic

short-distancedivergencesthat appearin the semi-classicalcalculations.However,
as we shall discussin sect.7, theseresults raisenew questionsabout the intrinsic
geometry of 2D gravity.

7. Discussion

We endwith a list of questionsand someremarks.

7.1. RENORMALIZATION OF [3

We haveseenthat at first order in the “Liouville coupling constant” 1/13, the
randomnessinducedby the quantumfluctuationsof the metric acts exactlyas the
randomnessof a quenchedpotential on a directedpolymer. For this last system
this meansthat its long-distancepropertiesarenot describedby the weak-disorder
expansion,that the disorderstrengthis a relevantvariablewhich is renormalized
and that is should flow to some non-trivial IR fixed point (see ref. [14] and
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referencestherein).In our casethe disorderstrengthis 1//3 which is relatedto the

central charge c of the matter sector by eq. (2.6). Our first-order calculation
suggeststhat 1/13 is also a relevantcoupling which has to be renormalizedin the
IR. In particularit mustbe stressedthat we havenot found any local counterterm
whichcould be addedto the action(5.6), (2.4) to cancelthe divergence(this would
haveprovided a justification for the finite-part regularizationof sect.4). However

it is known that /3 cannotbe (and is not) renormalizedwhen computingglobal
observables.It is thereforequite mysteriousthat /3 seemsto be renormalized,and
flows towardthe strong-couplingregion, whenone is interestedinto local observ-

ables.

7.2. RELATION WITH THE 2D RFIM

The fact that the geodesicsbehave like directedpolymers in 1 + 1 dimensions
with y = 1/2 is also very puzzling.Indeedthis model shoulddescribe(in the SOS
approximation, that is neglectingoverhangsand handles)the behavior of the
interfaceof the randomfield Ising model in 2 dimensionsat low temperatures[14].
However it is now rigorously proven that the 2D RFIM is disordered at any
positive temperature[18]. This corroboratesthe early argumentby Imry and Ma
[19] that D = 2 is the lower critical-dimension for the RFIM, and the scaling
argumentswhich leadto the Flory estimatefor the wanderingexponent~-F= (~—

D)/3 [20]. Indeed,for D < 2, ~‘ ~ 1. This meansthat the SOSapproximationis not
valid, that rotation invarianceis restoredand that the notion of interfacedoesnot
makesenseanymore.Of coursewe cannotdrawany conclusionin our case,since

the equivalencewith the 2D RFIM is valid only to first order in 1/13. Howeverit is
very suggestivethat alreadyat first order the quantumfluctuationsof the metric
havesuch a strongeffect.

7.3. REPLICA SYMMETRY BREAKING

This raisesa fundamentalissue.When defining the geodesicdistancethrough

the large-masslimit of the propagatorby eq. (5.2), we havemadean implicit but
very important assumption:The numberof distinct geodesicsbetweenthe two
points with length close to the minimal one must not grow too fast with the

distancebetweenthe points. Otherwise,in additionto the length, the entropy of
the geodesicsshould also contributeto (5.2). This entropy contribution is in fact
alreadypresentwhen defining the distancebetweenpoints through (5.2) on a flat
regular lattice (beforecoupling to gravity). Let us for instanceconsiderthe two
points(0, 0) and(N, N) on the squarelattice (see fig. 1). Their distancein lattice

unit calculatedwith the definition of ref. [8] is 2N, while the distancecalculated
through (5.2) is of course V’~N,as long as we are in the continuum limit
1 -~urn — I <<N. The differencecomesfrom the large entropy (of order N) of the
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Fig. 1. Typical “microscopic geodesic” (black line) and the “macroscopic” geodesic(double line)
betweentwo pointson the regularsquarelattice.

pathswith minimal lengthon the lattice (let us call them “microscopicgeodesics”).
Our definition is the correctone since the most probablegeodesicsare located
along the diagonal,andthereis only one“macroscopicgeodesic”.

In a randommetric, there is the possibility that many different “macroscopic
geodesics”exist betweentwo points.This phenomenonshouldcorrespondto the
occurrenceof replicasymmetrybreaking(RSB) in the replica theorygiven by (5.6)
[21]. RSB might play an essentialrole for directedpolymers.Indeed,Mézardand
Parisihaverecentlyrederivedthe Flory valuefor the wanderingexponent~F with
a variationalHartree—Fockmethod [22]. In this approximationthey showedthat
hierarchical RSB doesoccur in the whole region where disorderis relevant at

arbitrarily small temperature,andwasessentialto recoverthe Flory exponents.
In our casewe cannotconcludeanythingfrom the first-ordercalculationthatwe

havepresentedhere.However we see no reasonto exclude the possibility that
RSBoccurs, since the quantumfluctuationsof the metric are alreadyvery strong
in the semi-classicalregime. This can be seen for instance by computing the
fluctuationsof the overlapbetweentwo geodesics.The calculationgoesalong the
samelinesas the oneof the overlap.We obtain

KQahQah) - KQab)KQab) a ,mv + (D/B)(mx)5~2+ ..., (7.1)

with D somepositive constant.Thus althoughquantumfluctuationsof the metric
increasethe meanoverlapbetweentwo geodesics,they also increasethe fluctua-
tions of the overlap.This meansthat two differentpaths,althoughthey are close
to eachothera longpart of theirjourney,may separatethemselvesfor a long time.
This pictureis of coursevery crude.It is corroboratedby the computationof the

fluctuations of the distancebetweentwo different paths; quantum fluctuations
decreasethis meandistancebut at the sametime increaseits fluctuations.
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If RSB occurs,we expect(5.2) not to be valid anymore,since it measuresthe

total meanfree energyof the geodesics(that is their length minustheir entropy).
Thus using (5.2) should lead to an underestimateof the physical macroscopic

distance between two points, and therefore to a possible overestimateof the
intrinsic fractal dimension. However it is not clear if one can define in an
unambiguousway the geodesicdistance,owing to the possiblevery complicated
structureof the spaceof macroscopicgeodesics.Perhapsthis problem can be
solved by introducing explicitly termswhich break replica symmetry in the action

(5.6) [23]. lt is also not clear which definition can be used in the numerical
simulation. It would be of coursevery interestingto test thoseideasin numerical
simulations (although the experiencefor the 3D SK spin glass shows that this
shouldbe quite difficult).

7.4. WORMHOLES IN LIOUVILLE THEORY

An important question is to understandif “wormhole” configurationsare
important in the functional integral over metric. Indeed one expectsthat such

configurationswould be importantif thereis a proliferation of baby-universes,as
advocatedin ref. [8]. Let us presenta very crude, but simple, estimateof the
importanceof such configurationin the Liouville theory.

Let us consider the following configuration, depicted on fig. 2. A “baby
universe” with constant positive curvature Rbaby is sewed to a flat “parent
universe” through a small bottleneckwith radius E (seefig. 2). The corresponding

Fig. 2. A baby-universewith constantpositive curvatureR connectedto euclideanflat spacethrougha
wormholewith diameter�.
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metric g = exp(~P)is

0 if IxI>e

CP(x)= 1+pIxI2 . (7.2a)
—21n lf IxI <e,

1 +pe2

with

8
Rbahy = 2 (7.2b)

(1+pe2) pC

The Liouville action (2.4) for this configurationis for small e

= /3 (111(1 + pe2) — 1 ~~�2) —/3 ln(Rh~bYe2) (7.3)

andis divergentfor e = 0. Wewant to use a Kosterlitz—Thouless-like argument to
estimatethe probability to have such a baby-universewith fixed internal uolume
Ababy 8~7~/Rbahy.We estimatethe free energyas (7.3) minus the entropy of the
baby-universe,which is of order lfl(Aparent/E2),where A parent is thevolume of the
parentuniverse.Thereforethe free energydivergeswith e as

Fh.,bY ([3— 1) ln(1/E2) (7.4)

As long as /3> 1, that is c < I, it is large and positive. This crude calculation
suggeststhat in the whole weak-couplingphasesuch configurations(baby-uni-
versesconnectedto the parent-universeby a microscopicsmall “wormhole”) are
suppressedby a power-like factor in the functional integral overmetric. Onecan
repeatthesameargumentwhencomparingtheprobability to havea large universe

with volume A and curvatureR 8ir/A with that of having two universeswith
volumes ~A/2 andcurvatures 2R connectedby a small wormhole.As longas
c < I the probability to split vanishesin this approximation.

This heuristicargumentsuggeststhat the c = 1 barriercanbeinterpretedas the

onsetof the liberation of baby-universesin 2D gravity. This is consistentwith the
conjecturethat for c> 1 branchedconfigurationsdominatethefunctional integral
overmetrics (with fixed topology). Our argumentmight be related to the one of
Cates[24] who interpretsthe c = 1 barrier as the onset of liberation of singular
spikeswith deficit angle2~-.Howeverhe doesnot takeinto accountthe renormal-
ization of the punctureoperator exp(1) (this amountsto take /3 = (25 — c)/6

insteadof (2.6) in (2.4)). With the correctnormalizationand following his argu-
ment one finds that “spikeswith deficit angle4ir” are liberatedat c = 1. But a
smallwormholeconnectingtwo flat universescanbe viewedassuch a pathological
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spike.... Our argumentmay also be viewedas apoor man’sversionof the one of
ref. [25] which states(for a lattice randomsurfacemodel) that branchingoccursas

soonas Ystring > 0. Of coursemuch work is neededto seeif this argumentcanbe
made more rigorous. In particular it would be interesting to understandif it
applies for the theorieswith c < 1 but with “dangerousnon-local operators”
discussedby Seiberg [26] (we haveassumedthat thereis no particular coupling
betweenthe mattersectorandthe metric at thewormhole; this is probablycorrect
for simpleunitary mattersuchas n = c masslessbosonicfields) or for the theories
with c> 1 discussedby Kutasov andSeiberg[27].

7.5. INTRINSIC DIMENSION OF REAL BRANCHED POLYMERS

Finally let us endwith a simple remark,but basedon an exactresult. In ref. [8]

it is argued that an infinite intrinsic dimension is characteristicof a branched
polymerphase.In fact the intrinsic fractal dimensionof a branchedpolymer is 2!
The simplest,but indirect, argumentconsistsin consideringa gaussianbranched

polymer,and neglectingself-interaction(this is certainlyvalid if D> 6). Thenit is
known that the Hausdorff dimension of the polymer, defined by the average
distancein physical spacebetweentwo points, is 4 [28], which meansthat

((r1 — r~)
2)aN~2, (7.5)

where N is the numberof elementsof the polymerand i and j two randompoints.

Let d be the averagenumber of links betweenthose two points. The average
distancein physical spacedependsonly on d, since all the contributionsof the
branchesfactorize. What remains is a linear gaussianpolymer with length d
between i and j. Therefore

K(r
1-r1)

2)ad. (7.6)

Thus the averagedistanceon the polymer between two points scaleswith its
volume as Kd) aNlz”~~trand we get djntr = 2. Of coursesome other quantities,
such as the spectraldimensiond

5, differ for true branchedpolymers (d, = 4/3)

andfor 2D quantumgravity in the weakcoupling phase(d5 = 2).

I am very indebtedto B. Derridaand C. de Dominicis for guiding me through
the literature of disordered systems, for their interest and for many crucial
discussionsandadvises.I also thankC. Bachas,T. Banks,E. Brézin, T. Jolicceur,I.
Kostov, S. Leibler, M. Mézard,H. Neuberger,N. Seiberg,S. Shenker,N. Sourlas,
T. Spencer,J. Wehr, andJ. Zinn-Justinfor discussionsor help at variousstagesof
this work.
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Appendix A

In this Appendix we give the details of the derivation of eq. (5.9). ln the
Schwingerrepresentationthe amplitude for the graph

is given by

1 d (4a5)’
I(x, rn) = ~f da~ F(e) N~et~

4N ~ (A.1)

where .~, P and N are the usualSymanzikpolynomials

= a
1 + a2 + a3 + a4,

P= a5(a1+ a2 + a3 + a4) + (a1+ a2)(a3+ a4),

N = a5(a1 + a4)(a2+ cx-)) + (aia2a3 + a2a3a4 + a3cx4a1+ a4aia2). (A.2)

With the changeof variable

a~—O-1U, a4—u1(1 —u),

a2 = 021’, a3= 0-3(1 — i),

N’ = a~+ cr1u(I — u) + 0-20(1— t’), (A.3)

we get

1 I d(4a5)f d~1d~2fdu duf da5~ F(e)

x e— (~,2,, +x

2 /4,r) e— (rn2~

2±x

2/4,r

2) e —, )2 /4N’ � — (A 4)

We representthe last exponentialas

e~
2~”’)2/4N’ = ~ (x2(u_L)2 ) F(s), (AS)
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andwe perform the integrationovera5 to get

1__~fdui dci2f—fdu do e m

2u,+x2/4u,) em2~2~2/4~2)

(47~-) 0 0

d F(1—e)F(�—s)F(s)
X _4*~(xIu_vI)2*

de F(1—s)F(e)

x [ci
1u(1— u) + 0-20(1 — o)]”’ I �=o (A.6)

(the integrationover the imaginarypart of s has to be donefor 0 < Re s <c)
We can now study the large-rn limit. As rn —s ~ the o- integral becomes

dominatedby the saddlepoint ~ = = x/2rn. If we perform the ci integrationby
the saddlepoint method,we obtain

1 ‘,rx ds
3 ___~e2~?~f_—_fdu do

(4~-) 2rn
2iir

d 2 S� F(1 — E)F(E — s)F(s)
>< — ____________________

rn F(1—s)F(e)

x I u—cl 2~(u(1— u) + r’(l — o))~. (A.7)

Integratingover u and v we obtain a meromorphicfunction of s with a seriesof

poles along the positive real axis. Some of them comefrom the F functions in
(A.7), the othersfrom the divergenceof the u and v integrationsif s is large
enough.Now if one integratesover s from —i~to +i~,shifting the contour of
integration to the right and picking a pole at s = s~gives a residueof order
(xrnY©. Startingfrom 0 < Re s <e the first pole is at s = e andcomesfrom the
function F(E —s). Its residuegives the leadingterm of the large-rn limit of (A.1).
Taking the derivativewith respectto e andsetting � to zerogives finally

1
0(x, rn) = 122~ e

2~(—2ln(x) +3). (A.8)

Note that it is less than 0 at large x becausethe Liouville propagator is
proportionalto — ln(x) and henceless than0 at large x.

The secondpole is at s = 1/2 andcomesfrom the u and o integration.Indeed,
the integral diverges along u = v becauseof the I u — I —2* term as soon as
s> 1/2. The residuegives for the sub-leadingterm

II/
2(x, rn) = — lrxl/2m7/2 e_

2xm. (A.9)
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The otherpoles,as well as the termsneglectedin the cx integration,contribute
only at order rn ~ exp(— 2rnx). Combiningwith the large-rnbehaviorof the scalar
propagator

1 2Tr 1/2
— e~m (A.10)

4~- xrn

gives eq. (5.9). The sametechniqueallows us to studythe graph

and leads to eq. (5.8). One seesin this calculationthat the fluctuations of the

proper-timeso-~and cr
2 of the two “replica” particles I and 2 are not important

andthat the singularterm occursfor u = i’, that is whenthe two particleshavethe
sameintermediateproper-timea~= a2.

Appendix B

In this appendixwe detail the calculationof the overlapQ2 betweentwo walks
(labelledhere by 1 and 2) to first order in 1/f3. We haveto introducetwo sets of
replica e~and e,~(a = 1, n). The v.e.v. for the overlapcan now be written as

= (1 ~ JX 6(e~(z)- e~(z))). (B.1)

Integratingover the Liouville field ~i we obtain the replica action which is at
leadingorder

m x n 2
Srep=~fdZ~ ~(.a)2

‘~ ~ a=I a~-l

_çfX~~1dZ2a,~i E (—i) ln[(zi —z2)
2+(�~(z

1)_e~(z2))2}.

(B.2)

Representingthe ö function in eq.(A.1) by a Fourier transform

±~ dA
— = f_00 F_e’~~ (B.3)
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and using the representation(6.10) for the interactionterm we obtain finally for
the term of order 1/13 of eq. (B.1) a representationas a sum of exponentialsof

linear combinationsof the c’s, with coefficients which are linear in A and q.

Applying Wick’s theorem to average over the c’s we obtain exponentials of
quadraticforms in A and q. Performingthe gaussianintegrationwe are left with

1 n n 2
—~ ~ ~ f~ZdZ~~Z

2

c=1 a,b=1 a,~I 0

x ~fdt ~ cc z1©)
2(det[M~(zI, z

2, z)] )l/2 (B.4)

where M~(z1,z2, z) is a 2 x 2 matrix of the form

[(I/4t)+~([z~, zi]+lz2, z2]—2~,,5~”~[z~,z2J) ~(~u’~[z,, z]— ~5,r
1~[z

2, z]) ~ (B 5)

~(~u”lzi, zJ—~5~~°[z2,z]) [z. z]

where cx’ = 1, ci2 = — I and where [z~, z2] is the massless1D propagatorwith
Dirichiet b.c. on the interval [0, x], namely

~ (B.6)

Thereare four different contributionsin (B.4), dependingon the valuesof a, b

and c. Their respectiveweightsare a = b = c—’n, a = b ±c —s n(n — 1), a = c � b

or b=c~a—‘2n(n —1), a *b*c±a —sn(n — 1)(n —2).
We now look at the large-rn limit. Since the 1D propagatoris of order rn 1,

from (B.S) t hasto be resealedas t —* rnt. Thenthe integrandin (B.4) scalesas a
power of rn, but for the gaussianterm exp(—rnt(z1—z2)

2). It becomespeaked
around the region z

1 =z2, which is precisely the singular region where the
interactionbetweenthe replica is singular.Thereforewe keeponly the contribu-
tion of the region z1 z2 and we perform explicitly the gaussianintegration
fdz2 exp(—rnt(z,—z2)

2)in (B.5). Writing explicitly the sumovera and /3 we are

left with an integralof the form

~ (1/4t) + [z,, z,] [z
1, z] —1/2

i dz~dzi dt—
-‘0 o t

2 [z
1, z] [z, z]

(1/4t) + [z1, z~] ~[z,, ~1-1/2

~[z1, z] [z, z]

(1/4t) + [z1, z1] ~ -1/2 (B.7)
0 [z,z]
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We have alreadytaken the derivativewith respectto s and set s = 0. Finally we
canperform the t integrationexplicitly. We obtain

1/2

fdzi dz 8~ Z
1~Z1 (4(1—F/4)~

2—(1—F)~2—3), (B.8)
0 [z, z]

with

[z
1, z]

2
F= , (B.9)

[z,, z~][z, z]

andonecancheck that the integrandis alwayslarger than 0, so that (B.8) gives x2
times some positive constant.Remindingthat the interactiontermis proportional
to rn3/4/3 we havethusobtainedeq. (6.9).
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