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Abstract. The statistical behavior of fluctuating, flexible membranes or films can be governed
by their (surface) tension or by their curvature energy, depending on imposed boundary

conditions We present here simple thermodynamic arguments which enable us to classify the

different physical situations. In particular, we danfy the notion of vanishing tension, and the (or

some of the) conditions under which it can occur Then, m view of this classification, we

reconsider the effects of thermal fluctuations on tension and rigidity, and bnefly discuss the

expenmental systems in which renormalization effects should be expected and could be observed

1. lnwoducfion.

When amphiphihc molecules are brought into contact with water they can assemble to form

bilayers SO as to Onent their polar parts towards water and their Oily hydrophobic tails away

from it These amphiphihc membranes have many interesting properties from the point Of

view Of Statistical mechanics they are (quasi-) two-dimensional Objects, assembled through
weak, nonspecific interactions [I] Morover, recent expenments, Such aS quantitative Studies

Of the Shapes and undulations Of bilayer vesicles [2, 3], and Of the entropic interactions

between membranes [4, 5], have demonstrated that these flexible sheets are Often governed
by their rigidity [6] This means that membranes are dominated by their curvature energy

rather than by their surface tension, as is the case for usual fluid/fluid interfaces This is often

summanzed by the claim that the membranes have vanishing surface tension

There exists, however, quite a lot of confusion as for the precise meaning of such a

statement What does One really call the surface tension Of a membrane ? Is it strictly zero Or

just very small ? If the tension indeed vanishes, then in which situations does this Occur ? And

finally, how can One measure membrane tensions and show that they can vanish? In

particular, do the measured tensions depend on the lengthscales involved in experiments ~ It

seems tO us that although these questions are really essential for many recent theoretical and

expenmental developments it is difficult tO find in literature clear answers tO them. The aim Of

this paper is therefore to try to danfy some of these issues

Amphiphilic membranes are not the only systems govemed by curvature effects ThJn

plates, or shells, are also objects for which the dominating energy is bending [7]. By
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introducing constraints (e.g by appropriate boundary conditions) on a free shell one can

introduce an internal tension lpressure). For small strains such a tension will be equilibrated
by cohesive forces, or compressibility There is an important difference, however, between

such a mechanical plate and a membrane : the ngidity modulus for the later is of order

k~ T. Therefore, a membrane fluctuates due to thernlal excitations and one has to consider

the tension from a statistical mechanical rather than a mechanical point of mew

For a fluctuating membrane there are two independent thernlodynamic variables the total

area, A, which can be modified through for example compressibility effects or exchange of

molecules with a reservoir, and the projected area, A~, which can be modified through the

constraints imposed on the system or can vary due to thermal undulations (~) We discuss th~s

important point m chapter 2, where we also argue that the (surface) tension, r, of the

membrane is an intensive thermodynamlcal variable corresponding to A~, whereas the

vanable
r corresponding to A is related to the chemical potential of the amphiph1llc

molecules Although there is no reason m general for r to be equal zero (contrary to what is

often claimed in literature) in some physical situations r can indeed vanish.

Having defined thermodynamic ensembles corresponding to different physical situations

we reconsider in chapter 3 an example of a theoretical calculation for which the issue of

vanishing or nonvamshing surface tension is crucial Namely, we discuss the problem of the

effect of thermal fluctuations on the ngldity constant of fluid membranes [10, 11] We try to

point out which lenght scales are important in different situations, and in which situations one

can expect to observe the subtle logarithmic renormalization effects to be present. This seems

to be a relevant issue m view of recent expenments claiming to observe such effects [12, 13].
The expenmental problems are also discussed in the last chapter 4 We try there to clanfy

what is indeed measured in reflection type expenments [14, 15] and what are the relevant

lengthscales for such experiments.

2. Elementary thermodynamics of fluctuating membranes.

Consider a fluctuating membrane made from amphiphilic molecules Let us suppose, for

simplicity, that it spans a planar frame of a total area A~ (Fig. I). If the number of molecules

forming the membrane is 2 N and the equihbnum area per molecule a~ then the total area of

the membrane is A
= a~ N We shall suppose for the moment that the compressib1llty of the

monolayers is very low, and thus the total area A can vary only through changes m the

number of molecules N (exchange with a reservoir). The quantities A and A~ can be

Fig, I A fluctuating membrane spanning a rectangular planar frame of area A~.

ii) The distinction between A and A~ is already present m reference [6] but we disagree on their

conclusions The need for these two independent vanables was previously introduced for lyotropic

systems m reference [8] and reference [9]
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considered as independent thermodynamical variables [6] Indeed, in real systems they can be

made to vary independently For instance, for black lipid films or monolayers films on air-

water interface the projected area A~ is fixed by the geometry of the expenment, whereas the

total area A (directly proportional to N) can fluctuate due to the exchange of the amphiphiles
with a reservoir On the contrary, in lipid vesicles, for which the exchange times are long, the

total area does not vary, whereas the projected one does fluctuates.

From the thernlodynamical point of view, the area A and the projected area A~ are

extensive variables. It is important to realize that the corresponding intensive variables

represent distinct physical quantities The area coefficient conjugate to the total area

A, which we denote r, is for incompressible films directly proportional to the chemical

potential ~1, of amphiphihc molecules The film tension conjugate to the projected area

A~, which we denote r, corresponds to the physical « surface tension ». As we shall show

below, the situation of vanish~ng surface tension »
considered by many authors [6, 16, 11]

does not, in fact, correspond to vanishing r but rather to vanishing
r

With two independent extensive variables one can define four different thernlodynamical
ensembles

ii) IA, A ~)-ensemble. We call the membranes belonging to this ensemble isolated, framed

systems
iii) IA, r )-ensemble. We call the membranes belonging to this ensemble isolated,

unframed systems.
iii) jr, A~)-ensemble We call the membranes belonging to this ensemble open, framed

systems.
IN) jr,

r
)-ensemble. We call the membranes belonging to this ensemble open, unframed

systems.

In particular two of these four ensembles are important for expenmental systems and we

shall discuss them now :

Open, framed systems.

In this ensemble the projected area A~ is fixed, for instance by imposing proper boundary

conditions on a frame, and the total area A fluctuates. The fluctuations are govemed by a

Hanultonian of the fornl

H=rA+H~i (1)

where H~i contains the contribution of elastic internal forces (bending energy, shear modulus,
etc.) The partition function is written as the sum over all film configurations C with fixed

A~

z~
=

£~-flH(e) p
~

l
j~)

~

' k~ T

The free energy in this ensemble is

Go(A~, r )
=

k~ T In Zo(A~, r (3)

and the film tension is simply defined as free energy per unit area

r~ =
lim

°~j~~'~~
(4)

A~-w p
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Isolated, unframed systems.

In this ensemble the total area A is fixed while the projected area may fluctuate. The

thennodynamical potential is obtained from G~ by first going to the internlediate

IA, A~) ensemble where both A and A~ are fixed, and the thermodynanfical potential is

obtained by a Legendre transform

F (A~, A )
=

Go(Ap, r rA A
=

I
(5)

' °r
A~

Then one goes to the isolated, unframed film ensemble by a second Legendre transform

which defines the associated thermodynamical potential

G jr, A )
=

F~ iA~, A ) rA~ 16)

where the surface tension r
is defined by

dF~ dGo
~

dAp
A dA~

~'
~~~

f

(a)

<ap> ap

f

~o
/

~
/ II

/
1'

-'
~

i ap

Fig. 2. The free energy density f as a function of the area ratio a~ (a) f has a minimum for

a~ m
0 and the tension r

vanishes (b) f has its minimum at a~ =
0 and the tension r may be positive (i)

or zero (ii)
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It is clear that
m

the thermodynamical limit, A
- oJ, the surface tension defined in th~s

ensemble by (7) coincides with the surface tension defined for the open, framed systems by
(4)

We can now analyse the meaning of the tension
r

for isolated, unframed systems with fixed

total area A. Let us assume that the projected area fluctuates around its mean value

(A~). This mean value can be obtained by minimizing F~ (A~, A (given by (5)) with respects

to A~, while A is fixed In the thernlodynamical limit, A
- oJ, it is better to consider the free

energy density

F~
f

= j 18)

as a function of the area ratio

A~
~P ~ j (9)

Two situations are then m general possible, as depicted m figure 2

ii) f(a~) has its minimum for a non zero ratio 0
< a~ <

I (Fig 2a) The membrane is then

said to be flat, since although shrunk due to thermal fluctuations, it still keeps the global
structure of a two dimensional object. In such a case, we conclude from (7) that the surface

tension vanishes

r =

~~
(a~)

=
0 (10)

da~ A

iii) f(a~) has its minimum at (a~)
=

0 (Fig 2b) The membrane is then said to be

crumpled, since it is so shrunk by thernlal fluctuations so that its extension in space does not

scale linearly with its intemal extension (2). In this case it is obvious from figure 2b that the

tension
r is positive, but has in general no reason to vanish

One should also include in this case iii) a marginal situation in which although the minimum

of f(a~) is at (a~)
=

0, its slope at this point does vanish, and therefore
r =

0.

Each of these cases can in fact be encountered for isolated, unframed systems, at least in

idealized theoretical situations Indeed, at low temperatures polymerized membranes are in a

flat phase, where (a~) is non zero [17] Therefore their tension r
vanishes, except if they are

submitted to an extemal stress. An isolated, unframed fluid membrane with fixed topology,

on the other hand, is in pnnciple crumpled Ill ], with (a~)
=

0, and has therefore a non zero

tension [18, 19], as we shall discuss in next section We shall also see that r is in fact r~iated to

the persistance length f~ by the relation
r

~k~ Tfj~ Finally, free hexatic sheets [17],

characterized by a quasi-long range onentational order are crumpled (« crinkled») since

(a~)
=

0, but they correspond to the marginal situation where
r is also zero since their

persistence lenght is infinite (the slope of flap) at (ap)
=

0 vanishes) [20].

(2) One might be worried that m this situation A~ scales with the number of molecules

N as N~ (v
<

I and is therefore not an extensive variable However from (7) the tension is then

defined by first considering the situation where a~ =
A~/A >

0 (in which case A~ is indeed extensive) and

then taking the limit a~ -
(a~)

=

0
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Free fluid sheets which do not change their topology are hard to realize expenmentally
However, our argument is much more general and can also be applied for interacting
membranes, e g. in a stack of lamellae [4] In the case of a stack of fluid membranes, or in the

case of a membrane fluctuating m a confining potential le. g. of a adsorbing wall), no topology
changes will take place as long as the average distance d between membranes (or between the

membrane and the wall) is small compared with the persistence length, id « f~). Then the

interactions force (a~) to be non zero, while A~ still can fluctuate freely In these situations

the tension
r

of each membrane vanishes (as described in the case ii) above)
It is important to stress that the argument presented here to explain why

r can vanish for

fluctuating membranes is very different from usual arguments leading to the so-called

«
Schulman » condition [21]. This term is used to describe situations m which the area per

molecule, a~, of a non-fluctuating film, can vary The area (a~) chosen by the system
corresponds then to the minimum of the free energy, 4 (a~, N), and at this minimum

(am)
=

0 (12)

However, this quantity does not coincide with the tension, r, of the film defined m (10).
Indeed, the above argument is purely mechanical, since it considers only the internal elastic

forces associated to the finite compressibility of the membrane, and since it does not take into

account the thernlal fluctuations. On the contrary, the argument presented here takes into

account the thernlal fluctuations, and does not depend on the compressibility.

3. Effective rigidity and tension of fluctuating membranes.

In tl~is section we shall discuss the case of fluid membranes subjected to thernlal undulations

A phenomenological Hamiltonian for such membranes which is often used is [2, 3]

H~i
=

ids( f H~+ kK) (13)
2

where dS is the element of surface.

H= +
), K= (14)

Ri R2 R>R2

are respectively the mean curvature and the Gaussian curvature (Rj and R~ are the pnncipal
radii of curvature), and

K
and k are respectively the mean and the Gaussian bending ngldity.

We assume that the membrane is symmetnc so that there is no spontaneous curvature ternl,

linear in H. For flexible fluid membranes, with
K not too large, thernlal undulations

renornlahze the effective bending ngldity and the tension at large distances. Our purpose is

not to rederive th~s well known result m detail, but rather to discuss the meaning of th~s

renornlalization for the tension, and its domain of validity, in the light of the discussion of

section 2

Most of the calculations of the effect of the renormalization of the rigidity and tension have

been done in the « constrained ensemble » where the projected area, A~, is kept fixed, while

the total area, A, fluctuates. Indeed, if one neglects the effect of k, which is not important as

long as no topology changes occur, one can start from the Hamiltoman (1)

lKo
~Ho

=
dS

ro
+ H ii 5)

2
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and then integrate out thernlal fluctuations with wavelength larger than a microscopic cutoff

a =
«IA (which corresponds typically to the width of the membrane, or to the equihbnum

extent of a amphiphihc molecule) In doing so one usually assumes that the amplitude of the

undulations above the equilibnum plane of the membrane vanishes at infinity (or is periodic)
and thus neglects contnbutions coming from the boundary. Th~s is m fact stnctly equivalent to

the choice of the constrained ensemble described above.

When integrating out thernlal fluctuations one can define two types of effective quantities

Effective potential

The so called effective potential r~~r is obtained in the standard way by adding a source term

dS XJ to the Hamiltonian Ho IX denotes the position of the membrane in 3 dimensional

bulk space), computing the free energy (3), and taking its Legendre transform with respect to

J la precise definition must take into account the reparametrization invariance of (15) by

some gauge fixing) The resulting effective potential r~~(X) may be expanded in powers of

the curvature

K~~
~r~~

=

ds
r~~

+ H + ii 6)
2

r~~ is the generating functional for all static correlations functions for the membrane at

thermal equilibrium. In particular its minimization gives the mean equihbnum configuration
of the membrane. If this equilibrium configuration is flat (which is not obvious, since this

depends on the sign of K~~ and on the sign of the neglected h~gher order tennis) all curvature

terms vanish at the minimum m (16) so that

refmin
"

G01Ap, ~0)
"

Ap ~e~ l17)

Thus from (4) we obtain again, under the assumption that the equihbnum configuration is

flat, an important equality between the effective surface ternl and the surface tension

;~~ = r
j18)

Renormafized Hamiltonian

An effective Wilson Hamiltonian [22] H~~
s is obtained after integrating out all fluctuations

with wave vector k in a shell

As
=

AS~'
<

k
<

A (19)

where Sm I. This nonlocal effective Hamiltonian can again be expanded as

K~~(S)
~Heff.S

"

dS
~eff(S~

+
~

H + (2°)

and it governs the fluctuations of the membrane at wave vectors (k(
<

As. One can then

rescale back the distances and momenta

X-SX, k-S~~k (21)

m order to obtain the renornlahzed Hamiltonian

lKs
~Hs= ds~rs+-H+... (22)

2
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with the initial cutoff A, and the renornlahzed couplings given by

rs =

S~ r~~is)
,

K s = K
~~is~ 123)

The operation which transfornls the initial Hamiltonian Ho into Hs is the Renornlahzation

Group transfornlation its
In practice, however, the renormalized Hamiltonian Hs is not calculated directly. One

performs rather an «infinitesimal R-G- transfornlation» for an infinitesimal shell,

S
=

I + e,

jt,
~ ~

=
l + ES

I
its) =

I + et (24)

Then one integrates out the corresponding differential equation

S
~

Hs
=

Hs, H
~s =,~ =

Ho (25)

frim I to S m order to obtain Hs
From the definition of the internlediate effective Hamiltoman H~rr

s
(18, 20), it is clear that

in the limit S
- oJ it becomes equal to the effective potential (16)~

llm Heff,
S "

reff ~~~~

s
_ ~

Therefore the relation with the renornlalized couplings (23) and the effective couplings in

r~rr is

K~~ =
hm

K s, r~~ =
hm (rs/S~) (27)

S
- w S

-
w

The R-G analysis performed for fluid membranes consists now m studying the dependence

in the scale factor S of the renormahzed ngidity modulus Ks and the renormahzed surface

term rs In order to apply these results to physical situations in which the total area

A of the membrane does not fluctuate and the membrane is subjected to a physical tension

r, one has then to use (18). Hence when performing the R G calculation one should start

from a Hamiltonian Ho with microscopic ngldity Ko (corresponding to the elastic properties of

the membrane at microscopic scales) and with a microscopic surface coefficient ro adjusted in

such a way that the effective surface ternl r~rr, obtained from the R G calculation by (27),
coincides with the physical tension r

(we still assume that the equilibrium configuration is

flat)
The R G. calculation at one loop is recalled in Appendix. Its final result (A being the sharp

regulator in momentum space) is

~
dS

~ ~ 4 ar rs
~~~~

~ ~

l

~ ~

~
K s

A

a kg TA~
r~

S rS "

2 rs + In + (29)
°S 4

" Ks
A~

In order to understand the meaning of (28) and (29) it is important to define the domain of
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their validity. The calculation is a one loop approximation, therefore it is valid if the terms of

order kg T are small. This implies

K m
k~ T or r m

k
B

TA~ (30)

depending whether at wave vectors (q(
~

A it is the curvature energy or the surface term

which dominates The phase diagram in the ix ~~, r) plane (for positive r) is depicted m

figure 3. It can be separated into three distinct domains.

ii

r

A

k~T

~ /. ? ~
~.

-
/

K-1

Fig 3 Phase diagram for fluid membrane and Renormalization Group flows
K is the inverse of

the bending ngidity and r is the surface term A is the tension dominated region, B the ngldity
donunated regJon and C the therrnal fluctuations dominated region The three difierents kind of R G

trajectories (i), (ii) and (m) corresponding to systems with the same microscopic rigidity Ko but different

microscopic surface term ro are depicted as thin lines

A. Tension dominated region

r m
KA~ and r m

k
~

TA~ (31)

In this domain fluctuations are small and tension dominates over curvature energy The

properties of the model can be described by a simple interface model (drumhead model)
characterized by a tension r.

The R G. flow corresponds to a naive scaling

~~ ~
~°~~~~~~

~
rs =

S~
T

j~~~

B. Rigidity dominated region

K m
k~ T and r <

KA ~ (33)

In this region fluctuations are small and rigidity dominates
over tension energy The

renormalization group flow corresponds to the perturbative result of [11, 18]

a 3 k~ T
S j K s = j (34)

a k~ T
S- rs =

2
+ rs. (35)

as 4 "K s

JOURNAL DE PHYSIQUE it T I V 8 AOOT 1991 44
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The renormalization of the surface term can be simply attributed to the increase of the ratio

total area/projected area due to thermal undulations Indeed, at leading order in k~ T ii-e- in

the Gaussian approximation), the contribution of undulations with wave vector k in the shell

(20) to this ratio is equal to

3 (A ) /A~
= (~

~~~

~

~~ ~)
=

~~ ~
ln IS) (36)

2
As

(2 ar) Kk

~

4 arK

(35) follows from the fact that
r is the conjugate parameter to the total area A.

C Thermal fluctuations dominated region

K <
kg T and

r <
kg TA~ (37)

In this domain thermal fluctuations are so important that perturbation theory breaks down.

One expects that wild fluctuations of the membrane will take place, and that changes of

topology and stenc interactions will be very important
The properties of the membrane at a length scale I

are simply obtained by considering the

RG. flows and deciding in which region of phase diagram one finds the values of the

renormahzed couplings
K s

and rs at this scale i e. with S
=

I la
=

(Alar For a membrane with

microscopic bending ngldity Ko (for obvious reasons Ko has to be larger or of the order of

k~ T, but cannot be much smaller than k~ T, otherwise the membrane will not have any

internal stability) three different kind of R G trajectories may be encountered depending on

the value of the microscopic surface term ro These three cases are depicted in figure 3.

ii) If ro is large enough one start from domain A. Tension dominates and at all scales

«IA
= a <

f
< oJ the membrane may be described by a simple interface model with physical

tension r = ro land ngldity Ko)

iii) If ro is small enough, one starts from domain B, but one then flows towards domain A.

This means that there exists a crossover length f~, larger than the microscopic cut off

a =

«IA, which separates two regimes :

la) At scales f
m

i~ one is in regime A, the physics is described by the Hamiltonian (15)
with an effective rigidity K~~ m

kg T and an
effective surface term r~~ = r, small but nonzero.

From (31) and (32) the crossover length i~ is given in terms of the physical parameters

r
and K~~ by

f~
=

jd
138)

T

16) At scales I
<

i~ one is in regime B. Tension effects may be neglected and the physics is

described by the elastic Hamiltonian (13), but with an effective rigidity xii which decreases

logarithmically as
I

increases according to (34)

4 ii)
= Ko

j
In ((la) 139)

until f
=

i~, where the tension takes over the ngidity
Note that m case ii) one can also define i~ by (38) but it is then smaller than the cut off

a

(iii) If ro is still smaller, one start from domain B but one flows into domain C before

tension becomes important This occurs at a crossover length i~ such that xii (as given by
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(39)) is of order k~ T Therefore this length is nothing but the persistence length [21] (usually
denoted f~), and from (39) we see that it depends exponentially of the microscopic bending

ngidity

4 arKo
i~

=
f~

= a exp (40)
3 kg T

At scales larger than f~ one enters therefore the nonperturbative regime where thernlal

fluctuations are very large and where both rigidity and tension are ineffective The membrane

will be crumpled, with a correlation length for its nornlals of order f~ At this scale

IS
=

f~la) the effective surface ternl r~~(i~)
=

S~ ~rs
is of order [23]

r~~(i~) oz

~~ )
(41)

ix

In th~s regime C the physics of the membrane is not adequately described by the

Hamiltonians ii 3) or ii 5), and effects such as topology changes (partially govemed by the

Gaussian bending ngidity k) or strong stenc repulsion between distant parts of the membrane

have to be taken into account Phenomenological models which describe this phase are for

instance the lattice models [24] of non-ngid self avoiding surfaces with f~ playing the role of

the lattice spacing and fj r~~(i~) that of the chemical potential of plaquettes Therefore

r~~(i~) may be considered as the effective surface tension r at that scale. Indeed, if there is

coexistence between this membrane-rich phase (where space is filled with membranes) and

another surface-poor phase (see below), those models predict that the tension of the interface

between those two phases will be of order r =

r~~(i~) This provides a justification of the

commonly adopted relation

r oc k~ Tfj~ (42)

between the tension r
and the persistence length f~ in microemulsions

As we shall discuss in more details in the next section, it is possible to encounter these three

situations in expenmental systems In figure 4 we have schematically depicted the idealized

example of a temary (water + oil + surfactant) system fornling a rnlcroemulsion (sponge)
phase At scales of lo I the surfactant film can be described by a membrane model with

moderate ndigity and small tension (regime B) At scales larger than the average distance,
d, between the films in the sponge phase id being identified with the persistence length
f~) one is in regime C and one is looking at the properties of the sponge phase Finally at

much larger scales the interface between the sponge phase and the water-or-oil-nch phase can

also be described by a model of interface with a small tension jr k~ Td~ ~) but one is now in

regime A.

Let us also stress that we have discussed in this section the situation where the transverse

undulations of a membrane are only limited at large scales by the effect of the tension. Other

effects may limit those undulations and act as an effective «
infrared cutoff ». For instance if

one considers a monolayer at the interface between two fluids with different densities, gravity

supresses undulations at wave-lengths larger that the capillary length i~~ [25] For a

membrane between two walls, or m a stack of membranes, stenc repulsion will also suppress
undulations with amplitude larger than the average distance between the membrane and the

wall (or between neighbounng membranes) [4]. In those situations the R-G- equations (28),
(29) are valid up to th~s I R cut off scale iiR [23, 9] In particular, m the case of a stack of fluid

membranes already discussed at the end of section 2, we are in the situation where the tension
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'~~~~~/~y@I?

p~
c~

oil

oil

water

oil rich-

Fig. 4 Schematic description of a microemulsion at three different scales The description of the

surfactant film at short scales corresponds to regime B. The descnption of the sponge phase at

intermediate scales corresponds to regime C. The descnption of the interface between the di~erent

thermodynarnical phases corresponds to regime A.

r
vanish (as long as the average distance between membranes, d, is small compared to the

persistence length f~ (as given by (40)) It follows that at all scales a <
I

<
ii~ d one is in

regime B and that the renormahsed tension rs vanishes

4. Possible experimental consequences.

It is interesting to reconsider, from the point of view described m the last Chapter, different

measurements done in the past m order to study the role of thermal fluctuations on the

ngldity of films and membranes.

The existence of three distinct regimes for the thernlodynamical behavior of the

membranes can be explored directly by inspecting the mesoscopic structure of different

phases The progress made m freeze fracture microscopy [26] allows for instance the direct

visualization of vanous structures made of membranes, such as lamellar crystals, bicontmuous
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fluid phases (e.g a fascinating L~ sponge »
phase [27]) or ensembles of closed vesicles. With

the help of careful studies of different « cuts » through a bicontinuous phase one can for

instance establish the existence of highly curved regions of complicated topology (correspond-

ing to regime C) at large length scales. One could in pnnciple obtain m th~s way quantitative
infornlation about curvature distnbutions, dependence of the curvature on the length scales,
fluctuations m topology etc.

In the meantime, however, one relies mainly on diffraction experiments to obtain

information about the structure and fluctuations of membrane phases. This infornlation is

mainly contained in the structure factor S(q), the Fourier transfornl of the pos1tlon
correlation function Two types of expenments give access to S(q) :

ii) Specular reflexion experiments [28, 14] In these expenments one measures

Iiq=)
=

d2x d2y expiiq=iuix) uiy)))) 143)

where q~ is the wave vector perpendicular to the reflexion plane of the membrane

u(x) is the perpendicular displacement of the membrane above the plane of the membrane

ix and y are coordinates of the plane) In harnlonic approximation this can be replaced by

Ijq~)
=

d2x d2y exp (- (
jju ix) u

jy))2j j44)

m wh~ch

1lu lx) u
lY))~l

=
2

fi
Ii e~ ~~~~ ~~) Slq) 145)

iii) Ellipsometry [14, 15] This powerful technique allows one to measure

£ qsjq j46)

and therefore check whether S(q) has an assumed fornl

These methods, in which one integrates over a whole range of wave vectors, can be useful

in practice only if one puts together the results obtained in the different regimes descnbed

above. For instance, if we make an e1llpsometric measurements for a membrane which at

small q is in regime A wh~le for large q in regime B it would be useful to have a consistent fornl

for S(q) which we could then substitute m (46) We can do this in the following way for

q < q~ =

I
one takes

K

k~ T
S( q =

~ ~ ,

(47)
Tq + Kq

while for q~ < q <

"

=
A one takes

a

k~ T
S(q)

= ~,
(48)

K
(q) q

where K(q) is given by

x
iq)

= xo +
£ kg Tin iq/A) 149)
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One can then make S(q continuous at q~ by adjusting the value of Ko, which corresponds to

the « microscopic » bending ngidity at momentum q =
A

A third type of expenment, which has already started to explore the interesting
renormalization effects of the regime B are the measurements of area fluctuations. In these

experiments one measures how the ratio projected area/number of molecules vanes with

external parameters. For instance, in reference [13] by varying the pressure acting on a

fluctuating vesicle one measures the functional dependence of the projected area on the

tension r.
In this way the logarithmic corrections due to thernlal fluctuations in regime B were

indeed observed. Similarly by varying the distance between the membranes m a lamellar

phase, and therefore modifying the effective IR cutoff i~R (as discussed at the end of last

section), the authors of reference [12] were able to show the existence of such corrections for

multimembrane systems. Note, however, that these logarithmic corrections to the ratio

A/A~

~
=

l +

~~ ~ln (AijR) (50)
AP ~ " ~

are already present m the Gaussian approximation, while the loganthmlc corrections to the

ngldity described above are h~gher order perturbation effects. It would be therefore

interesting to try to measure directly the scale dependence of the effective ngidity m the

regime B. In principle th~s could be also done through a careful analysis of fluctuations of a

single free vesicle [29] This important case is not discussed here

In real systems the simple picture presented in section 2 can m pnnciple be altered by a

finite compressibility of the membrane However, as we shall show now, the argument
explaining why the tension

r can vanish stays valid Indeed, although the total area

A is no longer exactly proportional to the total number of molecules N, one can replace
A by N in the definition of the different ensembles without modifying the arguments of

section 2. In particular (7), which defines the surface tension r, is simply replaced by

G~ is now the thernlodynamical potential in the constrained ensemble where A~ is fixed while

the fluctuations of the total number of molecules N is controlled by the chemical potential of

the molecules r. F is the potential in the ensemble where both A~ and N are fixed It follows

that the surface tension vanishes as soon as the equilibnum area ratio a~, defined as

(A~)
a~ =

(52)
(A )

is nonzero. The effects of a finite compressibility will be felt only in fluctuations around the

equilibnum value a~ if a~ approaches1.

S. Conclusions.

We have tned in this paper to classify possible regimes of the behavior of fluctuating
membranes and films. First, by defining various thermodynamic ensembles we have pointed

out the differences between several physical situations. In particular, we have given a few

examples of systems for which the effective surface tension vanishes These include free

polymerized sheets or fluid membranes fluctuating freely in a lamellar crystal. Our arguments

leading to the conclusion of vanishing surface tension for a fluctuating membrane are different
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from those usually evoked and which, in our opinion, do not apply here Next, we have

reconsidered the problem of the effect of thermal fluctuations on the effective ngldity and

tension of a flexible film Although the calculations presented here are described m many

other places in literature, we have reanalysed them in view of our thernlodynamlc arguments
and the classification of different physical situations. This lead us to define for a genenc

situation (englobing fluctuating membranes, films and interfaces) three different regimes of

behavior ii) tension dominated regime, iii) ngidity dominated regime and (iii) thernlal

fluctuations dominated regime A fluctuating film can be found in each of these regimes,

depending on the length scales at which we observe it. In particular, interesting loganthmic
corrections for the effective ngidity can only be observed in regime iii) We have discussed

some connections between recent expenments and these theoretical predictions.
The simple arguments presented here show that when dealing with fluctuating membranes

one has to be cautious and precisely define the boundary conditions (e g. free or constrained),
the relevant length and time scales, and the physical quantities allowed to vary Only after

that one can define precisely the notion of surface tension and, m particular, argue that this

tension vanishes.
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Appendix.

In this appendix we recall the derivation of the Renornlahzation Group flow equations (28),
(29) for the surface ternl r and the bending modulus

K.

We use the « background method »
first used m that problem by F6rster [18], and further

developed in references [30. 19, 31] We start from the Hamiltonian (15)

H(X)
=

ids (r +
f

H~) (Al)
2

and consider small fluctuations X around a «background configuration» Xo of the

membrane, which can be written as

X
=

Xo + no h (A2)

where no is the normal vector to the background configuration. The basic idea of the

calculation consists in computing, at leading order in kg T, the effective potential
r(Xo) for the background configuration This is done by expanding H to second order m

h and by using the Gaussian approximation In this way one obtains

rixo)
=

Hix~) + ~j~Tr in
~

j~~
~(j ~iA3)

B

In denying (A3) we have used the fact that, for the parametnzation (A2) of the fluctuations

around the background configuration, the contribution of the Fadeev Popov determinant is

zero (at leading order m k~ 7~ This determinant has to be introduced in order to be sure that

the fluctuations are treated in a local way in the sum over configurations. The factor
A~~ inside the bracket m (A3) makes the argument of the Tr In term dimensionless
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This is a consequence of the fact that when summing over configurations one has to integrate

over h. A natural dimensionless measure of integration is

5~[h]
=

fl d(h(x)/A) (A4)

since the cut-off A is the only momentum scale at our disposal. Losely speaking, the product

over points x in (A4) is made over points separated by a = ar
IA. Since r is proportional to the

chemical potential for elements of the membranes, each of typical size a~, another choice of

the measure is equivalent to a redefinition of the surface term r
in the Hamiltonian.

All we need m the one-loop calculation (I,e, at first order m k~ 7~ is thus a general

expression of the second denvative of HIX) with respect to h The explicit calculation (see for

instance [18, 30, 31] gives for the term of order2, H~~~, m the h expansion of

H(X) around the background configuration Xo

H~~~=(dsh(K(A~+~~ ~~~A+2HH~JD~D~+...j+r[-A+2K]jh(A5)~2

where D~ and A
=

D~ D~ are the covanant denvative and the Laplacian with respect to the

background metric on the background configuration g,~ =
d,Xo d~Xo. Here H and

K are the mean and Gaussian curvatures for the background configuration, and H~J is the

extnnsic curvature tensor H~J
=

nD DJ Xo. The dots m (A5) denote tennis proportional to

Hi, H~K, K~, or to denvatives of H~ and K, which are not important m the present

approximation
In the sharp cut-off approximation, one integrates out fluctuations h~ with wavevectors

k in the shell »

A/S
<

k
<

A (A6)

Since k~ corresponds to eigenvalues of (minus) the Laplacian (- Ah~
=

k~ h~) we may replace

m (A3) the Tr In term by dS d~k(2
ar )~ ~ and the operator A by k~ In this way for an

infinitesimal shell

S
=

I + e
(A7)

we obtain the following expression for the effective Hamiltonian (at leading order m

kB l~

H~~
s =

Ho +

~~ ~
d~S (~ ~ ln [KA~ +

rA~ ~ KH~ A~
+ (A8)

2
ar k~ TA~ 2

where neglected tennis contain contributions proportional to the Gaussian curvature

K (neglected here as being total denvatives
,

one has to consider these tennis if one studies the

effects of the renornlahzation of k) and h~gher order powers of the curvatures or of their

denvatives Expanding (A8) in power of H as done for (20) we obtain

~kBT~ K
~

r (A9)~e~(S)
" ~ + ~~ t ~ @

kB TA~

3 kB T I
(Al 0)K~~(S~

= K E fi
~"

l + j
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By rescahng back X and k, as explained in section 3, we obtain the renornlalized couplings

rs and Ks, which obey the R-G flow equations

~
ax 3 k~ T

0 4 ar ~

(Al1)

l + KA~

S~j=2r+£k~Tln ~)+
~

~) (A12)
° " ET k~TA

The equation for r
differs from (29) by a factor k~ TA~/4

ar In ix /kg T) However, if we

redefine the surface ternl r as

r-r'=r-£k~Tln ~~)
(A13)

" B

which is equivalent to a change m the measure (A4), then (A12) coincides with (29), up to

subleadlng terms of order (k~ T)~In (k~ T) Such tennis are neglected in the one-loop

approximation
Finally, let us compare our results with those of reference [25]. One can go from the

renormahzed couplings Ks, rs, to the momentum dependent effective couplings
K

(q) and

r(q), by the simple relation

K
(q)

= K s, r (q)
=

S~~
rs, S

=

A/q (A14)

Then the R G. equations can be written as

~~ 3 kB T
(A15)~ ( " G

r
~

Kq~

~~
~

k~ T
r (A16)~ fi ~

41r
~~ ~

Kq~

Equation (A15) coincides with the one obtained in reference [25] for the effective bending
ngldity K(q) However, our result (A16) for the effective tension differs from the one of

reference [25], namely

q
~~

=

q~
~

k~ T. (A17)
°q 4

"

Although equations (A15) and (A17) are equivalent in the regime A, in which q
~~

=
0,

dq
they differ in an important way in regime B, where the effects of the renormalization of

K are nontnvial It is also important to stress that one cannot in any case apply (A15) in the

regime C (nor IA17), as is done in Ref. [25] for cntical interfaces), since in this regime we

expect the perturbative results to be invalid In fact, equation (A15) obtained here is

equivalent to the perturbation results of reference Ill], in which only small fluctuations

around a planar membrane where taken into account As we have already discussed in

section 3 a membrane in regime C cannot definitely be described in such approximation.
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