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Abstract
Functional renormalization group is applied to study entropic interactions

in lamellar phases consisting in a stack of tensionless fluid membranes. This
approach allows to recover Helfrich’s formula for the steric free energy of
a layer per unit area f(d) = c∞(kBT )2/κd2 (where d is the mean distance
between layers) and to estimate analytically the universal coefficient c∞.
Our estimate c∞ ' .0810 is much closer to the estimates extracted from
Monte Carlo simulations c∞ ' .106 than to the original estimate of Helfrich
c∞ = 3π2/128.

Under suitable conditions the separation between parallel fluid mem-
branes in lyotropic smectics can be as large as hundreds or thousands of Å’s.
In such highly diluted lamellar phases it is expected that one approaches a
“complete unbinding transition” and that the elastic properties of such ly-
otropic liquid crystals are dominated by entropic effects due to the thermal
fluctuations of the surfactant bilayers. In [1] Helfrich suggested to relate the
vertical compressibility B to the second derivative of the entropic free energy
(per projected area per membrane), ∆f(d), for a stack of membranes at av-
erage distance d by B = d∂2∆f(d)/∂d2. From a simple scaling argument [1]
∆f should scale for large d as

∆f(d) = c∞
(kBT )2

κ d2
(1)

where κ is the bending rigidity of a single membrane. c∞ is a dimensionless
pure number and should therefore be universal. Helfrich [1] proposed the
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estimate c∞ = 3π2/128 = .231319.... Numerical estimates, based on Monte
Carlo simulations, lead to consistent estimates (c∞ ' 0.106 [2] and c∞ =
0.101±0.002 [3]), which differ qualitatively by a factor 1/2 from the analytical
(but heuristic) estimate of [1].

We show here that a derivation of the steric repulsion law (1), as well
as an analytical estimate for the value of the universal constant c∞, can be
obtained with the help of the “non linear functional renormalization group”
(NFRG)1. This approximate RG procedure was first proposed in [5], and has
been more recently developed for the study of the unbinding transitions of
interfaces [6] and of membranes [7].

We start from the phenomenological Hamiltonian for a stack of M mem-
branes, whose position over the equilibrium plane of the layers with coordi-
nates x = (xi, i = 1, 2) is labelled by (zI(x), I = 1,M) (as in [2, 3]):

H(z) =
M∑
I=1

∫
d2x

{
κ

2
(∆xzI)

2 + V (zI − zI−1) + p (zI − zI−1)
}

(2)

The repulsive potential V between membranes is taken to be

V (z) = +∞ if z ≤ 0
0 if z > 0

(3)

p > 0 is the osmotic pressure and forces the membranes to be at a finite
average distance < d >=< zI − zI−1 >. In (2) z−1 is taken to be equal to
−∞. In deriving (2) we have neglected higher order terms in derivatives of
z; this is justified as long as the longitudinal correlation length ξ‖ (which is

of the order of d
√
κ/kBT ), is small with respects to the persistence length

ξκ for a free fluid membrane with the same bending rigidity κ [8, 9]. In
addition the tension σ of the membranes vanishes identically (it should gives
a σ/2 (∇xz)2 in (2)) because the liquid crystal is not subjected to any lateral
stress. The reason for this effect is discussed for instance in [9].

The principle of the NFRG calculation is the following (see e.g. [10]). We
assume a sharp momentum cut-off Λ on the wave-vectors k of the transverse
fluctuations zI of the layers (|k| < Λ). Then we compute in the one loop
approximation (first order in kBT ) the effective potential per unit of area

1The result of our estimate has already appeared in [4].



per layer for an infinite stack of parallel layers with constant interlayers
separation d, Γ(d;V ). Using a discrete Fourier transform in the z direction,
we get

Γ(d;V ) = V (d) +
kBT

2

π∫
−π

dq

2π

∫
|k|<Λ

d2k

(2π)2
ln
(
κ|k|4 + V ′′(d)4 sin2

(
q

2

))
(4)

Then we look for a change of the Hamiltonian (2), H → HS, which do not
change the effective potential when the rescaling

x → Sx , z → Sζz (5)

is performed. The assumption that there is no renormalization of κ implies
that ζ = 1 and the renormalization group tranformation must act only on
the potential V in (2), V → VS, in such a way that

Γ(d;V ) = S−2 Γ

(
d

S
;VS

)
(6)

The differential recursion equation for VS is obtained by differentiating (6)
with respect to S (infinitesimal rescaling) and by keeping only the terms
linear in kBT (one loop approximation). After some standard calculations
we obtain the recursion equation

S
∂V

∂S
= 2V (d) + d V ′(d) +

kBT

4π
Λ4

π∫
−π

dq

2π
ln
(

1 +
4

κΛ4
sin2(q/2)V ′′(d)

)
(7)

It is more convenient to work with dimensionless variables

V (d) = Λ2 kBT

8π
W (x) ; d =

√
kBT

4π κ

x

Λ
(8)

and to write the recursion equation (7) for the derivative U(x) = W ′(x) of
the potential, since the q integration can be done explicitely. We obtain

S
∂U

∂S
= 3 U + x U ′ + 2

U ′′

U ′

(
1− 1√

1 + 2U ′

)
(9)



This recursion equation is very similar to the one written in [10, 11] for
the study of unbinding phenomena for a single membrane, and they coincide
in the linearized regime (U small). It follows in particular that the results
obtained from the approximate recursion relation (9) should become exact
near the upper critical dimension D → Duc = 4 (D being the dimension of
“hyper membranes” forming a stack in D+ 1 dimensional hyperspace) [10].

Starting from the original potential given by (3) as initial condition for
S = 1, one expects that as S → ∞ VS flows to a IR stable fixed point
potential V ∗0 . This potential is a solution of the fixed point equation (r.h.s.
of (7)= 0), it must be purely repulsive (U(x) < 0 for every x > 0), decrease
exponentially as x→∞, and from (9) it must behave for x→ 0 as

W ∗
0 (x) ∼ A x−2 (10)

where A is some constant. This IR stable fixed point should describe the
unbound phase, and therefore it contains non trivial information about the
properties of the lamellar phase at very large interlayer spacing d. Indeed, us-
ing (6), the full effective potential density Γ(d) must scale for large interlayer
spacing (S →∞) as

Γ(Sd;V ) = S−2 Γ(d;VS)

∼ S−2 Γ(d;V ∗0 ) = S−2Λ2kBT

8π
Ax−2

=
A

32π2

(kBT )2

κ

1

(Sd)2

(11)

Thus we have obtained Helfrich’s law (1), with the explicit estimate for c∞,
c∞ = A/(32π2).

We have solved numerically the fixed point equation (r.h.s. of (9)= 0) by
the technics of [10]. We have indeed found a IR stable repulsive fixed point
potential. From the value found for A we estimate

c∞ = 0.081009 (12)

This estimate is smaller by ∼ 20% than the Monte Carlo estimates of [2, 3].
However in our approach we have no problems in extrapolating from a finite



system consisting in a finite number of layers to the infinite case. We have ap-
plied the same technics to estimate the strength of steric interactions in 1+1
lamellar phases with tension (σ > 0), where exact results are available (for
instance via the free fermion representation). The estimates from the NFRG
differ from the exact results by typically 30%. Therefore one may consider
that the agreement between our result and the Monte Carlo simulations is
“reasonable”.

The applications of the approach described here are twofold:

Theoretical Our renormalization group approach is much less heuristic
than the one of [1]. In particular, as quoted above, it becomes exact
if the dimensionality D of the layers goes to 4. As for unbinding tran-
sitions, it would be extremely interesting to find a theoretical scheme
which extend the validity of this RG approach beyond one loop. From
the recursion equation (9) one obtains also an attractive fixed point
V ∗1 with one IR unstable direction, which describes the critical un-
binding transition in lamellar phases. More generally, for D close to
4, the general structure of the RG flow and of the fixed points is com-
pletely similar to the rich structure found for unbinding transitions [10],
with an infinite series of fixed points describing multicritical unbinding
transitions. In particular, it is worthwhile to stress that the critical
exponents should be the same for pure unbinding and for unbinding in
lamellar phases (at least as D → 4).

Experimental Our estimate may be considered as favouring the theoretical
estimate c∞ ∼ 0.1 with respects to the one of Helfrich [1]. Of course
the discrepancy between this estimate and the experimental ones, ob-
tained from measurements of the vertical compressibility B (via scat-
tering experiments) in highly diluted lamellar phases [12, 13] by using
the harmonic theory of [14, 15], remains to be understood. Our RG
approach should also be applicable to the understanding of crumpling
effects in lamellar phases [8, 16], which are important in systems with
low rigidity.
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