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Abstract

The large N solution of the one matrix model of Brézin, Itzyk-
son, Parisi and Zuber is reconsidered for generic complex potential. A
regular large N limit does not exist in some singular domain, which
depends on the prescription chosen in order to make the matrix inte-
gral convergent at infinity. Near the m = 2 critical point the singular
domain (in the scaling variable x complex plane) is a sector of an-
gle 2π/5 coinciding with the sector of poles of the “triply truncated”
Painlevé I transcendent of Boutroux, which is therefore (although not
real) the only solution of the string equation compatible with the ma-
trix model and the loop equations for 2d gravity. Our approach allows
to relate non-perturbative effects in the string equations to instantons
in the matrix model and to discuss the flows between multicritical
points.
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1 Introduction

Two dimensional quantum gravity may be formulated as a functional integral
over two dimensional Riemannian manifolds. Discretizing this sum by reduc-
ing it to a sum over random triangulations allows to formulate the theory in
terms of random matrix models[1, 2, 3]. The topological expansion in terms
of the genus of the manifolds is mapped onto the 1/N expansion, N being the

dimension of the matrix. The large N solutions of those matrix models[4, 5]

exhibit critical points. At those critical points continuum theories can be
explicitely constructed at fixed order of the topological expansion. Explicit
calculations of (for instance) scaling dimensions of operators and critical ex-
ponents allows in many cases to identify those continuum theories with some
specific conformal theories coupled to 2d gravity.

Recently it was shown that by taking a double scaling limit a continuum
limit for the whole topological expansion can also be constructed[6, 7, 8]. The
remarquable underlying mathematical structure of these non-perturbative so-
lutions (in particular the KdV hierarchy[9]), and its connection with other

formulations of 2d gravity (like topological gravity[10]) have been extensively

studied in the last few months[11]. However this solution presents some ambi-
guities which are usually attributed to non-perturbative effects of the theory.
For instance for the simplest case of pure gravity, the “string susceptibility”
f(x), where x is the scaling variable x = (gc − g)N4/5, satisfies a “string
equation” which is the Painlevé I equation1

x = f 2(x) − f ′′(x)

6
(1)

This string equation determines uniquely all the coefficients of the topological
expansion from the large x asymptotics of f

f(x) = x
1
2 −

∑
n≥1

an x
1−5n

2 (2)

This series is asymptotic to any solution of (1) which behaves as x
1
2 as x →

+∞ but is not Borel summable since all an’s are positive and grow like
(2n)! . This reflects the fact that a general solution of (1) depends on two

1the factor 1/6 in (1) differs from the usual factor 1/3 because of the “doubling phe-
nomenon” which occurs in matrix models with even potentials [12].
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integration constants. The large x behaviour fixes only one of them and there
is an infinite family of solutions, which differ by terms exponentially small
as x → +∞. It is of course very important (at least if one is interested in
finding a consistent non-perturbative formulation of quantum 2d gravity) to
understand whether there are additional (if possible physical) criteria which
allow to fix those non-perturbative ambiguities, or if no real solution of (1)
is acceptable.

Various authors[6, 7, 8, 13] suggested that those ambiguities are related to
the fact that in the original matrix model the critical point associated to pure
gravity corresponds to a potential unbounded from below. This seems related
to the fact that it does not seem possible to flow from the m = 3 tricritical
point (which corresponds to a stable potential) to the m = 2 critical point

in the string equations [13, 14]. In a previous letter[15] the present author
proposed to use the Schwinger-Dyson equations to deal with this problem.
Starting from the matrix model the continuum version of the S-D equations
(which relate loops correlation functions) was obtained2. It was shown that
for pure gravity the existence of an infinite series of double poles on the real
axis for any real solution of (1) forbids to use those solutions to construct
loops amplitudes satisfying the S-D equations. It was argued that only so-
lutions analytic along the whole real axis were acceptable. Morever it was
conjectured that the unique complex solution (up to complex conjugation)
of (1) which satisfies this analyticity requirement could be obtained from
the matrix model by starting from a potential bounded from below and by
reaching the critical point by a proper analytic continuation.

In this paper we pursue this idea by reconsidering the large N solution
of the one matrix model of Ref.[20] for generic complex potential. We first
show, by studing the stability of this solution, that a regular large N limit,
which corresponds to a limiting smooth distribution of the eigenvalues of
the N × N matrix along arcs in the complex plane, does not necessarily
exist. In general the various phases of the matrix models are separated by
singular domains (in the space of complex potentials), where no large N limit
exists. The stable and singular domains are explicitly shown to depend on
the boundary conditions at infinity in the matrix integral. In a second step

2The continuum S-D equations have been recently extended to gravity coupled to vari-
ous matter fields, and have been derived from the string equations ([P,Q] = 1)[16, 17] and
from the topological gravity theory [18, 19, 17].
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we show on specific examples that the singular domains correspond exactly
to the sectors where some solutions of the string equations have an infinite
number of double poles, and that this allows, for the example considered, to
identify uniquely which solution of the string equation correspond to some
specific critical point in the matrix model formulation.

This paper is organized as follows. In section 2 we formulate the existence
and stability criteria of a large N solution of the matrix model, first on the
example of the cubic potential and then for general (polynomial) potentials.
In section 3 we consider in details the case of the cubic potential and the
critical point associated to “pure gravity” (m = 2). We confirm our previous
conjecture that only the so called “triply truncated solution” of the Painlevé
I equation (1) can be obtained from the one matrix model. We also show
explicitely how the non perturbative imaginary part of this solution can be
attributed to “instanton effects”, namely to the tunnelling of eigenvalues. In
section 4 we consider the case of more general potentials of order 4 and 6,
which allow to discuss higher order critical points, and general features of
deformations between critical points. In section 5 we draw some conclusions.

2 The large N limit of the one matrix model:

existence and stability

Let us consider the “generic” one matrix model defined by the integral over
a N × N Hermitian matrix Φ. After integrating out the SU(N) degrees of
freedom one is left with the integral over the N eigenvalues λi of Φ

Z =
∫

dΦ e− N tr(V (Φ)) ∝
∫ N∏

i=1

dλi
∏
i<j

(λi − λj)2 e− N
∑N

i=1
V (λi) (3)

Thus the problem reduces to the statistics of N “charges” on a line subject to
a one body potential V and to two body logarithmic repulsive interactions.
To discuss the m = 2 critical point it suffices to restrict oneself to the cubic
potential, that we write:

V (λ) = g λ − λ3

3
(4)

(the even quartic potential is known to lead to two different critical points
[21]). The integral (3) diverges if one integrates over real λ’s. We define
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the model by taking for each λi a complex integration path which goes from
−∞ to eiπ/3 ∞. There are two alternate definitions of the model obtained
by rotating the integration contour by 2π/3, however they can be obtained
from this particular one by changing the coupling constant g → ge±2iπ/3.

The large N solution of [20] is obtained by assuming that in the “ther-
modynamical limit” N → ∞ the integral (3) is dominated by a “mean
field” configuration such that the charges are evenly distributed on the real
axis with an average density measure dρ(λ) (normalized to unity) and such
that relative fluctuations are suppressed by a factor 1/N2. Then one has to
extremize the action (we omit the overall N2 factor)

S =
∫

dρ(λ) V (λ) −
∫
dρ(λ)

∫
dρ(µ) ln |λ− µ| (5)

where ln |λ| has to be understood as 1
2

(ln(λ+ iε) + ln(λ− iε)). Local vari-
ations of the density lead to the saddle point equation

V ′(λ) = 2
∫
−dρ(µ)

1

λ− µ
(6)

satisfied iff λ belongs to the support of dρ. In order to solve (6) one introduces
the function

F (λ) =
∫

dρ(µ)
1

λ− µ
(7)

analytic outside the support of dρ and which goes as 1/λ as λ →∞ (from the
normalization of dρ). F is nothing but the one loop correlator < N−1 Tr(λ−
Φ)−1 >. For the cubic potential (4) a generic solution is

F (λ) =
1

2

(
(g − λ2) +

√
(g − λ2)2 + 4λ− x

)
(8)

where x is arbitrary. In general F will have two cuts, joining pairs of the four
zeros of the quartic polynomial in the square root in (8) (let us label them
a, b, c, d. In [20] x is adjusted so that F has only one cut [a, b]. This means
that c = d are degenerate and this is possible for only three values of x. For
the potential (4), x is choosen such that in the limit g → +∞ the cut [a, b]
reduces to the real local minimum of V at λ ' −√g. At the critical point
gc = 3.2−2/3 the double zero c coalesces with b and the extremum action
Sc(g) is singular (Sc ∼ (g − gc)5/2).
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This one cut solution can be analytically continued to complex g. However
we must check whether it remains a physically acceptable minimum of S.
There are in fact two requirements:

• Reality and positiveness of dρ:

The support of dρ becomes now a curve C joining a to b. Indeed, for
infinite N the eigenvalues λi can be considered as a function λ(x) of
the continuous parameter x = i/N such that λ(0) = a and λ(1) = b.
The function F has a discontinuity along C, and writes

F (λ) =
∫
C
dµ

u(µ)

λ− µ
, u(µ) =

dx

dµ
(9)

From (6) along C we have

F (λ) =
1

2
V ′(λ) ∓ iπ u(λ) (10)

Hence if we consider the function

G(λ) =
∫ λ

a
dµ (V ′(µ) − 2 F (µ)) (11)

a and b are branch points of G, and in particular along C G is purely
imaginary since

G(λ(x)) = ±2iπ x (12)

Therefore we end up with the first requirement:

G(λ) must be purely imaginary on a curve C which join a to b. C is the
support of the measure dρ.

• Global stability:

If one moves a charge from λi on C to a position λf away from that
support, the variation of the action is non zero but

∆S ∝ G(λf ) − G(λi) (13)

where G is the function defined by (11). Such global variations are not
dangerous if ∆S has a positive real part. We therefore have the second
requirement:
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The contour of integration over the λ’s in (3) can be deformed con-
tinuously into a contour which includes C and which do not cross any
region where Re(G) < 0.

Note that although G is multivalued with branch points at a and b, its
real part is unambiguously defined, provided that one does not cross
C. Let us stress that the boundary conditions in (3) enters explicitely
here.

This analysis can be easily extended to study the stability of the general
two cuts solution, and to a generic polynomial potential V (λ). If V is a
polynomial of degree m, the generic solution F which leads to (6) is

F (λ) =
1

2

(
V ′(λ) +

√
V ′(λ)2 +N(λ)

)
(14)

where N(λ) is a polynomial of degree m−1. F (λ) has 2n branch points with
n ≤ m− 1. F will corresponds to a (local) minimum of S if the integration
contour over the λ’s in (1) can be deformed continuously into a curve S
which passes successively through the 2n branch points (ai, i = 1, 2n) of F
in such a way that the function G defined by (11) with initial point a1 has
the following properties:

• On the n segments Cj of S between successive pairs of branch points
(a2j−1, a2j) G(λ) is purely imaginary. This implies that the measure
dρ is concentrated on the Cj’s and is real.

• G(a2j) = G(a2j+1). This implies stability of the action against move
of charges from Cj to Cj+1.

• Im(G) is a monotonic function on the Cj’s which goes from 0 to 4π.
This implies positiveness and the correct normalization of dρ.

• S must not cross any domain where Re(G) < 0. This is the global
stability condition.

The general structure and of the domain D = {λ; Re(G(λ)) > 0} and of
the segments Ci is depicted on Fig. (1). If for a given potential V (λ) more
that one solution exist, one must compute explicitely the action S for each
of those solutions and take the solution with smallest real part of S.
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3 The cubic potential and the m = 2 critical

point

Let us first discuss the case of the cubic potential (4). A priori there are
three critical points at gc, j.gc and j2.gc (j = e2iπ/3), corresponding to pure
gravity, plus the trivial gaussian critical point at g =∞. It is instructive to
discuss first the structure of the phase diagram close to g =∞. As discussed
before as g → +∞ the eigenvalues concentrate at the minimum λ = −√g of
V . The function G(λ) defined by (11) reduces to G(λ) = V (λ) − V (−√g)
and the issue of the stability of the saddle point −√g versus the alternate
saddle point

√
g reduces to check whether the integration path that we have

chosen, which goes from −∞ to eiπ/3∞, does not cross a domain where
Re(G(λ)) < 0. It is easy to check that this is satisfied if

−5π

3
< Arg(g) <

π

3
(15)

This means that the solution is discontinuous on the line Arg(g) = π/3,
where one “switches” from one extremum of V to the other. The position
of the discontinuity is dictated explicitely by the boundary conditions in the
integral (1).

We now discuss the vicinity of the real critical point gc = 3/22/3. At the
critical point the support of the eigenvalues C and the domain D are depicted
on Fig. (2). As shown for instance in [15], the scaling limit near the critical
point is obtained by rescaling

λ = λc (1 + a z) λc = 2−1/3

g = gc (1 + a2 x) gc = 3.2−2/3 a → 0 (16)

In this limit the function G′ = V ′ − 2F scales as

G′(λ) = a3/2 21/3 (
√
x− z)

√
z + 2

√
x (17)

Thus in the rescaled variable z the support C goes from −∞ to zc = −2
√
x.

The analysis of the consistency of this one cut solution reduces to the study
of the primitive

G(z) =
∫ λ

λc

dµ G′(µ) = a5/2 2

5
(3
√
x− z)(z + 2

√
x)3/2 (18)
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On Fig. (3) we have depicted how the domain D where Re(G) is positive
and the support C, which is the curve joining −∞ to zc where G is purely
imaginary, are deformed when one turn around the critical point by changing
Arg(x).
C is continuous as long as −6π

5
< Arg(x) < 6π

5
but get a cusp at ±6π

5
.

At that cusp the density of eigenvalues vanishes linearly along C. Thus as
Arg(x)→ ±6π

5
the support C tend to break up into two segments.

On the other hand, global stability is ensured only if zc is connected
to e2iπ/5∞ through D. This is possible only if −8π

5
< Arg(x) < 2π

5
. As

Arg(x)→ 2π
5

the domain D is pinched at the point z =
√
x. For ΦArg(x) =

2π
5
G(
√
x) = 0 and eigenvalues will start to be attracted by the pinching

point. Therefore the domain where the one cut solution exists is the sector

−6π

5
< Arg(x) <

2π

5
(19)

One might wonder if in the remaining sector a two cuts configuration
minimizes the action. However one can convince oneself that, from topo-
logical considerations on the curves where Arg(G) is constant, a two cuts
configuration can exist only if one start from a potential V (λ) with degree
n ≥ 4. Indeed, from Fig. (1) in that case the domain D must have at
least four extensions to ∞. Since G(λ) ∼ V (λ) at ∞ this means that V is
at least quartic. Thus in the sector 2π

5
< Arg(x) < 4π

5
there is no smooth

thermodynamical limit when the number of “charges” goes to ∞.
It is not very difficult to extend this analysis to the case of a generic com-

plex coupling constant g. The whole phase diagram is depicted on Fig.(4).
The one cut solution extremizes the action in the white domain. No regular
large N limit exists in the dashed domain, which connects the three critical
points ∞, gc and j.gc. In this domain we expect that zeroes of the partition
function Z becomes dense as N →∞. The critical point at j2.gc cannot be
reached with our choice of boundaries in the integral (3).

The structure of the phase diagram allows in fact to determine entirely
which solution of the Painlevé equation (1) is compatible with the original
matrix model. Indeed, let us recall that the string susceptibility f(x) is
the second derivative of the free energy − ln(Z) with respect to the scaling
variable x = (gc − g)N4/5. We expect that taking the scaling limit (16)
at the critical point on the large N solution (N → ∞ while g fixed, then
a → 0) should be consistent with taking the large x limit in the non-
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perturbative solution (N → ∞ while x fixed, then x → ∞). The first
limit exist only in the sector (19) and gives f(x) =

√
x. From the study

of the general solutions of the equation (1), it is known [22] that they have
an infinite set of double poles in the whole complex x plane, and that some
(infinite) family of solutions have a finite number of poles in sectors of angle
4π
5

. There is only one solution which has a finite number of poles in the whole
sector (19) with angle 8π

5
. In this sector this solution (which is denoted in

[22] the “triply truncated solution”), has a regular large x asymptotic given
by (2). In the remaining singular sector 2π

5
< Arg(x) < 4π

5
f has still an

infinite set of poles, since it behaves asymptotically as
√
x.℘(x5/4) where ℘ is

a Weierstrass function. Thus no regular large x limit exists in that singular
sector. The conclusion is that if one starts from the one matrix integral (3)
with the integration contour specified above, the scaling limit for f , if it
exists, must be the triply truncated solution with no poles in the lower half
plane.

This argument is in fact universal and does not depend on the specific
choice of the potential V . Indeed to reach a critical point associated to
pure gravity it is sufficient that locally at some end point of the support
of eigenvalues the structure depicted on Fig. (2) and (3) occurs. Since
our analysis depends only on the local properties of the function G′ our
conclusions are valid for general potentials.

Finally one can explicitely associate the exponentially small non pertur-
bative ambiguities of general solutions of the string equation to tunnelling
effects of eigenvalues in the potential V 3. Indeed, with the cubic potential
(4) and the normalization (16), in the double scaling limit a→∞, a5N2 = 1,
the susceptibility f = − ∂2

∂x2 lnZ satisfies the equation

f 2(x) − f ′′(x)

6
=

(
3

2

)4

x (20)

Solutions of (20) analytic for large positive x are defined up to nonperturba-
tive terms of order

δf ∼ x−1/8 exp
(
− 4

5
(3)3/2 x5/4

)
(21)

In particular the triply truncated solution of (20) has an imaginary part
which behaves for large x as (21). If we come back to the large N solution,

3This was suggested to us by S. Shenker and J. Zinn-Justin.
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N Re(G(z)) is nothing but the effective potential for one eigenvalue. It is
constant and vanishes on C, is positive for −2

√
x < z < 3

√
x and negative

(and unbounded from below) for z > 3
√
x. The instanton configuration with

lowest action corresponds to one eigenvalue sitting at the top of the wall at
z =
√
x. The action of this instanton is in the double scaling limit

Sinst = N G(
√
x) =

4

5
(3)3/2 N

(
a2x

)5/4
=

4

5
(3)3/2 x5/4 (22)

This is exactly the coefficient in the exponential in (21). Estimating the
contribution of the fluctuations of the eigenvalue at the top of the wall should
give the (imaginary) coefficient in front of the exponentially small term in
the free energy with the correct x−1/8 power4.

4 Φ4 and Φ6 potentials and multicritical points

This analysis can be applied to more general potentials and to the multicrit-
ical points. Let us first consider the quartic potential

V (λ) = g
λ2

2
+

λ4

4
(23)

We take the real axis as contour of integration in the matrix integral (3).
Already at the classical level g = ∞ there are two phases: Phase I for
−3π/4 < Arg(g) < 3π/4 where eigenvalues concentrate at one minimum
λc = 0, and Phase II for 3π/4 < Arg(g) < 5π/4 where the eigenvalues are
equally concentrated at the two minima λc = ±√g.

The whole phase diagram in the complex g plane is depicted on Fig.(5).
In phase I the eigenvalues are distributed along one arc. In phase II the
eigenvalues are distributed along two arcs (symmetric with respect to the
origin). These two phases are separated by the shaded singular domain
where no large N solution exists. The two critical points for imaginary g
corresponds to the standard m = 2 critical points of pure gravity. The
critical point at gc = −2 is the critical point described in [21], where the
segment C breaks into two segments. It has been recently shown that in

4A priori this coefficient cannot be zero, since it is proportional to the inverse of square
root of the curvature of the effective potential G at the top of the wall, and since when
applying the steepest descend method one necessarily pass through the saddle point.
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the double scaling limit this critical point is associated to the Painlevé II
equation[14] which was previously encountered in unitary matrix models[23].
This equation writes

x =
o2

4
− 2e , 0 = eo − o′′ (24)

where x is the scaling variable x ∝ (g−gc). e and o are the scaling functions.
It is argued in [14] that the physical solution is the unique solution with fixed
boundary conditions

o ∼ x1/2 e ∼ x−2 x → +∞
o ∼ 0 e ∼ x x → −∞

(25)

In both regime the exponentially small terms are of order exp(−cst|x|3/2).
They become dominant if |Arg(|x|)| > π/3, and therefore in those two sectors
we expect that this solution of (24) has an infinite number of poles. As for
the Painlevé I case it is precisely in those two sectors that there is no large
N solution for the matrix model.

Let us now discuss the tricritical (m = 3) point, which corresponds to

gravity coupled to Lee-Yang matter[24]. It can be obtained by starting from
a matrix model with potential

V (λ) = g1
λ2

2
+ g2

λ4

4
+

λ6

6
(26)

and by fine tuning g1 and g2 so that the support C of the eigenvalues is one
arc with end points ±λe and that near those end points the effective potential
G′ = V ′ − 2F behaves as

G′(λ) ∼ (λ− λe)5/2 (27)

Before going to explicit calculations one can already draw general conclu-
sions by considering the allowed configurations for the support of eigenvalues
C and the stability domain D. At the tricritical point this configuration in
the vicinity of the end point λe is depicted on Fig.(6.a). It has three distinct
sectors starting from λe and going to ∞. Therefore there must be three dis-
tinct tricritical solutions, which depends on the sector chosen as boundary
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condition at ∞ in the integral (3). Only the solution corresponding to the
sector which contains the real axis can be real. It should correspond to the
real solution of the tricritical string equation found numerically in [13]. When
moving away from the tricritical point by changing g1 or g2 but keeping them
real C and D can only be deformed as depicted on Fig.(6). (6.b) corresponds
to deform the tricritical point into the ordinary critical point associated to
the Painlevé I equation. However it is clear that the real tricritical solu-
tion cannot be deformed into a critical solution since the path of integration
(the real axis) is no more contained in D. On the contrary the two complex
tricritical solutions can be deformed into the corresponding complex critical
solutions. (6.c) corresponds to deform the tricritical point into the critical
point described in [21] where the support C breaks up into two segments,

which is associated to the Painlevé II equation[14, 23]. One sees that the real
tricritical solution can a priori be deformed into this critical solution. (6.d-g)
describe deformations into the noncritical case (m = 1).

Those global features are confirmed by explicit calculations. Recent an-
alytical and numerical investigations of the phase diagram of the large N
Φ6 matrix model by Jurkiewicz[25] and by Bhanot, Mandal and Narayan[26]

show that the m = 3 tricritical point can be deformed into the m = 1 non-
critical point and into the PII critical point but that it is impossible to reach
the m = 2 critical point. The stability criteria used by these authors are sim-
ilar to those discussed in section 2. However they discuss neither the case of
complex potentials nor the dependence on the integration path in the matrix
model (implicitely the integration over the λ’s is made on the real axis). Our
approach allows explicit calculations for generic complex potentials. Starting
from the potential (26) the tricritical point is given by

λe =
(

32

5

)1/6

, gtricr
1 =

15

8
λ4
e , gtricr

2 = −5

2
λ2
e (28)

The scaling limit is obtained by rescaling

λ = λe (1 + az)

g1 = gtricr
1 (1 + 2a3T0 + a2T1)

g2 = gtricr
2 (1 + a3T0 + a2T1)

a → ∞ (29)

The one cut solution becomes after some algebra

G′(λ) = a5/2 25/2 λ5
e

√
z − zc (z − z+)(z − z−) (30)
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with
8
3
z3
c − 2T1 zc + T0 = 0

z± = − 1
4

(
zc ±

√
−5z2

c + 15
2
T1

) (31)

We denote the rescaled coupling constant T0 and T1 since they are similar to
the scaling fields Ti which allow to couple relevant operators Oi to the m = 3
critical theory (see for instance [14]). T0 is nothing but the cosmological
constant x and T1 couples to the m = 1 theory. A shift in z (z = z̃+

√
T1/2)

maps the equation for zc into

8
3
z̃3
c + 2T̃2 z̃

2
c + T̃0 = 0

T̃2 = 2
√
T1 , T̃0 = T0 − 2

3
T

3/2
1

(32)

where, as we shall see later, T̃2 couples to the m = 2 ordinary critical theory.
The “purely” tricritical theory is obtained by setting T1, or equivalently

T̃2, to zero. T0 = T̃0 is the cosmological constant x. We can study how the
effective potential G changes as x is rotated in the complex plane, as done
previously for the m = 2 case. If we start from real positive x, zc ∝ −x1/3 is
negative and we are in the situation depicted on Fig.(6.f) (but the two zeros
z± are not on the positive real axis). This situation is allowed for the three
possible integration contours (Arg(z) = 0,±4π/7) at infinity.

The dependence on the integration contour appears when x becomes com-
plex. Let us first take a contour such that Arg(z) = 4π/7 as |z| → ∞, the
solution can be continuously deformed in the sector

− 3

7
(3π − θ) < Arg(x) <

3

7
(π − θ) , θ = arctan(1/

√
5) (33)

which contains the whole real axis and the lower half plane. In this sector the
susceptibility f(x) is analytic and is proportional to x1/3. Therefore with this
boundary condition in the double scaling limit a → 0 , a7N2 = 1 we must
obtain the (presumably) unique but complex solution of the string equation
R3(f) = x which behaves as x1/3 as x → +∞ and j2|x|1/3 as x → −∞.
This solution can be deformed explicitely into the m = 2 critical solution, as
argued above. Indeed setting now T̃0 = 0, T̃2 < 0 the solution stay real but
z− = zc, which shows that we are now in the situation depicted on Fig.(6.b).
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Let us now consider the real contour Arg(z) = 0. The solution for real
positive x stays stable only in the sector

− 3

7
(π + θ) < Arg(x) <

3

7
(π + θ) (34)

However for real negative x the solution with positive zc ∝ (−x)1/3 is allowed
since it corresponds to the situation of Fig.(6.e). This solution is stable in
the sector

− 3

7
θ < Arg(−x) <

3

7
θ (35)

and in this sector the susceptibility is proportional to (−x)1/3. Therefore with
this contour we must obtain in the double scaling limit the real solution of
[13] of the string equation. This solution can also be deformed into a m = 2
solution. However this can be achieved for T̃0 = 0 and π/7 < Arg(T̃2) < 5π/7,
which corresponds to a complex potential, and is therefore unphysical.

This line of argument is quite general. A m-critical point corresponds to
an effective potential G of the form

G(λ) ∼ (λ− λe)(2m+1)/2 (36)

It can be reached from a matrix model with real boundary conditions only
for m odd, and it is almost obvious that a real odd-critical solution cannot be
deformed into a even-critical solution, as argued in [13], as long as complex
deformations are forbidden.

5 Conclusion

In conclusion we have shown that the large N solution of the Hermitian
matrix model of [20] can be generalized to complex potentials and that one
can discuss in this framework the dependence on the boundary conditions
in the matrix integral. A regular large N solution does not always exist, or
may be unstable, but we have found on the example of pure gravity that the
region in phase space where there is no solution coincides with the domain
where poles exist for some solutions of the string equation, and that this fixes
uniquely which solution is compatible with the matrix model formulation.
For pure gravity no real solution of the Painlevé I equation is allowed. The
only acceptable solutions are the two (complex conjugate) triply truncated
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solutions of Boutroux, and corresponds to the two possible way to reach a
m = 2 critical point by analytic continuation in the space of potentials for
the one matrix model. They have exponentially small imaginary parts which
can be interpreted as instanton effects of the original matrix model.

Those features seems general, since they persist on the example of the
higher critical points that we have considered. This suggests that many of
the global features of the solutions of the string equations, in particular the
crucial issue of the boundary conditions, can be understood already at the
semiclassical level in the matrix model formulation.

Let us come back to the problem of the nature of the flows between the
various multicritical points. We have seen on the example of the m = 3
theory that by looking at the structure of the lines of constant argument of
the effective potential G(λ) in the complex plane and at their deformations
as the potential V (λ) is changed, one can see which deformations are possible

between the various critical points. In a recent paper[27] G. Moore, among
many interesting things, studies by WKB methods the linear differential
equations, whose compatibility conditions give the KdV string equations,
and their monodromy properties. The structure of the Stokes lines in the
complex plane for the spectral parameter λ that he finds in the case of low
m is strikingly similar to the structure of the equiphase lines for the function
G that we have found. This similarity suggests that there is probably a deep
connection between those two treatments5.

Finally let us briefly quote some open problems. It would be interest-
ing to find a general treatment of multicritical points, in particular for the
more general (p, q) systems which can be obtained from multi-matrix models.
Our treatment of complex potentials should allow in particular to treat non
perturbatively the singular potentials of [8]. But obviously one of the most
important issues is to understand if there is a way to define a consistent real
solution of pure 2d gravity or of gravity coupled to unitary matter.

5Note however that in [27] it is claimed that no isomonodromy deformation allows a
flow from m = 3 to m = 2 , contrarily to what we have found in Section 4. It is not clear
to us whether Moore’s analysis puts extra constraints on the flows or if his argument has
to be modified when dealing with complex potentials. Indeed in our case the integration
path over λ is not real, while Moore’s argument relies on the value of the Stokes data on
the real line.
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Figure Captions:

• Fig.1 General structure of the segments Ci, where the density of λ’s is
non zero, and of the domain D = {λ; Re(G(λ)) > 0} (shaded area) for
a solution of the large N equations with n = 2 cuts. The ◦ denote the
zeros of G′(λ).

• Fig.2 C and D at the critical point.

• Fig.3 Variations of C and D (in the rescaled variable z) as θ = Arg(x)
varies from 2π

5
to −6π

5
.

• Fig.4 The phase diagram of the cubic model in the complex g plane.
In the shaded domain no large N solution exists.

• Fig.5 The phase diagram of the quartic model in the complex g plane.
In the shaded domain no large N solution exists. In domain I (resp.
domain II) a one cut (resp. two cuts) solution exists. The two PI
critical points correspond to the two solutions of m = 2 pure gravity.
The PII critical point is associated to the Painlevé II equation.

• Fig.6 Structure of C and D near the tricritical point for real potentials:
(a) the tricritical point, (b) deformation into the ordinary PI critical
point, (c) deformation into the PII critical point, (d),(e),(f),(g) de-
formations into noncritical points.
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