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We present the loop equations of motion which define the correlation functions for loop 
operators in two-dimensional quantum gravity. We show that non-perturbative correlation 
functions constructed from real solutions of the Painleve equation of the first kind violate 
these equations by non-perturhative terms. 

1. Introduction 

Two-dimensional quantum gravity may be formulated as a functional integral 
over the internal geometry of 2d manifolds. Some years ago, it was proposed to 
discretize this sum as a sum over random triangulations1 This allows us to map the 
discretized functional integral into an integral over random (Hermitian) matrices 
and to map the topological expansion (in terms of the genus of the 2d surface) into 
the large N expansion of the corresponding matrix model, where N is the dimension 
of the matrix. Various matrix models, which may correspond to pure gravity or to 
gravity coupled to some set of matter fields, can be solved by large N techniques 
and were shown to exhibit critical points where a continuum limit could be de
fined.' More recently those continuum limits were shown to agree with results 
obtained from continuum formulations of 2d gravity, based on conformal field 
theory techniques' Most of those results were however restricted to fixed 2d 
topology. 

Very recently it was shown that a continuum limit for the sum over all topologies 
of 2d manifolds may also be defined explicitly.-·6 For pure gravity and gravity 
coupled to some matter fields with c < 1, it was shown that quantities such as the 
specific heat satisfy remarkable differential equations which define uniquely the 
perturbative topological expansion and which were suggested to lead to a non
perturbative definition of the theory.-� 

These results rely on a "constructive" approach. The discretized version of 2d 
gravity is defined explicitly by the random unitary matrix model. Integration over 
radial degrees of freedom reduces the problem to the statistics of the (real) 
eigenvalues of the matrix, which appears to be equivalent to the problem of non-
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interacting fermions in an external potential in 1 (space) dimension, thus to ordi
nary ld quantum (statistical) mechanics' However, the last step of this approach 

remains somewhat formal, since the ODE satisfied by the specific heat f defines 

only f up to non-perturbative terms which are invisible in the topological expan

sion. For the simplest case (pure gravity) suggestions have been made to fix these 

non-perturbative terms but it is not clear whether they really correspond to some 

physical requirement, or whether these ambiguities reflect the existence of new 
non-perturbative parameters of the theory.'" 

In this paper, we shall address this problem by using a different approach. In 
general a quantum field theory may be entirely defined by its Dyson-Schwinger 

equations, namely the equations of motion satisfied by the observables of the 
theory. Even if the equations of motion have been defined in perturbation theory, 

it is expected that they are satisfied by the full theory, irrespective of the phase in 
which the theory lives even if "non-perturbative effects" are present. 

For 2d gravity the observables are probability amplitudes for loops. A natural 

question is how to define loop equations of motion in the continuum limit, and then 
to check whether non-perturbative 2d gravity satisfies these equations, and if these 

equations can be used to fix the non-perturbative parameters. 
In this paper we deal with the pure gravity (c = 0) case. From the random matrix 

model, we define loop operators and write discretized loop equations. We then 
show how to take the continuum limit for these loop equations, and show that these 
equations allow us to compute recursively expectation values for loop operators at 
all order in the topological expansion. Finally we look at the consistency between 

the loop equations and the non-perturbative construction of 2d gravity. We show 
that for the non-perturbative constructions based on real solutions of the Painleve 
equation of the first kind, loop equations cannot be satisfied, since they are 

necessarily violated by non-perturbative terms. In the conclusion we discuss the 
significance of this negative result and make some conjectures. 

2. Loop Equations for Discretized Gravity 

First we derive loop equations for discretized gravity, defined by the random 
matrix model, whose partition function is written as an integral over N x N 
Hermitian matrices, 

z = Jd¢ exp{-NTr[V(¢)]J. (I) 

These equations have already been derived in Refs. 10 and II and we shall discuss 

them mainly as an introduction to continuum loop equations. The operator corre-

;.. sponding to a loop with length K iSI2•13 liN Tr(¢KIK). A generating function for 

these operators is 

W(L) 
or its Laplace transform 

W(P) = l. Tr(_
l ) . 

N P-¢ 

(2) 

(3) 
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The loop equations are obtained simply by performing the change of variable </J-> 
</J' = </J + Ef(</J) in (1). The measure changes as 

d</J -> d</J'= dq{l+£f�:f(z{TrC�¢)]l 
while the action changes as 

TrV(¢) -> TrV(¢) + £Tr[V'(¢)f(¢»). 

Taking for a particular function fthe function 

f (z) = _1_ 

p-z 
we get 

and 
d¢! = d¢[J + £N'[W(P»)') 

+;w 
Tr[V(¢'») = TrV(¢) + £N J dQ _l_V ' (Q)W(Q). -,-2mQ-P 

(4) 

(5) 

(6) 

(7) 

(8) 

To be more specific we shall now restrict ourselves to the particular potential 

V(</J) = �¢' _1.¢3, 
2 3 

(9) 

which is sufficient to get the critical point corresponding to pure gravity. We shall 
consider the connected correlation functions for M loop operators, (W,,,. W"),, 
defined from the ordinary ones (".) by 

(10) 

where the sum runs over all partitions [XI) of the set of operators, Q being the 
number of elements of the partition. Using (7), (8) and (9) we get for M > 0 

while for M = 0 

[/1P-P' -2(W(P»,](tl/(P)W(P, ) ... W(P" », 

= I (w(pmw(p,») (w(pmw(p,») IUi"'Ji.M) iEI c je} c 

1.1'#0 

d:(W(PI)�[W(P,)- W(P)] ... W(PM») (11) ,.1 (JP P-P " , 
I . . . . 

+ -(W(P)W(P)W(P, ) ... W(P" », 
N' 

+ ([(/1- P)W(O) - W'(O»)W(P, ) ... W(PM », , 
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(/1P- P' )(W(P»,; (W(P»; + (/1- P)(W(O», - (W'(O», 

+ _1 (W(P)W(P»,. (12) 
N' 

These equations, although lengthy, have a natural geometrical interpretation when 

formulated in terms of WeLl (if one view L as a length variable) which is discussed 

in Ref. 12. They may be written in a compact functional formw.1I For instance (12) 
corresponds to 

v'(:r. }W(L», ; J �dL'{(W(L'»,(W(L - L'», 

+ -..!,(W(L')W(L - L')\ I . 
N 

(13) 

The loop equations contain two families of "constants of integration " which are the 

operators W(O) and W(O) and which have to be fixed by some consistency require
ment. The first one is easily fixed since 

1 W(O); -Tr (I) , 
N 

(14) 

so that (W(O», ; 1 and W(O) gives zero in higher connected correlation functions. 

The second one corresponds to 

W'(O) 1 
; -Tr(C!» 

N 
(15) 

and is fixed as discussed below. 
We first discuss the loop equations in the planar limit (liN'; 0), where the main 

features already appear. In the case for M; 0, Eq. (12) involves only (W(p », and 
is solved as 

with 

(W(P»,; 1.[(/1P-P')- �"'(P)J 
2 

(16) 

"'(P) ; (/1P- p')2 + 4[P + (W'(O», - /1J. (17) 

In Ref. 10, (W'(O», is fixed by the requirement that (W(P», has only one cut [a, 

b J in the complex P plane, which in the Gaussian limit J1. � � should be located at 
[- 21Jii- + 2/$1 (this corresponds to the interval in which the eigenvalues of if! are 
located, according to Wigner's law). However, in general, "'(P) has four simple 
zeros and W(P) two cuts, one located close to the origin and the other at large 
positive P. Thus (W'(O),) has to be fine-tuned so that the two zeros of'" with the 
largest real part coalesce to give a double zero at P. "'(P) is then of the form 
"'(P); (P- Po)'(P -a)(P- b), and ( W(P) \ is analytic along the real axis for P > b. 

We now turn to higher correlations functions (M > 0). In the planar limit the left

hand side of (11) involves the (M + 1) loops correlation function, while the right

hand side involves only M'" M loops correlation functions. Thus (11) may be used 
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to compute recursively all the connected functions. However, the double zero Po of 
!'.(P) corresponds to a single zero of [,uP - P' - 2 (W( P»J and therefore the (M + 
1) loops function (W(P)W(P, ) ... W(P",», has a pole at Po' unless the right-hand 
side of (11 )  vanishes at P = Po' It is precisely this analyticity requirement which fixes 
uniquely the correlation function (W'(O)W(P, ) . . .  W(P", »,. 

The same procedure can be used to go beyond the planar limit and to compute 
recursively the correlation functions at all orders in the topological expansion in 
powers of N-'. Indeed, in order to extract the M-loops function at order N-" it is 
enough to know the M-loops functions for M' 5 M + K at lower orders in N-'. At 
each order of the recursion, the condition that the functions must be analytic at 
P = Po will fix W'(O). 

3. Loop Equations for Continuum Gravity 

In the planar limit, the critical point ,u =,u, is reached when the double zero Po(,u) 
reaches the cut starting at b(,u). In the vicinity of the critical point, one may express 
the variables in terms of a regulator a (with dimension of length): 

,u = ,u, + a' A , 
P = P, + az , (18) 

where the critical values ,u, and P, are uniquely characterized by the requirement 
that in !'.(p, ,u) the terms of orders a and a' vanish identically. For our potential, this 
implies 

(19) 

Then it appears that the M-loop function scales as a'-(7")", but for the I-loop 
function which has a finite part equal to 1/2(,uP - P'). Defining renormalized 
correlation functions for continuum operators �V as 

• 1 (W(P», = 2 (,uP - P') + a312(w(z», ' 

� .. _ 5-{712)M � � (W(P,) . . . W(PM)\ - a (w(z,), ... , w(z" », ' 

and the "string coupling constant" G as 

G = N-'a' , 

(20) 

(21) 

(22) 

in the continuum limit a -> 0, A, Z and G being fixed, the equations of motion reduce 
to 

(w(z»: + G(w(z)w(z)\ = Az' - BzA + (P), 
and for M > 0 

2(w(Z», (w(z)w(z, ) ... w(z" », + G(w(z )w(z )w( z,) ... W(ZM )\ 

+ I (w(z)n w(z, »,(w(z)n ,,,(z), 
lvh::ll.MJ .EI j£J 

(23) 
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M a "'(Z,)-w(z) + I(w(z,)... . .. 'V(ZM» 
.=1 dz, Zj-Z 

(24) 

where A and B are some strictly positive constants and P is the singular part (of 
order a'") of the operator W'(O). 

Equations (23)and (24) are simpler than the discrete loop equations (ll), (12) 
and are universal, since the non-universal coefficients A and B may be absorbed 
into a rescaling of W, Z and 11.. A is the renormalized cosmological constant and G 
the renormalized "string" coupling constant. In fact, up to a rescaling, all observ
abies depends only on zl.Jl\ and the scaling variable [A GUS] but our convention 
allows a clearer discussion of the "semi-classical limit" G ...., O. 

The renormalized loop operator w(l) defined from w(z) by inverse Laplace 
transform, 

(/) J ",- dz ,/ • ( ) w = -e w Z , 
c·j ... 2in 

is proportional to the original operator creating a loop of length I = Ka: 

..!..Tr(¢K) = a-�2(PjJ·"·)w(l). 
N 

(25) 

(26) 

Thus, in the continuum limit 1 corresponds really to the length of the loop. The a 
dependent factor in (26) corresponds to some kind of wave-function renormaliza
tion. 

The continuum loop equations (23) and (24) contain the unknown local operator 
P, which is determined by a consistency condition similar to the one fixing W'(O). 
As was done before we can solve iteratively the loop equations. At genus zero 
order (G = 0), (23) reads (with proper normalization) (w( z»; = z' - 311.z + (P), so 
that for generic (P),,(w(z», has a cut in the right half plane (Re z > 0) and another 
cut on the negative real axis. The path of integration in (25) when defining (w(I» 
has to be taken to the right of both cuts, otherwise (w(l» would be non-zero for 
negative length! Then (w(l» grows exponentially for large I, which is quite unphysi
cal. The condition that (w(z» has only one cut, on the negative real axis, is equiva
lent to the requirement that (w(l» must decrease exponentially for large 1 and fixes 
(P) to be equal to 211.'", so that 

(27) 

has a single zero on the positive real axis instead of a cut. Starting from (27), the 
loop equations can be solved iteratively to compute loops correlation functions at 
arbitrary order in the topological expansion in powers of G. At each step the 
requirement that there are no singularities on the positive real axis in the z 
variables (equivalent to the requirement that the amplitudes for large loops must 
be exponentially small) fixes the matrix elements of the unknown operator P. 

If the explicit calculations should quickly become very cumbersome, one can 
obtain from (23) and (24) the large z behavior of the operator w(z), that is, the 
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small length limit of the loop operator w(!).lndeed, the dominant term of (l'v( Z », at 
large Z comes only from the genus zero contribution (27) which behaves as z'". 
Hence one can prove that 

I\>(Z)- _I_ p as z�� 
2Z312 (28) 

except when w(z) appears in one- and two-loop functions at genus zero, which 
have additional more singular powers of z. Thus P is nothing but the so-called 
"puncture operator" which inserts an infinitesimal loop on the 2d surface. 

4. Loop Equations and Non-Perturbative Gravity 

We now discuss the relation between loop equation and the recent non-perturba
tive construction of two-dimensional gravity. This construction has already been 
discussed by many authors and we shall only start from the basic results for pure 
gravity." In the continuum limit, the problem reduces to the study of quantum 
mechanics in 1 dimension with Hamiltonian 

a' H = u(x) -c -

dX2 ' 
where the potential u(x) obeys the Painleve equation, 

u'(x) - c u"(x) = x. 
3 

(29) 

(30) 

Connected functions for the loop operator w( z) may be expressed simply by con
sidering H as a one-body operator for a system of free fermions, with one-fermion 
states Ix) labelled by their energy E = -x, with tbe Fermi level localized at the 
renormalized cosmological constant EF = -A. Indeed, in the continuum limit, 
connected functions of the operators w(z) reduce to the vacuum expectation 
values of the corresponding products of the resolvents I/(z + H). For instance,7., 

- f'· I (w(z», = dx(xl --Ix) , 1\ Z + H 

(w(z, )w(z,», = f'"dxf A dy(x l _l_IY)(YI 1 Ix), A -. Zl + H z, + H 

(31) 

(32) 

etc. Strictly speaking, these equations are valid only as formal power series in C and 
the integral in (31) has to be defined with a finite part prescription to deal with the 
divergences at � (which are related to the non-scaling finite part in the free energy 
and the I-loop connected function). u(A) corresponds to the string susceptibility 
and should be positive in the planar limit (A --> � or C = 0). Thus for C = 0, u(x) = 

+xln and it is known with that this initial condition, from Eq. (30), all terms of the 
perturbation expansion of u in terms of C are known: 

u(x) 112 C -, 49 C' -91' ::;:; X - -x - -- x + 
24 1152 

(33) 
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Similarily as G --> 0, the resolvent behaves as 

hence 

I (xl -- Ix) = 
z + H G-1U 

1 G'I2 
2 [z + X'12]1I2 

(w(z» = �[g(z - .!....fA)(Z + ..fA )'12 
G-tO 3 2 

which coincides, up to finite rescalings, with (27). 

(34) 

(35) 

The real solutions of (30) such that u(x) - x,n at infinity are known to have an 
infinite series of double poles on the real axis, which accumulate at x = - =." 
Moreover, there is an infinite family of such solutions, which may be labelled for 
instance by the position of the first pole on the real axis. Those solutions have the 
same asymptotic expansion as a formal power series in G. Indeed they differ only 
by exponentially small terms of order 

At any double pole x" the potential u diverges as 

u(X ) " ---=2:.::Gc.....,;- + 0 [(x - Xi )'] . 
(X-Xi )' 

(36) 

(37) 

This is enough for all eigenfunctions of the Hamiltonian H (29) and for the re
solvent (x 111(z + H)I y) to vanish at x,. In other words, there is no tunneling through 
the poles and the eigenstates stay localized between two successive poles [x" x,J or 
between the first pole x, and +=. This leads various authors'·'·' to suggest that a non
perturbative definition of two-dimensional gravity could be obtained by taking a 
real solution of (29) characterized by its first pole xl' and by defining the correlation 
functions by Eqs. (31) and (32) when taking the resolvent (x 11I(z + H) I y), which 
has support [xl' +=] and vanishes on [�, x,] ("perturbative phase"), or even by 
taking the resolvent with support between two successive poles [x,." x.l ("non-per
turbative phase"). The singularity at A = x, might correspond to a "condensation of 
handles". With such a proposal, the main issue is obviously to understand the 
meaning of the non-perturbative parameter xl' which label the "non-perturbative 
solutions", and to understand whether it can be fixed by some physical requirement 
or whether it corresponds to a new physical parameter of the theory, like the 
l1-angle in 4d gauge theoriess 

In fact, it is easy to see that none of these solutions satisfies the continuum 
equations of motion (23), (24). Let us consider the "perturbative phase" where we 
define the 1- and 2-loop correlation functions by (31) and (32) by taking the 
resolvent with support [xl' +=]. As stressed in Ref. 7, a non-perturbative property 
of the Hamiltonian H (29), when quantized in the interval [xl' =j, is that it has a 
discrete spectrum with eigenvalues A.,. Each eigenfunction should behave as 
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= (X-Xl )', 

= exp-� rc X '14 , 
5 

(38) 

Therefore (IV(Z», has a single pole for each eigenvalue Z = -A" while (IV(Z)W(z», 
has a double pole. If we write the left-hand side of the equation of motion (23) for 
M = 0, we see that 

(W(Z»,(W(Z», + (IV(Z)W(z)\ = J j"dxl'!'Jx)I'- (39) 
,+!.; (z + AJ' A 

Thus the coefficient of the double pole, although exponentially small in A from 
(38), is non-zero. However the right-hand side of (23), although a complicated 
function of A, is a polynomial of degree 3 in Z and cannot have any double poles. 
Thus if H has a discrete spectrum loop equation, (23) cannot be satisfied! 

The situation is worse if we take as support for H and for the resolvent the 
interval between two poles of u, since then the coefficient of the double pole is not 
even exponentially small in A. In fact, one can even take in (38) and (39) the 
resolvent as defined in any interval [Xi' +�l, or even for any [a, +�l, a not being 
necessarily a pole. Indeed, the resolvent (xlll(z + H)I y) = R(x, y; z), as defined by 
the equation 

(Z + H,)R(x, y; z) = (z + H, )R(x, y; z) = 8(x - y) (40) 

with the boundary condition 

R ;:: 0 as x or y :;::; a or + 00 I (41) 

will be a merom orphic function of x and y with single poles at the double poles x, of 
U, but one can check that the correlation functions defined by (31), (32) have poles 
at each A = Xi but no cuts and are therefore also acceptable in the interval A E [xl' 
+�l. However, in any case the coefficients of the double poles of (33) will be given 
by (39) and cannot vanish identically. 

5. Discussion 

We have still far from a complete understanding of the relation between loop 
equations and the non-perturbative formulation of 2d gravity. [n this section we 
shall discuss some open problems. 

Although we have shown that for the non-perturbative definitions of 2d gravity 
proposed insofar the loop equations are violated by non-perturbative terms, we 
have not been able to show directly that, to all orders in the perturbative expansion, 
the two constructions coincide. We have only checked by explicit calculations to the 
lowest orders and for correlation functions with a small number of loops that the 
two approaches give the same result. 

The loop equations (23), (24) have been derived from the random matrix model. 
Their left-hand side which seems somewhat complicated has in fact a simple 
geometrical interpretation in terms of loop operators w(l). Indeed, then it corre-
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sponds to insertion and deletion of one loop while keeping the total length of the 
loops constant,1O·12 We have taken these equations as a definition of 2d gravity but 
it is not excluded that some additional terms (for instance some "non-perturbative 
condensate") might appear. A "loop field theory" derivation of the loop equations 
(perhaps in the spirit of string field theory) would be very helpful. One may notice 
that the loop equations for "ordinary" 2d gravity bear some similarities with the 
recursion relations written by Witten for topological 2d gravity," at this moment we 
are however unable to elaborate further in this direction. 

We have shown that it is quite implausible that real solutions of the Painleve 
equation (30) might lead to a non-perturbative definition of 2d gravity. However, 
one might speculate that there is a relation between complex solutions of (30) and 
the original matrix model. This original model suffers from the defect that, in order 
to get a continuum limit corresponding to pure gravity, the action Tr[V(¢)] is 
unbounded from below. However, the partition function may be defined by ana
lytic continuation. For instance, starting from the potential 

(42) 

the partition function (1) is defined for Re A < O. Rotating simultaneously A and the 
integration path for the matrix elements of ¢ in the complex plane, one can easily 
show that Z(A) has only a square root singularity at A = a and may be analytically 
continued into the whole doubly covered punctured plane C - {OJ. Thus for finite 
but large N and in the vicinity of the critical point A, for the N = = theory, which is 
on the positive real axis, the matrix model admits two (complex conjugate) defini
tions, which are for instance obtained by iterating the recurrence relations for the 
coefficients R. of the orthogonal polynomials, starting from the two possible 
analytic continuations for the initial term R" (A) = 5:: dx exp[ -N V, (x)]. In the 
planar limit N = =, a -> 0, these two definitions should give the two possible deter
minations on the whole real axis of the susceptibility [(A), namely 

-fA if A > 0, 
[(A) = � 

± i-yIAI if A < ° . (43) 

Similarily, in the scaling limit for G '" 0, it is plausible that the two determinations 
of the matrix model gives for the susceptibility [the two solutions of the Painleve 
equation (30) which behave for both A -> += and A -> -= as-fA. Indeed, according 
to the analysis of Boutroux,I4 the Painleve equation has a unique "triply truncated 
solution" (up to complex conjugation) with the asymptotics 

u(x) = ,fx (44) X�±"" 

and no infinite set of double poles in a sector around the whole real axis. It would 
be worthwhile to prove (or disprove) this conjecture and to check whether the loop 
equations (23)-(24) are satisfied by the correlation functions obtained from the 
resolvent for this particular solution. This solution is nevertheless unphysical, since 



Loop Equations and Non-Perlurbative Effects.. 1029 

for large positive A, the susceptibility f(A) should has an exponentially small but 
non-vanishing imaginary part 

Imf(A) = A-I18exp _i /6A''', (45) 5VC 
which reflects the "instanton-like" imaginary part present in the partition function 
ZeAl of the original matrix model. 

Finally it should be interesting to write loop equations for the c '" 0 models like 
the "multicritical gravity" models or gravity coupled to various conformal field 
theories. 
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