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We calculate the mass gap and the susceptibility critical exponents, in a model of dynamically 
triangulated random surfaces, for various values of the model parameters. Strong coupling series 
as well as Monte Carlo simulation are used and we carefully compare results obtained with the 
two methods. The transitions between different phases of the model are examined. 

1. Introduction 

A model  of  dynamical ly triangulated random surfaces [1-3] received recently 

considerable  attention. In particular, much effort has been made to determine 

numerical ly  the critical exponents of the model  [1, 3-9].  The main purpose of this 
somewhat  technical paper is to check the reliability of the numerical methods 

employed.  We get also some further insight into the dynamics  of  the model. 
The  model  in question can be regarded as a discrete version of the Polyakov 

string model  [10]. The integration over surfaces is replaced by the sum over gaussian 

embeddings  in a d-dimensional space of  all two-dimensional abstract simplicial 
lattices (triangulations) with a given topology. The basic idea is that integration over 

metrics can be described by summat ion over triangulations. Thus, the part i t ion 

funct ion is writ ten 

f, od ( ) .  Z =  Y'~ W ( T ) z  u 1-I[(q/~) d x / ]exp  - Y'~ (x  k -  xm) 2 
TN J ~krn) 

(1) 

Here  T stands for " t r iangulat ion"  and 1 / W ( T )  is the order of the symmetry  group 
of  T. The total number  of vertices in the lattice is N. The position, in the embedding 
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TABLE 1 
Summary of strong coupling and Monte Carlo results for the critical fugacity z¢ (the upper number) 

and for the susceptibility exponent "f (the lower number) 

Strong coupling Monte Carlo Monte Carlo 
( d, a) with Nj ~< 24 in (100,500) in (30,100) 

0.2465 to 0.2472 
(5,0) > 0.10 

0.0662 to 0.0665 
(5,25) 0.10 to 0.30 

0.0166 to 0.0167 
(5,5) 0.15 to 0.30 

0.540 to 0.544 
(10,0) 0.25 to 0.40 

0.0400 to 0.0404 
(10, 5) 0.45 to 0.55 

(10, 25) 

0.24700 + 0.00005 
0.13 ± 0.05 (0.17 _+ 0.04) 
0.06649 +_ 0.00003 
0.27 + 0.12 (0.25 + 0.15) 

0.5421 + 0.0001 
0.20 + 0.06 (0.19 + 0.07) 
0.04017 + 0.00002 
0.49 _+ 0.12 (0.52 ± 0.08) 

(9.21 + 0.02) × 10 s 
1.00 ± 0.05 (0.94 ± 0.1) 

0.24615 + 0.00016 
- 0 . 3 2  + 0.05 ( - 0 . 2 6  _+ 0.03) 

0.06633 ± 0.00005 
0.03 +_ 0.04 

(9.30 + 0.02) × 10 -8 
1.70 + 0.13 (1.71 ± 0.07) 

The figure in parentheses is the result obtained using the second method of estimating y. 

space, of the j th  vertex is denoted xj and its coordination number (number of 
nearest neighbours) is denoted qj. The parameters a and z control the dynamics of 
the model. In this paper we consider surfaces with spherical topology only. 

The above presentation of the model is reduced to the necessary minimum, since 
the model has been extensively discussed in refs. [1-9]. In particular it has been 
explained how to introduce Green functions and critical exponents. Furthermore, 
standard scaling arguments have been used [11] to show that all the exponents can 
be expressed in terms of the susceptibility exponent ~, and the mass-gap exponent v 
(or alternatively the fractal dimension d F = l / u ) .  

In the next section we shall consider estimates of ~, obtained from strong coupling 
series and from Monte Carlo simulations. The results appearing in the text are 
summarized in table 1. In sect. 3 we present new strong coupling results for v and 
compare them with Monte Carlo data. We also comment on transitions between 
different phases of the model. Sect. 4 contains a summary and conclusions. 

2. The susceptibility exponent 

2.1. S T R O N G  C O U P L I N G  SERIES 

The discussion of  this section follows ref. [1]. Let us briefly recall the technique 
which has been used there. 

Putting a dot  in the middle of  each triangle and joining dots belonging to 
neighbour triangles one obtains the so-called dual lattice. The latter has the same 
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structure as a planar vacuum diagram of the g tr 4) 3 theory with g -  vG- [1, 3]. All 
such diagrams of a given order and with the correct symmetry factor can be 
generated using the Schwinger-Dyson equations of the g tr ~3 theory. Then, for each 

surface, one computes the determinant and the inverse of the laplacian operator. 
This enables one to calculate the series expansion of the partition function and 

consequently to get an estimate of the critical "fugacity" z~ and of "~ for various 
(positive or negative) values of the dimensionality d and of the measure parameter  
a. A similar series expansion for the mean square extent (or gyration radius) of the 
surface will be used in the next section to obtain the mass-gap exponent v. 

We have extended the analysis of ref. [1] by constructing high temperature series 
up to 24 triangles, which corresponds to approximately 5 × 10 v different surfaces 
(see also ref. [6]). As in ref. [1] the method of differential approximants and the ratio 
method have been used. It turns out that the results obtained from differential 
approximants  are less stable for the exponent 7. Therefore we shall present here 
only the results produced by the ratio method, which are also more suitable for a 
comparison with those extracted from Monte Carlo simulations. Let us briefly recall 
the idea of the method. Let the nth term in the series for Z = Y~n>~lz~+3Z,, behave 
as follows 

Z, -Bz~"n  ~ 3 1 1 + O ( n - 1 ) ] .  (2) 

Here  n = N - 3 =  1 ~N a - 1, N a denoting the number of triangles. We first take the 
ratio 

8 ( 1 )  = Z n / / Z n - 1  - z~-l[ 1 + (7 - 3)/n + O(n 2)] .  (3) 

Next,  we define 

and use the fact that 

(4) 

+o(n (5) 

to obtain better and better estimates of z c, by extrapolat ing C. (p) to n = oo for 

successive values of p. 
Similarly, estimates for 7 are obtained applying the same technique to 

On (a) = n[ C (1) - C(2 ) ]  . (6) 

As an illustration let us consider the case d = 10 in some more detail. In figs. 1 
and 2 we display the estimates Cn(p) for the position of the critical point, for ~ = 5 
(i.e. = ½d) and a = 0 respectively. Anticipating on the discussion of the next 
sub-section we also show the results of Monte Carlo simulations. For ~ = 5 the 
convergence is quite good and the extrapolation to n = oo indicates the estimate 
0.0400 < z c < 0.0404, to be compared with zc = 0.04017 + 0.00002 obtained from 
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Fig. 1. Strong coupling estimates for the critical fugacity z c at d = 10 and a = 5. One should extrapolate 
to n = ~.  The Monte Carlo result is also shown (open square). 

M o n t e  Car lo .  F o r  a = 0 the convergence is less good since one observes some dr i f t  

wi th  p.  The  es t imate  is 0.540 < z c < 0.544 to be c o m p a r e d  with z c = 0.5421 _+ 0.0001 

f rom M o n t e  Carlo.  

In  fig. 3 are  p lo t t ed  the es t imates  DiP) for ~,, for a = 5 and 0. Fo r  a = 5 the 

convergence  is again  quite good, the es t imates  ra ther  weakly  depend  on p,  and  one 

is led  to c o n c l u d e  that  0.45 < y < 0.55 in agreement  with ~, = 0.49 _+ 0.12 ob ta ined  

f rom M o n t e  Carlo.  The s i tua t ion  is less favourable  for a = 0: one observes a 
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Fig. 2. The same as fig. 1 but for a = 0. 
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Fig. 3. Strong coupling estimates for the susceptibility critical exponent T for d = 10 and a = 0 and 5. 
Monte Carlo results are also shown (open squares). 

systematic drift of estimates with p, towards larger and larger values, which makes 
the overall estimate of 3' much less convincing. A naive extrapolation yields 

0.25 < T < 0.40, a value significantly smaller than at ~ = 5, but the upper bound is 
not very reliable and it is quite possible that 3' is actually the same for ~ = 5 and 

a = 0. This estimate is again compatible with Monte Carlo result, 3' = 0.20 _+ 0.06, 
especially that the error attached to the Monte Carlo point is in this case presum- 
ably underestimated, as will be discussed in the next subsection. 

Notice that the systematic drift of estimates with the order p of the approximant 
is a typical phenomenon, occurring frequently when there is another singularity 
close to z c, or a confluent singularity at z c with an exponent T ' <  T. This can be 
shown explicitly in the solvable case d = - 2 ,  a = 0, where a confluent singularity 
exists [12]. 

For  values of a larger than 5, say near 10, the convergence of the ratio method is 
also less good. In this case the drift phenomenon leads to estimates of 3' systemati- 
cally above 0.5. For still higher values, say a = 25, the estimates obtained from 
strong coupling series (of this length, of course) become completely unreliable. 

We have performed a similar analysis at d =  5. As in the previous case the 
convergence is better for a = 5 and 2.5 than for a = 0. The estimates for z c and 3' 
are given in table 1. For a = 0 we observe again the drift phenomenon and the 
estimate for 3' is systematically lower, but less reliable, than for a = 2.5 or 5. Again, 
the error in the Monte Carlo estimate of 3' at a = 0 is presumably too optimistic. 

2.2. MONTE CARLO SIMULATIONS 

2.2.1. General outlook. The code employed in this work has already been used in 
ref. [9], and is described in detail there. Here we shall discuss in more detail the 
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conditions, which in our opinion should be fulfilled to insure that an estimate of 7 
extracted f rom a simulation of the grand-canonical ensemble of random surfaces is 
reliable. Let us first briefly state how our computer simulations have been run: 

The algorithm changes by +_ 1 the number N of vertices. This biased random walk 

is constrained to a finite interval Nmi n < N < Nm~ of length AN = Nm~ x - Nmi n- 
Denote  by Zexp(N ) the frequency of occurrence of surfaces with N vertices in a 
simulation where one has at tempted to update the surface t times. Since the 
algorithm obeys detailed balance, one has 

Zexp ( N )  --zNZN, Nmm <~N<~Nm~ (7a) 

in the limit t ~ ¢~. In actual experiments, for convenience, the importance sampling 
method has been used to generate 

Zexp(N ) - N 3 z N Z N ,  (7b) 

which has the asymptotic behaviour 

Z~xp(N ) _ NV(z/Zc) u (8) 

for N ~ ~ (cf. eq. (2), remembering that N = n + 3). In order to find 7, in Zexp(N ) 
has been fitted with aN + b In N + c; b is then an estimate of 7- Another estimate is 

given by the ratio of moments of  Zexp(N),  with a correction for boundary effects 
(cf. eqs. (10)-(11) of ref. [9]). Each experiment has been repeated several times to 
allow an error estimate. The condition 

(Et) 1/2 >> AN, (9) 

( E  is the acceptance rate of the algorithm) has been satisfied in each of these 
experiments, the left-hand side being larger than the right-hand side by at least a 
factor 20. The concordance, within errors, of the estimates obtained using the two 

methods mentioned above is among the conditions for these estimates to be 
considered reliable*. 

It  is obvious that for finite t there are quite strong correlations between values of 
Zex p observed at two not too distant N ' s .  If  the system is at N = N o at a given 
moment ,  it has a finite probability to stay near N 0 for some time, producing a bump 
in Zex p. It takes a long time before such a bump disappears. We have observed 
pronounced bumps  (or dips) extending over distances as large as 50, although the 
system had enough time to pass many times over the full interval. 

'* Following a suggestion by Koukiou and Petritis we have checked that the method proposed in ref. 
[13] yields estimates very close to those obtained with our techniques. 
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Now, assuming that (8) holds, one faces two related problems: one has to 

disentangle the power and the exponential factors and one has to distinguish physics 
from broad dips and bumps which can mock it. 

We have been choosing z so as to produce an extremum in Zexv(N) within the 

interval (Nmi,, Nma~). The extremum is produced by the competition between the 

linear and the logarithmic term in In Zexp(N ) and its presence helps to disentangle 

these two terms. The extremum in question is usually very broad and can be clearly 

seen, superposed on the noise dips and bumps, when A N is large, say of the order 

of several hundreds. We have checked that one may obtain wrong results when such 

an extremum is absent, in spite of high statistics: In such cases because of 
fluctuations the best fit is achieved with a too small (large) zc, compensated with the 

choice of a too small (large) ~. 

Since zc is a priori unknown, the value of z to work with is determined by trial 
and error, in a series of preliminary runs. Again, finding a suitable z is particularly 

easy when A N is large. Otherwise the fine tuning of z requires much computer time. 

One might think that by choosing a smaller A N one saves time, since the condition 

(9) is sooner satisfied. However, with too small a 4 N  it is difficult to unravel the 

true trend of the data from noise. Consequently, one has to pass over the whole 

interval of N more times to smoothen the data and the would be gain of computer 

time is to large extent lost. 

Following these general remarks, let us consider some specific cases of interest. 

2.2.2. The variation of the effective y with the size of surfaces. At d = 5 and 
a = 2 . 5  (i.e. = ½d) we first worked in the interval (100,500) with z=0.0664,  

obtaining z~ = 0.06649 _+ 0.00003, 7 = 0.27 _+ 0.12 and y = 0.25 _+ 0.15, from the two 
methods of estimating the susceptibility exponent. After t = 4.8 × 108 (E- -57%)  

steps we could observe a nice extremum of Zexp(N): first a rise by about 5% in 
(100,200), then a broad maximum somewhere in (200,300) followed by a steady 

decrease by about 15% in (300,500). In order to check for finite size effects, we 

subsequently ran a simulation in the interval (30,100). With no z could we obtain an 

extremum of Zexp(N ). Setting z = 0.0663 and with t = 2 × 108 we got a remarkably 

flat distribution (within _+ 0.5%). In such a case the second method of estimating ~, 

cannot be used: because of cancellations in the formula for y (eq. (10) of ref. [9]) the 

estimate is too sensitive to the values taken by Zexp(N) at N = Nmi n, Nm~. The best 

fit to the data yields z c = 0.06633 _+ 0.00005 and "y = 0.03 _+ 0.04. The result for z c is 
still in perfect agreement with the strong coupling estimate. However, ~, compatible 

with zero is well outside the interval 0.10 < y < 0.30 quoted in the preceding 

subsection and is also significantly different from the Monte Carlo estimate ex- 
tracted from the simulation in (100, 500). 

We noticed a similar phenomenon at a = 0. Working in the interval (100,500) 
with t = 7 × 108 (E -- 57%) we find zc = 0.24700 +_ 0.00005 and the estimates for the 

susceptibility exponent 7 = 0.13 + 0.05 and 7 = 0.17 _+ 0.04, respectively. In the 
interval (30,100) with t = 2 × l0 s we get z~ = 0.24615 _+ 0.00016, while the estimates 
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for ~, are -- 0.32 _+ 0.05 and - 0.26 _+ 0.03, again significantly lower than in (100,500). 

We interpret  these observations as an evidence for a finite size effect. The variation 

of  the effective ,( with the considered interval of N is not  really surprising. For  the 
solvable case d = 0 one finds that the sub-asymptot ic  terms are negligible for 

N >> 8. For  d >  0 the strong coupling series discussed in subsect. 2.1 already 

indicate that  these sub-asymptot ic  terms are much more  important  than for d = 0. 

The  per t inent  question is whether these terms are negligible for N > 100 when d = 5 

or  10. Unfor tunate ly ,  we cannot  offer a firm answer to this question. There exist 

arguments ,  based on Orstein-Zernicke equations, to the effect that y = 1 as soon as 

y > 0 [2,11,14]. Our  results do not exclude the possibility that the currently 

observed trend of  the Monte  Carlo data persists as N increases, until "1 reaches this 

" m e a n  field" value 1. Let us mention,  however, that  in our microcanonical  

s imulat ions [4-5],  sizeable deviations from the simple scaling law {r 2) - N 2~ have 

also been observed for N < 100. Therefore, the rise of the effective y reported above 

does not  necessarily imply that the asymptotic  regime has not  been reached in the 

interval (100,500). 
2.2.3. The limit of  large a. Another  interesting finite size effect is encountered 

when one tries to explore the limit of large c~ for fixed d. Set d = 5 and let c~ = 25. 

This value of  c~ can be considered "large",  since the typical change of a)2j lnqj  

under  a " f l ip"  of  a link is of order unity. Thus, the price for curving the surface is 

high. 
We first ran an exploratory simulation, working in the interval (30, 100). In  spite 

of  a modes t  statistic t = 7.5 x 10 7 ( E  ~ 27%) we got reliable estimates z c = (9.30 + 

0.02) × 10 -8 and ~,= 1.7 _+0.1, with both methods. Going  over to the interval 

(100,500) and  with t = 6 × 108 we find z c = (9.21 _+ 0.02) x 10 8 and y = 1.00 _+ 0.05 

(the second method  gives ~, = 0.94 _+ 0.1). The difference with the preceding result is 

considerable.  Furthermore,  it is striking that ~, overshoots 17, the upper  bound  for 

generic surfaces [6, 15]. In order to get some insight into the structure of the relevant 

surfaces we extracted from our data  the distribution of  geodesic distances within the 

lattice between all pairs of  surface points, for a sample of  surfaces, using the method 
of  ref. [7]. Not ice  that if r is such a distance, and as long as the finite size of the 
surface is not  felt, then 

P r o b ( r )  - r ~ 1. (10) 

For  a generic surface 6 >/2, while for a long tube 6 = 1. We display Prob(r )  in fig. 4 
for two typical  surfaces with N = 190, one taken from a simulation at c~ = 0 and the 

o ther  f rom an experiment at a = 25. At c~ = 0 the distribution first rises fast with r, 

but  on  the whole is concentrated at small values of r. This is not  a surprise, one is 

close to the phase of "c rumpled"  surfaces, where some points have large negative 

curvature  and  geodesic distances between points are small. This Prob( r )  does not  
significantly broaden  when N is increased to 400, or so. On the contrary,  at a = 25, 
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Fig. 4. The frequency of occurrence of different geodesic distances r between pa i r s  of lattice po in t s  for 
typica l  s amp le  la t t ices  wi th  N ~ 190 for  d = 5, a = 0 a n d  25. 

P r o b ( r )  has a noticeable (almost) flat part, indicating an elongated, cigar-like shape. 
The  large r fall of  the distribution reflects the finite size of the surface. The dip at 

small r shows that at small scales the overall cigar shape is not felt. The distribution 

b roadens  when N is increased. 
Now,  for a long tube, flat everywhere except at the end (see e.g. fig. 7 in ref. [8]), 

the par t i t ion funct ion Z u can be calculated analytically, for large N, and one finds 
y = 3. It  is easy to convince oneself that the argument  leading to the bound  ~, ~< {_ 

does not  go through for such a surface. Our data at c~ = 25 indicate that (roughly) 
c igar-shaped surfaces contribute significantly to the partit ion function. Notice, 

however,  that  the tubes would presumably branch if N were increased enough, so 

that  the surface would take the shape of a branched polymer  with y = ~. Letting e~ 

to be large, but  finite, merely reduces the branching probability. The result of our 

s imulat ion seems entirely controlled by a finite size effect: the branching had no 

oppor tun i ty  to develop yet. 
2.2.4. S l o w  convergence  at ~ = 0. While discussing the strong coupling results, we 

have pointed  out  the importance of the "dr i f t"  phenomenon  for c~ = 0. It appears 

that  the dynamics  responsible for this absence of manifest  convergence of our 
s t rong-coupl ing estimates is also felt in the Monte Carlo simulations. Hence at 
d = 10 (c~ = 0) our experiments yield results for y roughly grouped near two values, 

viz. ~-0 and =-0.4, with an indication for a correlation between successive experi- 
ments  (thus the correlation extends over At - 108). With overall statistics of  t = 1 0  9 

( E  ~ 48%) we get the following results, which appear stable: z c = 0.5421 ± 0.0001 as 

well as y = 0.20 4- 0.06 and y = 0.19 4- 0.07 with the two methods, respectively. The 



F. David et aL / Random surfaces 227 

error estimates are obtained from 7 experiments with t = 1.5 × 10 8 each. However, 

in view of the observed correlations the above error estimates are likely to be too 
optimistic. Grouping the results of measurements further in the standard fashion 
indicates that realistic errors might be twice larger. The results at d = 5 and c~ = 0, 
mentioned earlier, also indicate rather slow convergence. We interpret this slow 
convergence observing that with these values of the model parameters one is 

entering the phase of "crumpled" surfaces. Apparently, when there appears a vertex 
with very large negative curvature it is difficult to get rid of it. 

3. The mass-gap exponent 

Although this paper does not present any new Monte Carlo estimate for the 
mass-gap exponent v, we shall briefly discuss results of series analysis for v. Indeed, 
in ref. [1] preliminary estimates for v from strong coupling series have been 
presented, but  these estimates were rather poor, since based on the assumption that 
v is independent of the measure parameter a. Subsequent Monte Carlo simulations 
have shown that v does in fact strongly depend on a [4-8]* and we believe it is 
interesting to present a more elaborate study of strong coupling results, to be 
compared  with the data of refs. [4, 5]. 

For  a given N, the average gyration radius can be written 

<r2)?v =~2 1F-,W(T)f'I-I[(q/~r)"Mx, lexp{- Z (x,-xm) 2} 
T .! <l, m) 

× E qkqm(xk - x, , )  2. (11) 
k,m 

The normalization factor ~2 is 

~2 = 9N~Z u , (12) 

where Z N is the partition function for the fixed N. 
We have analysed the strong coupling series for the gyration radius ( r  2) up to 24 

triangles by the technique explained in subsect. 2.1. The estimates of v are presented 
in fig. 5, for various values of ~ and for d = 10. The exponent v depends indeed on 
a: it is fairly small for negative c~ (this corresponds to a very large fractal dimension 
since v = 1/dF, as already mentioned) and approaches the "mean  field" value 1 for 
not too small positive ~ (corresponding to fractal dimension 4 of branched 
polymers). In the same figure we have plotted the results of the Monte Carlo 
simulations of ref. [4] at d = 10 and of ref. [5] at d = 12 (the dependence of v on d 

* Actually, such a dependence was already suggested by the results of ref. [1], but  has not been studied 
thoroughly there. 
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Fig. 5. The mass-gap exponent v versus a(d= 10): a comparison between strong coupling and Monte 
Carlo results. 

is in fact weak near d =  10). The agreement between Monte Carlo and series 
estimates is quite good and seems to favour a smooth dependence of v on ~. At this 
point  one should remark that a similar strong coupling analysis for d = - 2  and 

= 0 yields v larger than zero (v = 0.10 _+ 0.01) while it has been recently proven by 
Kostov and Mehta [16] that for the surfaces considered here (no " tadpoles"  and 
"self-energies" in the dual lattice) the exact value is v = 0. Notice, however, that the 
ratio method is not really suitable for studying a logarithmic behaviour and that in a 
Monte  Carlo simulation it is obviously difficult to distinguish log N from N 2~ when 
v is very small, since one necessarily explores a finite interval of N. Thus, when a 
small value of v is observed, say < 0.1, it may mean that v is actually zero. 

In order to get further ideas about the dynamics of the crossover mentioned 
above, we have performed a microcanonical ensemble simulation at d = 10, varying 
a by small steps, from a = - 4 0  to a = 40. The average scalar curvature squared 
{R 2) has been calculated for N a ranging from 50 to 1000. This quantity depends 
weakly on a below a = - 1 0 ,  where {R 2) ~ 1.5, and above a = 20, where {R 2) is 

very small. Between these two regimes {R 2) falls rapidly, but with no evidence for 

finite size effects. A similar analysis with analogous conclusions has been performed 

for {log q) .  
1 For  completeness we display in fig. 6 the variation of v versus d (for a = 7d), 

which is also fairly smooth. 

4. Discussion and summary 

The sample results given in the preceding sections indicate a very satisfactory 
agreement between estimates obtained from strong coupling series and from Monte 
Carlo simulations, respectively. However, we have emphasised that the quality of 
these estimates is sensitive to the values taken by the parameters of the model. We 
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Fig. 6. The mass-gap  exponent  ~, versus d(a = 12d): a comparison between strong-coupling and Monte 
Carlo results. 

have given on purpose many technical details concerning the methods used to get 
these estimates. Thus, the reader can judge by himself the significance of these (and 
other) results. Our data indicate that in order to get from Monte Carlo simulations 
serious estimates of critical exponents, hopefully insensitive to finite size effects, one 

should consider surfaces at least as large as these studied by us here (number of 
triangles N A > 200). This has already been noticed in refs. [4-5], in the context of 
microcanonical  simulations designed to determine the mass-gap exponent, and is 

further confirmed by the results obtained here for the susceptibility exponent. 
Concerning physics, we clearly see the transitions between different regimes, 

whose existence has been suggested in the literature, using analytic arguments [6, 8] 
holding for Hal, ]d] ~ oo and also on the basis of numerical data. Thus, keeping d 
fixed (not too small) and varying a we observe the transition between "crumpled" 
surfaces (in the sense of ref. [8]) and branched polymers. On the other hand, 
changing d and a along the line d = ½a the transition between Liouville surfaces 
and branched polymers is seen. When the variation of the mass-gap exponent is 
studied these transitions appear quite smooth. In spite of some effort in this 
direction, we have found no evidence that this observed smoothness is merely a 
finite size effect. The susceptibility exponent also varies smoothly in our data for 
a = 0. However, as remarked in ref. [9], the transition from the regime with 7 < 0 to 
the one where the "mean  field" value 7 = ~ is reached, appears relatively rapid 

1 when a = 7d. 

Only one class of models has been studied so far. However, the tools created for 
this purpose can easily be adapted to other models, possibly with more sophisticated 
actions. There is much work in perspective! 
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