
Volume 168B, number  3 PHYSICS LETTERS 6 March 1986 

M I C R O C A N O N I C A L  S I M U L A T I O N S  
OF RANDOMLY TRIANGULATED PLANAR R A N D O M  SURFACES 

A. BILLOIRE 1 and F. DAVID 2 

Service de Physique Thborique, CEA-Saclay, F-91191 Gif -sur- Yvette Cedex, France 

Received 6 December 1985 

Results of Monte Carlo simulations of a model of random surfaces based on planar random triangulations with gaussian 
embedding in d-dimensional euclidean space are presented for various positive and negative values of d. The fractal dimension 
(Hausdorff  dimension of the embedding) is large and decreases slightly with d. The spreading dimension (intrinsic Hausdorff  
dimension of the random lattice) is greater than two and increases with d. Flat regular lattices dominate at large negative d 
and very irregular ones for large positive d. There is a significant linear correlation between the effective action and the discrete 
Liouville action. 

A possible and interesting approach to the construc- 
tion of a continuum theory of random surfaces is to 
start from a discrete formulation of the problem 
which involves random triangulations [1-7]  (for a 
general review of random surfaces theory see e.g. refs. 
[2,7]). The partition function is defined by a sum 
over all triangulations T of the sphere $2 (i.e. two-di- 
mensional simplicial complex with genus g = 0) ,1 as 

1 1-I z -- 22T exp t- (T)l dd(Xv/V" ) 

× exp(-k/=(v,w) 22 ( X v -  Xw) 2) ~d(Xvo). (1) 

C(T) is the order of the symmetry group of T [5,6] 
and enters for combinatoric reasons. I TI =Nt(T) is 
the number of  triangles of T. The integral in (1) runs 
over the positions Xv in d-dimensional euclidean space 
of the Nv(T) vertices of T (except one vertex v0 in or- 
der to eliminate the translation zero modes). The gaus- 
sian form of the action for the X's corresponds to 
"freeze" an intrinsic metric on the lattice T such that 
the intrinsic length of the links is constant. Let us note 
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that, with the choice of measure for the Xv's in (1), 
the integration over the X's gives an effective action 

Serf(T) = ld  Log (Det'(-A(2))/I T I}, (2) 

where A (2) is the discrete laplacian acting on antisym- 
metric tensors (i.e. 2-forms) on T (and is an N t × Nt 
matrix) [8] and where Det' means the product of the 
Nt - 1 non-zero eigenvalues of A (2). 

Another possible choice of  measure in (1) for the 
X's is [5] 

I-I d d [ X v ~  ] , (3) 
v 

where the coordination number Cv(T) is the number 
of triangles of T which meet at the vertex v. This 
choice corresponds to replace in the effective action 
(2) A (2) by A(0), the discrete laplacian acting on scalar 
functions (i.e. 0-forms) on the random lattice T. (A(0) 
is an Nv × Nv matrix.) In the classical continuum limit 
these two actions are equivalent. 

In this paper we shall present some results of  
Monte Carlo simulations performed on this model. 
Our restrictions will be the foUowing. We consider 
planar triangulations (with genus 0) and with a fixed 
number of triangles. Moreover we exclude singular 
configurations where two vertices are joined by more 
than one link, or where the two extremities of a link 
are the same vertex. 
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The principle of the updating of the configurations 
is the one first proposed in ref. [6]. We change the 
triangulation by taking a link at random and by pro- 
posing the flip of this link if it does not lead to any 
forbidden triangulation. The proposed flip is accepted 
or rejected according to the Metropolis algorithm. 
Such a process can be shown to be ergodic (all con- 
figurations are reached) and to respect balance [the 
counting factor 1/C(T) in (1) is automatically ob- 
tained]. 

In order to update the positions Xv of the vertices 
v we have used two methods. 

Method L The first one consists in performing sepa- 
rate Monte Carlo for the positions Xv. As in ref. [6] 
we have used the heat bath algorithm to update the 
positions of the vertices. Each flip is then performed 
at fixed vertex positions and the flip accepted or re- 
jected according to the change in the total action by 
the standard Metropolis procedure. 

Method IL The second one consists in computing 
directly the change in the effective action (2) during 
a flip and then to accept or reject the flip according to 
the Metropolis algorithm. For the size of the surfaces 
that we have considered, the most efficient procedure 
is the Scalapino-Sugar method which consists in stor- 
ing the full propagator (i.e. the inverse of the connec- 
tion matrix) and in computing exactly the change in 
the propagator and in the effective action at each flip. 
This procedure requires ~Nv 2 operations at each flip. 
We have also tried to compute the propagator by staffs- 
tical methods (by using "pseudo-fermions" variables) 
and by iterative methods (conjugate gradient methods) 
but these methods are in fact much slower and less 
efficient in practice. One potential advantage of meth- 
od II over method I is that the dimension d can be 
easily taken to be negative which is useful to compare 
this model to the Liouville string theory [9] in its 
weak coupling regime. 

Let us now explain which observables have been 
considered. We have measured the square curvature 
density 

R 2 = N t  1 ~ ( C  v - 6)2/Cv, (4) 
v 

the effective action density (2) 

Peff = - N t -  I (2/d) S e r  f 

= - N t  1 Log[Det'(-A(2))/Nt] , (5) 

and the discrete version of the Liouville action density 
[8] 

1 ~ ~ R v ( _ A ( 0 )  + _  , -1 PLiouv = Nt - e 0 ) w g w ,  (6) 
v W 

where Rv = (6 - Cv ) /V ~v  is the curvature density, 
--A (0) the scalar laplacian and P0 the projector onto 
the zero mode of A (°). These quantities have been 
chosen in order to study the connection of the model 
with the continuum Liouville theory, and the effect of 
the discretization on the conformal anomaly. In order 
to study the scaring properties of  the surface we have 
considered two observables: The mean square extent 
of the surface, 

) 
= Art 1 Tr [ ( -A  0 + P0)-1 _ P0] , (7) 

whose scaring behaviour gives the fractal dimension d F 
of the surface (i.e. the Hausdorff dimension of the em- 
bedding of the surface in bulk space) by 

<X 2) ~ N t  2/dF , N t --~ ~ ,  (8) 

and the average intrinsic distance 6 on the lattice T be- 
tween two vertices 6vw (det'med as the minimal num- 
ber of links joining v to w on T). Its scaling behaviour 
defines the so called spreading dimension (or topologi- 
cal dimension) ds [10] (i.e. the intrinsic Hausdorff di- 
mension of the lattice T) by 

(6) ~NIt/ds , N t ~ ~ .  (9) 

The distance 6vw has been extracted from the large 
mass limit of the propagator ( - A  + M2) -1 by the for- 
mula 

6vw = -  lim [M2(d/dM2)ln(-A(O)+M2)~,~v +1] ,(10) 
M2--.~,~ 

which follows from the random-walk expansion of the 
propagator. The measure of(6),  (7) and (9) is there- 
fore obtained by computing matrix elements of propa- 
gators on the random lattice T. 

Our numerical simulations have been performed 
for values of  the bulk dimension d = 0, 12, - 1 2  and 
-96 .  For d = 12 we have used method I (Monte Carlo 
on the position) and for d < 0 we have used method II 
(Scalapino-Sugar). To initialize the system we started 
from a typical d = 0 configuration and have made 103 
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sweeps o f  the lattice at the final d for equilibrium be- 
fore starting measurements ,2. During one sweep we 
tried to flip N~ links (where N~ is the total  number of  
links of  the lattice) and in method I the positions of  
Nv vertices ( randomly chosen) are updated after each 
flipping sweep. The maximal number of  vertices of  the 
surfaces is 128 f o r d  = - 9 6 , 2 5 6  f o r d  = - 1 2  and 512 
for d = 0 and 12 (Nt = 2Nv - 4). During the measure- 
ment runs at d = 0 and d = - 1 2  we have made 5 × 103 
iterations and made a measurement each 10 iterations. 
F o r d  = +12 those numbers are 5 X 104 and 102 and 
for d = - 9 6  2 × 103 and 10 respectively. The statistics 
has been checked systematically using the binning meth- 
od. We found that  the correlations between successive 
configurations increase strongly with d and Nv. This is 
why we have performed more sweeps between each 
measurement at d = 12 than at d = 0. 

,2 For d = -96 we made an "adiabatic" equilibrium by chang- 
ing linearly d from 0 to -96 during the equilibrium period. 

During measurement,  the quantifies (6), (7), (10) (in- 
cluding (X 2) at d = 12) are obtained from an exact 
calculation o f  the propagators via an inversion algo- 
rithm. Finally let us stress that all simulations have 
been made with the effective action (2), which corre- 
sponds to the fiat measure for the X ' s  in (1). 

In figs. 1 and 2 we present scatter plots of  Peff ver- 
sus PLiouv and o f#e f t  versus R 2, respectively, for sam- 
ples o f  200 surfaces with Nv = 128 vertices obtained 
for d = - 9 6 ,  d = - 1 2 ,  d = 0, d = 12 and for "tree-like" 
surfaces (T) obtained by a growing process by gluing a 
tetrahedron at random on a face of  the surface (this is 
expected to be the most irregular surface). We observe 
a very strong linear correlation between Peff, PLiouv 
and R 2 (which persists for larger surfaces). 

The observed correlation between Pelf and #Liouv 
is a priori very encouraging, since in the cont inuum we 
expect such a linear relation from the conformal 
anomaly [9]. However, the slope obtained from fig. 1 
is smaller by a factor of  0.7 to the exact factor 1/481r 
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Fig. 1. Scatter plot of the effective action versus the Liouvilie 
action for d = -96,  -12, 0 and 12 and for "tree-like" sur- 
faces (T). 
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Fig. 2. Scatter plot of the effective action versus the curva- 
ture squared for the same configurations. 
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[9]. Moreover, the correlation between Pelf and R 2 
indicates that Pelf and PLiouv may depend strongly on 
the local structure of  the surface, and therefore on the 
"high-energy" modes of  the laplacian A (2) (i.e. of  the 
modes with large eigenvalues). On the contrary, the 
form of the conformal anomaly obtained in ref. [9] 
relies on an effective action calculation where the high- 
energy modes of  the continuum laplacian have been 
integrated out and therefore rely on the contribution 
of  the low-energy modes o f  A. This point of  view 
seems to be corroborated by preliminary studies of  
the spectrum of  the discrete laplacian on random sur- 
faces [11 ]. 

In any way, from fig. 2 we see that the curvature- 
squared increases strongly with d and that it is very 
small for large negative d. The cross in figs. 1 and 2 
corresponds to a fiat torus with the same number of  
triangles. Arguments were given in ref. [6] that the 
fiat regular lattice is a local minimum of  the effective 
action (2). Our data dearly show that fiat surfaces 
(at least at the scale that we are probing) are absolute 
minima for this action and dominate at d = - ~ .  

Fig. 3 presents a Log -L og  plot of  (X 2) versus Nv 
and fig. 4 a similar plot for (5), which give estimates 
of  the fractal dimension dF and of  the spreading di- 
mension ds of  the surface. There is reasonable evi- 
dence that we have reached the scaling region for 
N v/> 64 in the cases d = - 1 2 ,  0, 12, where the plot is 
linear, indicating the validity of  the scaling laws (8) 
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Fig. 3. Log-Log plot of the mean square extent (X 2) versus 
the number of vertices N v for d = -96, -12, 0, 12. 
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Fig. 4. Log-Log plot of the mean intrinsic distance (6) versus 
the number of vertices N v for d = -96, -12, 0, 12. 

and (1(3). The corresponding estimates for dF and ds 
are reported in table 1. 

We observe that dF and d s depend rather smoothly 
on d. The fractal dimension decreases slightly as d in- 
creases, and is large. The estimate for d = 0 is consis- 
tent with the estimate of  ref. [5] coming from strong 
coupling series, and close to the estimate of  ref. [6] at 
d = 3. The spreading dimension is clearly greater than 
2, and increases with d. 

For d = - 9 6  the scaling region has not yet been 
reached ,3 and we cannot give precise estimates for 
dF and d s. However, it seems plausible that d F > 13 
and that 2.0 < ds < 2.5. This is consistent with the 
conjecture that fiat regular lattices dominate at d = 
- ~ ,  which gives dF = oo, ds = 2. 

Runs at d = 48 have been made to see which con- 
figurations dominate for very large d. However, one 

,3 Since typical surfaces are very flat, long-range fluctuations 
are essential. 

Table 1 
Estimates for d F and d s for d -- -12, 0, 12. 

d dF ds 

-12 12.5 (3) 2.55 (5) 
0 9.9(4) 2.8(1) 

12 9.7 (5) 3.2 (2) 
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seems to get t rapped very easily into metastable states 
and no definite conclusion has yet  been reached. Let 
us only mention that  the configurations which are 
generated seem close to "tree-l ike" surfaces made by  
gluing at random tetrahedra on their faces. For  such 
surfaces one expects dF = oo and ds = oo. In any way 
there is no evidence at that stage that  for large positive 
d branched polymer  configurations (for which dF = 4 
and ds = 2) dominate.  

Finally, let us mention that  a recent numerical 
simulation with the altemative measure (3) (i.e. with 
the discrete scalar laplacian) gives for positive bulk 
dimensions d very different estimates for the fractal 
dimension dF [12]. We have performed some pre- 
liminary runs which confirm that indeed dF and d s 
seem to depend strongly on the form of  the action 
[ 11 ]. I t  is very important  to understand i f  universality 
is really violated in those models and which phenome- 
non is responsible for this violation. Another  point  
would be to perform grand-canonical simulations, 
where the number of  triangles of  the random lattice is 
allowed to vary, in order for instance to measure the 
exponent  3' of  the susceptibility of  the model. Algo- 
rithms may be constructed for such simulations [13] 
and we hope to present some results in the future. 

The simulations were performed using the CRAY 
X MP at Saclay. We are very grateful to J. Jurkiewicz, 
A. Krzywicki and B. Petersson for interesting discus- 

sions and for communicating to us the results of  their 
simulations prior to publication. One of  us (F.D.) 
thanks also H. Hermann and J.M. Luck for useful dis- 
cussions. 
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