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A model of planar random surface in d-dimensional space is studied in the special case d = - 2 .  Using Parisi-Sourlas 
dimensional reduction, this model may be mapped onto a zero-dimensional supersymmetric planar field theory, or equivalently 
onto a planar stochastic equation. Previous results by Kazakov, Kostov and Migdal are rederived and some new results are 
obtained. In particular the critical behaviour for open surfaces is the same for d = - 2 as for d = 0. 

Random surfaces are expected to play a role in 
many areas of  field theory and they have been actively 
studied during the last years. Many different discrete 
models of  random surfaces have been proposed. 
Among them, models based on randomly triangulated 
planar surfaces seem particularly interesting [ 1 - 7 ] .  
They are related by duality to some planar ~3 field 
theories [ 5 - 8 ] ,  and exact and numerical results indi- 
cate a non trivial critical behaviour. For  d = 0 (where 
d is the dimension of  the euclidian space in which the 
surface is embedded)  the problem of  computing the 
part i t ion function may be reduced to counting prob- 
lems of  Feynman diagrams in the planar ¢3 theory,  
and it may be solved by combinatoric [9] as well as 
functional [10] methods.  

Recently,  Kazakov, Kostov and Migdal have suc- 
ceeded in computing the part i t ion function for a closed 
surface in d = - 2  dimensions [6]. Their method is in 
essence combinatoric,  since they reduce this problem 
to counting problems of  (maximal) connected trees 
on planar triangulations. The purpose of  this letter is 
to show that  it  is possible to rederive their results by 
functional methods.  As we shall see, the model  of  
random triangulation in d = - 2  may be simply re- 
duced, by the so-called "dimensional reduction" trick 
[ 11], to a supersymmetric planar field theory in d = 0, 
or equivalently to a "planar spin" in a random external 
field. This zero-dimensional effective theory may eas- 
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fly be solved by the methods developed in ref. [10]. 
Besides providing a check of  the result of  ref. [6], 

our method allows to obtain other quantities, such as 
the part i t ion functions for open surfaces with free 
boundary,  and for triangulations without  " tadpoles 
and self-energy insertions"* 1, which should be much 
more difficult to obtain by the combinatoric argu- 
ments of  ref. [6]. The consequences of  those results 
will be discussed at the end of  this paper. 

For  a closed planar surface, the part i t ion function 
of the model  is 

N v -  1 

F( )-- expC- lTI)C- T)f l-I d Xi 
i = 1 lid~ 2 

X e x p ( -  ~ ( X i - X ] ) 2 ) .  (1) 
t-- (i,D 

In (1) the sum runs over all triangulations T with the 
topology of  the sphere S 2. C(T)  is a combinatoric fac- 
tor [5,6]. The integral runs over the posit ion X i of 
the N v -  1 first vertices i of  T.*:.  The posit ion of  the 
last one, XNv, is fixed to be zero. The gaussian action 
in the exponential  is the sum over the links l = (i ,])  
of  T of  the square of  the link length. The "intrinsic 
area" I T I is simply the number of  triangles in T. 13 is 
the coupling constant. 

*1 In the dual language. 
*2 Let us note that the measure for X i in (1) is slightly differ- 

ent from the one used in ref. [5]. 
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As shown in refs. [5,6], this model is equivalent, 
for any d, to the planar Cd 3 theory defined by the 
action: 

x =Nfdax Tr[½ ¢(x) (e-a~b)(x)+} e-t~ 43(x)1, (2) 

where 4 is an N × N hermitian matrix (4 = 4+), in the 
planar l i m i tN~  ,,o. F(/3) is the vacuum energy of this 
model and we have: 

aF(13)/a[3 = lira ( e -# /3N) (Tr  43)d , (3) 

Moreover, since the propagator is gaussian in (2), the 
contribution 1 G of a Feynman graph G in (3) was 
shown in refs. [5,6] to be simply 

IG = (riG)-d/2, n G = number of trees in G. (4) 

Let us now consider the stochastic equation: 

dV(4)/d4 = h, 

1 V(¢) = Tr(½ ¢2 +.~ e-~03), (5) 

where ¢ denotes an N X N hermitian matrix and where 
h is an N X N hermitian random matrix with gaussian 
probability distribution such that 

hab hod = 6ad6bc. (6) 

(This corresponds to the probability distribution dP(h) 
= dh exp ( - T r  h2/2)). In the following the bar denotes 
the average with respect to h. Given any function F(4), 
and provided that the stochastic equation (5) has a 
unique solution for any h, dimensional reduction states 
that: 

Jw(4) = (F(q~(x0)))- 2 (7) 

where ( )_ 2 denotes the expectation value in the -2-  
dimensional theory defined by the action (2). 

The proof of(7)  is completely standard and may 
be obtained by the general perturbative argument of 
ref. [ 12]. First we expand F(¢ h) in the coupling con- 
stant e-0,  i.e. in 43 tree diagrams with a h field at the 
end of any open line. The effect of the average over h 
is, by Wick tehorem, to close the trees T and recon- 
struct the diagrams of a ~b 3 theory. The contribution 
of some G is simply the sum of trees which can be con- 
structed in G and from (4) may be identified to the 
contribution of G to (F(q 0) in - 2  dimensions. Let us 
note that dimensional reduction holds in general on- 

ly with the ordinary propagator (A + m2) - l .  It is on- 
ly in zero dimensions that this argument may be ap- 
plied to any kind of propagator, in particular the 
gaussian one of (2). 

Representing F(Ckh) as 

F(d~h) = f d4 F((J)6(OV/~dp- h)la2g/o¢O¢l, (8) 

and integrating over h we have thus reduced the cal- 
culation of any local observable (F(¢))_ 2 in d = - 2  
with the action (2) to the calculation of(F(¢))  0 in 
the zero-dimensional effective theory given by the 
action 

exp [-Seff(¢)] 102V/0¢041 = exp [ -  7N Tr(i) V/aqS) 2 ]. 

(9) 
Representing the determinant I V"(¢)I in (9) as an in- 
tegral over grassmannian variables we obtain the super- 
symmetric effective action of Parisi and Sourlas [ 11 ] 
for this problem. 

In particular from (3) the calculation of the parti- 
tion function F(/3) for d = - 2  is reduced to the calcu- 
lation o f (N -1 Tr ~b3) 0 with the effective action (9) 
in the planar limit N + oo. 

This limit may be obtained by the method of ref. 
[ 10]. Diagonalizing 4 and integrating over the U(N) 
"radial" degrees of freedom we are left with the aver- 
age over the eigenvalues X 1 < ... < kN o f t  with the 
probability distribution: (we denote Z = e -a)  

N 

dP(Xi)= i~I__ 1= dk i t<[-I. .1~--~12(i,/.)]-I l1 +Z(~  + k])l 

X e x p ( - N / ~ ( ~ + Z X 2 ) 2 ) .  (10) 

In the l im i tN ~  oo this measure is dominated by a 
saddle point. As in ref. [10] we introduce the density 
of eigenvalues o(X) normalized by 

fd X  v(k) = 2. (11) 

The saddle point is given by the equation 

(1 +2zx) Ca+zx 2) 

.¢ dg v(/~) (1/(k - / a )  + 1/[llZ + (k+/a)l } = 0. 

(12) 
It is convenient to perform the change of variable 
x = k + 1/2Z. The solution of(12) is found to have 
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compact support and is given by 

vCA) = (2Z2/~r)x [(b 2 - x  2) (x 2 - a2)] 1/Z 

if a <~x <~ b 

= 0 otherwise 

with 

b = ( l [4Z  2 + 2/Z) 1/2, 

(13a) 

a = (1/4Z 2 - 2[Z) 1/2 , 

x = k+ 1/2Z. (13b) 

From the following arguments we have 

lira l(Tr¢3)0=lfdk~3o(~ ), (14) 
N ---~ ~ 

and using (3) and (13) the explicit calculation gives 

s 4k+6 F(~) 2 
F([3) = ~ Z 2(k+l) 

k =0 F ( -  "} - 2k) l"(k + 3) F(k + 4)" 

(15) 
_ 1  From (15), F has a singularity at Z c --~ and the sin- 

gular part of F behaves as (Z - Zc)3 Ln IZ - Z e [, which 
confirms the results of  ref. [6] for the value of  the 
critical point and of  the critical exponent 3' = - 1 .  For 
Z > Z c ,  a 2 given by (13b) becomes negative and o(k) 
is no more real and positive. It  is interesting to note 
that in the effective zero-dimensional theory, this 
phenomenon simply reflects the fact that the deter- 
minant I V"(¢)I is no more positive, which means that 
the stochastic equation (5) has more than one solution 
and the supersymmetry of  the effective theory is 
spoiled [11]. 

This method may easily be applied to compute the 
partition function of  an open planar surface with the 
topology of  a disc. Let F(P, [3) be defined by (1) but 
now the sum is made over planar triangulations with 
a boundary with fixed number of  edgesP. In (1) the 
position of  the boundary is free so we may view this 
case as a discretization of  an euclidian free open 
string. From the duality of  refs. [ 5 - 7 ] ,  it is easy to 
see that f o r d  = 2, 

F(P, [3) = lim l (Tr(--¢)P)d=_2 = 1 f dk k P o(k). 

(16) 

As done in ref. [3] for d = 0, we shall look at the be- 

haviour of  the mean area of  a surface 

A(P, [3) = - 0 In F(P, [3)/013, (17) 

close to the critical point. The calculations are straight- 
forward and we get the following results: for fLxedP 
the mean area remains finite at [3c, since 3' = - 1  is 
negative. When the length of  the boundary P goes to 
infinity, the mean area diverges in the same way as in 
the case d = 0 [3] : 

A(P,[3)~C([3).P, if [3 > [3e, 

A(P,[3)~P 2, if [3=[3c" (18) 

The coefficient C([3) in (18) diverges at [3e like 

C([3) "" ([3 - [3c) -1/2 , (19) 

and it is possible to define a continuum limit by intro- 
ducing an elementary length a and defining renormal- 
ized quantities as 

A R =a2A,  L R =aP, [3(a) =[3c + a 2 k R  • (20) 

In the "continuum limit" (a ~ 0 ;L  R and ~k R fixed), 
A R is of  the form 

A R (LR, kR) = (1/XR) qJ (L R ~ R ) -  (21) 

The explicit form of the function ~b in (20) differs 
from the case d = 0 [3] but qJ has a similar asymptotic 
behaviour: 

~(Z)  ~ Z  2 , Z - ~ 0 ,  

~(z) ~ z ,  z-~ ~. (22) 

As argued in ref. [3], an appealing interpretation of  
such a result is that we generate a space with a negative 
average curvature R proportional to - k R. It is re- 
markable that this critical behaviour is the same in the 
two solvable casesd = 0 andd  = - 2 .  

Finally our functional derivation allows easily to 
deal with triangulations without closed loops of  length 
1 or 2 (i.e. made of  only one or two different links). 
Let us first consider the case of  triangulations without 
1 loops. In the dual ¢3 theory this corresponds to 
eliminate ¢3 diagrams with tadpoles (see fig. 1). Since 
the restriction of  a connected tree T to a tadpole S, 
T/S, is a tree in S, contribution of  tadpoles may be 
cancelled in the zero-dimensional stochastic equation 
(5) by adding a counterterm of the form X Tr(¢) to 
V(¢) and by adjusting X(Z)  such that 
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Fig. 1. The contribution of a tadpole graph to the stochastic 
equation. The cross denotes a contraction of h. 

Wr(~ h) = 0. (23) 

In order to suppress triangulations with 1 and 2 loops, 
we have to cancel the contr ibution of  tadpoles and 
self-energy insertions. This may be done f o r d  = - 2  
in the following way. The restriction of  a connected 
tree T to a self-energy insertion S may be either a con- 
nected tree in S, or a tree with two connected compo- 
nents in S. In the first case we may cancel this term 

• • 1 by a mass renormallzatlon ~ Y Tr(~b 2) in V(¢). For  
the second case one has to renormalize the variance 

of  the gaussian random field h t o N  -1  Tr(h h) = 1 +Z 
(see fig. 2). The cancellation o f  tadpoles and self- 
energy is obtained by tuning the counterterms X, Y 
and Z in such a way that 

Tr(¢h) = 0, Tr(~b 2) = N ,  Tr(adph/Oh ) =N. (24) 

In those two cases the value o f - F ' ( / 3 )  is now given 
by the solution of  an implicit  transcendental equation 
and we have not  been able to obtain on explicit  expres- 
sion like in (15). However one can obtain an explicit  
expression for the critical points Z c = exp(- /3c)  (in 
the following the subscripts 1, 1 and 2 denote the 
general case, the case with no 1 loops and the case 
with no 1 and 2 loops respectively) 

z ( O )  _ t - ~  = 0.125, 

Z(1) = (i~s lr) 2 = 0.13554 . . . .  

Z (2) = (128~/ '2/105,)  [ 1 - 2048 / (15 , )  2 ] 1/2 = 0.15302 . . . .  

(25) 

(a) (b} 

Fig. 2. The two possible contributions of a self-energy graph. 
Term (a) corresponds to a mass renonnalization and term (b) 
to a renormalization of the variance ofh. 

In all cases the value of  the critical exponent  7 is 
7 = - 1 .  From those results it is possible to extract the 
behaviour of  the mean number of  trees (n T) for closed 
planar triangulations with fixed area [T] .3. From (4) 
this is the ratio between the term order o f ( e - # ) l T I  
in the series (1) for d = - 2  and d = 0. Therefore (n T) 
has an exponential  growth for large [TI: 

( n T ) ~ C  ITI, with C=Zc(d=O) /Zc(d=-2  ). (26) 

In the cases 0, 1 and 2, we obtain respectively for C 
(using (25) and the results of  ref. [10] f o r d  = 0): 

C (°) = 1.754 . . . .  C (1) = 2.008 . . . .  C (2) = 2.122 . . . .  

(27) 

This shows that  the number of  trees grows faster with 
the area for more regular triangulations (case (2)) than 
for more irregular ones (case (0)). This result corrobo- 
rates the conjecture, made in refs. [6,13], that for large 
negative dimension d regular triangulations will domi- 
nate the part i t ion function, 
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,3 This was suggested to us by J. Ambj~rn and B. Dorhuus. 
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