
Nuclear Physics B257 [FS14] (1985) 695-728 
O North-Holland Publishing Company 

A S T U D Y  OF (~b2) 3 AT N = o o  

Frangois DAVID 

Service de Physique Th6orique, CEN-Saclay, 91191 Gif-sur- Yvette Cedex, France 

David A. KESSLER and Herbert NEUBERGER 

Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854, USA 

Received 1 March 1985 

A study of  various types of critical behavior and continuum limits of (~2)33 at N = o 0  is 
presented with special emphasis on the BMB phenomenon. An estimate for the lowest value of N 
for which the BMB phenomenon could still occur is obtained. It is also conjectured that even for 
all finite N the BMB phenomenon does not survive. 

I. Introduction 

It is important to be able to tell how many free parameters a field theory of a 
given type might possess without losing its predictive power. The question whether 
dimensionless couplings in the bare lagrangian correspond to freely adjustable 
parameters in the continuum limit cannot, strictly speaking, be answered within 
perturbation theory if the couplings happen not to be asymptotically free. A variety 
of  considerations indicate [1, 2] that ~b 4, for example, becomes a free field theory 
if one insists on removing the ultraviolet cutoff completely. It was recently conjec- 
tured that (t~ 2) 3 3 does have the general structure required for a 3-parameter continuum 

limit to exist [3, 4]. 
In order to clarify what the conjecture says it is useful to briefly review the general 

features that a globally O ( N )  symmetric field theory in 3 euclidean dimensions is 
commonly expected to possess [1]: it is assumed that a renormalization group (RG) 
transformation can be defined which effectively averages out the high-momentum 
components of  the fields yielding a new local effective action. In the space of  all 
possible actions one then finds a hierarchy of  fixed points, each located on the 
boundary of  the domain of attraction of  its predecessor. In the symmetric phase, 
generically, the mass is finite and hence increases under the action of  the RG 
transformation. Therefore, the most stable fixed point (TFP) corresponds to de- 
coupled fluctuations. The boundary of the domain of attraction of the TFP is the 
one-dimension-less manifold of interactions on which the mass vanishes (the theory 
is critical). The RG transformation cannot take the interaction out of this manifold 
and, generically, drives it to an O(N)  Wilson-Fisher fixed point. This fixed point 
(HFP) governs the critical behavior of the classical Heisenberg model. The HFP 
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has one unstable direction which is tangent to a RG trajectory that connects the 
HFP  to the TFP. A continuum field theory with only a mass as a free parameter  
can be built on this trajectory. The domain of  attraction of the HFP  on the critical 
surface also has a boundary.  On this boundary the RG transformation drives one 
to the massless free field fixed point (GFP). The G F P  controls the tricritical behavior 
of  O ( N )  spin systems. The GFP  has two unstable directions. They are tangent to 
a two-dimensional surface of  RG trajectories. On the surface one can build a 
two-parameter  family of  interacting field theories. These are the (q)2)32 models which 
are perturbatively under control in the ultraviolet regime and can be rigorously 
constructed [5]. The G F P  has one special property: one of the directions in its 
vicinity is only marginally stable. It corresponds to the (62)3 interaction. The 
marginality implies that, in perturbation theory, one can reduce the RG equations 
to a single differential equation in only one variable [6]. This is the Gel l -Mann-Low 

"f l - funct ion" associated with the specific RG transformation. It is defined only 
perturbatively. 

At N = oo the main change in the above picture is that, in the immediate vicinity 
of  the GFP, the marginally stable direction becomes absolutely marginal giving rise 
to a line of  fixed points. Each of  these fixed points corresponds to a (~b2) 3, N = oo, 
scale-invariant field theory. 

In order that a conventional, 3-parameter family of  continuum (62)3 exist at finite 
N one additional fixed point, of  one degree of stability less, is required. The RG 
trajectory emanating from the GFP  tangent to the marginal direction should be 
attracted to this new (UV) fixed point. 

The conjecture implying the existence of ((~2)3 was based on the 1/N expansion 
and underwent some evolution which we now briefly review. The model is defined 
by the following bare lagrangian: 

I 1 2 , - 2  2 , -  2 2  
AE[(~)] = - [~(O.~) +~/-~0~ +~Ao(~)  +~o(q)z)3] ,  (1.1) 

where 6 ( x )  is an N-componen t  scalar field. The large-N limit of  (1.1) was investi- 
gated by Townsend [3], who noted that, to first nonvanishing order in 1/N, the 
fl-function of  the model had an ultraviolet fixed point in the rescaled coupling ~o 
N 2. This implied that at a finite, but possibly very large N, the UV fixed point would 
be a genuine feature of  the theory. This view was also advocated by Pisarski [3]. 
An implicit assumption in these computat ions was that one could simply resum 
Feynman diagrams and organize the sum in orders of 1/N. For the purpose of  
investigating the UV behavior  of  the theory one may set the 4-point coupling to 
zero. It is then true that only a finite number  of diagrams contribute to a given order 
in 1/N. To leading order the fl-function (in ~ = ~ N 2) is zero and to subleading 
order it is 

1 3r/2~ ( \ 

-V) j' ' (1.2) 
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Bardeen, Moshe and Bander [4] used a variational method which does not rely 
on perturbation theory and is exact at infinite N. They found that the perturbation 
expansion in r/ breaks down at infinite N for ~7 > ~c = (4~r) 2. This invalidates the 
previous perturbative argument because 71"> 7/c. However, a more detailed study 
of the properties of  the N = ~ theory led BMB to the conclusion that now ~7~ acts 
as an UV fixed point at which one has mass generation via dimensional transmutation 
and also spontaneous breaking of scale invariance accompanied by the appearance 
of a dilaton. B~VIB conjectured that at finite, but large N, the dilaton will get a small 
mass (due to the now anomalous scale invariance even for r/<~ r/c) but that otherwise 
the physics would remain the same. As far as the existence of (d~2) 3 (for some finite 
but large N )  the implications are the same as those of  Townsend and Pisarski. The 
BMB calculation implies that the line of  fixed points which emanates from the GFP  
ends at a point within the space of acceptable interactions. This point is the N = 
limit of  the alleged finite-N UV fixed point. 

The BMB analysis was carried out by approaching the point corresponding to r/c 
in a bare, cutoff version of (1.1) in a well-defined manner  as the cutoff increased 
to infinity. The features of  the continuum limit thus obtained were studied sub- 
sequently. The main purpose of this work is to identify the mechanism which gave 
rise to the BMB phenomena at N = ~ .  This is done first by carrying out a complete 

analysis of  the model at a finite cutoff which leads one to the construction of all 
possible continuum limits where O(N) -vec to r  excitations are present and thus puts 
the BMB limit in the context of  the more conventional possibilities. Second we 
establish the RG structure which made the existence of the BMB limit possible. 
With this understanding of  the origin of  the BMB phenomena we can speculate 
whether it is likely or not that it survives to finite N too. 

Our analysis is basically a complete classification of the possible continuum limits 
of O ( N )  symmetric N-component  scalar field models in three dimensions at N = oo. 
This is done both by the explicit solution of the model and via a RG transformation. 
In this sense the paper  presents an explicit example where Wilson's [1] approach 
to the construction of a continuum field theory is seen in operation. For pedagogical 
purposes an attempt was made to make the paper  as self-contained as possible. 
Therefore, we rederive herein some known results especially due to Ma [7]. 

The plan of the paper  is as follows. In sect. 2 we compute the N = ~ effective 
potential associated with the cutoff model in (1.1). With this input sect. 3 identifies 
the complete phase diagram in the three couplings space. Next the critical regions 
are identified and essentially two types of continuum limits are constructed. In sect. 
4 the understanding of  the relationship between the phase diagram and the BMB 
continuum limit is exploited to use the ,/o ~ co limit of (1.1) on the lattice to obtain 
an estimate for ~r, where ~r is the largest N for which the BMB phenomenon is 
ruled out. An RG transformation is set up in sect. 5. Its fixed points and related 
scaling fields are found and it is shown that the continuum limits of  sect. 3 are 
recovered. All this background is brought together in sect. 6 where the BMB limit 
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is analyzed in detail from various points of view. A summary is given in 
sect. 7. 

2.  T h e  e f f e c t i v e  p o t e n t i a l  a t  N = oo 

The effective potential is obtained from the effective action F[~c] evaluated at 
constant fields. F[dpc] is the Legendre transform of the generating functional for 
connected vacuum correlations W[J] .  

e Nwts3 "- f [d~b] e AE['I']+#N l J" ,I, d3x, (2.1) 

where AE[~b ] has been defined in eq. (1.1). It consists of a kinetic energy and a 
potential energy term: 

Ae[tb] = f [½(3~dp) 2 + Vo(dp2)] d3x. (2.2) 
3 

The field tb is assumed to have no Fourier components with a 3-momentum that 
exceeds A, the ultraviolet cutoff, in magnitude. 

The factor depending on Vo in (2.1) is replaced by the inverse Laplace transform 
of its Laplace transform: 

e-%(62)= 1 f_oo f d~/"2 d:~ e - v°(~)+~2°~-e'2) (2.3) 
47ri i~ 

A nontrivial large-N limit will be obtained if we rescale the couplings, fields and 
potential as follows: 

1 1 . 
~ : ~ -~ (~  , 1~ --'~X, V o ( * 2 )  = N~'o(62). (2.4) 

After gaussian integration over ~ an expression is obtained in which the- N- 
dependence is explicit: 

e"wt~3~ f [d~][d~]exp {-N f 
+'NffJ l j} _32+ 

Vo(,,~) +½N f .~7/2.~-1N tr [log (-02+/(/2)] 

(2.5) 

At infinite N the path integral is dominated by either saddle points or the lower 
endpoint in the )~ integration. Throughout this paper only saddle points will matter. 
Assuming domination by a single saddle point (sp) the following expression for the 
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effective action is obtained: 

6 W 1 d =_ ~)~ 
6J  - 0  2 + M~v 

I ^ A 1 
+ Vo(Xsp) +~ tr [log (-02+/~/~p) I .  

699 

Ms p -  2 a n d  l~sp depend on ~ through d and the extremum requirement of the exponent 

of the integrand in eq. (2.5). d can be eliminated to get 

with 

2 V~(Xsp(x)) = hT/Zp(x) 

(xl o21 = (2.7) 

For the computation of the effective potential we consider a constant source d. 
We shall henceforth implicitly assume that we deal only with classical fields ~c 
which can be obtained from a unique d. This holds for values of ~2c that are larger 
or equal to the value that minimizes the effective potential [8]. We obtain 

* 1 2 

+I I d3k log (k2+ ~/~p) 
k2<A2 (2"/r) 3 

2 ~ ' g ( ~ p )  " 2  = Msp, 

I d3k 1 ^ ^ 2 
" 2  = X~p-4~¢  • 

k2<A 2 (2Ir) 3 k 2+ Msp 

We now scale out the cutoff A from the problem making 

dimensionless: 

~ ~ sp~ 

e ~ ( + ~ )  = A-3 " ^2 vo~,(,l,c), Uo(+~) = a -~ ~'o(A,l, 2) 

all 

(2.8) 

(2.9) 

quantities 

(2.10) 

(2.6) 
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Eq. (2.9) can be rewritten as 

2 u ; ( x  +,t,~) = M ~ , 

Io M ~ 
U~n(~b~) = Uo(do~+X)-½ dm 2 rn 2 df 

dm 2 , 

f(M2)=_fq d3q 1 1 ( I-~l) ~ , ( ~ ) 3  q2~_M2--~--~2 1 - 1 M ] t a n - '  = X .  (2.11) 

f takes values between 1/2"n "2 (at M 2= 0) and 0 (at M 2= co). Let g(x) be the inverse 
o f f  with 0 < x ~  < 1/27r 2. Eq. (2.11) simplifies to 

g(X) = 2 U~(X + +~), 

ue,,(+~) = Uo(X + 4 , ~ ) ,  

I x Ue.('l'~) = Uo(X +'1'~)-I  d t g ( t ) .  (2.12) 
1 / 2 ~  -2 

Since additive constants in Ue, and Uo are devoid of  any physical meaning it is 
better to work with derivatives: 

t 2 Ue,(d0c) = U;(X+* 2) =½g(X) .  (2.13) 

In the event that more than one solution X(+~) is found, the one corresponding 
to the dominating saddle can be seen to give the smaller value for Uen(4~). 

Next, we must renormalize the theory, introducing appropriate A-dependences 
of the parameters in 13o, so as to insure that the physical l~etr (see eqs. (2.8) and 
(2.10)) becomes a finite and nontrivial function of  its argument in the limit A ~ oo. 
(It is well known that, to leading order in N, wave function renormalization is 

• 2 I unnecessary.) This implies that we require h m , ~  A U~n(Z/A) (eq. (2.13)) to exist 
and be a nontrivial function of Z. Hence, for any Z, it must be true that 
l i m a ~  A2g(Xz(A)) exists with Xz(A) being the solution of 

( Z A)=g(Xz(A))  (2.14) 2U; Xz(A)+~,  

which corresponds to the dominant saddle. As we require that g(Xz(A)) vanish 
with large A, Xz(A) must approach 1/2rr 2. Thus 

1__.1__+ Yz(A ) (2.15) Xz(A) =27r2 

with l im a . ~  Yz(A)=0. We now expand (2.14) for large A: 

A Yz(A)'A) 12.16) 
At this point, we restrict our attention to an action of the form (1.1) and introduce 
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the definitions 

U~(Z;A) =-uo ~ Z ; A  - U o  ;A , 

A - 3 ~ Z R ( A Z ; A )  =_ U R ( Z  ; A ) = ~ R  z _ ,  2 W ~,ARZ1 2 .q_g~R Z 1  3 

Eq. (2.16), in the new language, now reads 

l)~t(Z + A Yz (A) ; A) = ½(47r)2(A Yz (A))2(1 - 16 Yz (A) +" • .) .  

(2.17) 

Assuming that y(Z)=--limA~ AYz(A) exists and is nontrivial, the renormalized 
effective potential is now given by 

~, (~2) = lim V[(q~2+y(d~2); A) =½(47r)2y2(~2). (2.19a) 

We must thus set 

Therefore, to achieve a renormalized theory, it is necessary to choose the A- 
A 

dependences in Vo so that y(z) exist. One clearly sufficient way to achieve this is 
to demand that l i m A ~  ~'R(T; A) exist for any T. This corresponds to the usual 
renormalization prescription, which can be seen as follows: 

VR(T;A) 1 2  2 1 2 1 3 =~/.tRA T+~ARAT +gr/RT . 

] , g 2  A 2 / ~ 2  
[~ R/  i l  , 

AR= ~.R/A, 

nR = ~R, (2.19c) 

^2 where /XR, ~R and ~R are independent of A. 
In terms of the original parameters in Vo, using (2.17), we get 

-2 ^2 A ~ A 2 

A A ^ 
~0 : A R - - " ' ~  TIR , 

7/" 

the usual counterterm structure. 
We now proceed to calculate the renormalized Ve, in terms of the physical 

couplings 12 2, ~R and ~R, by solving (2.19a) for y. This equation is much simpler 
than its unrenormalized counterpart (2.13) due to the disappearance of  the depen- 
dence on the regularization method. The equation for y is of second order: 

~ ( ( ~ 2 )  _~_ Q ~ ( ~ 2 ) y ( t ~ 2  ) q_ ½ ~ ( ~ 2 ) y 2 ( t ~ 2  ) ---- ½(47r)2y2(t~2) ,  

,~(q~2) = lim 17'~(~2; A) =½(/22+~Rq~2+ ~Rq~4). (2.20) 
A~oo 

(2.19b) 

(2.18) 
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For 0R ~ 1677" 2~  r/c the dominant saddle corresponds to 

y(~2) 1 { ~(0~2)  _ [( ~ ( ~ 2 ) ) 2  q_ 2(~c _ ~R) ~ (~2) ] , / 2}  " (2.21) 
t ie-  r/R 

Inserting (2.21) into (2.19) and performing the elementary integration leads to an 
explicit expression for the renormalized effective potential: 

X_=64.n-2~l ~ 2, 

re.=3.2,, 4(1_0R/no)2 2 

3 + 1  OR +~ 1 _}_']~R )(2 - -  1 q -TIR X 3 

- [ 1 + 64772 (1 - ~-~c) ~ } + X  + 1  0 R A ~  4 r/c X213/21 + c ° n s t ' d  J (2.22a) 

For/2 2 -- 0 this is in agreement with the form guessed by Appelquist and Heinz [3] 
on the basis of perturbation theory (in the comparison one has to take into account 
that they work with complex fields). When fir = rl¢ the form of (2.22) is inconvenient 
and the effective potential becomes 

13"a= 1 { [64rr"/`~--](~.RX) ] "~ 3 21'7r 4 l16(~RX)3 3 2 a2 , ^ 22 • - 8  ~-g + ~.RX j + const. (2.22b) 

When ~.R = 0 this expression is unbounded from below if/`  2 ~ 0. The scale-invariant 
case / `~= AR=0 is bounded. In summary (2.22a) is acceptable when 0R~ < ~7c with 
the exception of the region {0R = rl~, ~'R----- 0, /`~ ~ 0}. The point 0R = rlc is a point 
where some nonanalyticity appears. This is most clearly seen by computing the 
physical mass m2: for 0R ~ T~c and "~R ~;~ 0 m 2 vanishes w h e n / . 2 +  0 as m 2 ~/.£R/AR,'4 "2 . 
for 08 < nc and ~R=0 m2OC/.2R/(1--OR/'qc ). 

Eq. (2.22) is not a necessary outcome of the renormalizability requirement, i.e. 
the requirement of finiteness of Vct~ as A -+ co. Indeed, instead of demanding the 
existence of l i m a ~  ~'~(T; A) for all T we could demand 

U'~(O;A)=-V '~ (O;A)7  -~  0 . (2.23) 

This is equivalent to requiring l i m a ~  I~'~(T; A) to exist for one value of T only; 
less adjustment is necessary in order to meet this requirement. With (2.23) one finds 
the following solution to eq. (2.16): 

Y z ( A )  A t- + 0  , 

t t  1 t i t  , • A +  UR(O)C2( Z ) + ~ U R ( O ,  A ) C  2 = 8rr2( C , - Z )  2 (2.24) 
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The physical effective potential is 

l)e,(4~ 2) = 8~-2[C2d~ 2 -  C~4~4+ ]~6] + const. ,  (2.25) 

and has only one free parameter whose role is to set the scale. To obtain this 
continuum limit only a mass counterterm is necessary. Because of the identity 

V'R(T;A) A 2 U'R(O;A)+UR(O;A) +½ . . . .  , = " UR(0, A) (2.26) 

we indeed see that for any T 4 C1 lima_~ ~'~( T; A) = oo. The continuum limit which 
leads to (2.25) cannot be obtained by perturbation theory renormalization. The 
existence of  the phenomenon is not a large-N artefact [9]. We should remark that 
(2.26) is a limiting case of  (2.22). One obtains (2.26) from (2.22) by taking the limit 
~R~O0 with ~R and /2~./AR kept fixed. 

The computations presented so far were completely straightforward and the 
techniques are well known [10]. The analysis can be easily extended to any dimension 
d, 2 < d ~< 4, but this will not be done here. In principle, the computation of 1 / N  
corrections is possible. The variational calculation of Bardeen, Moshe and Bander 
is in complete agreement with eq. (2.11). The agreement occurs because Ve~(+ 2) is 
the vacuum energy density under the constraint that the spatial average of the 
quantum field be t~. 

The perturbation theory renormalization does not affect the six-point coupling 
r/o (see eq. (2.17)) as long as eq. (2.15) gives a dominating saddle with Yz(A)  
O(1/A).  This is true for a finite range of ~/o and hence, to any order in perturbation 
theory the fl(r/) function vanishes at leading order in 1/N. BMB have noted that 
for ~/o > ~c another branch of the solutions to eq. (2.15) becomes the dominating 
saddle and perturbation theory breaks down. That something new might happen 
when ~R > ~/c was already suggested by Townsend [3]. He suspected that l)e~ might 
be singular at ~R = r/c (see eq. (2.22a)). Appelquist and Heinz [3] showed this not 
to be the case when ~2 ~R = 0 a n d  ~R ~;~ 0. Our eq. (2.22b) extends this observation to 
the case  /'~a ~;~ 0, ~k a ~ 0. However, we have also seen that for ~R = 0 and/2~t ~ 0 the 
limit ~R-~ r/¢ leads to an effective potential which is unbounded from below and 
therefore, Townsend's concern seems to have been in place after all. 

3. The phase diagram 

As explicitly exhibited by the calculations in the previous section, the construction 
of continuum field theories is carried out in the vicinity of regions in the space of 
bare couplings where the system undergoes continuous phase transitions signaled 
by the vanishing of g (Xz (A) )  in eq. (2.16). For the value of Z corresponding to 
the minimum of the effective potential, the quantity g that vanishes is the mass 
squared. The infrared behavior of the system in the vicinity of the critical regions 
is controlled by the various fixed points of the RG transformation that were discussed 
in the introduction. 
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To study the critical regions, we need to obtain the phase diagram. For this, we 
have to find the solution of eq. (2.13) which is the dominating saddle for the ~b~ 
appropriate  for the vacuum (i.e. the point where Ue~(~b~) is at an absolute minimum). 
There are two possibilities: 

(a) broken symmetry: 

(b) symmetric phase: 

4 ~ 2 # 0  , 2 Ue.(+~) = O, (Yla) 

6 2 = 0  , U e f f ( 6 c )  ~'~ O .  ( 3 . 1 b )  

The two regions in the parameter  space in which either (a) or (b) hold are separated 
by a transition surface. Part of  it is critical. 

In case (a) we have 

UV~ ~= Ug(t) d t +  Uo , 
d 1/2re 2 

4,~>0, 

(3.2) 

whereas in (b) we get 

1 UV~ c= [U~( t ) -½g( t ) ]d t+  Uo 2 U ~ ( X ) = g ( X )  X < - -  
1/2rr2 ~ , 2rr 2 " 

(3.3) 

Eqs. (3.2) and (3.3) can be brought into identical forms by defining in (3.2) 
)~ = 1/2rr2 + ~2 and in (3.3) 3~ = X and by extending the domain of g(t) to t i> 1/2~ -2 
where we take g---O: 

fx 
U ~  c = [ U;(t) - ½g(t)] d t ,  2 g ~ ( 2 )  = g ( X ) .  (3.4) 

l/2,rr 2 

Defining g ( t ) = ~ ( t  + 1/2~ -2) with t / > - 1 / 2 r r  2, eq. (3.4) can be rewritten with Y =  
X - 1/272 as 

U~ c= [U'R(t)-½~,(t)]dt, U'R(Y)-½~,(Y)=O. (3.5) 

I f  Y >  0 the symmetry is broken, and if - 1 / 2 z r 2 <  Y < 0  it is preserved. 
The advantage of writing the equations as in eq. (3.5) is that a qualitative graphical 

analysis is made possible. The second equation in (3.5) identifies Y as the intersection 
of the graphs representing Uh and ½~. The first equation in (3.5) allows us to find 
out which of  the possible many intersections corresponds to the dominating saddle. 
One has to compare  the sizes of  the areas enclosed between the graphs of  U~ and 
½~ from one intersection to the other. In our case Uh is a parabola  and not more 
than three intersections are possible. Fig. 1 schematically illustrates one such case. 
The three intersection points are labelled A, B, C. a,,  b~, b 2 denote the magnitudes 
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g 

1/2~ 2 .~ 

p2 
/ R C 

2u& 

y 

I - kR / 2.r/R 

Fig. 1. Solving for the vacuum at N = oo. Possible candidates are labelled A, B, C; the relative sizes of 
the areas a~, b~ and b 2 determine the dominating saddle. 

of the various areas. From eq. (3.5) we get 

UV~ ~ = bl (3.6) 

- -  b 2  • 

B is never a dominant  saddle. A will dominate if bl + b2 < a~ and C otherwise. When 
C dominates the symmetry is broken. 

The space of interactions is parametrized by 

2 U ~ ( X ) = I d . 2 W A R X + r / R  X 2  , r/R ~ 0, - - o 0 <  ~ 2 ,  A R < C O .  (3,7) 

In our qualitative analysis we shall first fix r/R, then AR and v a r y / 2 .  It is necessary 
to distinguish between 0 <  r/R< r/c -= (47r) 2 and r/R > r/~. r/~ is half the curvature of  

at the origin (see eq. (2.16)). 
Let r/R< r/c be fixed. The minimum of Vh is in the y > 0  half-plane iff AR<0. By 

inspection we see that if AR> 0, we go through a second-order symmetry breaking 
transition when we vary/x~ through zero. I f  AR < 0, the symmetry breaking transition 
will be of  first order, the dominating saddle moving from type C to type A (see fig. 
1) when /z 2 is increased from negative values. However, because, unlike in fig. 1, 
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the parabola  representing U~ is shallower than ½~, the transit ion will occur  only at 
a positive value o f  2 /XR. At AR = 0 the second-order  transit ion changes to first order  
and we have a tricritical point. 

When fiR> ~?c and AR is large and positive we still have only a second-order  

transit ion at Iz~ = 0. Similarly when AR is negative only a first-order transit ion occurs. 

I f  AR is positive but small we have a first-order transit ion which occurs already at 

a negative value o f / z ~ .  For  somewhat  larger values o f  AR, but not too large, we 
can, while increasing iz 2 f rom very negative values, cross, first a second-order  
symmetry  breaking transit ion at / x ~ = 0  and later, at a positive value o f  2 /J-R, a 
first-order transit ion at which a saddle o f  type C (but located now in the y < 0 

half-plane) is replaced by one o f  type A. This latter transit ion is not a symmetry 

breaking one. For  any 9"]R~ T~c there exists a AR for which the three solutions of  the 
type A, B, C (all o f  them located now in the y < 0 plane) become degenerate at 
some positive value o f  2 /ZR. At these points a cont inuous  transit ion o f  the l iquid-gas 
type occurs. These transit ions happen  inside the symmetric  phase. 

x R 

/ 

® 

G 

~qR 

Fig. 2. Qualitative sketch of the d = 3, N = ~ phase diagram. 
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Fig. 2 summarizes the above qualitative features of  the phase diagram. We have 
three regions of  continuous transitions: the surface H which consists of  part of  the 
,XR>0, /X~=0 plane, the tricritical line t and the gas-liquid transition line £ The 
lines t and g meet at a point P where / ~ = A R = 0  and r/R = r/c- For r / R  > r/c the 

2 p.R = 0, ,~.R > 0 half-plane is cut by the first-order surface X which continues into 
the symmetrical phase with X'. The cut is one of the boundaries of  H. X' ends at 
g. The main features of  the diagram can be found also in ref. [11]. 

To give some feeling for the numbers involved we show in fig. 3 two fixed r/R 

slices of the phase diagram, one with r/R < r/c and the other with r/R> r/c. The heavy 
line represents a first-order transition and the dashed one, one of second order. The 
graphs were computed numerically. The numerical study confirmed the qualitative 
features of  fig. 2. 

The reason for the line t ending at r/R = r/c is that for /~R= /.l,2=0 and r/R > r/c a 
new saddle becomes dominant.  It is because of this that the continuum effective 
potential computed in eq. (2.22) is right only for r/R ~< r/c. Bardeen, Moshe and 
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Fig. 3. Constant ~7-slices of the d = 3, N = oo phase diagram. 
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Bander  l o o k e d  at T~R ) "0c and  found  an ins tabi l i ty  in the pe r tu rba t ive  answer.  As 

we can see this  ins tabi l i ty  reflects the fact tha t  the con t inua t ion  o f  the pe r tu rba t ive  

answer  to r/R > r/c takes  us into a metas tab le  phase .  

The p o i n t  P where  the  l ines { and  t meet  is expec ted  to have a special  cri t ical  

behavior .  On t the O ( N ) - v e c t o r  par t ic les  are massless  and  on g an O ( N ) - s c a l a r  

par t ic le  c o r r e s p o n d i n g  to ~b2(x) is massless.  At  P we have both.  The new type of  

c o n t i n u u m  theory  cons t ruc ted  by  BMB a r o u n d  P inheri ts  the mass less  exc i ta t ion  

l iving on { and  gives a finite mass  to the vectors.  The nonvan i sh ing  o f  this mass  

reflects the  s p o n t a n e o u s  b reak ing  of  scale invar iance  and  the massless  sca lar  is the 

d i l a ton  a s soc ia t ed  with this  breaking .  

The above  p h e n o m e n a  occur  because  t and  C meet  at P. However ,  the  meet ing  

o f  two o n e - d i m e n s i o n a l  man i fo ld s  e m b e d d e d  in a t h r e e -d ime ns iona l  one  is a nongen-  

eric p h e n o m e n o n .  The occur rence  o f  this acc iden t  may  very well  be res t r ic ted  to 

N = oo. I f  it is t rue that  for  any  finite N , / a n d  t miss each o ther  the  BMB p h e n o m e n o n  
will be str ict ly an N = o0 curiosi ty.  

When  one  inspects  fig. 3 one might  get  the impres s ion  that  the  lines g and  t do  

have to meet .  To dispel  this impress ion  we cons ide red  the N = oo phase  d i a g ra m 

for d = 3 + e, e > 0, with the  same type  of  in te rac t ion .  Since for  e > 0 the  ~b 6 o p e r a t o r  

is i r re levant  ( n o n r e n o r m a l i z a b l e )  a BMB p h e n o m e n o n  shou ld  not  occur.  The 

ana logue  o f  fig. 3 is fig. 4 with e = 0.5. Lines o f  the { and  t type  exist  and  the BMB 

p h e n o m e n o n  is i ndeed  avo ided  by these l ines never  meet ing.  Both { and  t end  on 

f i rs t -order  t r ans i t ion  surfaces  wi thout  spec ia l  endpoin t s .  There fore  the BMB 

p h e n o m e n o n  can be a v o i d e d  and  there  is no reason  to expect  it is not  even at d = 3 
when N < oo. 

We shou ld  also r emark  that  be low three  d imens ions  the  t r icr i t ical  l ine d i s a ppe a r s  

at N = oo. A t r icr i t ical  l ine may  very well exist  for  d < 3 and  for  some finite N. This 

is ano the r  e x a m p l e  o f  the  de l ica te  na ture  o f  the l a r g e - N  limit ,  but ,  as it  has no 

di rec t  re levance  to the p resen t  work  it will not  be  d iscussed  any further .  

We now turn to the  c o m p u t a t i o n  o f  some genera l  charac ter i s t ics  o f  the  var ious  

cri t ical  reg ions  we have ident i f ied.  More  prec ise ly  we shall  c ompu te  the cri t ical  

exponen t s  v ( re la ted  to the  d ivergence  o f  the  cor re la t ion  length)  and  ce ( re la ted  to 

the  specif ic  heat) .  In the  gener ic  case the values  o f  v and  ct d e p e n d  only  on the 

fixed po in t s  re levant  for  the cri t ical  regions  and  not  on the deta i l s  o f  the in terac t ions .  

Different  values  for the  exponen t s  suggest  therefore  the exis tence o f  different  types  
o f  fixed points .  

The e x p o n e n t  v governs  the rate at which  the phys ica l  mass  o f  the vec tor  par t ic le  

vanishes  when  the bare  mass  a p p r o a c h e s  a cri t ical  value.  Using  eqs. (2.16), (2.17) 
and  (3.3) we ca lcula te  the  phys ica l  mass  for  smal l  /x 2 (/z2oc 2 2 (/'£0--JL6Ocritical)) in the 
vic ini ty  o f  var ious  cri t ical  regions:  

M2= 2UrR(e)=-- l'z2 + ARe + ~Re2= g(  e +27 r ] ~ ' r / c e 2 - - 8 T / c e 3  • (3.8) 
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In eq. (3.8) e < 0. When  tz 2 = 0 we are at a critical point  CP. If  the CP is on H, 

AR>0 and hence  M ~ - e  ~ I z ~ .  If  the CP is on t but not at P, then AR=0 but 

r/R < r/¢ imply ing  M - - - e - - ~ .  If  the CP is at P then A R = 0 ,  r/R = r/¢ and hence  
M ~ e ~ 3x//z2. This means  that the index v has the values 1, ½ and ½ on H, t and P 

respectively.  The fact that Vp# vt shows  again that P is special .  However ,  as we  
shall see in sect. 6, to state that a new type o f  fixed point governs  the critical behavior  

at P would  be mis leading.  
The e x p o n e n t  a,  if  posit ive ,  tells us h o w  d2Uen(0) /d( /x2)  2 diverges when  we  

approach a critical point  from the symmetr ic  phase.  In the notat ion o f  eq. (3.8) w e  
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have 

Therefore 

F. D a v i d  et  al. / S t u d y  o f  (~b2) ] at N = ~  

Uefr(O) = UR(e) -~ncE3+ n~e4+O(eS). (3.9) 

d 2Ueer(0) 1 de ~ , 1 e2 d2e 
d(/x2) 2 2d/.~--~ [UR(e)--~n~ ]d(/.~)= 

+[U'~(e)-rlc(e)](d~) 2 (dTR) 2 + ~7c e4"[-  " " "" 

I f  the CP is on H no divergence appears  (for a discussion of this point see ref. 
[12]). I f  the CP is on t we get e - v / - ~  and a divergence as 1/x/-~.  I f  the CP is at 
P, e -  (/x2) 1/3 and (3.9) becomes 

d2Uea(0) 1 d [ 2 de ] d 2 
J - - 2  [ ~ " / " R T " ~ [  + - -  ' ~  (/z2) 2/3. (3.10) d(/z~) 2 2 -/.a, RI.. O#R..I 'r/cd(/Z2R)2E 

The exponent  a is therefore < 0, ½, ~ on H, t and P respectively. The hyperscaling 
relation dv = 2 - a  is violated at P. This implies that at least one of the exponents 
at P does not follow only from the behavior of  the RG transformation in the vicinity 
of  the relevant fixed point but additional nonanalyticities are present. Again the 
point P is troublesome. In sect. 6 we shall argue that as far as the RG structure is 
concerned the point P is of  the same type as the rest of  the line t. All the special 
effects seen at P, including the BMB phenomenon,  result from additional non- 
analyticities, the existence of which is related to the meeting of the lines g and t. 
There is little reason to assume that these additional nonanalyticities will somehow 

survive to finite N. 

4. The strong coupling limit 

The most distinctive feature of  the N = ~ phase diagrams analyzed in the previous 
section was the difference between the weak r/-regime where a tricritical point exists 
and the strong B-regime where it disappears. The purpose of this section is to 
estimate to how small values of  N the existence of the two regimes persists. In other 
words, we would like to find out from what value of N onwards the tricritical line 
has a finite extent. This value of  N is a lower bound for the possible N ' s  for which 
the BMB phenomenon has any chance of  survival at all; given that the tricritical 
line indeed terminates for some N the more delicate question of direct relevance 
to BMB is whether the transition from strong to weak 7/ takes place qualitatively 
as in fig. 3 or as in fig. 4. For the BMB mechanism to work the nongeneric case of  
fig. 3 has to occur. We shall not attempt here to study these more delicate features 

of  the phase diagram. 
Although we shall do only analytical work here we want our models to be directly 

amenable to computer  simulations. This excludes the sharp momentum cutoff 
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because it yields an action which is not strictly local. A lattice variant of  (1.1) to 
which standard Monte Carlo simulation techniques can be applied is 

AL[ tb ]= - -~  ½ E [ ( b ( x + / z ) - t b ( x ) ]  2 
x / z = l  

, 2 2 1 2 2 1 nL(62(X))3 ] (4.1) 

In (4.1) x is a lattice point and /z  is a unit vector in one of the/z  = 1, 2, 3 directions; 
d~(x) is an ~ N-componen t  vector associated with the site x. Whenever we shall refer 
to the system in a finite volume, periodic boundary  conditions are implicitly assumed. 

The ~L = AL=/Z2=0 point is clearly tricritical. We shall make the plausible 
assumption that a tricritical line exists for at least a small range of  positive ~/L'S. 
We intend to establish whether the line extends out to $/L = (30. Hence we concentrate 
on the r/L=00 limit of  (4.1). This limit is particularly suited for Monte Carlo 
investigations because then the variable d) becomes compact.  It is useful to change 

variables: 

6 (x )=4 -Np (x )n (x ) ,  p(x)>-O , n~(x)=l, 

1 /22 = 1 / ~  2 , ~ .L=- -AL.  (4.2) 
~L ~L 

The partition function of the model is 

Z = f [I [dp(x)  e - " ~ N ~ < * ' ]  I-[ dl ' l (x)  
g x x 

X exp{-½N Y. ~.[p(x)l-~(x)-p(x+l.t,)l~(xq-t.t)]2}, 
X p . = l  

1 - 2  2 1 "  4 1 6  N - - 1  
v(p2)=~I~Lp +Z;tLp +~p - -2Nr/LlOg(p2) .  (4.3) 

The last term in v cannot be neglected for very small p. As r/L~ 00 only the absolute 
minimum (or minima in the case of  degeneracy) is important,  v has two local minima: 

N , I _ _  
P 2 -  N -2 I-O , 

T~ L jI.l, L 

V,=---nLV(p2)-----'-~[~ ~ log nL+½ log fl,[]+O , 

1 
P2=p°°r  Npg nL(),r+2p2) ~-0 ' 

--~ALA-~AL--4gL, po2___ l -  I ~-]"-~,-2 
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v2=- ~TL v( p~) 

= N - - l , l  2 r - 2 - - 1 ~ "  2 - - 1  4-1 2 ( ~ L L )  N I~LPottXL-r~^LPo-r3PoJ--½10g P°}+O (4.4) 

To obtain a nontrivial limit we adjust the couplings such that p2 and v2-vl  stay 
finite as r/L~ O0. Then the integral over p(x) in (4.3), at each x, becomes a sum over 
p(x) = po and p(x)= 0. We introduce some more conventional notation: 

/3 =po2>0, /z = Vl-  v2-3/3. (4.5) 

The two-parameter model describing the r/L~ CO limit has a partition function given 
by 

Z = ~x (p(~=o eN'~°~x)) ~ ( I  dl'l(x) ) 

x e x p { N [ / 3 ~  ~ p ( x ) p ( x + t x ) . ( x ) . . ( x + t z ) ] } .  (4.6) 

The variables p(x) are vacancy variables with chemical potential N/x. In the 
absence of vacancies the model is equivalent to an O(N) classical Heisenberg 
ferromagnet with inverse temperature N/3. 

At infinite N the phase diagram can be obtained directly for (4.6). However, the 
limits 'r~L--~ (20 and N ~  are interchangeable and therefore we can first apply the 
analysis of the previous section to (4.1). In that analysis we have to replace the 
sharp momentum cutoff function f ( M  2) in eq. (2.4) by its lattice analogue: 

fL(M2) = I d3q 
q,.l< ~ (27r) 3 3 

4 Z sin2 (½q~)+M2 

gL(fL(M2)) = M 2 , gL(X) = 0 for x >fL(0) =-- /3c. (4.7) 

One obtains a phase diagram separated in two regions by a first-order transition 
line/z (/3): 

t.*(/3)=-3/3+½1og/3+½+½ gL(/3')d/3'+ log 4 -  s i n 2 ½ q . .  
Iql- (2"rr) 3 -':z 7r /~=1 

(4.8) 

For tt > tt(/3) there are absolutely no vacancies (N = ~ )  and we have the expected 
second-order transition of symmetry breaking at tic = f  L(0)= 0.2527. For tz < Iz (/3) 
the vacancies occupy all the sites and no dynamics are left. The point /x = tx(/3¢), 
13 =/3¢ is the endpoint of the second-order line on the first-order line; this point is 
not a tricritical point. 
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The features of  the phase diagram at N < oo can be understood approximately. 
On the boundaries of  the half-plane { -oo< /~<oo ; f l~>0}  we have the following 

situation: 
(i) At /~ = +oo there are no vacancies and a second-order symmetry breaking 

transition is expected to occur at fiR. Increasing N has a disordering effect and 
hence we expect fl~v to monotonically increase from the Ising value (~0.221) to 
the N = oo value ( ~  0.253). As a phenomenological* relationship we take 

0.032 
/3~ ~ 0 . 2 5 3 - - -  (4.9) 

N 

(ii) At /x ~ oo and /3 ~ +oo with ~ - - 3 / 3  the l l ' s  will be completely aligned if 
there are no vacancies, and completely random if there are. Therefore we have a 
first-order transition line which asymptotically behaves like t z - - 3 / 3  and across 
which both the vacancy density and the l~-magnetization change discontinuously. 

(iii) At /3  = 0 the free energy is analytic in/~ (except at N = oo). Therefore, for 
any N < co the first-order line will not reach the /z  =/3 = 0 point. The main issue is 
now to decide how the line in (iii) and the line in (i) join. That they have to join 
is clear, because, for any fixed IZ, increasing/3 from 0 to ~ has to induce an O ( N )  
symmetry breaking transition at some /3c(iz; N) .  This transition can be of first or 
second order. Since the vacancies have a disordering effect/3c(Iz; N)  is monotoni- 
cally increasing as /x decreases from infinity where /3~(~; N )  =/3~v. The two lines 
can either join smoothly, in which case a tricritical point exists or the first-order 
line can continue into the O(N)-d i sordered  phase. In this phase the first-order line 
represents a l iquid-gas transition signaled by a discontinuous change in the vacancy 
density; however the line has no symmetry breaking role any more and the average 
of  l l (x ) ,  the magnetization, vanishes on both its sides. 

To establish which type of line meeting we expect we would like to integrate out 
the l 'Lfluctuations to obtain an effective vacancy system. This can be done approxi- 
mately both for /3 small and/3  large. It is convenient to replace p(x) by an Ising 
spin variable s(x):  

s(x) = 1 - 2 p ( x ) .  (4.10) 

The effective action for s(x) represents to leading order both in strong and weak 
/3-coupling, an Ising system in an external magnetic field: 

3 

Serf[S] = n e f f Z  S(X)" t - /3ef fE Z S(X)S(X-I-ILI,), (4111) 
x x ,u.=l 

where 

Hef~=~/3~-/3c(/z;B) - ½ t z - 3 / 3 / 2  1 f/3~-/3c(~z; N)  ¼/3 
N I./3,~/3~(/z;N) -½/x-3/3 z ' ~ / 3 e n = ~ / 3 < / 3 ~ ( / x ; N  ) ~/32. (4.12) 

* The 1 /N  dependence offl~v is only a guess. 
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The vacancy density would change discontinuously when He,  = 0 and/3e,  >/31sing 
0.221. Let us consider the case where N is rather large, N >  5 say. Since for 

/3 ~" fl¢(tx; N )  we would have fie,~ ~Nfl we see that by the time /3 is large /3en is 
certainly such. Therefore we expect both the vacancy density and the magnetization 
to change discontinuously as Hen changes sign. Hence the two transitions could 
separate, most likely, when the first-order vacancy transition occurs at zero magnetiz- 
ation. This is what happened at N = ~ .  We are therefore only to consider the case 
/3 </3c(/z ; N) .  To get there a first-order transition without a symmetry breaking one 
at the same time we need to meet two requirements: 

H e ~ = 0 ,  

/3eta> 0.221, /33 </3¢(/.t ; N ) .  (4.13) 

/3c(/z ; ~ )  is /x- independent  for /z  > IZ(/3c). Therefore, for large N the/x-dependence 
of/3c(/x ; N )  is weak and we can approximate/3c(iz ; N )  ~ / 3 ~  (see (4.9)). In reality 
/3~v is a lower bound on /3¢(/z, N) .  With (4.12) and (4.13) we get the following 
conditions: 

3 = x/(8/N)0.221 <0.253 0.032 
< / 3  

N 

tz  ~ - - 1 . 5 / 3  2 " (4.14) 

The first line in (4.14) implies N~>28. Therefore we conclude that when N is 
decreased from infinity the tricritical line will reach an infinite extent at N ~ 28. 
The conditions (4.14) are superposed on the infinite-N phase diagram in fig. 5. The 
approximate  agreement between the line /x ~-1 .5 /32  and the exact N = o o  result 
strengthens our faith in the rather crude approximations we employed. 

We conclude this section by stating that the BMB cannot take place for values 
of  N smaller than a number  around 30. 

5. The renormalization group analysis 

The construction of the continuum limits in sect. 2 proceeded by a direct approach.  
A bare interaction which depends on a few parameters  is picked, regions where a 
mass vanishes are'identified, and using this mass as a scale, one tries to adjust the 
other parameters  in such a way that, up to wave function renormalization, all 
correlations have a finite and hopefully nontrivial continuum limit. The direct 
approach basically requires one to solve the theory along with its construction. The 
continuum limit is found by a trial and error method. The origin of  the special 
features discovered by BMB is somewhat obscured in this type of  approach.  

In the RG approach the problem of constructing a continuum limit is conceptually 
separated from the problem of solving it [1]. In principle, the search for the 
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Fig. 5. The lattice vacancy model, e and d are exact at N = oo. e and f are first-order transition lines and 

d is a second-order one. f is the approximation used in the text; it is N-independent.  Lines a and a' are 
the values of /3  for which/3eet =/3c (Ising) for N = 40 and 30 respectively. Line b is at the value o f /z  at 
which f and d meet; for /z  below this value the second-order transition disappears in the approximation 

employed. The hatched area is where two transitions will occur at cons tan t /z  for N = 40. 

continuum limits is systematic. The price paid for these advantages is the necessity 

of  working in a not really well-defined space of all possible short-range interactions 
obeying some symmetry invariances. In this space of cutoff (bare) lagrangians a 

transformation R, is defined. In our case we assume a sharp momentum cutoff. R, 
transforms a lagrangian with cutoff A into one with cutoff A/s (s >i 1). The trans- 
formed lagrangian, after wave function renormalization, is required to generate an 

effective action for classical fields with momentum less than A/s, of exactly the 
same form as the original one would. By definition Rs, s~ = Rs, R~. Let F[d~; A ; .~ ]  
denote the effective action obtained from ~ with a cutoff A. Then 

F[*; A; ~]= F[f~(~b);A; R~(~)] . (5.1) 

We shall frequently denote (when there is no danger of confusion) f~(~b) -= ~ ,  and 
R~(~)-= Zfs. Since all our analysis is at N = oo we shall take ~ = ~b. 

The problem of constructing a continuum limit is to find a bare lagrangian ~0.s 

with a cutoff A and such an explicit dependence on s ( s ~  > 1) that the following 
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limit exists: 

! im F[~b; ARs; ~o.s] = !irn F [ ~ ;  AR; Rs(~o,,)] • (5.2) 

In (5.2) AR is finite but arbitrary. The existence of  the limit on the right-hand side 
depends on whether limsooo Rs (~o,s) exist within the space of acceptable interactions. 
I f  it does, then ~ = lim~oo R~(~o.s) is a UV cutoff lagrangian which has no depen- 
dence on the bare cutoff. To get the correlation functions of  the continuum limit 
one has to solve the model with ~.  While the solution may be very hard to obtain 
it is explicitly obvious that the UV divergences have been eliminated. 

The existence of a continuum limit depends now only on the properties of  Rs. 
For the limit to have some predictive power it is necessary to get an ~ which 
depends on only a finite number  of  free parameters.  A simple way to obtain this is 
for Rs to have a fixed point with a finite number  of  unstable directions. These 
unstable directions, with the fixed point at their origin, generate a curvilinear (in 
terms of the bare couplings in ~0,s) coordinate system spanning a finite-dimensional 
submanifold of  the space of all interactions. This manifold of  RG trajectories 
represents the complete set of  continuum field theories one can build around the 
given fixed point. Since, by definition, the transformation R~ does not take us out 
of  the space of  interactions, the trajectories end at fixed points of  higher degrees 
of  stability. 

It is impossible to apply the above ideas in their full generality even in the rather 
simple N = oo situation. We therefore truncate the space of interactions to lagrangians 
of  the form 

= ½(a.d~) 2 + V ( ~ 2 ) .  (5.3) 

It is convenient to replace the requirement of  (5.1) which gives identical Green 
functions in x-space by the requirement that the Green functions be the same in 
momentum space (after imposition of momentum conservation). The appropriate  
truncation then becomes 

Vea[r~2;A; g]= Veft[ ¢~2;A ] - -  ; V ,  . ( 5 . 4 )  
S 

We now rescale by N as in eq. (2.8) and also go to unitless couplings and fields 
(see eq. (2.10)): 

Ueff [Z  ; U ]  ~-- s-3Ueff[sZ; Us]. (5 .5)  

It makes more physical sense to view Rs as acting on the derivatives: 

U',EZ; U'] = s -2 U;,[sZ; U'~]. (5.6) 

The functional dependence of U'n on U' is known from eq. (2.13): 

U'n[Z; U ' ] =  U ' ( Z  + X ) = ½ g ( X ) .  (5.7) 
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The last equality defines X as a function of Z. We shall consider the equations only 
locally and therefore we can neglect for the time being the problem of competing 

saddles. A more explicit form for U's can be obtained: 

[ ] (ys xl ) • Y - X l  ' U '  = s 2 U '  '~ x 2 , ( 5 . 8 )  U'fiy) = U'e~[y - xl ; U',] = s 2 U'~ s ' 

with 
1 

g(xl) = 2 U's(y), g(xz)=-~2U's(y).  (5.9) 

Eqs. (5.8) and (5.9) can be combined with the help of the function f defined in eq. 

(2.11): 

U'fiy)= sZU' (~y-~ f (2U's (y ) )+  f ( - ~ 2 U ' f i y ) ) )  . (5.10) 

Eq. (5.10) was obtained by Ma [7] by explicitly integrating out the high-momentum 
components of  the fields. Our derivation is simpler technically but not conceptually 
because it makes use of the exact solubility (in an implicit form) of the models in 
eq. (5.3) at N = 0o. 

We now introduce F, F ,  the inverse function to 2 U', 2 U's (which is defined at 
least locally). Eq. (5.10) then simplifies to 

= S  F u u 

F s - f  is just the inverse of 2U'e~ [x, Us], as can be easily shown, and thus also 
transforms homogeneously under the renormalization group (see eq. (5.6)). It is 
easy to find the fixed points 

F*(u) =f(u)  + c4-~. (5.12) 

To know which values of c are acceptable we have to extend the locally defined 
F* to a globally defined inverse. The inverse is the derivative of the potential U* 
and has to be defined for any nonnegative value of its argument, f (u )  can be written 

a s  

f (U)=--~- '~U+fA(U) ,  fA(U) = 2--~(1 +~U tan-I ~u)  • (5.13) 

fA(U) is analytic in u. As long as c ~  (1/4~r) u cannot change sign and U*' has to 
be always positive. It is easy to see that f (u ) / x /u  decreases monotonically to zero 
when u ~ 0o implying that 

min ( f (u)+c4uu)>O, V c > 0 ,  (5.14) 

and therefore that U*'(~b 2) will be undefined for ~b z small enough. Hence c cannot 
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be positive unless it is equal to 1/47r. The two possibilities left are - c o  < c < 0 and 
c = 1/47r. 

c = - c o  implies u-= 0 or  U*'(~b 2)---0 and therefore corresponds  to the gaussian 
fixed point.  For  any - c o <  c < 0  one can reconstruct  a U*'(~b 2) which is analytic at 
~b2=0. For  ~b2< 1 / 2 ~  2 one inverts f A ( U ) + ( C - - 1 / 4 z r ) x / u  and for ( ~ 2 >  1/27r 2 one 

inverts fA(U) -- (C --1/4zr)~/U. There is no nonanalyt ic i ty  at ~b 2= 1/2 , r  2. The para- 

metr izat ion in terms o f  c in eq. (5.12) should  be unders tood  to be relevant for 
~b2~ < 1/27r 2. At c = 0  one still can invert F* to obtain U*'(th 2) but, because o f  eq. 
(5.14), U*'(~b 2) now diverges as 1/~b 2 when 4) 2 approaches  zero. At c = 1/47r one 

inverts fA(U) by analytically cont inuing to negative u-values. U*'(~b 2) is mono ton ic  

because its inverse, fA(U), has no branch cut signularities. We shall see later that  
c = 1/4zr corresponds  to the H F P  to which the surface H is attracted, -co~< c < 0 

cor responds  to a line o f  fixed points to which the tricritical line t is pointwise 
at tracted and  c = 0 is the BMB FP to which the critical point  P flows. 

In order  to be able to follow the RG flows even far away from the fixed points 

it is convenient  to parametr ize the space o f  interactions by a set o f  parameters  which 
undergo  only a rescaling under  Rs [13]. Such parameters  are sometimes referred to 

as scaling fields. We shall use two "coord ina te  patches" ,  one appropr ia te  for  the 
vicinity o f  the c = 1/4~- fixed point  and the other  for  the vicinity o f  the - c o  ~< c <~ 0 
line o f  fixed points. 

The interactions in the vicinity o f  the H F P  are parametr ized by the Taylor  

coefficients o f  an analytic funct ion F(u) --fA(U) (see eq. (5.13)) where F is, as usual, 
the inverse o f  2U'. From eq. (5.11) we see that  

F(u)--fA(u)= ~ bnu n - I  , 
n = l  

F~(u) --fA(U) = ~ bnsY"u  n - '  , y,~ = 3 - 2 n .  (5.15) 
r l=l  

The exponents  y,  are those o f  the spherical model .  The H F P  corresponds  to b. = 0, 
Vn~>l .  

Around  the H F P  we can construct  a con t inuum limit as explained at the beginning 
of  this section. We need a Uo,s(x) which has a cor responding  F ° ( u ;  s) given by 

F ° ( u ; s ) = f A ( u ) + a ( s ) +  ~ b,(s)u "-l, 
S n=2  

lim a(s)=a<co, lim bn(s)=bn<co, n = 2 , . . . c o .  (5.16) 

The requirements  o f  b,(s) can be relaxed but this is not  necessary. Assuming for 
the m o m e n t  that such a Uo.s(x) can be found  we now identify the con t inuum limit. 

It cor responds  to lims~oo R~[F°(u;s)] = f A ( U ) +  a and has only one free parameter .  
In the symmetr ic  phase the RG trajectory is fA(U)+ K with K <~ 0. When  K goes 
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from 0 tO --oo the theory goes from the HFP to the TFP. To every point on the 

trajectory there corresponds an ettective potential given by eq. (2.13): 

, 2 )2 
u o ~ ( , l , c )  = 8 ~ 2 ( , I , ~ -  K . (5.17) 

This form is equivalent to eq. (2.25) and the identification of  the trajectory with 

one of the continuum limits of  sect. 2 is complete. 
We now have to show how in our polynomial  bare interaction an s-dependence 

can be introduced in Uo,~(x) such that (5.16) holds. Any bare interaction for which 
2 U'(x)  has a simple zero somewhere can be inverted to an analytic function: 

F ( u ) = f A ( U ) + C l +  ~ C,U "-1 • (5.18) 
n = 2  

The coefficients c, are smooth functions of  the coefficients in 2 U'(x) .  c~ is defined 

by 

U ' ( 2 - ~ +  el)  = U ~ ( c l ) = 0 .  (5.19) 

Demanding cx to be very small enforces a constraint on U~: 

U~(0) -=/z~t = very small .  (5.20) 

As long as U~(0 )~  0 the other c, 's  will stay finite as c~ ~ 0 and the requirements 
of  eq. (5.16) can be met. One can view c~ as parametrizing the distance of the bare 
interaction from the region of the critical surface (c~ = 0) which is attracted to the 
HFP. When U[t(0)= 0 and cl is small the interaction is close to the boundary of 
the domain of attraction of the HFP. There the parametrization of (5.18) becomes 
singular. To summarize, a continuum theory around the HFP can be built if the 
manifold of  bare interactions intersects its domain of  attraction. In the generic case 
this simply means that the dimensionality of  this manifold is at least as large as the 
number  of  unstable directions at the given FP. 

The parametrization in eq. (5.18) is not applicable to functions U'  which never 
vanish (and, to be acceptable, have to be always positive). Such a function has a 
minimum at some )(, U'(ff[) = ½a > 0, U"()~) = 0 but, in the generic case, U'"(.~) # 0. 
The inverse function to 2 U'(x) ,  F, is double valued and can be parametrized as 

F ( u )  = .~ +x/u - a F , ( u  - a) + F3(u - a ) ,  (5.21) 

where F,.3 are analytic at zero and F3(0)=0.  The function fA(U) is analytic 
everywhere on the real axis and therefore 

F ( u )  --fA(U) = Fz(u - a) +~/u - f tF , (u  - a) = ~ b . (u  - ti) {n-')/2 . 
n = l  

(5.21a) 
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Under the RG transformation we get 

O3 

Fs(u)--fA(U)= Y, b,sY"(u-sY°a) ~'-1)/2, y , = 2 - n .  (5.21b) 
n = l  

These are the gaussian exponents. There are two relevant parameters (ti and bl) 
and a marginal one (b2). The manifold of  RG trajectories which represent continuum 
limits is parametrized by 

F(u) = fA(U) + A(u - B) '/2 + D. (5.22) 

The inverse of  2 U'en(x) is F(u) - f ( u )  = Ax/-~- B + (1/47r)~/u+ D and therefore 

, 2 d~ = A,/2 Uca(d~¢) - B + x/2 U'e,(d~) + D. (5.23) 

Defining y(d~ 2) = -(1/47r)x/2 U'a(d~ 2) and comparing with eq. (2.20) we see that we 
obtained the expected continuum limit and that the relation between the renormal- 
ized parameters  of  eq. (2.20) and A, B, D is given by 

= A~(___X )2 
/XZR+ARX+r/RX z A 2 \ A R - D  +BA~R. (5.24) 

For B = D = 0, F(u) in eq. (5.22) becomes a fixed point on the gaussian line of  
fixed points;  a comparison with eq. (5.12) gives 

B= D = O ~  A ~= - - ~ - c  . (5.25) 

For any A 2 (the sign of A has no meaning) which is acceptable, we have a 
2-dimensional manifold parametrized by B and D. When D ~ -oo with A, B fixed 
we go to the TFP. The parametrization of eq. (5.21a) can be used even if ~i <0 ,  but 
in this case also eq. (5.18) is applicable. This region of overlap of our two coordinate 
patches does not intersect the critical surface. For the purpose of constructing 
continuum limits zi, and hence B, need not be constrained to positive values. Taking 
D ~ - o e  with B = I / A 2 ( p - D ) D  (p and A fixed) eq. (5.22) goes into F ( u ) =  

fA(u)+½p, which is a point on the trajectory connecting the HFP  to the TFP. This 
relationship reflects the one noted in sect. 2 (see the discussion after eq. (2.26)). 
One cannot have A2< 1/(41r) 2 in eq. (5.22) if B =  D = 0  because of eq. (5.25) and 
the discussion after eq. (5.14). The field theory corresponding to B = D = 0 is scale 
invariant. 

In this section we have shown explicitly that all the continuum limits obtained 
in sect. 2 by the direct method can be gotten from our RG analysis. We are now 
prepared to discuss the BMB limit from both points of view and to try to identify 
the various sources of  the phenomena exhibited by the BMB limit. This will be 
done in the next section. 
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6. The Bardeen-Moshe--Bander continuum limit 

721 

BMB exploited the special properties of  the critical point P to construct a new 
type of continuum limit. The basic equation is (2.18) and is reproduced here for 
convenience: 

¢ W R ( Z + A Y z ( A ) ; A ) = l ( 4 7 r ) 2 ( A Y z ( A ) ) 2 ( 1 - 1 6 Y z ( A ) +  . .  . ) .  (6.1) 

A finite renormalized V~ is obtained when the dominating saddle solution of  eq. 
(6.1), Y z ( A ) ,  has the property that both sides of the equation approach finite and 
nontrivial limits as A -~ ~ for any Z. 

When ~ r >  ~¢--- (4~') 2, and I~'~ is renormalized in the perturbation theory way, 
the solution with A Y z ( A ) ~  y ( Z )  which was correct for "OR < "O¢, is no longer the 
dominating A ~ oo saddle and the perturbation-theory continuum limit is lost. This 
is true for some range of values for AR and /z 2 and in particular for AR =/x 2 = 0. 
The BMB limit is obtained by taking "OR~ "O~+ with AR =/~2R = 0 fixed. In the symmetric 
phase the value Z =0  in (6.1) is special since 2r~"n(0) is the mass of the vector 
particles. For "OR = "O¢+/5 with /5 > 0 small, the dominating solution to (6.1) with 
Z = 0  is Y z ( A )  = -1/5+O(/52)  giving a mass 

M = ¼7rA/5(1 + 0(/5)).  (6.2) 

Hence the mass can be kept finite as A -->co by taking/5 - 1/A .  When/5 is finite the 
branch of  solutions to (6.1) which gives the correct mass of eq. (6.2) will dominate 
also for small and positive values of Z. When Z is increased further however, the 
lower solution takes over and the derivative of the effective potential goes through 
a discontinuous jump. This can be understood with the help of the graphical analysis 

Uen(~c) is seen to be similar to the analysis in sect. 3. By eq. (2.13) the evaluation of ' 2 
of the vacuum in only that the parabola representing U~ in fig. 1 has to be shifted 
towards the left. For any value of ~b~> 0 the points of types A, B and C are all in 
the left-hand half-plane. When d~2c increases the point A is eventually replaced by 
C, causing the jump. The smaller 15 is, the smaller is the value of Z where the jump 
occurs. In the limit/5 ~ 0 the discontinuity in the derivative occurs at the origin and 
is vanishing small. Therefore, in the BMB limit, the derivative of the effective 
potential is given, for any nonvanishing value of the classical field, by the 'OR- 'oc 
limit of the perturbation theory result in eq. (2.21) with/z 2 = AR = 0: 

d ~'eff ((~2)2 ) 2 " n ' 2 ( ( ~ 2 )  2 . (6.3) 
d~b 2 +:#0 -- 2 ( 1 / ~ R +  1/x /~)  2 ~R~,7o 

However, at the origin we have 

d 2 

dd~2 i+~= ° , (6.4) 
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where m is arbitrary. The point ~b 2 = 0 represents the vacuum in the symmetric case 

we are investigating. The discontinuity of  the derivative of  "¢ea at the origin implies 
therefore that all 1PI Green functions of  4 fields or more diverge at zero momenta.  
This happens due to a massless O(N) - sca l a r  excitation which leaves only the 
two-point function finite because of the exact O ( N )  symmetry. 

BMB argued that the massless excitation plays the role of  a dilaton. Had we 
picked m 2 = 0  in (6.4) the theory would be scale invariant. When m 2 # 0  this 
invariance is broken. BMB view this breaking both as spontaneous (and hence the 
dilaton) and as a reflection of dimensional transmutation (the mass has been induced 
by a specific dependence of a dimensionless coupling (r/R) on the cutoff A). 
Regardless of  the interpretation the origin of  the massless excitation is clear: it 
appeared when a discontinuity in the derivative of  the bare effective potential was 
made vanishingly small and, at the same time, was pushed to the origin where the 
quantity in question is identifiable with the mass of  the O(N) -vec to r  particles. The 
points where this mass has a discontinuity that just vanished are all on the line g. 
At the point P we are also on t and therefore both the discontinuity and the 
individual values can be made to vanish. I f  the line g did not meet the region where 
the mass of  the vector particles vanishes, a continuum limit on g would represent 
a scalar field theories without any O(N) -vec to r  particles. In this theory one could 
make the scalars massless and scale invariance would be preserved. At P we can 
keep the O ( N ) - v e c t o r  particles at a finite mass even when the scalar mass vanishes 
and the BMB phenomenon is made possible. 

Our discussion until this point was from the point of  view of  the direct approach 
to the construction of a continuum limit. It was difficult to assess to what degree 
the two interpretations BMB give to their phenomenon are meaningful. The RG 
analysis we shall present below will show that unlike in the cases discussed in the 
previous section there is no one-parameter  RG trajectory representing the various 
masses of  the BMB continuum limit, but rather this limit is represented by a single 
point, the endpoint  of  the gaussian line of  fixed points (c = 0 in (5.12)): 

2 U*'(~b 2) = g(~b2), (6.5) 

g was defined below eq. (2.11). The various values for the mass do not come in as 
parametrizing possible RG flows but simply as a free parameter  in the solution of  
the field theory, a parameter  which represents the arbitrary expectation value of an 

order parameter  related to scale invariance. 
We proceed to show this explicitly by solving the theory defined by U* in (6.5). 

Eq. (6.5), strictly speaking defines U* only for ~bz<~ 1/2¢r 2 but the definition can 
be extended by analyticity, g(~b 2) is the inverse o f f  (eq. (2.11)), which by eq. (5.13) 
can be written as f = f A - ( 1 / 4 7 r ) ~ / u  where fA(U) is an analytic function. We define 
ff(tb 2) to coincide with g(~2) for q~2~l/27r2 and with the inverse of  f =  
fg  + (1/47r)x~uu for ~b 2 > 1 / 2 w  2. Setting 2 U*'(~b 2) = g(~b ~) a function is obtained which 
is analytic on the positive real axis but not at the origin. U*(cb 2) is sketched in fig. 6. 
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u*(@2) l/ 

og(@ 2 ) 

4,2: 

Fig. 6. Qualitative sketch of the potential corresponding to the BMB fixed point. 

The system represented by U* has, as usual, all UV divergences eliminated (i.e. 
momenta are bounded by unity), but is nevertheless a continuum theory. All one 
has to do to go to physical variables is to introduce A R ~, an arbitrary definition of 
the unit of length. We might worry that due to the divergence of U*(d~2), 
(6~o(1/12~r2) log (~b2)) the theory does not exist. This divergence is however 

cancelled by the centrifugal repulsion residing in the d~-functional integration 
measure. To see this enclose the system in a volume L3: 

1 
~(x )  = L-37 ~ ~ ~k" e i~ • (6.6) 

The logarithmic piece of U* contributes to the action the following term: 

f x,n[1 1 12~ "2 _~k~+ ~.. ¢ ~ k . ~ q e i ( k  q)x . (6.7) 
k ~ q  

The integration measure is ~Ik2<l ddl~ k. The possible divergence of the functional 
integral can be studied by checking what happens when we scale t b ~ ; t ~  with a 
very small A. From the action (see eq. (6.7)) we get a term - ( N L 3 / 1 2 7 r  2) In )t 2 and 
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from the measure we get 

L 3 r N L  3 

L d3k In A = 1--~2 In A 2 (6.8) N~k In A ~ N ~  3 2<1 

and hence the cancellation. 

We now go on to actually solve the model defined by U*. From eq. (2.13) we get 

I 2 Uen(&c) = U*'(x + the) --- ½~(x + gb~) = ½g(x). (6.9) 

For ~b~ = 0 the last equation is an identity satisfied by any 0 < x ~< 1/2~r 2. g(x),  the 
mass, is therefore arbitrary, varying between 0 and oo. For tb 2 > 0 only one solution 
exists in the range 0 < x ~< 1/27r 2 and it satisfies ~ + tb~ > 1/2rr 2. The value ~---g(~), 

f ( g )  = f ( ~ )  + ~ ,  (6.10) 

t 2 implying (1/2~-)x/g= ~b~ or Uen(tbc)= 2~'2(d~2) 2 in agreement with eq. (6.3). Note 
that rescaling by A R has no effect and therefore our model is scale invariant. Our 
analysis has established explicitly the equivalence between the BMB continuum 
limit and the theory governed by U*. 

We would now like to explicitly identify the dilaton. For that we write the path 
integral at the BMB FP in polar coordinates: d~(x) = p(x)l~(x) with l~2(x) = 1 and 
p(x)>0. 

f [ d " ]  [ p N - ~ ]  e-N I[;%'P)~+~'P~(°- n)2+ v*~p~)l . (6.11) 

The variables 5n (6.11) are analogous to those used in sect. 4. We shall identify p 
with the dilaton field by showing that po, the vacuum expectation value of p, is 
arbitrary. The l~-field is a Heisenberg field with an inverse temperature given by 
p~N. One can integrate over 11 at infinite N using the saddle-point approximation 

f [dl~] = e NL~(po~ , 
e-(1/2)p2N I(a a)2 

2 1 f °°~ W(po)=~ dtg(t)-½1og(p~). (6.12) 
1 / 2 7 r  2 

In eq. (6.12) we used the fact that for p(x) = Po the sharp momentum cutoff on the 
~ ( x )  variables applies to l l (x) .  Comparing with eq. (6.9) we see that W(po 2) cancels 
against Uefr(p~) and the measure term as long as 0<po2<~1/2~ -2. Hence Po is 
undetermined in this interval, p2 = 1/27r2 corresponds to a massless l~(x) because 
it is the value for the large-N critical temperature of  the Heisenberg model with 
sharp momentum cutoff, p~ + 0 obviously makes the O(N)-vec tor  particles infinitely 
massive. The allowed range of Po spans all possible values for the vector mass. 

Our analysis has established the appearance of a finite mass for the vector particles 
in the BMB continuum limit as a reflection of  spontaneous scale-invariance breaking. 
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The dilaton associated with the breaking is the massless excitation of the field p(x). 
p(x) couples directly to (0~,l'l) 2 as it should. Our RG analysis however implies that 

the mass which appears  in the continuum model is not to be associated with a 
location along a renormalized trajectory and hence unlike BMB we do not view the 
phenomenon as an example of  dimensional transmutation. 

This then implies that the endpoint of  the gaussian line of  fixed points is not 
special f rom the RG viewpoint. The special phenomena occurring there result from 
the ability of  the infinite-N theory to have a nonanalytic relationship between the 
interaction and the Green functions even with a finite UV cutoff present. Hence, 
there is in our opinion, no reason to expect these phenomena to survive to finite N 
this implying in turn that the question of the existence of a UV nontrivial ((b2)33 
interaction at any finite N is as open as it was before the BMB discovery. 

Our analysis of  the BMB FP would be incomplete if we did not explain the source 
for the different values for the critical exponents u obtained in sect. 3. We turn now 
to this issue. We feel that a discussion of the exponent a also would be superfluous. 
The problem is to explain why at P the relation u = 1/yo, where Yo is defined in eq. 
(5.21b), is violated. It does hold everywhere else in the critical regime. 

We first review the general considerations which lead to the relationship between 

v and Yo- 
Any potential parametrized by fi, hi, b2 . . . .  as in eq. (5.21a) will lead to a mass 

m z (we discuss only the symmetric phase): 

F(u)=fA(u)+ ~ b,,(u-a) ('-')/2, 
n = l  

m 2= h(fi, b,, b2 . . . .  ) .  (6.13) 

Under Rsm2-* s2m 2 by definition and on the basis of  eq. (5.21b) we get 

m2= ~h (1, ~ ,  b2, b3~/-fi, b4~ . . . .  ) .  (6.14) 

Suppose now that we start with 

2 U'(4) 2) = / x [ +  r/R(~b2) 2 , 

~ F ( u ; / z ~ ,  'r/R) = fA(U) "b 
n = l  

a(~,~, ,~.) = ~ ,  

/ 1/4~R for n = 2  

b--.(/~ 2, T/R)=~0 for n =2k,  k ~ 2  

[.B2k+~(/~ 2) for n = 2 k + 1 ,  

2 k 1 B2k+I(tZR)Z = 
k=o 2'n "2 

& ( t . L  ,7~)[~- a ( ~ ,  ,7~)] (°-')/~ , 

k~>0, 

----fA(/X~+Z) for any Z .  (6.15) 
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From (6.14) we get 

m 2 = ~ h ( 1 , _  1 tan_ll/~Ri ' 1 , 2 ) 
27r 2 ~ R  Ba(~R)/~R,--. • (6.16) 

I f  the function h in (6.16) has a finite limit as /XR--~ 0 we obtain 

M 2 ~ / , Z h ( 1 , 0 ,  ~1 , 0 , 0 , . . . ) ,  (6.17) 
,/OR 

and the expected value of  u. It is easy to compute h in (6.17): for ti = 1, b2 = 1/x/~--~R 
and all other b, 's  vanishing the mass is equal to the value of  the function inverse 
to F ( u ) - f ( u )  at the origin: 

: : 

(The minus sign had to be picked because the value 0 is attained on the lower 
branch.) With (6.18) we get in (6.17) 

1 M 2 2 (6.19) 
~*"1 - , 7R/ ,7o '  

and we see that the formula breaks down when r/R~ rlc- For r/R = r/c the arguments 
of  h in (6.17) define, via (6.13), a function F whose inverse diverges as 1/(+2) 2 at 

the origin. This means that when tb2--* 0 very large values of  u become important 
and the neglect of  the small terms b3x/u, b4~ . . . .  in (6._14) is, a priori, unwarranted. 
A straightforward analysis shows that only the b3x/fi term has to be kept when 
computing the value of h in eq. (6.14). One finds that h diverges and satisfies the 

following equation (at rtR = rtc): 

1 /-£R h = O( / -~ ,R)  , [-Z R "-~ 0 • 

8 7r~/h 2~  2 

h ~ (  4---~) 213 . (6.20) 
\/d,R/ 

Together with eq. (6.17) this gives M 2~ ( ~ ) 2 / 3  in accordance with sect. 3. 
Had we started with a U' with r/R > ~c, U's would have developed, at some finite 

S, a discontinuity at some ~b 2 > 0. The result of  eq. (6.20) comes about by pushing 
the discontinuity to 02 = 0. It is clear that the mechanism operating here is of  the 
same origin as the mechanism used to obtain the BMB continuum limit. This is 
strictly an N - - o o  mechanism because only at infinite N is it impossible to claim 
that the integration over the fields in a finite momentum shell, that is the action of 
Rs with a finite S, is an analytical mapping in the space of hamiltonians. The N -- 
limit might, and in our case does, induce some nonanalyticity. 

We expect therefore that the phenomenon would disappear  at any finite N. We 
expect that the situation at infinite N would reflect itself in the appearance of a 
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crossover-type of behavior, with m 2 -  (/z 2) ~' for small /x 2 (but not too small) going 
over to m 2 -  (/x2) ~2 (u2 ~ ~l) when/z  2 becomes even smaller. 

7. Summary 

This paper  presented a study of the various continuum limits of (~2)3 at N = 
with special emphasis on the BMB phenomenon.  A complete analysis of  the phase 
diagram in the three coupling model showed that the BMB phenomenon occurred 
because the tricritical line ended at the same point where a liquid gas lsing type 
transition did. Thus the critical regime on the /Z2R = AR= 0 line becomes a closed 
segment one of its ends being the BMB point. The RG analysis showed that this 
segment flows pointwise into a one-dimensional set of  fixed points. This set was 
also closed. A by-product  of this analysis is an extension of the BMB phenomenon 
to arbitrary potentials. The fixed point corresponding to the BMB critical point is 
the endpoint  of  the above mentioned line of fixed points. This is a peculiar point 
because in any vicinity of  it there exists an interaction on which the action of the 
RG transformation becomes nonanalytic after a finite amount  of  evolution. It was 
argued that both the meeting of the critical lines in the three coupling space and 
the above-mentioned peculiarity of the fixed point are phenomena which occur only 
because N - -  ~ .  Because of that we conjecture that the BMB phenomenon,  in the 
sense that it predicts a new type of fixed point, will disappear at any finite N. The 
expected relic of  the N = ~ situation is that for very large N, a regime where strong 
crossover phenomena  between Heisenberg-like and Ising-like critical behaviors 
O c c u r .  

In the course of obtaining the above results we elucidated (at N = oo) the difference 
between continuum theories which are renormalized perturbatively and those which 
are not. 

We also initiated an investigation on the lattice. In this paper  we analyzed only 
the strong coupling limit of  the three coupling model. The resulting vacancy-spin 
system was used to develop an understanding of the mechanisms which cause the 
gross features of  the phase diagram and also provided an estimate for a lower bound 
on N, ~r. Only for N /> /V can one hope that the BMB phenomenon survives and 
even this seems to us very unlikely. 

One natural question to ask is what the 1/N corrections are. We have not 
investigated this question in detail but we suspect that, whenever we are in the 
vicinity of  the l iquid-gas second-order point the 1 / N  expansion, which is essentially 
a mean field expansion, would break down because of the infrared divergences one 
expects in 3 dimensions. At the liquid-gas second-order transition point the para- 
meter N plays a rather artificial, loop counting, role*. As the BMB phenomenon 
is related to a meeting of the two critical regions the question whether the BMB 

* This is very different from the O(N)-spin second-order transition point. 
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p h e n o m e n o n  surv ives  to f in i te N canno t ,  p r e s u m a b l y ,  be a n s w e r e d  by c o m p u t i n g  
1 / N  co r rec t ions .  

A s u m m a r y  a c c o u n t  o f  par t  o f  ou r  f ind ings has a p p e a r e d  in ref. [14]. 
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