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We study a model of planar random surfaces based on gaussian imbedding of simplicial 
lattices in a D-dimensional space. The model is shown to be equivalent to a planar ~3 theory with 
exponential renormalized propagator for any dimension D. Scaling laws are derived and estimates 
for the exponents 7 and ~ by strong coupling expansions are obtained. The results differ from the 
predictions of mean field theory. ~t depends on D and is probably zero for D = 4. The Hausdorff 
dimension is large (greater than four) but finite. The correlation length diverges at the critical point 
and the two-point function does not correspond to a free field theory. In general hyperscaling is 
not satisfied in such models. 

1. Introduction 

Models of random surfaces have raised great interest in the last few years, and 
should play an important role in many areas of theoretical physics: interface physics, 
lattice gauge theories, large-N limit of gauge theories, strings models, quantum 
gravity, etc. A lot of models have already been proposed and studied, but it is not 
clear, at least to the author, whether there is one, or many (possibly an infinite 
number) universal classes of random surfaces, what their critical properties are, and 
what their respective relevance to the problems mentioned above is. 

Models of planar non-interacting surfaces made of plaquettes of an underlying 
hypercubic lattice in D-dimensional euclidean space [1-7] have an Hausdorff 
dimension d H equal to four (for any D >/2) and correspond to a system of branched 
polymers [8] (see also the models of [9]). On the other hand, other surface models 
predict an infinite Hausdorff dimension: this is the case for the continuum model of 
[10] (at least for D = + o¢), for the Polyakov string model [11,12], and for the 
models of [13,14]. Most of these results have been obtained either by mean-field-like 
arguments, by computer simulations, or by combinations of rigorous analytic 
techniques and of numerical studies. The purpose of this paper is to study a new 
model of planar random surfaces, which has recently been proposed in [7,15]. This 
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model, which will be properly described in sect. 2, is obtained by considering all 
possible triangular lattices (with the topology of the sphere $2) and by imbedding 
these lattices in D-dimensional euclidean space E D with the simplest weighting 
factor: a gaussian one for each rink of the lattice. This is a natural generalization in 
two dimensions of the gaussian chain model for polymers and, in some sense, a 
discrete version of the Polyakov string model. This model bears also a close 
similarity to the models for gauge theories introduced in [16] (see also [17]). As we 
shall see, this model has very interesting features and exhibits a non-trivial (i.e. 
different from mean field theory) critical behaviour. 

In sect. 2, we introduce our model, define the partition function, the N-point 
functions, and the critical indices. 

In sect. 3, we present some (rather elementary) analytic results. First it can be 
shown that our model is equivalent in any dimension D to a planar ~3 theory with a 
(renormalized) exponential propagator, and therefore that it is also closely related to 
planar scalar field theories (this relationship was already shown for D = 0 in [15]). 
Second, we show that if the correlation length remains finite at the critical point, 
then the Hausdorff  dimension d H of the surface is infinite and its mean square 
extent grows like the logarithm of its area. On the contrary if the correlation length 
diverges, assuming that standard scaring holds, we derive scaling relations between 
the critical indices "y, p, ~/ (to be defined later) and the Hausdorff dimension d R. 

Sect. 4 is devoted to numerical studies of the model by techniques of strong 
coupling expansions. We first describe how the strong coupling series are con- 
structed and what the observables considered are. Then we analyse the series up to 
order 8 for the mean area and the mean-square extent of the surface and give 
estimates for the corresponding exponents ~, and u for various values of the bulk 
dimension D. A ratio method and differential approximants have been used. Our 
results show, provided that usual scaring holds, that the correlation length diverges 
and are different from the predictions of mean field theory. 

Finally in sect. 6 we discuss open problems and draw conclusions from our study. 

2. The model 

2.1. D E F I N I T I O N  OF THE MODEL 

Our model consists in imbedding, with a certain weight, in the D-dimensional 
euclidean space E o all possible simplicial lattices (i.e. made of triangles glued along 
their edges) vdth the topology of the 2-sphere S 2 (i.e. an orientable surface with 
genus g = 0). Although one can consider different topologies, in this paper we shall 
consider only such planar closed surfaces. Problems associated with the inclusion of 
other topologies will be discussed later. More rigorously, we use the language of [7] 
and define a lattice S as an equivalent class of triangulations of S 2, i.e. the set of all 
triangulations of S 2 which are equivalent by isomorphism of S 2. In the following we 
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shall denote  

v(S) = (set  of vertices of S} 

£ ( S )  = {set of lines of S} 

t(S) = (set  of  triangles of S} .  (2.1) 

In  general,  such a lattice S may  have a non-trivial  group of symmet ry  g s, the 
group  of pe rmuta t ions  of  lines and vertices of S which leaves S invariant,  i.e. which 
does  not  change  the class of the corresponding triangulations, and preserves the 

p l ana r  s t ructure  of  S. We will denote  

C(S)  = order of  gs .  (2.2) 

In  order  to exclude some singular configurations,  we shall introduce some restric- 
t ions on the lattices S. We shall call a n / - l o o p  a set of l distinct lines { a 1 . . . . .  a t } in 

£ ( S )  which fo rm a closed loop in S. Then we consider 

S O = (latt ices S (with the topology of S 2))  

S~ = (latt ices S with no 1 loops} 

S 2 = (latt ices S with no 1 and 2 loops}* .  (2.3) 

We  now define an intrinsic metric on each lattice S by  assigning the same length 
( =  1) to each line of S, that is by considering the triangles to be equilateral. 
There fo re  to each vertex i ~ v(S) is associated an element  of  area a i (the discrete 

ana log  of v/-g): 

i N  (2.4) a i ~  3 i '  

where  N i is the number  of triangles (or of  lines) which meet  at the vertex i. The  total 

intr insic area  ISI of  S (fsx/-g) is 

ISI = ~ oi = number  of triangles in S .  ( 2 . 5 )  
i ~ v(S) 

The  intrinsic curvature  is concentra ted at the vertices, and is equal  to the deficit 
angle. The  curvature  R i at vertex i is therefore defined as 

(6  - iV,) ( 2 . 6 )  
Ri= rr Ni 

* S 2 is analogous to the notion of skeleton surfaces of order 2 defined in [7]. 
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The total curvature [R[ ( f s l / ~ R )  is from Euler formula 

IR I = ~ o i R  i = 4rr. 
v(S) 

From (2.4) and (2.6) the total curvature squared ( fv /gR 2) is 

IR2I E 2 _ 3~r2E (6 - N/) 2 
= o i R  i - -N- i • 

v(S) i 

(2.7) 

(2.8) 

In a second step we now imbed the lattice S in E n. We choose the simplest 
imbedding by assigning a gaussian weight to each line of S. More precisely, we 
assign a position X~ to each vertex i of S and define an action A(S, X)  as 

A(S, X)= E (X,- Xy. (2.9) 
lines (i, j ) 

~£(s) 

In order to integrate over all possible imbeddings we have to define a measure 
d/~(X), which may a priori depend on the surface S. In a discrete analogy with the 
continuum functional measure for a scalar field on a curved two-dimensional space, 
which is the one which allows one to recover the correct conformal anomaly [18], 
D [ ~b ] = l-I x d[ I g (x )  11/% (x)], we choose 

d/~,(X~) = 1-I d(o:/2X~) ~- Oi D / 2  d ° ( X ) .  (2 .10)  

Physically this choice of measure means that we assign a large weight in the 
functional integral to vertices i with large volume element o, on S. 

The action (2.9) has a zero mode, associated to translation invariance. It is 
eliminated by fixing the position of the center of gravity of the surface: 

1 
X~ = ~-~ ~_~ oiX i . (2.11) 

v(S) 

With all the previous definitions the partition function z of our model is 

z ( f l ,  ot) = s~$2 C--~S)e-(fllsl+~la2l)fv(~Is ) d # ( X i ) 3 ( X o ) e  -A(s'x). (2.12) 

This action has two terms. A term depending on the intrinsic geometry of the surface 
BISI +aiR21 and a term depending on the imbedding A(S,X).  The coupling 
constants fl and a play the role of a bare cosmological constant and of a 
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higher-derivative coupling respectively. The symmetry factor 1/C(S) has to be 
introduced because in general there are many different ways of constructing a given 
simplex by gluing indiscernable triangles [15], or equivalently, because riemannian 
metrics with isometries are singular points in the space of all possible metrics on a 
given manifold. 

In some sense, this model is a discrete version of the Polyakov string model, or of 
two-dimensional gravity coupled to a massless free scalar field, which is here the 
D-components field X. The coupling constant a has the dimension [mass]-2 and is 
expected to be irrelevant. Indeed as we shall see the critical properties of the model 
do not seem to depend on a, which has been introduced in the action for numerical 
reasons and to test the dependence of our results in the exact form of the action. The 
relevant variable is of course 13, which has the dimension of a [mass] 2. As we shall 
see, there are analytic and numerical evidences that the partition function (2.12) 
exists for/3 large enough and becomes singular at a critical coupling/3c- 

2.2. CORRELATION FUNCTIONS 

Similarly to strings models and other surface models, we define the N-point 
function GN(x 1, xN) by restricting the sum (2.12) to surfaces whose some of the 
vertices coincide with the points x~... xN: namely 

1 e(BiSl+alR21) GN( Xl...X,,)= E-b- 
s 

] x f VI dl~(X,)e-A(s,x)I-  ] ~_, o jS(Xs-X, ,  ) . (2.13) 
~ V (S )  a=l  [ j~v(S) 

Of particular interest is the 1-point function, which corresponds to the partition 
function of a surface attached to one point X in E n, which is by translation 
invariance independent of X, and is equal to 

= - ~-~--~z(/3, a ) ,  (2.14) G I ( X )  

and the two-point function G2( X 1, X2) = G2( X 1 - X2). 
Since the integration over X is gaussian in (2.12) and (2.13), it is of course easy to 

integrate explicitly over the X's. The action (2.6) may be written as 

A ( S , X )  = E x in iyx j ,  (2.15) 
i,j~v(S) 

with 

t - 1 if i :g j ,  i, j belong to some line £ of S 

D i j =  , I N / =  3o~ if i = j  
otherwise. 

(2.16) 
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Then we have 

f ~(VIs)d~ (x,)e A(s'x)6(XG)=[~rl-LdetL-1D] -D/2 
L (2.17) 

where de tL_ tD  means the determinant of any of the minors of D, i.e. of the 
submatr ix  ( L  - 1) × (L  - 1) of D obtained by removing the line i and the column i 
of D for any i ~ (1, L ) ,  where L is the number of lines of S. The fact that detL_~D 
is independent  of the fine i removed is a trivial consequence of the existence of the 
zero mode. The matrix D is related to the matrix elements of the scalar laplacian 
- A  s on the lattice S by the relation 

( -- A S) ij = °i- 1/2Dijoj- 1/2, (2.18) 

and one can check the relation 

d e t , _ l D  d e t , ( _ A s  ) 1 (2.19) 
I--I o, ISI ' 
v(S) 

where d e t ' ( - A )  is the product of the ( L - 1 )  non-zero eigenvalues of --A. Let us 
note the additional factor 1/ISI where ISI is given by (2.5), which is the contribu- 
tion of the zero mode of the laplacian [14]. Therefore we have 

1 e_(BlSl+alR21) [ ] Z(~ ,  a)  : E ~ ,ffS/2+l de t ' ( - -As )  0/2 
s ISl 

(2.20) 

For  the correlation functions it is better to consider the Fourier transform 

GN( Px... PN) = f dDXae'X°e°Gu( X1. .. XN). (2.21) 

One obtains for each lattice S a sum over the functions from (1 . . . . .  N } in the set of 
vertices of S, ( a  -+ i(a);  a = 1, N}:  

GN(P1.. .PN)=(2cr)D~D(~a Pa)~s c--~e-(BlSl+alRZ') 

× E 
i a---~i(a) 

,.ff ISI/2 + 1 det '( - A s) 
IsB ] 

e P,~,JPs Oi(a ) , 

(2.22) 
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where the D-dimensional vector P~ is defined as 

ei = E ~i,i(a)" ea,  
a 

(2.23) 

and where the matrix elements ~ q  of the matrix 2: are given by 

~ i j  = 1 1 ola,, 1 
Dt~ + - -  

k ij k 

(2.24) 

2 is the inverse of - 4 A  in the subspace generated by the eigenvectors of - A  with 

non-zero eigenvalue. 
From (2.20) and (2.22) one sees that the bulk space dimension D may easily be 

extended from positive integer values to any real or complex value. 

2.3. CRITICAL BEHAVIOUR AND CRITICAL INDICES 

Since the total area ISI of a lattice is always an even integer ISI = 2n, the 
parti t ion function z( /3)  and the correlation functions may be written as a power 

series in the variable e -2t~ = v: 

z(/3) = •v"a,(a, D). (2.25) 
r l  

In our case the series starts at n = 2, which corresponds to the tetrahedron lattice. As 
already mentioned, the series (2.25) is expected to have a finite radius of conver- 
gence, and therefore to define an analytic function of/3 in the half-plane Re/3 > tic. 
At the critical coupling /3c the partition function and the correlation functions 
become singular, and one is interested in their critical behaviour as/3 --,/3~. 

In analogy with other models, we shall consider the susceptibility X defined as 

x = f d XG (X)= - = a2 (2.26) 

It is related to the mean area of a surface fixed to some point X 0 by one of its 

vertices, ( I S I ), by 

The exponent 7 of X is related to the large-order behaviour of the series (2.25), 
which is expected to be of the form 

a ,  - B . A " n  v - 2 ,  (2.28) 
?l  ~ ¢:0 
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where A = e-2ao. Then the singular part of X at tic behaves as 

X(fl  ) - (fl - tic) -~ (2.29) 

In particular we see that if ~, is positive the mean area { I SI ) diverges at the critical 
point and if "/ is negative the mean area remains finite at tic. 

Other critical indices are associated to the two-point function which is expected to 
have an exponential decay at large distances: 

G 2 ( X  ) - e -m(B)lXI . (2.30) 

At the critical point, the mass gap r e ( r )  may or may not vanish. If it vanishes, the 
exponent  1, is defined as usual by 

m( fl ) /~,¢c( fl - flc)~, (2.31) 

and for fl close to tic, so that m << 1, one expects that the two-point function has a 
scaling form for 1 << IXl: 

G2(X ) -  ]Xt 2-D ne-lXl"(~), (2.32) 

which defines the "anomalous dimension" ~. 
Another observable is the mean-square extent (or gyration ratio) of a surface S, 

_~2. Given a surface S it is defined as the average distance between two vertices of S: 

-- 1 E oioj ( Xi  -- X j  ) 2 
"~s2- IS] 2 i,j~v(S) 

ISI2 fd~(X)e A~s'x~(X~) 

where the bar ( • ) means the average over the imbeddings of S with the weight 
(2.12). We consider the generating function z22(fl) defined by 

Ii J = . ~ )  (2.34) z2~(fl) ~s C--~ e-Blsl+"lR2' de A s  -D /a (  . 

It is expected to have a series expansion in v of the form 

z~2(fl) = Zv"b , ,  b, -- O t A n n  ~''-2 . (2.35) 
n 
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Let us consider the quantity b, /a , ,  where a~ is the term of order n of the series 
defining z(fl).  This is nothing other than the average mean-square extent of surfaces 

S with f ixed area [ S I : 

~2(151 ) = b~, 2n = ISI. (2.36) 
an 

The Hausdorff  dimension dri of the surface is defined by the large I S I behaviour of 
this quantity, namely 

~2(151) - I S I  2/dH, (2.37) 
isi--, oo 

and is another critical quantity. We obviously have 

2 (2.38) d H = y, - y 

3. Some analytic results 

3.1. RELATIONSHIP WITH SOME PLANAR FIELD THEORIES 

There is a deep relationship between the models defined in sect. 2 and some 
planar field theories. This fact has already been noticed in zero dimensions (D = 0) 

in [15]. 
Let S be some simplicial lattice as defined in subsect. 2.1 and S be the dual lattice 

of S, i.e. the lattice obtained by associating a vertex 7 to each triangle t of S and 
connecting by a line .~ the vertices corresponding to adjacent triangles. Each S is a 
graph of a planar if3 theory and it was shown in [15] that in zero dimensions the 
contribution of S in (2.12), which is simply I /C(S) ,  is precisely the contribution of 
the graph S in the expansion of the vacuum energy of the ~3 planar theory. More 
precisely, a lattice S belonging to g o, gl or S 2 respectively is unequivocally 
associated to a general diagram of a ~3 theory, to a diagram without tadpoles 
insertions, or to a diagram without tadpoles and self-energy insertions respectively 

(see fig. 1). 
We show here that, up to some probably irrelevant terms (associated to the a i r  2 I 

terms and the measure in (2.10)), this equivalence holds for any dimension D. The 
surface models defined in sect. 2 are equivalent to a planar ~3 theory with an 
exponential propagator. The proof goes as follows. Let us consider the diagrams 
generated by the following action: 

S = f d°  x Tr( eo e-'~eo ) + - ~  Tr( e03 ) , (3.1) 
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(a) 

(b) 
Fig. 1. A planar lattice S (a) and the corresponding dual lattice (b). 

where q~(x) is an N x N hermitian matrix. In the limit N --* oe, they correspond to 
the diagrams S dual to the lattices S considered in sect. 2. Since the propagator is 
exponential 

D ( X -  Y) = e - ( x -  r)2, (3.2) 

the corresponding Feynman integral I~ is convergent for any dimension D and is 
related to the determinant of any (h - 1) X (h - 1) minor of the matrix D defined by 
(2.16): 

I~ = [det ~,_ 1Dg ] - D/2 (3.3) 

h = I SI  is the number of vertices of S. Now we use the well-known relation giving 
the determinant of minors of order 1 of the connection matrix D6 of any graph G, 
defined by (2.16) 

de t ._  1(DG) = number of trees on G,  (3.4) 

where a tree T is a connected set of lines in G connecting all the vertices of the graph 
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G and without any internal loops [19]. Now, given some tree T on the lattice S, its 
complementary "F, i.e. the set of lines which joins the centers of adjacent triangles of 
S and which does not cross a line of T, is a tree of the dual lattice S. Indeed, if ~" is 
disconnected then T has internal loops and if T has internal loops, T is discon- 
nected*. Hence the number of trees on S is equal to the number of trees on S and 
therefore the amplitude associated to the graph S is equal to the amplitude of S. 

Thus the only difference between the planar theory (3.1) and the surface model of 
sect. 2 lays in the additional term 

I-I o, n/2 × e-~lR~l- (3.5) 
i E v(S) 

This term can be expanded in terms of the local curvature R~ given by (2.6) 

1-I exp(o , [¼Dlog2+ D ( l o g 2 - 1 )  ] 
iev(S) ~ 4~r R ' - ( 8 - ~ + a ) R 2  + " ' ) "  (3.6) 

The first term is a simple shift in r ,  the second one is a topological invariant and has 
no effect, the other ones are proportional to IR21, IR31 . . . .  and are expected not to 
change the critical behaviour at the transition. 

Hence we expect that in any dimension D, the surface model of sect. 2, defined 
from the set So, is equivalent, at the transition point tic, to a planar @3 theory 
regularized with an exponential bare propagator, and that the surface model defined 
from the set S 2 is equivalent to a planar d? 3 theory with an exponential renormalized 
propagator. 

3.2. S C A L I N G  R E L A T I O N S  

We now derive standard scaling relations in our model. Let us consider the 
two-point function G2(X ). Its Fourier transform G2(p) is given by (2.22)-(2.24) 

(~2(P) = E C----~ e alSlas E o, aj e p:z'j (3.7) 
S ~ S  2 ( i , j )  ~v(S) 

where ~2,j is defined by - ~ i j  if i ~ j  and is set to be zero if 
contribution of S to the partition function: 

i=j .  a s is the 

as = e-~lR21( ~rlSl/2 + , det'( - A s) ) - D/2 
ISl 

(3.8) 

All the Zij are >/0 and therefore, provided that Rep 2 > 0, 

G, = (~2( + 00)~< G2(p2) ~< ~2(0 ) =X.  (3.9) 

* This  ho lds  o n l y  if  S is planar.  
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For any euclidean momentum p the two-point function has the same radius of 
convergence G = e-2ac as the partition function (incidentally this shows that there 
are no tachyons as long as/3 > tic). The terms of the expansion of ~:(p2) ,  

1 ~ 2 ( p 2 )  = ~.~ Vnan(p2) ,  (3.10) 
n = 2  

are expected to behave for large n as 

a , (p  2) = B(p2)A"nV(P2)(I+...), (3.11) 
n ---~ OO 

where A = e 2Be does not depend o n  p2 .  Since G2(0) = X, 

7(0) = 7, 7 ( +  oo) = 7 -  1. (3.12) 

For p2 < 0 the radius of convergence of (2.10), Vc(p2), may be smaller than Vc, and 
must decrease with p2. Hence for v fixed G2(p 2) is analytic in p2 as long as 
p2 > p~, being given by the equation Vc(PZc)= v. Therefore p~ is nothing other than 
minus the square of the mass gap m of the model (see fig. 2): 

V=Vc(p2)com2(v)= _p2. (3.13) 

C 

-rn~ 

-mZ(v) 

ip2 

V 
I 
I 
I r/ 

/ 
Fig. 2. The analytic structure of the two-point function in the (Re v, Rep 2 ) plane. 
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We now consider the behaviour of G 2 as/3 ~ fie" The mass gap re(v) decreases as 
/3 increases and goes to a critical value m~ at/3~. There are two possibilities. 

(i) m~ > 0 

The correlation length remains finite at the transition. Then the radius of 
convergence of G2(p 2) remains constant for - m ~ < p 2 < 0  and the large-order 
behaviour (3.11) still holds. The generic situation is that the index ,/(p2) depends 
smoothly on pZ (unless there is some cross-over between ,/ and a subdominant 
index). Then the general term of the series OCrz(p)/Op 2 behaves as 

O =A.BnV O___O__71nn, 
Op 2an Op 2 

(3.14) 

but OG2(p2)/0p21v= o is simply related to the generating function z~2(/3) (2.34) by 

- 2 D  O G2(P2) p=O = ~s ~ 1  e-alSlaslS[27,~ = O/J~---~-z0~z~2(/3)" (3.15) 
Op 2 

Hence the mean-square extent of a surface with fixed area (2.36) behaves for large 

ISI as 

= - 2 9  -z-~0~y(p 2) In ISI. (3.16) 
X'2([SI)lSl-'~ dP ~ p=0 

Such a logarithmic behaviour indicates that the Hausdorff dimension of the surface 
is infinite and has already been obtained in other surface models [13,14]. 

(ii) m c = 0 
The correlation length diverges at tic and we have real critical behaviour. If we 

assume that the two-point function has the scaling form (2.32) close to the critical 
point, then the singular part of G2(0) is given by the large-x behaviour of G2(x): 

~2(o) = f d°xG2(x) 

- Im(B)l n-2 - (13 -/3c) ~(n-z). (3.17) 

Since  a2 (0 )  ~- X we obtain the standard scaling relation 

y = v(2 - 71). (3.18) 
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We may  repeat  the same argument for 

0 
Op 2 - - 4 2 ( 0  ) ~--- fdOx Ix2pO2(x) 

-- ( ~  -- t ic)1'O1-4)-- ( f l  --  K )  y-2~, ( 3 . 1 9 )  

But from (3.15) and (2.35) it should behave also as (fl - tic) ~' and from (2.39) we 
get the relation 

1 
l ,=  d--n' (3.20) 

which relates 1, to the Hausdorff  dimension d H as  defined from the mean square 
extent, and shows that for our model this definition coincides with the definition of 
[6,7]. 

4. Strong coupling analysis 

4.1. CONSTRUCTION OF THE SERIES 

We now present an analysis of a strong coupling series of the model constructed 
above. In the following we shall always deal with the model defined with lattices of 
the set $ 2 (2.3), i.e. lattices without 1 or 2 loops. This restriction is only for practical 
and numerical reasons; results of other models will be presented elsewhere. 

As we have seen, the observables of the model are defined as a series in the 
parameter  v = e -2#, the term of order v n being a sum over surfaces S with area 
ISI = 2n. In order to construct the first terms of those series, we have first to 
enumerate  all surfaces with fixed area and then to compute the corresponding 
observables, which are obtained (for the partition function and the N-point func- 
tions) f rom the computation of the determinant of the laplacian A s and of the 
matrix elements of its inverse ~/. 

Although the surfaces S of S 2 may be constructed directly [16], we have found it 
more  convenient and efficient to construct first their duals S, which are, as seen in 
subsect. 3.1, Feynman diagrams of a ~3 theory (with no tadpole and self-energy 
insertions). Indeed these diagrams may be enumerated by simply using the 
Schwinger-Dyson equations of the planar ~3 theory, which take a simple form [20]. 

Rather  than considering connected vacuum graphs (which generate the partition 
function), we will generate the graphs of the three-point irreducible function 
F3(X 1, X 2, X3) of the theory. Indeed, since tadpoles and self-energy insertions are 
forbidden, the derivative of the vacuum energy Eo(g ) of the planar q~3 theory with 
respect to the coupling constant, which generates the diagram dual to - a z ( f l ) / O f l  
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Fig. 3. Diagrammatic representation of eq. (4.1). 
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(i.e. the diagrams duals to z( f l )  with a weight ISI/C(S)), is related to/"3 by 

g._~gEo(g = gf dnXldnX2dnX 3 D ( X 1 ) D ( X 2 ) D ( X a ) F 3 ( X x  ' X2 ' X3), (4.1) 

where D is the propagator (here D ( X ) - e  -x2) (see fig. 3). From the three-point 
irreducible function we generate the diagrams of -Oz(f l ) /Ofl ,  with the correct 
symmetry factor. 

The three-point irreducible function is constructed recursively by applying the 
Schwinger-Dyson (SD) equation, and can be constructed at order l from the p-point 
irreducible functions at order l ' <  l. The SD equations are easily written in a 
graphical way. Any planar p-point irreducible graph G with l loops may be 
decomposed in a unique way* into a chain of planar irreducible graphs G1. . .  G, 
with respectively Pl .--Pn external legs and l l . . .  In internal loops with the con- 
straints 

Pl + " '" +P , ,=P + 2 n - l ,  

l 1+ . . .  + l . = 1 - 1 ,  

Pi>l 3, I i>t O, n >~ 1 (4.2) 

(see fig. 4). Iterating this decomposition up to l = O, where only the vertex with p = 3 
survives, we can construct in this way all planar p-point irreducible diagrams. 
Moreover, the symmetry factors are automatically obtained in that way, since a 
diagram with a factor I SI/C(S) (which is always an integer) is constructed I SI/C(S) 
times. 

We have written a computer code which constructs all irreducible diagrams of the 
qb 3 theory, i.e. all possible "trees" of partitions of the form (4.2) (see fig. 5). In table 
1 we have represented the number of such diagrams (with 3 external legs) as a 
function of the number of loops, and the area of the corresponding surfaces S, as 
obtained from the exact result [21] given by the O-dimensional planar ~3 theory. 

* With a given labelling of external legs. 
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1 

Fig. 4. Decomposition of a P-point irreducible graph of a ~3 theory (without tadpoles and self-energy 
insertions) in terms of a chain of irreducible subgraphs, as given by (4.2). 

Once a diagram S has been obtained, the dual lattice S is constructed, the matrix 
elements of the laplacian (2.18), its determinant (2.19) and its inverse (2.24) are 
numerically evaluated. 

We obtain in this way the series associated with the total area 

ISI = E o , ,  (4.3) 
i 

and the mean-square extent times the squared volume 

IS l=Xs 2 = 2 D ~ ,  u. (4.4)  
i , j  

From these series we shall estimate the critical indices y and v. We have also 
considered the total curvature squared (fl/~-R2): 

IRZf = Y'.o,R~, ( 4 . 5 )  
i 

and the discrete analog of the Liouville action [14]: 

SLiouvill e = y'oiRi~,ijojRj, 
i,j 

(4.6) 

in order to get some insight into the geometric properties of the surface and the 
relation of our model to the Polyakov string model. Unfortunately, we have not 
obtained any conclusive result for these two last quantities. 

As can be seen from table 1, the number of graphs (and the computer time) grows 
exponentially by a factor - 8  at each order. The main part of our program 
constructs the diagrams and is not vectorizable by nature. However it is rather fast 
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Fig. 5. Schematic decomposition of a planar graph G into a tree of partitions (4.2). Each box represents a 
couple (P,/). The end-points of the tree must be of the form (3,0). 

and  represents, for graphs with 1 = 7 or  8, only 20% of C P U  time. Most  of  the time 

is used to compu te  the determinant  and the inverse of  the laplacian for each graph. 

Moreover ,  once this has been computed,  we obtain simultaneously the series for 

various observables,  various dimensions D and various values of the jR2[ parameter  
a. The  total C P U  time needed to compute  the 8th first terms of the series is typically 

of  the order  of  1 min on a C R A Y  1, which is rather modest.  

4.2. SERIES ANALYSIS 

In  order  to estimate the value of  the critical coupling and of the corresponding 
exponents  we have used two s tandard methods. The first one is a variant  of  ratio 
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TABLE 1 
The number  of irreducible planar diagrams with 3 external legs, no tadpoles and no self-energy, 

as a funct ion of the number  of loops 1, and of the area IS I of the corresponding dual lattice 

Number  of 
l I S I surfaces 

1 4 1 
2 6 3 
3 8 13 
4 10 68 
5 12 399 
6 14 2530 
7 16 16 965 
8 18 118668 
9 20 857956 

methods. If the general term of the series F, 

F ( v )  = E f . v " ,  

behaves  as 

we  first take the ratio 

, _ - ,  : o ,  
\ n ] }  

(4.7) 

(4.8) 

C(p)  = n a ( p - 1 ) - ( n - p ) a ( P - 1 1 )  
(4.10) 

w h i c h  should  behave,  if there is n o  conf luent  singularity, as 

C ~ P ) = A ( I + O ( n ~ )  )- (4 .11)  

The value of the critical exponent 3' is estimated by applying the same method to the 
series: 

d~ ') = n [ C~ 1} - C~ 2)] 

= A ( ~ , - 1 ) ( 1 + O ( 1 ) ) .  (4.12) 

The value of A is then estimated by taking successive linear combinations of the 
C ' s :  
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In practice we shall limit ourselves to p ~ 4. The limitation of the method is the 
existence of confluent singularities, which are not eliminated, and the fact that for 
large p the coefficients of the subleading terms O(1 /n  P+ 1) may become large. 

The second method is a method of differential approximants [22]. We shall 
approximate  F by the solution of the differential equation 

P ( v ) v  f-ffTF(v ) + Q ( v ) F ( o )  + R ( v )  = O. (4.13) 

P (v ) ,  Q(o) and R(o)  are polynomials of degree p - 1, q - 1, r - 1, with p + q + 
r - l - - n ,  n is the number of known terms of the series F and Q ( 0 ) = I .  The 
singularities of F correspond to zeros of the polynomial P and "t is given by 

Q(vo) 
"g = vop, (vo) , (4.14) 

where v 0 is the closest zero of P from the origin. 
This method is well adapted to our case where, as we shall see, the critical 

exponents are positive but small or negative and therefore out of the range of D log 
Pad6 approximants.  

4.3. RESULTS AT D = 0 

Let us first present and discuss the results of our analysis at D = 0. If a = 0 (no 
I R 21 term) then the partition function corresponds to the generating function for the 
number  of vacuum diagrams in the planar ~3 theory [15] and is explicitly known, for 
the value of the critical coupling 

and the exponent 7 

0c= , (4.15) 

(4.16) y = - ~ .  

So we have exact results to compare with the estimates coming from our series 
analysis. 

Fig. 6 shows plots of the estimates -&(P) for the exponent " / for  various values of a 
obtained by the ratio method, 

y(P) = -,d<P)/"(P),~, , (4.17) 

for p -- 3 and 4 as a function of n -  4. We see that for all the values of a considered, 
the convergence is good and in agreement with the exact value (4.16). In particular 
the limit does not seem to depend on a, so that our universality hypothesis for 
seems reasonable. 
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F i g .  6. R a t i o  a p p r o x i m a n t s  3,~ (p) a t  o r d e r  p = 3 (a)  a n d  p ~ 4 (b)  a t  D = 0 f o r  v a r i o u s  v a l u e s  o f  ~. 

Table  2 presents estimates for 7 obtained by differential approximants.  The 
results are rather  stable and in agreement with previous results for small values of a 
(0 < a < 1) but become less good for larger values of a, where the ratio method 
converges less quickly. From this example we could expect differential approximants 
to give good results when the ratio method works well, but to be more sensitive to a 

change in a. 
We now turn to the exponent 7'. Fig. 7 presents estimates for 7'  by the ratio 

method  for p = 3 and 4. The convergence is less good than for "t and in particular it 
seems that there is a systematic dependence on a. We cannot tell whether this is due 
to the shortness of our series or if 7 '  depends effectively on a and is not universal. In 
any case we can reasonably say that (for the range of a considered) 

7 ' =  - 0 . 2 5  _ 0.05. (4.18) 

Table 3 presents the results of differential approximants for 7', which are 
compat ible  with (4.18). 

Fig. 8 presents direct estimates of 2v = y ' - 7  obtained by applying the ratio 
method to the ratio of the terms of the two series corresponding to 7 (area) and 2/' 
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Fig. 6 (continued). 

TABLE 2 
Differential approximants of order [ P / Q / R ]  for y at D = 0 for various values of a 

[P. Q~ R ) ~ . ~ . ~  - 1  -0.5 0 0.5 1 1.5 

[3/5/1] -0.65 -0.55 -0.50 -0.50 -0.50 -0.45 
[4/4/1] - 0.62 - 0.54 - 0.50 - 0.50 - 0.51 - 0.34 
[5/3/11 -0.66 -0.55 -0.50 -0.50 -0.50 -0.44 
[3/4/2] -0.55 -0.51 -0.50 -0.50 -0.51 -0.55 
[4/3/2] -0.55 -0.51 -0.50 -0.50 -0.51 -0.55 
[3/3/3] -0.55 -0.51 -0.50 -0.50 -0.51 -0.55 

( m e a n - s q u a r e  ex ten t  t imes the area). The  resul ts  are c o m p a t i b l e  w i th  p rev ious  resul ts  

bu t  he re  a lso we observe  a sys temat ic  d e p e n d e n c e  on  a. 

F o r  a = 0 we can  get mo re  prec ise es t imates  for  T' s ince we k n o w  the pos i t i on  o f  

the  s ingu la r i t y  (4.15). Fig.  9 presents  resul ts  o f  the ra t io  m e t h o d  once  this i n f o rma-  

t i on  has  b e e n  used  for  var ious  va lues o f  p.  

T a b l e  4 p resen ts  the resul ts  of  d i f fe rent ia l  a p p r o x i m a n t s  where  we have  fo rced  the 

p o l y n o m i a l  P in (4.13) to have  a zero at the exac t  s ingular i ty .  F r o m  these resul ts  we 
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Fig. 7. Ratio approximants 7,, '(p) at order p = 3 (a) and p = 4 (b) at D = 0 for various values of a. 

e s t ima te  tha t  a t  a = 0 

T' = - 0 . 2 7 5  ___ 0.015,  u = 0.112 + 0.008.  (4.19) 

F i n a l l y  we have  tr ied to es t imate  the cri t ical  behav iour  of  the quant i t ies  JR2[ and  

SLiouvill e b u t  the  results  are not  at  all conclusive,  and  we do  not  even recover  the 

cor rec t  pos i t i on  of  the cri t ical  coupling.  This  means  that  the co r respond ing  series are 

m u c h  less well  behaved  and  more  i r regular  at  the first orders.  This is not  comple te ly  

unexpec ted ,  in pa r t i cu la r  for SLiouville: indeed the Liouvi l le  ac t ion is expected  to be 

an  effect ive ac t ion  val id  at  large scales, i.e. for large surfaces. At  the o rde r  

cons ide red  here  we are in fact still deal ing with ra ther  small  surfaces. We  could  

expec t  the  s i tua t ion  to improve  by  consider ing much  larger  series. 

W e  now discuss  the consequences  of  our  es t imat ions .  F r o m  subsect.  (3.1), if the 

mass  gap  does  no t  vanish at  the cri t ical  point ,  then T' = T. Since f rom our  es t imates ,  

T' is g rea te r  t han  T, it follows that  the mass  gap must  vanish and  the two-po in t  

funct ion* is expec ted  to have a scaling behaviour .  Our  f inal  es t imates  for 7 / a n d  the 

* Correlations functions can be defined in zero dimension by simple analytic continuation in D without 
any problems. 
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T A B L E  3 
D i f f e r e n t i a l  a p p r o x i m a n t s  o f  o r d e r  [P/Q/R] fo r  -f' a t  D = 0 fo r  v a r i o u s  v a l u e s  o f  a 

0 0.5 1 

[ 3 / 5 / 1 ]  - 0.31 - 0 .27 - 0.26 

[ 4 / 4 / 1 ]  - 0 .30  - 0.26 - 0.25 

[ 5 / 3 / 1 ]  - 0.31 - 0.27 - 0 .26 

[ 3 / 4 / 2 ]  - 0 .27 x - 0 .24 

[ 4 / 3 / 2 ]  - 0.27 x - 0 .24 

[ 3 / 3 / 3 ]  - 0.27 x - 0 .24  

T h e  c ros s  x a t  a = 0.5 i n d i c a t e s  t ha t  a s p u r i o u s  s i n g u l a r i t y  c loser  to  the  o r i g i n  i n v a l i d a t e s  the  m e t h o d .  
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Fig. 8. Ratio approximants p~P) at order p = 3 for various values of a, as obtained from the ratio term 
by term of the series giving "r and y'. 

Hausdorf f  dimension are for D = 0 and a = 0 

~/= 6.35 + 0.35, 

d H = 8.75 + 0.75, t (4.20) 

which are clearly not those of mean field theory. In particular the value of ,/ 
indicates that the continuum limit (for at least the two-point function) is not a free 
field theory. Let us note that the fact that 7/> 2 is, to our knowledge, not forbidden 
by any fundamental  principle. One simply expects the inequality 

~ / > 2 - D  or Y <~'D (4.21) 

to hold, in order to have a two-point function decreasing at large distances. Another 
interesting point  is that 7 is negative and therefore the mean area < I S I ) of a surface 
(at tached to a point) remains finite at the transition. The fact that ~ is non-zero 
means that however, the fluctuations of the surface are sufficient to induce correla- 
tions between points of space at arbitrarily large distances, so that the correlation 
length diverges at the critical point. 
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F i g .  9. R a t i o  a p p r o x i m a n t s  fo r  3" o f  o r d e r  p = 3 , 4 , 5 , 6  a t  D = 0, a = 0, u s i n g  t h e  e x a c t  v a l u e  fo r  t he  

s i n g u l a r i t y .  

TABLE 4 

D i f f e r e n t i a l  a p p r o x i m a n t s  fo r  3' a n d  3" a t  D = 0, a = 0, u s i n g  the  e x a c t  v a l u e  o f  t h e  s i n g u l a r i t y  

[ P, Q, R ] 3" 3" 

[ 3 / 6 / 1 ]  - 0 .5008  - 0 .286  

[ 4 / 5 / 1 ]  - 0 .5003 - 0 .281 

[ 5 / 4 / 1 ]  - 0 .5004  - 0 .281 

• [ 6 / 3 / 1 ]  - 0 .5010  - 0 .287 

[ 3 / 5 / 2 ]  - 0 .5001 - 0 .273 

[ 4 / 4 / 2 1  - 0 .5000 - 0 .273 

[ 5 / 3 / 2 ]  - 0.5001 - 0 .273 

[ 3 / 4 / 3 ]  - 0 .5000  - 0 .273 

[ 4 / 3 / 3 ]  - 0 .5000  - 0 .273 



568 F. David / Random surfaces 

4.4. R E S U L T S  A T  D ~ 0 

We now present the results of our analysis for non-zero dimensions D. As we have 
seen, D appears  only as a parameter  in the series (as the number of components N 
in vector models) and may be taken positive or negative. As for D = 0, we have 
studied the series for various values of a, expecting the convergence of our methods 
of extrapolation to be better for some optimal value of a (assuming that the 
exponents do not depend on a), and in order to test the stability of our results. 
However,  the imprecision increases as D goes further from the "solvable case" 
D = 0, and in addition we have no exact results for 7; this increases the error bars on 
1,. For  these reasons we have not been able to get clear conclusions for IDI >__ 10. We 
have also used, in addition to the action (2.8) for surfaces S, a slightly different 
action which gives better results by replacing a [ R [  2 in (2.8) by 

et E o, R2->a Z lno,.  (4.22) 
i E v(S) i E v(S) 

From (3.6) this change affects, up to a finite renormalization of fl and a, only terms 
of order R 3 . . . . .  It  is also equivalent to changing the measure d/~(X) over the 
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Fig. 10. Ra t io  app rox iman t s  for 7 at  o rder  p = 3 (a) and  p = 4 (b) a t  D = 4. 
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Fig. 10 (continued). 

posit ion of the vertices into 

d/~'(Xi) = d o ( X i )  o, n/2+'~ . (4.23) 

We shall present detailed results only for the "physical case" D = +4 .  Fig. 10 
presents estimates for ~ by the ratio method for the action (2.8), for p = 3 and 4 and 
different values of  the parameter a. Fig. 11 presents similar estimates for 7'. Fig. 12 
presents direct estimates for ~, by the ratio method applied to the series formed by 
the ratio term by term of the two previous series. Differential approximants have 
also been used and give compatible results, but are, as for the D = 0 case, much 
more sensitive to changes of a around the optimum value. As for D = 0 there seems 
to be a systematic dependence on a of ~, which is not present for ~. Within the 
range of  parameters considered for the action, our final estimates are 

"/= 0.0 + 0.05, 

g = 0.13 +_ 0.06. (4.24) 
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Fig. 11. Ratio approximants for y' at order p = 3 (a) and p = 4 (b) at D = 4. 

Es t imates  have been obta ined in the same way for - 2  < a < 2 in d imens ions  

D = - 8 ,  - 4 ,  8 and  12. They are collected in figs. 13 and  14, where they are also 

compared  with the predictions of other models of surfaces. 

Let us first discuss the results for the susceptibil i ty exponent  V. Wi th in  the range 

of a considered,  and  within our  est imated error bars, y does not  seem to vary with a. 

y increases clearly with the d imens ion  D, starting from - - 2  for D = - 8  and 

seems to sa tura te  a round 0.5 for large positive D. It crosses the critical value 7 -- 0 at 

a crit ical  d imens ion  D c which is remarkably  close to four*. For  D > D c, the mean  

area of a surface I ( S ) I ,  as defined by (2.29), must  diverge at the critical point ,  but  

r emains  f ini te  for D < D c. 

We now discuss our results for 1,. ~, does no t  seem to depend strongly on D, bu t  

for any  D we have observed a systematic dependence  on a, which we may at t r ibute  

to the imprec is ion  of our method or to a real non-universa l i ty  of ~. Wi th in  our  range 

of D, we can  only  say that p is clearly greater than zero (and hence the correlat ion 

length  diverges) and  less than the mean  field value 0.25 (at least for D ~< 8). In  

* This term of the critical dimension has nothing to do with the usual notion of the upper or lower 
critical dimension of critical phenomena. 
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(b) 
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particular there does not seem to be any drastic change at the critical dimension 

Dc --- 4. 
It is interesting to compare our results with the predictions of other models of 

random surface. In the models of  [1-7] the mean field exponents V = ½, v = ~ are 
exact for any dimension D ( D  >1 2). Our results differ strongly from these mean field 
values, for at least D ~< 8. In particular the exponent ~ must be non-zero, indicating 
that the two-point function cannot correspond to a free field. It is possible that V 
coincides with 1 above some upper critical dimension but from our results we 
cannot  extract any information on this question. In any case our model seems to 
belong to a different universality class than the model of  [1-7]. 

In the string model of  Polyakov [11] the values for T and ~, are at one loop* (at 
first order in the coupling constant g 2 =  4 8 ¢ r / ( 2 6 -  D) ,  i,e. for large negative D)  
[121 

r = x ( n  - 7 ) ,  

* It has been argued that this result for T is exact. 

1, = 0 .  (4.25) 
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Fig. 12. Direct ratio approximants for u at order p = 3 at D = 4. 
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c i r c l e  a t  D = 0 i n d i c a t e s  t h e  m o r e  p r e c i s e  e s t i m a t e  o b t a i n e d  f o r  a = O. 

We observe that for large negative D our model gives for 7 an estimate which is not 
so far f rom this prediction. However ~,, although small, is not zero. It  is interesting to 
note that our estimates for - / seem to interpolate between the prediction of Polyakov 
model for negative D and the prediction of mean field theory for positive D. 

S. Discussion 

In  this paper  we have presented and studied by strong coupling series a model of 
planar  closed random surfaces. Estimates for the critical exponents y and v have 
been obtained. From these results and assuming that standard scaling holds in that 
model, we have shown that, at least for dimensions of the bulk space - 4  ~< D ~< + 8, 
the model presents a transition at some critical value of the coupling constant t ,  
where the mean area of the surface becomes singular and where the mass gap 
vanishes. At that point the surface becomes a critical object with a Hausdorff  
dimension which is large but finite. In this range of D, the critical exponents do not 
coincide with the mean field exponents, y depends strongly on D and the two-point 
function does not correspond to a free field theory. There is evidence for a critical 
dimension D c = 4, above which the mean area of the surface diverges, and below 

which the mean area remains finite at the transition. 
This last fact is of course interesting if one thinks about the possible links between 

surface models and gauge theories. However, as we have seen, the behaviour of the 
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mass gap does not seem to change at D = 4. Perhaps the behaviour of the string 
tension is singular at D = 4? The study of the string tension requires estimates of the 
loop correlation functions, which is numerically more difficult. Let us note anyway 
that if at D = 4, "t = 0, from the scaling relation (3.18) al = 2 and the two-point 

function behaves at short distance, in the continuum limit, as 

a=(IXl)- Ix1-4, (5.1) 

in contrast  with the plaquette-plaquette correlation function in gauge theories, whose 

behaviour at short distance is given by perturbation theory, and is 

, J  TrF2(X)TrF2(O)I O) . . . . .  -- I X  I - 8  (5.2) 

Of  course many  problems remain to be studied in these surface models. In order 
to construct a continuum theory one has first to define a continuum limit for all 
N-point  functions in euclidean space. Let us note that extensions of scaling argu- 
ments  suggest that if at the critical point the mass gap vanishes, then the N-point 

function should scale as 

G N ( ~ k X  1 . . . . .  ~kXN) -- ~k(D+(y-2)/~')+N(1/~'-D)GN(X1.. .  X N ) .  ( 5 . 3 )  

This means that the observable which appears in the N-point functions, 
f d 2 ~ v / - g ( ~ ) S n ( X - X ( ~ ) ) ,  gets the scaling dimension d H -  D, a fact which is not 

unexpected, and confirms the relation 1/~, = d . .  In addition we get a " v a c u u m  
anomalous  dimension" D + ( y -  2)/p,  which is not present in local field theories. 

The scaling relation (5.3) holds for polymer models, as well as for the surface model 
of [1-7], where the "vacuum anomalous dimension" is present, (except for D = 6). 
In the language of critical phenomena such a phenomenon is associated with a 
violation of hyperscaling, which is not surprising in our case, since as we have seen, 
the correlation length and the " m e a n  size" of the surface do not scale with the same 
exponents (for D < D c the latter even does not diverge but has a weaker singularity). 
In the language of field theory this means that a wave function renormalization and 
a renormalization of the "string tension" will not be sufficient to make the 
observables finite, but that in addition an overall multiplicative renormalization will 

have to be performed. 
Another  problem lies in the fact that, at least order by order in e -a ,  the N-point  

functions do not satisfy reflection positivity. One may hope, but we have no proof, 
that this proper ty  is recovered at the critical point. This is crucial in order to 
construct in Minkowski space a continuum theory which respects the usual axioms 
of field theory (except of course locality). 

Let us emphasize that all these considerations are restricted to the case of planar, 
non-interacting surfaces. Interactions are described in surface models by the break- 
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ing  and  j o i n i n g  of  surfaces, that  is by  cons ider ing  surfaces with a rb i t r a ry  Euler  

n u m b e r  X. In  our  case (as in the case of  [1-7])  if one sums over surfaces with 

a r b i t r a r y  topologies ,  the pa r t i t ion  funct ion z ( f l )  diverges for any finite fl, since the 

m o d e l  is re la ted  to a ~3 theory where the field ~ has now a finite n u m b e r  of  

c o m p o n e n t s ,  which  has no  g round  state. This seems a disease  c o m m o n  to all known  

d isc re te  surface  models.  F o r  all the reasons ment ioned  above,  it is not  clear, even if a 

sur face  m o d e l  exhibi ts  a non- t r iv ia l  cri t ical  behaviour ,  whether  it co r responds  to the 

q u a n t u m  theory  of some ex tended  objects  in a local  l imit .  

F ina l l y  let  us stress that  the results that  we have presented  here are based  on the 

analys is  of  r a the r  short  series. I t  will be  necessary to check these results wi th  longer  

series, wi th  o the r  numer ica l  methods  such as Mon te  Car lo  s imulat ions ,  and  with 

exact  results .  

Note added 

A f t e r  the comple t ion  of  this work  we received a p repr in t  by  Ambjo rn ,  Durhuus  

and  F r r h l i c h  [23] which discusses surface models  re la ted  to those s tudied  in this 

pape r .  In  par t i cu la r ,  p re l iminary  results of a Mon te  Car lo  s imula t ion  are presented ,  

which  seem compa t ib l e  with a large Hausdor f f  d imension.  

This  work  cou ld  not  have been pe r fo rmed  wi thout  the assistance,  the help and the 

pa t i ence  of  J .M. Luck who in i t ia ted  me in the compute r  system at Saclay and 

p r o v i d e d  me  with  invaluable  advice. I am also grateful  to J. Z inn-Jus t in  for very 

useful  d i scuss ions  and suggestions,  to M. Bergrre,  E. Brrzin,  J .M. Drouf fe  and  C. 

I t zykson  for  useful  comments  and especial ly to E. Brdzin for a careful  reading  of  this 

manusc r ip t .  
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