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We argue that Newton 's  constant  is not  unambiguously calculable in any non-finite pure matter  theory. In finite, 
supersymmetric, conformally invariant theories it is calculable in terms of scalar expectation values. Implications for the 
renormalizability of scale invariant and conformally invariant quan tum gravity are discussed. 

Introduction. The idea that Newton's constant is 
not a fundamental parameter but is calculable in 
terms of fundamental dimensionless parameters 
has been considered in two different contexts. The 
first is the induced gravity program [1,2], where 
one attempts to compute the contribution to the 
induced Newton constant arising from the quan- 
tum fluctuations of the non-gravitational matter 
fields. The second context is fourth-order quantum 
gravitational theories (involving the squares of the 
scalar curvature and the Weyl tensor) where, for 
reasons to be elucidated, one asks under what 
conditions the Einstein action can be consistently 
excluded from the fundamental quantum action. 

Recently one of us has argued [3] that in 
ordinary (non-supersymmetric) matter theories, 
despite contrary claims [1,2], Newton's constant 
and the cosmological constant were in general not 
calculable and were rather free parameters of the 
theory. The purpose of this letter is to extend this 
discussion to the case of supersymmetric matter 
theories and to scale invariant theories of gravity 
and their supersymmetric extensions. We will argue 
that Newton's constant is not unambiguously 
calculable in any non-finite pure matter theory, 
but that in certain scale invariant supergravity 
theories symmetries may protect it from ambigui- 
ties. On the contrary, in finite globally or locally 
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supersymmetric theories, the inverse Newton con- 
stant is zero unless conformal invariance is sponta- 
neously broken, in which case it is calculable in 
terms of scalar expectation values. 

We begin by recalling the arguments of refs. 
[3,4]. Consider a matter field theory, conformally 
invariant at the classical level, quantized in a 
classical gravitational background field. The in- 
duced cosmological constant A ind and the induced 
Newton constant Gin d a r e  given by the formulae 

G L ~ = - i 6 f d 4 x x 2 [ V ( x ) + U ( x ) ] ,  (1) 

Ai.d/Gin d = - 2~r(r(0))o (2) 

=-i,.fd'x[V(x)+U(x)]. (3) 

In (2) T is the trace of the stress energy tensor T~v 

r(x) = T:(x) (4) 

V and U are given by 

V(x)  = (T(  T(x  ) T(0) } )o, (5) 

with 

T ( x )  = T ( x )  - ( T ( x ) ) o l ,  

and 

(6) 

U ( x  ) = - 2i(g~v (x)  [3/i~g~, v (x)]  ¢ ~  T ( 0 ) ) o .  

(7) 

0370-2693/84/$03.00 © Elsevier Science Publishers B.V. 
(North-Holland Physics Publishing Division) 

125 



Volume 143B, number 1, 2, 3 PHYSICS LETTERS 9 August 1984 

The subscript ( )0 means that the vacuum ex- 
pectation value is evaluated in the flat background 
metric gO v --- */.v. Formulae (1) and (2) are due to 
Adler [1] and Zee [2]. Formula (3) for the cosmo- 
logical constant corrects an incorrect formula 
(omitting the second term proportional to U) that 
has recurred in the literature. 

U(x) will in general be proportional to 84(x) 
and will not contribute to Gi. a (because of the x 2 
in (1)) unless there is a scalar field with a - ~Rq~2/2 
interaction. In that case 

U(x) = -6 i~"0 r~4(x ) (q~2(0 ) )  + 84(x)  terms, 

(s) 

and it will contribute t o  Gin d. 

These equations are in fact UV divergent and 
need to be renormalized. The correlation function 
V(x) has a small x behavior given by the operator 
product expansion 

V(x) = Ixl-8fo(X) + ~ Ixl-8+aim°'f,(x)(Oi), 
i = l  

(9) 

where the Ci(x) are dimensionless and contain 
only logarithms of Ixl (in perturbation theory). 
Therefore the formula (1) for Gin d is quadratically 
divergent. 

In ref. [1] it was argued that these divergences 
vanish if one uses an analytic regulator such as 
dimensional or ~-function regularization, and that 
therefore, provided there are no dimension-2 oper- 
ators (which can be ensured by gauge and chiral 
i n v a r i a n c e ) ,  Gin d and Ain d are  uniquely determined 
from the remaining finite parts. It  was also argued 
that, if a massive regulator is used, the same 
unique answer will obtain by taking the finite part  
of Gin d. 

In fact arguments have been given [3] strongly 
indicating that this is incorrect. In general, the 
finite part  of a quantity with quadratic divergences 
cannot be uniquely defined, even if no logarithmic 
divergences are present. The way in which ambigu- 
ities appear, however, is extremely subtle. 

To see that Gin d is ambiguous, consider expres- 
sion (5) for V(x). If the theory can be defined 
non-perturbatively V(x), being a Green's func- 

tion, will have an unambiguous value. C 0, how- 
ever, cannot in general be uniquely defined. The 
reason is that the perturbation series for Co is not 
only not convergent; it is not even Borel summa- 
ble. This can be inferred ,a in an asymptotically 
free theory ,2 from inspection of a certain set of 
diagrams [5] or from the infrared behavior of the 
Green's  functions [6]. If one attempts to resum the 
series using the Borel procedure, one expects to 
encounter the so-called " renormalon"  singularities 
[3-6] on the positive Borel axis and a prescription 
must be adopted for going around these. C o will in 
general depend on the prescription. 

If  C O is ambiguous, how can V be unambigu- 
ous? The answer is that as C O is an infinite series in 
In-1Ix I, its non-perturbative ambiguity will be pro- 
portional to powers of x. It thus can and will be 
cancelled by ambiguities in the higher order C i and 
(O  i), provided the same resummation prescription 
is adopted throughout. 

In computing Gin d f r o m  V(x) via eq. (1), one 
must separate the divergent contribution propor- 
tional to C O . As we have just argued, this separa- 
tion is not unique and Gin d will be ambiguous. 
Indeed, it was shown in ref. [3] that a previous 
model calculation of Gin d [1,7] in fact exhibited the 
expected ambiguity. 

It  should be added that there is no proof that 
Gin d will necessarily be ambiguous. What  has been 
shown is that in the general case it is prescription 
dependent, but it is always possible that some 
unforseen mechanism could eliminate this depen- 
dence in particular models. In the next section we 
will show that supersymmetry alone does not pro- 
vide such a mechanism, but that in finite super- 
symmetric models Gin d is unambiguous. 

The supersymmetric case. The above arguments 
are very general, and ambiguities are expected to 
arise whenever certain operator mixings are al- 
lowed by dimensional and symmetry considera- 
tions. However, one does have to check if some 
symmetry forbids mixing and forces the ambigui- 

,1 In certain two-dimensional models such arguments may be 
made rigorous within the large-N expansion [4]. 

,2 Of course in a non-asymptotically free theory non-perturba- 
tive quantities (such a s  Gind) can not be defined at all. 
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ties to cancel for the particular matrix elements 
(1)-(3). For non supersymmetric theories there are 
none, but for supersymmetric theories many 
cancellations occur. Indeed, such cancellations oc- 
cur for the cosmological constant. It is therefore 
important  to investigate the formulae (1)-(3) for 
the case of supersymmetric matter field theories. 

In order to preserve supersymmetry one must 
couple the theory to a classical supergravity back- 
ground field [8]. The formulae (1)-(3) will appear 
as the reduction to the bosonic sector of the for- 
mulae for induced supergravity. Eq. (2) for the 
cosmological constant in terms of the trace 
anomaly is known to be a member  of a supermul- 
tiplet along with the axial anomaly equation [9]. 
Supersymmetry prevents the trace anomaly from 
mixing with the operator 1 and the cosmological 
constant in finite and zero if supersymmetry is 
unbroken. 

Unfortunately no such cancellations occur for 
the induced Newton constant. We first consider 
the case with no -~Rq)2/2  interaction for which 
the U(x) term can be ignored. From eq. (5) the 
function V(x) may be written 

V(x)  = )-'. exp(ip~.x)l(OIT(O)ln) 2, (10) 
n 

from which it follows that G~d 1 has a spectral 
representation 

G ~  = - 4~r3 f0 °°d°2p ( 1212)/(I4' (11) 

where the spectral function 

0 (q2)  = (2,rr)3)-~ 8'*( Pn - -  q)I(0IT(0) In)12 
n 

(12) 

is positive semi-definite. This means that there 
cannot be cancellations between bosonic and 
fermionic states in (12). One can explicitly check, 
for instance for supersymmetric gauge theories, 
that as a consequence the divergent term Co(x ) in 
eq. (9) is never zero in perturbation theory, as long 
as the trace anomaly itself does not vanish. There- 
fore in non-finite supersymmetric theories New- 
ton's constant is never calculable. Let us note that 
in (3) the presence of the term U(x) is essential in 
order to understand how Aind /Gin  d (the vacuum 

energy) may be finite although G~n~ as given by (1) 
is infinite. 

We now consider the -~R~p2/2 term. The al- 
lowed values of ~ are not arbitrary, but rather are 
fixed by consistent coupling to supergravity. Most 
of the couplings that appear in the literature have 

= 0 [8] and do not lead to an unambiguous Gin d. 
However for couplings that preserve classical con- 
formal invariance [10] (otherwise Gin d will be di- 
vergent at tree level), ~ is 1/6.  In this case the 
U(x) term in (1) merely serves to cancel contact 
terms arising V(x), provided (q~) = 0. This can be 
seen by noting that, for a classically conformally 
invariant scalar action, the trace anomaly is given 
by 

T( x ) = oLq~( x )OS/3q~( x ) + 13S(x), (13) 

where S = fd4x S(x)  is the action, a is a constant 
depending on the conformal weight of the fields 
and 13 is a function of the coupling and renormali- 
zation constants. We have been careful not to omit 
terms proportional to the equations of motion. 
Using (13) and the Schwinger-Dyson equations, 
V(x) can be written as 

V ( x )  = - + 

-  2(r{ (x) (o)as/  (x)or (o)) >o 
+132<T( S( x )S(O) } )c (14) 

where subscript c denotes the connected part. The 
first term does not contribute to Gi~ d because of 
the x 2 in (1). Using the fact that 

0S/~qg(x)~q)(0) = - ~a~ot84(x) -q.- 84(x)  terms, 

(15) 

we see that the second term is of precisely the 
correct form to cancel the U(x)  contribution, which 
it indeed does (this can be checked in the free field 
calculations of ref. [11]). Thus Gin d is determined 
entirely from the last term in (14). Similar argu- 
ments can be given when spinors and vectors are 
included, except that the second term will also not 
contribute to G~nd (because spinor actions have 
only one derivative and vectors have ct = 0). The 
last term in (14) has a positive definite spectral 
representation, so cancellations cannot occur .  Gin d 
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will be divergent unless 13 is zero (i.e. the theory is 
finite), in which case it will vanish. 

The case (q~) 4:0 is somewhat different. If  the 
theory is not finite, Gin d is of course still not 
calculable. In the finite case, Gin d is calculable in 
terms of (q~) (if ~ = 1/6).  After cancellations of 
contact terms, one finds 

G ~  = -4~r(~p)z/3.  (16) 

Scale and conformally invariant quantum gravity. 
The general scale invariant gravitational action 
may be written (up to topological terms) as 

s= f (17) 

This action is invariant under (global) scale trans- 
formations as it contains no dimensionful parame- 
ters. For the special case 13-2= 0 there is also a 
(local) conformal invariance. It  has been shown 
[12] that the general fourth-order action, which 
includes the Einstein and cosmological terms, is 
renormalizable. However, for a variety of reasons, 
some authors have considered excluding the Ein- 
stein and cosmological terms from the fundamen- 
tal quantum action [13-15]. In this section we will 
discuss the consistency of such an exclusion. Be- 
fore doing so we briefly mention why such an 
exclusion might be desirable. 

One reason is the aesthetic notion that the 
fundamental laws of physics should contain no 
dimensionful parameters [1,2,13]. Since scale in- 
variant gravity is asymptotically free [14], the 
Planck scale could then arise through dimensional 
transmutation. In the conformally invariant case, 
even the notion of length has no fundamental 
meaning and could arise only as a result of sponta- 
neous symmetry breaking. 

A further motivation to study the scale in- 
variant theories is the zero energy theorem [15]. 
While the classical energy spectrum of the general 
fourth-order theories is believed to be unbounded 
from below, the spectrum of scale invariant theo- 
ries includes only zero; even when coupled to 
arbitrary matter. This striking difference between 
the classical theories could persist to the quantum 
level and may  be relevant to the unitarity problem. 

Finally, the general fourth-order action is un- 
bounded in euclidean space (unless A is order, one 
in Planck units) while the scale invariant action is 
positive semi-definite (for ~t-2, 13-2> 0). An un- 
bounded action usually signals the non-existence 
of a ground state, and makes it difficult or impos- 
sible to use non-perturbative methods such as 
lattices or instantons. 

However renormalizability, both perturbative 
and non-perturbative, is a requirement that one 
should impose on the fundamental gravitational 
action. If we couple matter to the action (17) 
without putting it in a supermultiplet with the 
graviton, the results of the previous section im- 
mediately imply that Gin d will not be calculable. It 
is thus a free parameter  of the theory and should 
be included in the fundamental action. 

For the purely gravitational case the arguments 
are not so readily applied. A more complicated 
expression replaces (1) for the gravitational contri- 
butions to Gin d [1]. One cannot use a spectral 
decomposition to argue that there are no cance- 
lations rendering Gin d finite. Nevertheless, there 
are no symmetries protecting it and it seems very 
likely that Gin d is not calculable, 

The situation is qmte different for (extended) 
scale invariant supergravity. In this case every- 
thing is tied together in a supermultiplet and there 
could be symmetries protecting Gin d from diver- 
gences. For example, the addition of the Einstein 
action and its Rari ta-Schwinger superpartner en- 
tails a massive pole in the Rarita-Schwinger prop- 
agator. Thus there could be a chirai symmetry 
which forbids the Einstein action and protects 
Gin d. In the case of N = 3,4 extended supersymme- 
try, higher derivative actions can be written in 
terms of superfields, but the Einstein action and 
its superpartner cannot. Thus one might again 
expect Gin d to be protected. In sum the renormal- 
izability of scale invariant supergravity (without 
the Einstein term) remains an open question. 

Perhaps the most interesting case is extended 
conformal supergravity. It  has been argued [16] 
that there exists a class of finite locally supercon- 
formal theories similar to the class of finite 
Yang-Mil ls  theories [16,17]. In this case there are 
of course no problems with renormalons, and G~d 1 
will be zero unless conformal invariance is sponta- 
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n e o u s l y  b r o k e n .  W e  will r e t u r n  to  th is  q u e s t i o n  in 

a f u tu r e  p u b l i c a t i o n  [18]. 

W e  t h a n k  S teve  A d l e r  for  e n c o u r a g e m e n t  a n d  

usefu l  d i scuss ions .  This  r e s e a r c h  was  s u p p o r t e d  b y  

the  U S  D e p a r t m e n t  o f  E n e r g y  u n d e r  g r a n t  no .  

D E A C 0 2 - 7 6 E R 0 2 2 2 0 ,  
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