
Nuclear Physics B257 [FS14] (1985) 45-58 
© North-Holland Publishing Company 

PLANAR DIAGRAMS, TWO-DIMENSIONAL LATTICE GRAVITY 
AND SURFACE MODELS 

F. DAVID* 

Service de Physique Thborique, CEN Saclay, 91191 Gif-sur-Yuette Cbdex, France 

Received 9 November 1984 

Some discrete lattice models for quantum two-dimensional euclidean gravity are shown to be 
equivalent to zero-dimensional planar field theories. Explicit expressions are given for partition 
functions. A universal continuum limit exists for open surfaces, but not for closed ones, and is 
argued to describe a space with negative average curvature. Extensions of those models to higher 
dimensions and to surface models are briefly discussed. 

The quantization of the Einstein-Hilbert theory of gravity is known to present 

important conceptual as well as technical difficulties. Many suggestions for for- 

mulating regularized lattice versions of the theory have been made in order to face 

those problems [1-6]. In [5, 6] Weingarten suggested reducing the functional integra- 

tion over "all" d-dimensional riemannian manifolds to a discrete sum over mani- 

folds made of d-dimensional hypercubes glued on their faces and belonging to some 

higher-dimensional flat hypercubic lattice. It was shown that if one sums over 
manifolds with an arbitrary topology, the path integral is divergent and the theory 

has no acceptable vacuum. The divergence disappears if the topology of the 

manifold is fixed. The two-dimensional case (random planar surfaces) has been 
extensively studied recently [7, 8], but seems to describe in the continuum limit only 

a free field theory [8]. 
In this paper we want to consider related models of two-dimensional "abstract" 

surfaces, without any reference to some enveloping higher-dimensional lattice (this 

case was already suggested in [6]). We shall show that those models are equivalent to 
problems of diagram enumerations in scalar field theories. This fact makes it 

possible to write explicitly quantities like partition functions, and to ask questions 
about the existence and the meaning of a continuum limit in those models. With no 
restriction on the topology our models have no ground state, as in [5, 6]. Restricting 
to the planar geometry, we shall show that there is no continuum limit for closed 

surfaces but that there is such a limit for open surfaces. This limit is universal 
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(different lattice models give the same results) and can be interpreted as a space with 
negative or null mean curvature. 

We shall end this paper by considerations on possible extensions of these kind of 
models, their imbedding in an enveloping space and their possible relationship with 
other surface models. 

Let us first present our models. We want to consider surfaces made by gluing 
together by their edges some flat elementary polygons. The simplest case (model I) 
corresponds to take as elementary pieces oriented equilateral triangles. We shall 
consider for simplicity the case of closed surfaces. A closed (connected) surface S 
with area ISI = n is defined as a set of n triangles ( / 1 " ' "  tn) and of pairing of edges 
(which respects the orientation of the triangles)*. Since the n triangles are indis- 
cernible, the contribution of each surface has to be divided by (n !). The topology of 
the surface is characterized by its Euler number X- The grand canonical partition 
function is therefore chosen as 

1 
Z = E [-~-. e -E,  E =/3181 - ~'x. (1) 

s 

We have not added higher-dimensional terms, since they are expected to become 
irrelevant in the continuum limit if it exists. 

The reader will have already recognized that our rules for defining a surface are 
very similar to the contraction rules which follow from Wick's theorem in the 
construction of diagrammatic expansions in terms of Feynman diagrams in field 
theory. Indeed, if, instead of considering the simplicial lattice made of the triangles 
of S, we consider the dual lattice (see fig. 1), each surface S is in one-to-one 
correspondence with a vacuum diagram G of a 0 3 theory, and the coefficient 
associated to each surface S is precisely the symmetry factor associated with the 
graph G** .  

More  precisely, our model is equivalent to the zero-dimensional matrix 0 3 model 
[9], defined by the action 

S [ 0 ]  = ½Tr02 + ~N-N Tr03,  (2) 

where 0 is an N × N herrnitian matrix, with the relationship 

g = e ¢, N =  e ~, (3) 

* One can also consider non-orientable surfaces by removing the orientability constraint on the 
triangles. 

**  The reader may  be worried that the factor associated to a surface S is not  1 but  some rational number  
if the corresponding dual graph G has a non-trivial symmetry group (under the interchange of lines 
and vertex). This is not unexpected, since it is known that in general in the "space of all metric" over 
a given manifold,  metrics with symmetries are singular points. 
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(a) (b) 
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Fig. 1. A planar lattice made of oriented triangles (a) and the corresponding dual lattice (b). The length 
of the edges has been changed in order to map the lattices on flat space. 

and the partition function (1) corresponds to (minus) the "vacuum energy" of the 
zero-dimensional model. 

Since for finite N the action (2) is unbounded from below, it follows immediately 
that the partition function (1) is not convergent, as in [6]. The only possibility is to 
restrict ourself to the planar topology (N = + oo or ~---, oo), in which case the 
integral 

Z ( f l ) =  lim 1-~,lnfd2Nd?e-SE*l (4) 
N--* oo /V~ a 

makes sense for real g. 
Let us now define two different versions of model I. Given some surface S, we call 

a .g-loop a set of £ distinct edges (of the triangles) in S which forms a loop on S. 
We shall define model I' by the same formula (1) where the sum is restricted over 
surfaces S without l-loops and model I" by restricting (1) over surfaces S without 1- 
and 2-loops. It is easy to see that model I' is equivalent to planar ~3 without 
tadpoles (see fig. 2) and model I" to planar q~3 without tadpoles and self-energy 
insertions. This is simply achieved by adding to the action (2) a counterterm of the 
form 

AS[q,] = pTr~ + ½x Trq, 2, (5) 

and by adjusting p (for model I') and p and x (for model I") so that tadpoles 
(self-energy insertions) are cancelled. 

Finally, we can define another model (model II) by considering surfaces made of 
oriented squares instead of triangles, and by taking the same action (1). This model 
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(a) (b) 

Fig. 2. (a) An example of a lattice with a l-loop (the boundary of the dashed triangle) and the 
corresponding tadpole graph on the dual lattice. (b) An example of a lattice with a 2-loop and the 

corresponding self-energy graph on the dual lattice. 

is of  course equivalent to a zero-dimensional ~4 model, defined by the action 

with 

S[dp] = ½Trff 2 + g T r e ?  4, (6) 

g = - e - ~ .  (7) 

A real fl corresponds  to a negative g, and the action (6) is unbounded  from below 
for finite N. Therefore model II  has no ground state if one sums over all possible 

topologies,  and  makes sense only in the planar case ( N  = + oo), as for model  I. 

As  already mentioned,  the problem of count ing the number  of  planar  diagrams of 
scalar theories with a ~3 or a cb 4 coupling has been already extensively studied and 

the generat ing functions for the number  of  diagrams obtained by a variety of  
methods  [9-13].  In  the following we shall use the notat ion and the results of  [9]. 

Before coming  to the explicit results, let us discuss the quantities we are interested 
in. In  analogy with polymer  problems as well as with other surface models, we are 

looking for some critical value of the coupling, tic, where we can obtain surfaces S 
with an arbitrari ly large area I SI.  For  that purpose,  we shall look at the average area 

<l s l )  = - ~ l n  z ( B ) ,  (8) 

and see if it diverges, or becomes at least singular, at some tic- 
Let us first consider, as a trivial exercise, the 1-dimensional case where we 

consider  lines L (assumed open with two ends), made of n segments with unit 

length. The  part i t ion function is trivially 

Z(fl)= ~ (e-~)  "= 1 (9) 
. - 0  (1 - e - e )  ' 



F. David / Surface models 

and is defined only for fl > 0. As fl ~ 0 +, the average length 
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1 (10) ( L )  = - In Z = 

becomes infinite and we generate an arbitrarily long line. The results are similar for 
a closed line (ring). 

Let us now consider model I. The partition function is (see eqs. (49) and (51) of 
[9]) 

Z(f l )  = 1  ~ (e-¢~) 2k (72)2/CF(~K) (11) 
k=l F(K+I)F(½K+I)' 

and has a radius of convergence (in g2 = e-XB) equal to 

2 1 1 g c -  e-Ea¢ = ~ V / } .  (12) 

But the general term of the series (11) behaves, for large K, as 

7/:(1 + (13) 

which means that the singularity of Z ( f l )  is in ( f l  - fl~)5/2 and therefore that only 
the third derivative of Z becomes infinite at tic- As a consequence, the average 
surface ( I S [ )  given by (8) (as well as the average surface squared (IS[ 2)) remains 
finite as fl --} tic- The same phenomenon can be shown to occur for models I' and I", 
as well as for the quartic model II (of course the values of the critical coupling are 
different). An explicit calculation shows that at the transition point 

(1 $1)¢ = 3.06 model I, 

( ISI )~= 1.52 mode l l I ,  (14) 

which is very small and has to be compared with the zero-temperature result 
( f l =  +oo)  ( ( [ S [ ) 0 = 2  for model I and ( [ S [ ) 0 = l  for model II). Therefore the 
transition at tic is first-order-like, and the average area jumps from a finite value for 

fl = tic+ to infinity for fl = t i c .  It does not seem possible to construct an interesting 
continuum limit from closed surfaces with genus 0. 

We now deal with the case of open planar surfaces. For model I we have to 
consider surfaces S made of triangles (squares) with the topology of a disc and with 
a boundary 0S. The length of the boundary [0S[ is simply the number of edges of 
triangles (squares) which belong to 3S. If we now consider the dual lattice we see 
that S is in one-to-one correspondence with a planar diagram G of the ~3 (or ~4) 
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theory with P = I 0SI external legs, and that the counting factor of S is precisely the 
symmetry factor of G, as for closed surfaces. We can in fact define three different 
kinds of boundary conditions (b.c.), which correspond to considering various P-points 

functions: 
(i) b.c. A = sum over surfaces corresponding to Green functions Gp; 
(ii) b.c. B = sum over surfaces corresponding to connected functions Cp; 
(iii) b.c. C = sum over surfaces corresponding to irreducible functions/ 'p. 

(15) 

The b.c. B and C can be shown to correspond to some "excluded volume effect" on 

the boundary. 
If the length of the boundary is fixed, the general form of the action is 

1 
E=/31SI - Y~--~ I R I ,  (16) 

where I R[ is the total intrinsic curvature of S, which is no more a topological 
invariant. However, I RI is related by the Euler formula to the total extrinsic 
curvature of the boundary 0S in S and may be expressed as a boundary term. In a 
first step we shall neglect I R[ by setting ~¢ = 0 and see how the average area of a 
surface with boundary of length P varies with/3. For model II (square lattice) with 
b.c A, the partition function Z e ( / 3  ), which has to be identified with the Green 
function (Tr(~P))  of the planar ~4 model, admits a simple explicit algebraic 

expression ( P  has to be even) 

P! aP(P + 2-½Pa2), (17) Zp(/3)= , ' +2)! 

with 

a 2= ~e¢(1  - V/1 - 48e - ~ ) .  (18) 

The partition function Zp becomes singular at the critical coupling tic = In 48, where 
a is singular, and its non-analyticity is of order (/3 - /3c)  3/2 (to be compared with the 
power -~ for the closed case). This simply means that the general term of the 
expansion of Zp in powers of e -a  behaves like 

Z p =  ~ ake -2k#, a k ~ e2kack - 5 / e .  (19) 
k = 0  k ~  
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Consequently, the average area 

51 

1 P(P+ 2)(a 2 -  1) 
A(P ,  fl) = -  In Zp = ~- P ( 2 -  a2) + 4  (20) 

remains finite at Bc and has a singularity of order (B - Bc) 1/2- 

H o w e v e r ,  it is interesting to see how this quantity behaves when the length of the 
boundary P becomes large. Above the critical coupling, the area grows linearly with 
P: 

A(P,B) - PC(B) ,  f l>Bc ,  (21) 
p---~ ~:~ 

but the coefficient of proportionality diverges at Bc as 

1 
C(B) 4 fl~--Z--~- ~ , (22) 

and at the critical coupling, the area grows like the square of the length of the 
boundary 

A(P, B c ) -  1p2, (23) 
P- -~  oo 

as we could naively expect for a two-dimensional flat surface. 
Assuming that indeed at the critical coupling the surface S and the boundary aS 

do not develop some anomalous Hausdorff dimension, we can try now to construct a 
continuum limit by introducing a physical cutoff e defined as the length of the edge 
of each elementary square, expressed in a physical unit, and by defining a physical 
area A R and a physical boundary length L R simply as 

AR=e2ISI ,  L R = e l 0 S I .  (24) 

The continuum limit will be obtained by "renormalizing" B(e) and by taking the 
limit e ~ 0, L R fixed. From (21) and (22) we must choose 

B(0 = Bc +  2x. + 3) 

in order to obtain a finite l imit  for A R. We find 

(2s) 

AR(LR'~R)=limeZA(LR'fl(e))E~o \ e 

8 + 4LR ~ R  " 
(26) 

The "renormalized" coupling ;k g has the dimension (length)-2 and must be >~ 0. 
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The variance of the physical area (AZ)¢onn. = (A~t) - (AR) 2 has also the continuum 

limit 

L~t 
(A2)conn. = (27) 

8 (2 + 

and one can define a "specific heat" which in the "thermodynamic limit" ( A R )  --~ oo 

goes to the constant 

C -  (A2)  . . . . .  1 (28) 
(AR) LR~OO 2• R " 

A remarkable result is that this behaviour is universal. One can check that eqs. 
(21)-(23) still hold with other boundary conditions (b.c. B and C) and that they are 
still valid for triangular lattices (model I, I' and I"). The continuum limit is always 
defined by eqs. (24), (25) and the physical area A R has the universal form 

(AR) - L2  (29) 
a + b L R X ~ R  " 

The coefficients a and b depend on the specific model considered. 
One can give a geometrical interpretation to eq. (29). For small surfaces (L  R << 

X~1/2), the mean area grows like the square of the perimeter; this is a good 
indication of the two-dimensional character of the surface. For large surfaces 
(L  R >> X~ 1/2) the mean area grows only like the perimeter. This is reminiscent of a 
surface with constant negative curvature R (for instance the Poincar6 disc), where 
the area of a circle A depends on its perimeter L as 

A = I_R_]_4 [(or 2 + llRiL2)l/2_,h. ] , (30) 

and grows indeed like Z 2 for small L but only like L for large L. Therefore the 
simplest interpretation of eq. (29) is that in the continuum limit we have some 
surface with a mean curvature proportional to - X  R. At the critical point the 
curvature vanishes and we recover the scale-invariant result 

<A.) = ½L . 

We now consider the role of the intrinsic curvature R. We shall give explicit 
results in the case of the triangular model I' (~3 without tadpoles) with the boundary 
condition C (irreducible functions). The extension to other cases is probably 
possible. Let us consider a surface S (with a boundary 8S) made of equilateral 
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Fig. 3. The decomposition of a planar irreducible ~3 graph without tadpoles into an external loop and an 
internal part. 

triangles. The integral of the intrinsic curvature may be expressed as a sum over the 
internal vertices v of S: 

4-~fsV/g-R=~ • ( 6 - n v ) ,  (31) 
veS-OS 

where n v is the number of triangles of S which meet at the vertex v. Using the 
Gauss-Bonnet  formula we can reexpress this as a sum over vertex of the boundary 

4--~" R = 1 - 1 Z (3 - nv) .  (32) 
v,EOs 

This may be expressed in terms of the dual lattice, that is in terms of diagrams of a 
t~ 3 theory. Indeed, let us consider a planar one-particle irreducible graph G with P 
external legs of the q~3 theory, with no tadpoles ( P  > 3). Due to the planar geometry, 
we can always decompose G in a unique way into an external loop L with P external 
legs and N internal legs which are connected to the remaining part  of the graph 
G-L,  which appears therefore as a (not necessarily connected and irreducible) graph 
with N external legs (see fig. 3). Reciprocally one can obtain all irreducible graphs in 
that way. Taking into account the symmetry factors this is expressed by the relation 
between Green functions GN and irreducible functions Fp for p > 3 in the planar 
gth 3 model without tadpoles: 

Up(g)= ~_, (--3g)N+p(N + P-1) !  GN(g). 
Nffi0 N!(P-  1)! 

(33) 
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The counting factor is simply the number of different loops with P external legs and 
N internal legs. 

It is now easy to see that the number of vertices on the boundary of a surface S is 
equal to the number of external legs of the dual graph G and that the quantity 
~ osn~ is simply equal to N + 2P where N is the number of internal legs of the 
external loop of G. Therefore, the total intrinsic curvature (32) is given by 

4---~ R = I - ~ ( P - N ) ,  (34) 

and the partition function corresponding to the action (16) for model I', b.c. C, for a 
surface with boundary of fixed length P is 

"~N+P 6 + N _ p l l V  q_ f __ ~tr D 1~! 
z,(/~,y)= E (- ,g~ z Yg.,(iTi37., aN(g), (35) 

N~0 

where z = e ~ ' / 6  and g = e -~, (36) 
The generating function Gu(g ) was shown in [9] to admit the integral representa- 

tion 

oN(g) = f dX xN,(x, g), (37) 

where the function v(X,g) has a compact support [2a,2b] and is the density of 
eigenvalues of the matrix q~ in the limit N ~ ~ .  Therefore we have for Zp the 
integral representation 

= . ( x ) ,  (38) 

with the explicit form for v(X) 

with 

v ( X ) = ( 3 g X + l - z ) ~ / - X  ~ 2V~_ X % ' - 4  
1 - 2 r  ( 1 -  2r--~) z ' V 

(39) 

3g = 7~-~ (1 - 2 r ) .  (40) 

For X ~ 0, Zp is always singular at /3 c (corresponding to % = {). /3c is indepen- 
dent of y and corresponds to the point where the coefficient of the negative square 
root singularity of v(X) (corresponding to ~ 2a ) vanishes. The continuum limit 
result (29) remains valid, but with coefficients a and b depending on "y. The mean 
total curvature 

1 R 8 £ ' ~ -  bulk) = ~-~ Zp (~,  y ) ,  (41) 
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may  be computed in the same way. After lengthy calculations, it appears that for ,/ 
close to zero, it diverges in the continuum limit like 1/e.  This is not unexpected and 

means that the metric becomes singular near the boundary. In order to obtain a 
finite result, we have in fact to renormalize ~, (which is a marginal variable). There is 

1 3 a critical value 7c = gln5 where the total curvature has a continuum limit, y has to 
be renormalized as a function of the cutoff e: 

= vc +  f,R + (42) 

and we define the continuum limit by the limit e ~ 0, LR, ~R,  #R fixed. One gets a 
finite value for the mean total curvature (41), which behaves, in the large volume 
limit, as 

1 
-- LR(e I*R-d  kv~R), (43) 4--~- ( R bulk) LR" 

where c and d are positive numerical constants. We see from (43) that, as expected, 

#R acts as a chemical potential for the curvature, which is proportional to/*R and to 
the length of the boundary. At the critical point ( ' / =  Yc or/*R = 0), we expect to have 
"subt rac ted"  the effect of the boundary. Then, for X~ > 0, the total curvature is 
negative and proportional to L R, hence to the volume A R, in agreement with our 
interpretation of the continuum limit as a space with negative curvature proportional 
to ~ R" For ~ R = 0 the total curvature is zero, as expected for a flat surface. 

Before considering extensions of these simple models, let us discuss in a more 
critical way our conclusions. In the derivation of the continuum limit and its 
interpretation, we have assumed that the surface and its boundary do not develop an 
anomalous  Hausdorff  dimension. As we have seen, this assumption does not lead to 
any contradiction (as far as we have gone) but one cannot exclude completely more 
complicated behaviours. A real check would need the computation of " local"  
instead of global quantities (for instance the mean area of a sphere as a function of 
its radius in the surface [14]). Unfortunately, the diagrammatic interpretation is not 
useful in computing such quantities and some numerical work will probably be 
needed. 

Another  objection to this approach to construct "quantum gravity" is that we 
start f rom a completely discrete model where the length of the links is fixed and 
where the curvature takes integer values. One may think that the Regge-calculus 
approach [3,4], where one considers a lattice with fixed topology and where the 
lengths of the links are the dynamical variables is more appropriate. However, it is 
well known that in the continuum limit, models where the fields take discrete values 
may  be equivalent to model with continuous fields (for instance the Ising model and 
the ~4 theory). The Regge approach suffers also from problems (a continuum limit is 
far less easy to construct than here and it is difficult to recover the usual conformal 
anomaly)  [15]. It  is of course easy to couple the two models by summing over all 



56 F. David / Surface models 

possible planar lattices and then integrating over all possible link lengths for each 
lattice, with an appropriate action. 

In the same spirit than in [6], we can extend those models to higher dimensions by 
considering manifolds made by gluing d-dimensional regular simplices (or hyper- 
cubes). It is possible to construct field theories where Feynman diagrams are dual of 
such lattices but  it is not possible to write the integral of the curvature, which is now 
a relevant quantity, in terms of these theories. Let us point out that for d > 2, if a 
cont inuum limit exists for such models, it is quite possible that the space will develop 
an anomalous dimension d H 4= d at short distances, as suggested by the B-function 
of pure Einstein gravity in 2 + e dimensions, which has a non-trivial UV fixed point 
[16]. 

Finally, we can construct various surface models by embedding the models that 
we have considered in a bulk d-dimensional space. Beside the lattice-imbedding of 
[5, 7, 8] which describes a free theory of branched polymers with Hausdorff dimen- 
sion 4, one can construct continuous imbedding by assigning to each vertex i of a 
lattice S a position given by a vector X i in R a. Possible actions are the sum of the 
areas of the corresponding triangles in R a (as in [17,18]) or more generally any 
translationally and rotationally invariant symmetric positive function of the posi- 
tions of the vertices of each triangle [19]. One can also assign a position X~ to each 
vertex 7 of the dual lattice and choose an action of the form 

s= E / ( ix , -  xjt ), (44) 
links of the dual 

lattice (i, j )  

where f is some positive increasing function. In particular one can choose f(hX,- 
Xj[ 2) = I X , -  Xj[ 2. In this case the triangular (or square) lattice model is equivalent 
to a planar d-dimensional ¢3 (or ¢4) theory with gaussian propagators*. We do not 
know if those models belong to the same universality class than the model of [5, 8] or 
to some other class (or classes). A critical question is to determine the "most  
probable" intrinsic geometry of the underlying lattice (before considering its imbed- 
ding). If the lattice is really a two-dimensional object (as suggested by our study for 
d = 0) then the imbedding will be a surface-like object with infinite Hausdorff 
dimension [17-19]. On the contrary if it is a tree-like object (typical examples are 
provided by the so-called parquet graphs), then its imbedding will be a branched- 
polymer-like object, with Hausdorff dimension 4 [23] as in [5, 8]. 

A possible signal to discriminate such behaviours is the large-order behaviour of 
the partit ion function for open surfaces with a fixed boundary, which is expected to 

* Such models have been recently proposed by Frrhlich in [20]. The possibility that planar scalar 
theories might describe some surface models at the critical coupling where their perturbative series 
diverge has already been suggested by Greensite in [21], and studied in the case of "f ishnet  diagrams". 
For earlier considerations see [22]. 
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be  of  the fo rm 

Z ( f l )  = Y~,e~&-B)KAx, A K - K -~.  (45) 
K K---,oo 

If  e > 2 ( this  is the case for d = 0 where e = 2.5) the average surface remains  finite 

at  fie" I f  e < 2, the average surface diverges (this is the case for the model  of  [5, 8] 

where  e = 3) at  tic- A s tudy of  the expression of  the vacuum energy E l ( g )  in the 

p l a n a r  ~,4 m o d e l  in d = 1" (obta ined  in [9] by  using the equivalence of  this q u a n t u m  

mechan ica l  sys tem with a free Fe rmi  gas) suggests that  the s ingular i ty  of  Z ( f l )  is in 

tha t  case  of  the form ( / 3 - / 3 c ) 1 n l / 3 -  flcl, which cor responds  to the marg ina l  case 

e = 2. One  m a y  speculate  that  e depends  on the d imens ion  d and that  pe rhaps  e > 2 

for  d < 1 and  e < 2 for d > 1. F o r  compar ison ,  let us note  that  the Liouvi l le  str ing 

theory  [24] descr ibes  for d = - o o  a surface with cons tan t  negat ive curvature  

i m b e d d e d  in R d with a gaussian weight (and therefore  with " in f in i t e "  Hausdo r f f  

d imens ion  [18,19, 25,26]) and  has been shown to be tachyon-f ree  for d~< 1, where 

there seems to be a qual i ta t ive change in the ground  state and  the spec t rum of  the 

theory  [27]! N e w  analyt ica l  techniques and numer ica l  work  will be needed  in o rder  

to s tudy  such surface models  and  to clarify these quest ions.  

The  au thor  is grateful  to the Ins t i tu te  for Advanced  Study, where par t  of  this work  

was done,  for  its hospi ta l i ty ,  and  to G. Bhanot,  H. H a m b e r  and A. S t rominger  for 

n u m e r o u s  discussions.  He  also thanks  E. Brrzin, C. I tzykson and J.B. Zube r  for their  

in teres t  and  their  useful comments ,  and  especial ly C. I tzykson for po in t ing  out  to 
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