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WC show that for Wilson fernlions on the lattice the continuum contribution to ($4) can bc 
unambiguously separated form the perturbativc tail which arises because of lhc explicit chiral 
symmetry bre,aking. This phcnomcnon is shown to happen in the Gross-Ncvcu nrodcl to order 
l/N, and WC give general arguments for the occurrence of the same situation in four-dimensional 
gauge theories. 

1. Introduction 

It is well known that lattice gauge theories with Wilson fermions present difficul- 
ties when one tries to evaluate chiral condensates because of the explicit chiral 
symmetry breaking [l]. In general the chiral condensate has a perturbative part 
which needs to be subtracted in order to evaluate the continuum renormalization 
group invariant contribution. Since the perturbative part is given by a divergent 
series in the gauge coupling constant, it is not clear whether an unambiguous 
prescription for the resummation of the series can be given, leading to a uniquely 
defined value for the condensate [2]. In fact it has been argued by one of us that this 
is not true for the so-called gluon condensate (FPf,), the reason for this being that 
the Bore1 transform of the perturbative part has a renormalon singularity on the 
positive real axis that leads to an ambiguity which is of the same order as the 
continuum part [3]. This can be seen to follow from the nonperturbative mixing of 
the operator Fpf, with the operator d, which carries the same quantum numbers. 

In the case of the chiral condensate chiral symmetry modifies the situation. On the 
lattice it is possible to write down regularizations of the fermion action which do or 
do not respect some of the chiral symmetries of the continuum lagrangian (for a 
review see [4]). In the first case (naive or Kogut-Susskind fermions) the condensate 
vanishes to all orders in perturbation theory for massless quarks. For Wilson 
fermions one has to adjust the hopping parameter K (or equivalently the bare quark 
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mass) in order to obtain a massless pion which represents a signal of the restoration 
of chiral symmetry. However there is no guarantee yet that the theory has all the 
properties of a chirally symmetric theory at that point. One additional quantity that 
can be studied would be the continuum chiral condensate which can be estimated 
only after the perturbative tail has been subtracted. Therefore it is a fundamental as 
well as practical question whether the condensate is calculable and its value 
universal (in the sense that it will be the same for Wilson and Kogut-Susskind 
fermions in the continuum). 

In this paper we will argue that this is indeed the case. We will first look at the 
Gross-Neveu model [5] in two dimensions in the l/N expansion and show explicitly 
the full restoration of chiral symmetry at the critical value of the Wilson hopping 
parameter. We will compute the chiral condensate up to order l/N and show how 
the perturbative and continuum contributions can be separated unambiguously. For 
the later part the correct weak coupling scaling properties are verified and universal- 
ity is shown to hold. We will then give a simple argument for the occurrence of an 
analogous phenomenon and argue that a similar separation can be done in four- 
dimensional gauge theories. We also comment at the end about the practical 
feasibility of the subtraction of the perturbative part. 

2. The two-dimensional Gross-Neveu model 

We start from the continuum action density for the 2-dimensional model, which in 
euclidean space is 

(2.1) 

where II/ = (Gi) is an N-component massless Dirac field. This action is invariant 
under the discrete chiral transformation 

We discretize the action on a square lattice with spacing a = 1 by using Wilson’s 
method. Introducing a composite field a,, we get 

(2.3) 

For m = 0 and r # 0 the action of eq. (2.3) is not invariant under the symmetry (2.2), 
and renormalization of the bare mass m has to be performed in order to recover that 
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symmetry in the continuum limit. m is related to the usual Wilson hopping 
parameter by K = l/?(m - 2r). 

Integrating over the field # we get the effective action for the u-field, which 
generates the l/N expansion 

S,,,=N -trln(i$+M+m+c)+$~:o,l , 1 (2.4) 
,I 

where we have set 

f=g’N, (2.5) 

which is kept fixed as N goes to infinity. In momentum space the kernels $ and M 
become 

i$( k ) = c iy,sin( kp) , 
P 

(2.6a) 

M(k)=rx[l-cos(k,)]. 
P 

(2.6b) 

From the action (2.4) we get the effective potential r(a) as a function of the 
external background field u in the l/N expansion. For a spatially constant u we 
obtain 

~(u)=Nr,(u)=r,(u)+O(~). (2.7) 

Introducing the new variable 9, 

D = CT + 172 ) (2.8) 

we get 

with 

F,(Q)= -itrln[i$(k)+M(k)+O], 

and 

r,(G)=F,(o)=$n[f+n(k)] 

(2.9) 

(2.10) 

(2.11) 
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with 

m,=Jktr 
1 

[i$(k)+M(k)+O][i$(p+k)+M(p+k)+O] ’ 
(2.12) 

Finally, the chiral condensate (i+) is related to the minimum a, of the effective 
potential r(a) by 

(lp+q =Nu,. (2.13) 

2.1. RESTORATION OF CHIRAL SYMMETRY 

In the continuum theory the chiral symmetry will be dynamically broken. In order 
to ensure its existence in the continuum with the Wilson action we will renormalize 
the bare mass m so that the effective potential r(o) has two degenerate minima. In 
the weak coupling region (f -=x 1) this is possible for three values of m. Indeed the 
effective potential of eq. (2.7) is invariant under the transformation 

u+ -u, m-, -4r-m. (2.14) 

If m = -2r, the effective action (2.4) has in fact an exact chiral invariance, the 
potential (2.7) two symmetric degenerate minima + a, and -a,, and the fermion 
propagator two poles close to (7~, 0) and (0, a). Thus in this case there is a Z2 chiral 
symmetry which exchanges the two corresponding particles. Therefore the con- 
tinuum theory will describe two species of fermions with a mass of order a, and the 
chiral condensate (2.13) will have no perturbative tail, in striking similarity with 
Kogut-Susskind fermions. 

The other possibility is for m = m, close to 0 (or -4r). The fermion propagator 
has only a pole close to (0,O) (respectively (r, n)), and the continuum limit will 
describe only one species of fermion. In that case we have to find II?,, u+ and u- 
such that 

gb +,m,)=g(u-,m,)=O, 

rb+, m,) = r(u-, m,). 

Expanding the solutions in l/N 

m,=~“+J-m’+O 
N 

D,=u++m,=DO,+~O1~+O -$ , 
i 1 

(2.15) 

(2.17) 

(2.18) 
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we get a set of equations which can be solved recursively in l/N. The way m 
approaches m, (from above or below) will select one of the two degenerate ground 
states (0 + or a-) at m = m,. 

2.2. THE CHIRAL CONDENSATE AT N = a, 

Using eqs. (2.7) and (2.9) we get at leading order 

(2.19a) 

~(L?~-m”)2+Fo(S1D,)=~(RO-mo)Z+Fo(f2~). (2.19b) 

In order to solve these equations in a small-f expansion we need the small-9 
expansion of the function F, given by the integral (2.10). This expansion is of the 
form 

Fo(0)p=ono+n,D+ E (a,,+b,,lnl01)9”. (2.20) 
,I - 2 

The constants a,, and b,, are numerical factors which depend on r. In particular we 
have 

b2=& b3=&, (2.21) 

and a, # 0 for r # 0. After some algebra one finds for L’: and I?,’ 

m” = a,f= O(e-‘““), (2.22a) 

f2\= * Ce-“jf+ O(e-‘“‘J), (2.22b) 

with 

C=e- . 1/2+ 2nll~ (2.23) 

Therefore the chiral condensate is 

(q+) = N( a,frt CeC”“). (2.24) 

At leading order of the l/N the chiral condensate gets a perturbative tail which 
vanishes if r = 0 (naive fermions). The continuum part is nevertheless unambigu- 
ously defined by 

(~J/),,,,.= f NCe-v’f. (2.25) 
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It scales accordingly to the renormalization group prediction and coincides with the 
value for the condensate obtained by other formulations. In particular let us note 
that 0, is for N = co the dynamically generated mass nr r of the fermion, and that 
we get the renormalization group invariant ratio 

The above results are not surprising; at leading order of the l/N expansion it is 
known that the perturbative tails which are present in the definition of composite 
operators are always convergent series in the coupling constant and may be 
unambiguously subtracted from the continuum part. We must look at least at the 
first nontrivial term of the l/N expansion to see if the continuum part of ($$) is 
well defined. Before considering this issue, let us note that the subleading terms of 
the weak coupling expansion of 00, may be computed in the same way. We shall 
need the first subleading term in the next section, which is of the form 

fiO,= +Cemn//+ +$$em2-, O(e-3n//), - (2.27) 

where A, B, D and E involve the coefficients a,, and b,, for ?I = 2,3,4. The 
important point is that the term of order ee2”” is the same in both chiral phases + . 

2.3 THE CHIRAL CONDENSATE AT ORDER l/h’ 

As previously discussed, we expect to see an ambiguity in the perturbative tail, if it 
exists, at order l/N. Therefore we must compute the terms ,n’ and L?, in 
(2.17)-(2.18). Using (2.7) we get two linear equations: 

(2.28a) 

(2.28b) 

which reduce, using (2.19) to the explicit formula for the chiral condensate 

(Jl = * (2.29) 

In order to determine the properties of the perturbative part of a\, we need the 
small-L? expansion of the function Fi given by (2.11). This expansion follows from 
the small-0 and small-p expansion of the “bubble” integral II( p, 0) given by (2.12). 
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In fact we have first to take the small-9 limit, which is of the form 

(2.30) 

where 

IIk(p,~2)=S2k[A,(p)+lnl~lIB,(p)l. (2.31) 

The functions II,,, A, and B, depend only on the momentum p and are analytic in 
the Brillouin zone away from (0,O). Possible singularities or ambiguities in the 
small-f expansion of Fl can arise only from their small-p behavior, which we now 
investigate. 

The integral I7,( p) corresponds to the l-loop integral (2.12) taken at zero mass 
52. Its small-p behavior is universal: 

ITe(p)=$lnlpl +const+O(lpI). 

The small-p behavior of A, and B, is very important, and is found to be 

A,(p)=klnlpl +cst+O(p), 

B,(P)= - ;+O(P). 

Finally, let us mention that A, and B2 behave as 

4(p)n$Wl 9 B"(p)d 
P2 * 

(2.32) 

(2.33) 

(2.34) 

(2.35) 

We can now compute the perturbative part of u \ by retaining only the terms of 
order O(a) in (2.29), using (2.23) and expanding in f. We get 

ul = _ f 

*- 2k J 
AI(~) +2b2 - f)&(k) + o(e-,,,f> 

l/f+ flow 
, (2.36) 

where = means that (2.36) has to be understood in the sense of a formal power 
series in f. 

In general, in dealing with asymptotic series in the coupling constant 

A(g’)= g A,(g2)k+1 (2.37) 
k-0 
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it is useful to consider the Bore1 transform of the formal power series 

(2.38) 

The original function A(g’) can then be recovered through the integral transform 

(2.39) 

In order to study the summability of that series, we have to look at its Bore1 
transform B’,(b) defined from the series (2.27) by 

f”- (/y;)! . 
We get 

B’,= -ii,[Al(k)+(2mz2-+)][ ‘;;;;;“I. 

(2.40) 

(2.41) 

From the IR behavior of II,, A, and B, given by (2.32)-(2.34) we see that this 
integral is IR convergent as long as Re 6 > 27r, and has an IR renormalon singularity 
at 

6=2m. (2.42) 

Therefore the perturbative part of a\, which is (formally) defined through eq. (2.40) 
is not Bore1 summable. However, the ambiguity corresponding to the singularity at 
6=2m isof order 

Im( u\ rcrt,) = ee2”“, (2.43) 

and is therefore negligible in the continuum limit, since it corresponds to irrelevant 
terms of the order of the lattice spacing a. 

Since the perturbative tail of the chiral condensate has no ambiguity of order 
e-“‘/, the continuum part of the chiral condensate is well defined and can be 
unambiguously separated from the perturbative tail (up to irrelevant terms). It is 
possible, using (2.30), to evaluate explicitly that continuum part. This involves not 
only the terms of order Q2 in F,(D), namely A2 and B7, but also those in fit given 
in (2.28). The final result is rather complicated and we shall give only its general 
form. We have 

~\(f)~~~~.= +e+’ s-,lnf+ E sJ” (2.44) 
,,=o 
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where the s,,‘s are numerical factors. The presence of a In f is not surprising; it is 
induced by the two loops coefficients of the p-function and of the anomalous 
dimension of $# which appear at order l/N. The series in f is not Bore1 summable 
but its ambiguity is of order e -?r” and is therefore irrelevant in the continuum limit. 
Let us emphasize that the continuum part has opposite sign in the two chiral phases 
+. This is a strong indication of the restoration of the chiral symmetry in the 
continuum limit. 

In conclusion, we have checked in this section, up to order l/N, that first the 
continuum part of the chiral condensate may be unambiguously separated from its 
perturbative tail (that is, up to terms irrelevant in the continuum limit), and second 
that the continuum part isolated in such a way has the expected scaling and 
symmetry properties. Of course a complete analysis should require a check of 
universality by computing the ratio condensate/fermion mass at order l/N. This is 
possible but very tedious. We will prefer to give in the next section a simpler but 
more heuristic argument for the separability of the continuum part which has the 
advantage of being applicable to four-dimensional gauge theories. 

3. The four-dimensional case 

In the Gross-Neveu model as well as in four-dimensional gauge theories the chiral 
condensate for Wilson fermions can be written as 

($44 = Jjr 
[ 

1 1 i$(k)+G(k)+JJ(k,g2) ’ 
(3.1) 

where i$(k) + G(k) is the propagator for free Wilson fermions and E(k, g’) is the 
fermion self-energy. The requirement for restoration of chiral symmetry is that the 
bare fermion mass is renormalized in such a way that Z(k, g2) has a zero at k = 0 in 
perturbation theory, namely that 

w g2) k--OF [( series in g2 and In k2) + O(lkl)] . (3.2) 

The dependence on Ink can be made more precise by using the renormalization 
group. Adapting an argument originally due to G. Parisi, we can show that if we 
take the Bore1 transform of 2(k, g2), its small-k behavior is determined by the first 
term in the p-function fi( g) = dg/Jln A = - flog3 + . . * and is given by 

%k, b) -o~[k21-“p”~ (3.3) 

Inserting (3.2) in (3.1) we can estimate the small-momentum behavior of the Bore1 
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transform of the perturbative part of ($4). We get 

Bore1 transform of [(&#)I =i-,d2k Ikl-2hp, . -I 1 iF+rk’ 
(3.4) 

In the case of the Gross-Neveu model in d = 2 the integral is IR divergent at 
b = l/pa and not at b = l/2&, as suggested by naive power counting arguments, 
since trl/F = 0. The cancellation of the IR renormalon at b = l/2& occurs 
obviously because of chiral symmetry. The perturbative tail is ambiguous only at 
order exp( - l/&f) and the continuum part, of order exp(-1/2&f), can be 
unambiguously separated. 

The advantage of this heuristic argument lies in the fact that it can be immediately 
extended to gauge theories, where the formula of eq. (3.4) holds with d = 4. Here one 
again has 

1 

i$(k)+fi(k)+E(kyg2) 1 
-P,g2iklnk2)“. (3.5) 

where &, is the coefficient in the first term in the beta function of QCD: p(g) = 
-flog3 + O(g5). After taking the Bore1 transform one obtains 

(I&#) =g-2/l-tr l [k2]-bpo. 
iF+irk’ 

(3.6) 

Here the perturbative part has a renormalon at b = 2/p,, while the continuum part 
of the quark condensate is of order exp( -3/2&g2) and may be unambiguously 
separated. 

We have shown in the previous section that the continuum value of (J#) is 
related to the discontinuity of the full ( $$I) as K, is approached from above (K > K~) 

and below (K < K~). This follows from the fact that the perturbative tail is an even 
function of K - K, whereas the continuum contribution is odd. This suggests a 
possible practical way of separating the perturbative tail for ($#) from its con- 
tinuum contribution. Let us define 

(3.7) 
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where rnR is the “renormalized” quark mass as defined through the pion mass. The 
perturbative tail is then given by 

(3.8) 

Let us finally consider the case of the topological charge density F,,,F;,,. For the 
lattice regularization of Fpy&, one has two choices: either one defines a simple local 
operator on the lattice which reduces to the continuum counterpart for weak enough 
coupling and has no topological significance on the lattice [6], or one defines a more 
complicated, not necessarily local, operator which maintains the topological proper- 
ties of the continuum expression [7]. In the first case one expects in general that the 
lattice definition has a perturbative tail. However here the topological density is of 
the same order as the ambiguity in the perturbative tail which comes from the 
mixing with the operator Fpf,, and leads to a renormalon singularity at 2/p,. 
Therefore one does not expect that in this case a meaningful continuum quantity can 
be extracted. 
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