
Volume 138B, number 5,6 PHYSICS LETTERS 26 April 1984 

A COMMENT ON INDUCED GRAVITY 

Francois DAVID 1 
The Institute for Advanced Study, Princeton, NJ 08540, USA 

Received 23 December 1983 
Revised manuscript received 6 February 1984 

Because of the non-perturbative ambiguity of the stress-energy tensor in theories with dynamical breaking of conformal 
invariance, there is no unique self-consistent way to compute the Newton's and cosmological constants of the corresponding 
induced gravitation theories, when leading quadratic or quartic divergences are present. 

Following an approach initiated by Zel'dovich [I ] 
and Sakharov [2], Adler has proposed that gravity 
may be considered as an effective long distance effect 
which arises from dynamical symmetry breaking in an 
underlying conformally invariant quantum field the- 
ory [3]. Neglecting the fluctuations of  the space-  
time metric guy(x)  and quantizing the matter fields in 
the corresponding curved background metric, one gets 
an effective action in terms of  the metric which, in 
the long distance and low energy limit, reduces to the 
Einstein-Hilbert gravitational action 

Sind _ 1 fd4x ~ (R - 2Aind) . (1) 
16n Gin d ~ 

Adler [4,5] and Zee [6] have shown that the in- 
duced Newton constant Gind and the induced cosmo- 
logical constant Aind can be written in terms of  corre- 
lation functions of  the stress-energy tensor TU~(x) in 
the fiat metric (gO v = 6uv): 

Aind/Gind = -2n(TU(0) )0 ,  (2) 

i fd4xx2<T(~(x),~.~(O)))o, (3) (161rGind)-I - 9-6 

where 

TUV(x) = TUV(x) - (TUV(x)).  (4) 

Restricting oneself to a pure Yang--Mills theory for 
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simplicity, the stress-energy tensor is related to the 
action density via the trace-anomaly relation 

T~(x )  = [~(g)/2g] Tr[FUV(x) Fur(x)]  . (5) 

One of  the problems raised by such an approach is 
that the formula (2) for Aind/Gin d presents quartic 
ultraviolet divergences (of  order a -4  where a is some 
UV regulator). Similarly, from the operator product 
expansion, the integrand of  the rhs of (3)  behaves for 
small x as 

( T { T ~ ( x ) ,  TV(x)))  x~O (x2)-4 (l°g(x2)) 

+ (x2) -2  {log (x2))(T~(0))0 + O((x2)-1) . (6) 

Therefore, the leading term of(6)  gives quadratic UV 
divergences for Gin d. Adler [4,5] and Zee [6] have in 
fact argued that such divergences are formal ones and 
disappear when one uses an analytic regulator such as 
dimensional regularization or a G-function regulariza- 
tion. This corresponds to the well-known integration 
rule in a 2co-dimensional space [7]. 

fd2~p (p2)-,~ = 0 V,o, a (7) 

or equivalently, to a Hadamard's finite part descrip- 
tion for the integration at x 2 = 0. With such a prescrip- 
tion one can get rid of  such divergences at all orders of 
perturbation theory and get a finite, scheme-indepen- 
dent result for Gin d and Aind. For gauge theories Ain d 
appears related to the "gluon condensate" which has 
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been extensively discussed since the works of Shifman 
et al. [8]. Khuri has discussed in detail under what 
conditions one can get a positive Gin d in such schemes 
[9]. 

The purpose of this note is to explain why such a 
prescription is in fact not consistent and why one 
cannot get rid of quadratic or quartic UV divergences 
in such a simple way. This follows from the observa- 
tion we have made in some two-dimensional models, 
where composite operators such as T~ may be com- 
puted in a non-perturbative way via the 1/n expan- 
sion [10]. It  appears that when computed with an 
analytic regulator, such operators are finite but present 
non-perturbative ambiguities which make them com- 
plex and multivalued. For instance, for Yang-Mills the- 
ories the stress-energy tensor is expected to have an 
imaginary part and to be of the form 

(T~(0))0 = (A -+ iB) M 4 , (8) 

where M is a renormalization group invariant scale 
mass. 

Such an ambiguity comes from the fact that the 
quartic divergences in T~ are contained in a series in 
the bare coupling constant which is not Borel sum- 
mable. According to the summation prescription 
chosen to define that divergent part (above or below 
the positive real axis in the Borel plane), we get two 
possible determinations for the finite part, correspond- 
ing to the two values of (Tu~(0))0 in (8). 

The existence of these ambiguities is a general 
problem which occurs in the definition of the terms 
of the Wilson's operator product expansion. There- 
fore, one can show that the leading term in (6), 
which corresponds to the quadratic divergences of 
Gi-n~, suffers from the same problem and that the 
finite part of (3) has the same kind of ambiguity, 
namely: 

G~ -1 = (C -+ iD) M 2 . (9) 

Let us point out that this ambiguity for Gin d was 
already noticed by Adler (see the appendix B of ref. 
[5]). He indeed noticed that the finite part of the in- 
tegral (3) may be defined by dimensional regulariza- 
tion as the limit as co goes to 2 (200 being the dimen- 
sion of space-time) of a regularized form of the inte- 
gral (3). This regularized integral has in fact a cut 
starting from co = 1 to o: = +0% so that the limits as 
co -+ 2 + i0+ are different (and complex conjugate). 

This is the ambiguity that we have displayed in (9). In 
order to avoid that problem, Adler argued that her- 
miticity requires that the result of (3) must be real, so 
that one must take the real part of(9) for G~n 1. This 
recipe is in fact incorrect: hermiticity requires indeed 
that the result must be real; however, any linear com- 
bination of the form 

Gi -1 = [(½ - my) lim 
~2+i0+ 

+ (~ + iv) lira ] a~h(,~) (10) 
~o~2-i0+ 

satisfies that requirement and gives an arbitrary result 
for Gi-nld 

G=I 1 = (C + yD)  M 2 . (11) 

The same argument holds obviously for Aind. 1 
Some authors have computed Aind and Gind in 

SU(N) gauge theories using the dilute instanton gas 
approximation, and obtained an UV finite result [ 11 ]. 
This does not contradict our argument. The above 
ambiguities come from the mixing of the operators 
Tu ~ and (~u)2 with the operator 1, and can be shown 
to occur only in the sector with zero topological 
charge (provided that N > 12/11 and 6/11, respective- 
ly). A general discussion on the role of instantons in 
the renormalization of composite operators is made 
in ref. [12]. 

Therefore, it appears that the arbitrariness con- 
tained in the subtraction of the quadratic or quartic 
UV divergences of(2) and (3) is not suppressed in 
general by using an analytic regulator, but simply 
transferred at a non-perturbative level. There may per- 
haps be some cases where Im A and Im G -1 vanish 
(the simplest example is provided by the two-dimen- 
sional O(N) non-linear sigma model in the limit N = o~ 
[10]), but this seems to us an exceptional and non- 
generic situation. In particular, this arbitrariness 
should also be present when one takes into account 
the fluctuation of the metric itself, for instance, by 
using a higher derivatives theory of gravitation [13]. 

The only general way to avoid that problem, which 
comes from the mixing of the operator T~ with the 
operator 1, is to use a supersymmetric theory of mat- 
ter. It is well-known that in that case, quadratic diver- 
gences disappear and for instance, in supersymmetric 
Yang-Mills, (13/g) Tr F 2 is a member of a super multi- 
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plet and cannot mix with 1. However, in such a case, 

one must couple the matter field to the background 
metric in a supersymmetric way, and one is inevitably 
led to the study of induced supergravity. It should be 
interesting to see what are the analogs of the formulas 
(2) and (3) in that case. 

I am very indebted to S. Adler for his interest and 
for useful discussions. This work was funded by De- 
partment of Energy Grant No. DE-AC02-76ERO2220. 
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