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We discuss the respective role of instantons and of vacuum expectation values of local operators in the structure of the 
Borel transform of CP n-I  models and suggest an IR finite definition for the contribution ofinstantons. The structure of 
the operator product expansion, the renormalization of composite operators, the role of the 0 parameter and the signifi- 
cance of semi-classical results are discussed from that point of view. 

The exact role o f  instantons (topologically nontriv- 
ial minima of  the action) I1 ] in the functional inte- 
gral remains somewhat uncertain for massless asymp- 
totically free theories. Indeed, the semi-classical 
methods suffer from important  infra-red (IR) diver- 
gences when one integrates over the scale of  the in- 
stantons. Related problems appear while comparing 
semi-classical arguments with those o f  the 1/n expan- 
sion [2]. For  those reasons the only rigorous semi- 
classical results have been obtained in a finite s p a c e -  
t ime volume [ 5 - 7 ] ,  and eventually by taking the in- 
finite volume limit after summation over all instantons 
configurations [3,4,7].  On the other hand a lot o f  
phenomenological models of  QCD vacuum based on 
instantons have been proposed [ 8 - 1 0 ] ,  which in fact 
always involve some IR cut off  on the instanton size. 
In this letter we shall discuss the precise relationship 
o f  these problems with the occurrence o f  the "non- 
perturbative effects" associated to vacuum expecta- 
tion values o f  local operators (condensates) in such 
theories [11,12] and to the " IR  renormalons" prob- 
lem [ 13]. For that purpose we shall analyse the struc- 
ture o f  the Borel transform o f  the two-dimensional 
cpn -1 models via their 1In expansion and the semi- 
classical results. This will lead us to conjecture a gener- 
al, mathematically well-defined, and IR finite defini- 
t ion o f  the contr ibut ion of  instantons to the observ- 
ables o f  such theories. 
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Let us first recall briefly some classical results 
about CP n-1 models (we use the notations of  ref. 
[14]). The classical action o f  the euclidean CP n-1 
model  is 

_ n fa2 DuZ-~-~fd2xeUVOuA" S - - ~ j  x DuZ (1) 

where Z(x) is an n component  complex field with 
unit norm 1. 

ZT. Z ~ = 1 , (2) 

and D u the covariant derivative 

D u=O u+iAu, A u=~iZ-~uZ. (3) 

We have already introduced the vacuum angle 0 via 
the term iOQ in the action. This model  admits instan- 
ton (and anti-instanton) solutions o f  the form Z,~(x) 
= wa(x)/Iw(x)l, where the wa are rational functions 
o f s  = x 1 - ix  2 (s = x 1 + ix2), with classical action 

S = (nn/f)IQI - ioa ,  (4) 

where the topological number Q is simply the number 
o f  poles (minus the number of  zeros) o f  the w's. The 
Q = 1 solution (one instanton) is characterized by its 
position, SU(n) internal degrees o f  freedom, and an 
arbitrary scale X. The contr ibut ion of  the Q = 1 solu- 
tion in the semi-classical approximation (one-loop 
correction) is o f  the form: 

o o  

f dXXn-3exp(--nn/fR). (5) 
0 
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(JR is the renormalized coupling constant) and is IR 
divergent for n ~> 2 and UV divergent for n ~< 2. 
The 1In expansion is obtained by introducing 
Lagrange multipliers a(x) and Xu(x ) in order to take 
into account the constraints (2) and (3). Integrating 
over the Z and A u fields we get an U(1) gauge invari- 
ant effective action. 

Sef f = n tr In [-DuDU - (i/x/n)a] 

+~fd2x~(x) iO fd2xeu~OuXffx), (6) 
2~x/fi 

with 

D. = 0. + (i/V~)X.. (7) 

The 1In expansion corresponds at the level of  
Feynman diagrams to charged massive particles (the 
Z field) with propagator 

G(p) = (p2 + m2) -1 ,  m 2 =/~2 exp(_27r/fR), (8) 

interacting via the exchange of  a scalar a particle with 
propagator 

( (  d2k G(k) Gfp - k))  -1 (9) 
D(C0(p) = \d  (2n.)2 

and the exchange of  a U(1) massless gauge boson Xu 
with propagator (in Lorentz gauge) 

D(X2(p) = (6uv - pupv/p 2) [(t9 2 + 4m 2)D(~)(p)- 1/rr]-I 
(10) 

The topologically nontrivial structure of  the model 
emerges via the 0 term in Seff, which corresponds to 
X u lines ending in the vacuum with a factor 0. 

The Borel transform and the 1In expansion. We 
are interested in the structure of the Borel transform 
(with respect to the coupling constant fR) of any ob- 
servable of  the model. In fact in the l[n expansion 
only locally U(1)gauge invariant observables are 
meaningful and free of  the IR divergences coming 
from the massless propagator D (x) [14] (this corre- 
sponds to the fact that only globally SU(n) invariant 
observables are IR finite in the perturbative expan- 
sion [15]). If  we consider such an observable G(x), it 
is more interesting to look at the structure of the 
"modified" Borel transform [16]: 

C 

B(x;s)= f dfRf~R2exp(s/fR)O(x;fR) . (11) 
0 

This may be done by the methods that we have devel- 
oped in refs. [ 17,18] for the O(n) nonlinear sigma 
model. The only difference between the O(n) and 
cpn-1 models lies in the additional massless propaga- 
tor D (x). We simply give the final result: 

Proposition 1. At all orders of  the 1In expansion, 
the Borel transform B of  any invariant observable G 
has the following structure: 

(a) B(s) has cuts at s = 2nk, k >~ 0 integer. 
(b) The discontinuity A k of B at s = 2rrk is the 

Borel transform of the terms of the SVZ operator 
product expansion [ 11] 

G(X;fR) = ~. Ci(x;f R) <010/10), (12) 
l 

associated to operators 0 i with canonical dimension 
2k. In (12) the sum runs over all gauge invariant and 
scalar local operators 0 i constructed from the fields 
Z, 2, a and ~u. The coefficients C i are perturbative 
seriesinf R and the "condensates" {0lOi]0)are non- 
perturbative terms of order 

(0[Oil0) ~ [exp(--Tr/fR] dim Oi. (13) 

(c) The terms of the RHS of (12) have the ambi- 
guities found in ref. [18] for the O(n) model. Namely, 
each Ci(fR ) is a non-Borel summable series because of 
IR singularities (IR renormalons) and the condensates 
(0 IOil0) have (2)dimOi/2 different determinations 
(coming from UV ambiguities) depending on the re- 
summation prescription chosen for the Ci's. 

(d) The only dependence of G in the vacuum angle 
0 is contained in the condensates (0 I0 i]O) which are 
functions of  0. 

Points (a), (b) and (c) are simply the generalisation 
to CP n-1 models of the structure found in refs. [17, 
18] for the O(n) model. The interesting point is (d), 
which shows that at any finite order of the 1/n ex- 
pansion, the topologically non-trivial structure of  the 
model does not give new non-perturbative effects and 
is completely taken into account by the OPE (12). 

The IR structure of  the semiclassical approximation. 
Of course we expect that the above result does not 
hold at finite n. Indeed the one-instanton contribu- 
tion is naively of order exp(-nn/fR), so that the OPE 
(12) should be valid only for dimOi < n .  In order to 
understand what new contributions instantons induce 
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at finite n, let us return to the results o f  the semi-clas- 
sical calculations by putting an IR cutoff  and looking 
at the structure o f  the IR divergences as the cutof f  is 
removed. 

For that purpose we shall simply use the results o f  
ref. [3] where the one-loop contribution ofk- instan-  
tons configurations is computed exactly for the CP n-1 
models on a sphere with radius R.  We use the confor- 
real complex coordinates on the sphere where 

z = R - I ( x  1 + ix2) ,  guy = 6uv 4R2/(  1 + 1z12)2" (14) 

We shall restrict ourselves to the k = 1 sector. The 
one-instanton may always be writ ten,  after an inter- 
nal SU(n) rotation as 

w~ = ~ , l p ( l + z 2 0 ) + 6 ~ ( z - z 0 ) ,  0 < p < l ,  (15) 

p is the scale o f  the instanton and z 0 its position. The 
measure over the collective coordinates p and z 0 is 
found at one loop 4-1 [6] [after integrating over the 
SU(n) internal degrees o f  freedom which are irrelevant 
for any SU(n) invariant observable] : 

dl~ = RnCn(fR;IQ 4d220(1 + Iz012) -2  

X do p -3(1 - p2)2 pn (1+o2)/(1-02) , (16) 

where the constant C n is in the MS scheme 

Cn(fR; U) = (470 -1 [rrn/1-'( n - 1)1 

X exp ( - ~ ( n  +2) +½n [ln 4rr + P '(1)]  

X [(2n/f)lJexpOr/fR)]n. (17) 

We are interested in the behavior as R --> oo ofinvari-  
ant observables. Let us consider for instance the two- 
point function: 

A ( x , y )  = tw(x) .~(y)12/Iw(x)l  2 Iw(y)l 2 . (18) 

Using (15) and (16) we get for the contribution o f 
the k = 1 sector to A the integral 

1 

A(k=l)(x, O) = - R  n-2C n Ix]2 f d 2 z 0  f dp 
0 

(19) 
X P-Im(l+'°2)/(1 -p2)(1 --/92)2 

(/92 + ]z 012) (p2l 1 + Xzo/R ]2 + Iz 0 _ x /R  12) ' 

The behavior o f  (19) as R -+ oo may be splitted in two 

4-1 The parameter z of ref. [6] is z = p2. 

parts:  first the divergences coming from the behavior 
of  the integrand as R -+ o o  (which give terms like 
R n-k (k integer) and which correspond to the short 
distance behavior o f  A in a constant background field, 
and second the divergences coming from the integration 
in the domain p ~ I/R, which correspond to small size 
instantons, and which give terms like R k ( inR)q (q <~k). 
The final result has a simple form for generic (non- 
rational) n, and may be extended for any observable G. 

Proposition 2. Any observable G in the k = 1 sector 
has the following large R expansion 

G (k=l)(x) = ~ R n-  dim Qi c(k=O)(x) (0 [0 i 10)(kl 1) 
l 

+ C(ok=l)(x, n ) ,  (20) 

where the sum runs over all local operators 0 i. 

ci(k=O)(x) is the first term (JR = 0) o f  the coefficient 
C i of  the OPE (12) computed in perturbation theory 
(namely in the k = 0 sector). 

R n -dim Oi(olOi[O)~E~)is by homogeneity the UV 

finite part of  the VEV of  0 i computed in the k = 1 
sector (with the IR cutoff  R).  The finite part prescrip- 
tion deals with the UV divergences o f  order 

f dp pn- l -d im 0 i , (21 ) 

0 

which are present in (Oi)~,, 1 if  dim Oi,>~, n. 
The remaining temlC(ok=l) is the finite par t"  o f  

G in the k = 1 sector and is o f  the form 

c(k=l)  -__ a o + R - 2 ( a l l n R + b t )  

+ R  -4  [az(inR)2 + b 2 lnR +c2] + .... (22) 

The first term a 0 is universal and independent of  the 
IR regulator, and is obtained by computing naively G 
in the k = 1 sector with R = oo and dealing with the IR 
divergence at p = oo by Hadamard's  finite part prescrip- 
tion. 

Thus, (20) shows that the IR singularities o f  the 
k = 1 sector have the structure of  an OPE exactly like 
the k = 0 sector [15,19], but that there is a mixing 
between the k = 0 and k = 1 sectors in (20). There are 
no others C~ k--l) terms at leading order i n f  R in (20) 
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because 

<0lOil0) k=° = O(fR) if d i m O i > 0 .  

The structure o f  the Borel transform for finite n. 
It is tempting to generalize that result to any k sector 
and to any order o f  perturbation theory and to expect 
that all IR singularities o f  the k sector may be recast 
into VEV of  local operators computed in sectors 0 ~< 
k'<~ k. (This is technically much more difficult to 
prove, in particular there is no simple way to take a 
generic n so that the different powers of  R do not mix. 
We have only partial results on those points). Assuming, 
as done in ref. [ 19] for massless superrenormalizable 
theories, that in the limit R -~ oo those VEV have a 
finite limit, we are led to conjecture the following re- 
suit. 

Conjecture. For generic (non-ratiofial) n, the Bore1 
transform of  any observable G has cuts as s = 2rr(8 + 
n" k), 5, k integer, corresponding to the OPE 

G(x) = ~. Ci(x)<OlOilO), (23) 
l 

where the VEV of  an operator 0 i with dimension 28 
is o f  the form 

(0[Oi10)= C ( 0 ) e x p ( ~  28 + ' y ( t ) a t )  
13(t) 

C(O) exp [--(Tr/fR) dim Oi], (24) 

and where each C i is the sum over all topological sec- 
tors k o f  the IR finite part o f  the corresponding coef- 
ficient of  the OPE in sector c(k): 

+oo  

Ci(x)= ~ exp(iOk)Ci(k)(x), (25) 
k =  - ¢ 0  

each Ci (k) being of  the form 

c(k)(x) = [.f-1 exp(_rc/f)] nk 

X [aik,0(x) +fRa~i,l(X) + ...] . (26) 

In (26) the bracket contains the whole perturbative 
expansion of  C i in the sector k, plus possible non- 
perturbative contributions coming from other finite 
action classical configurations. 

Comments. 
(a) This seems to us the simplest and most natural 

generalization of  the partial results obtained above. It 
means that all IR divergences of  the instantons can be 
recast in the condensates *z so that what remain are 
the series (26), which are in IR finite parts o f  the instan. 
ton contributions, and which are well defined for ge- 
neric n. In particular all "paradoxes" encountered 
when comparing the large n limit and the semi-classical 
results are simply explained by (23)-(26) .  

(b) The fR and 0 dependence o f  the condensates 
suggested in (24) is a consequence of  the fact that the 
<Oi)'s must obey standard renormalization group equa- 
tions and that the ~3 function and the anomalous dimen- 
sions 7 are the same in all topological sectors [21]. 
Therefore, they do not depend on 0 and cannot con- 
tain non-perturbative contributions. As a consequence 
the (Oi>'s depend on 0 only via the integration con- 
stants C(O) in (24). 

(c) As for the O(n) model, those constants C(O) 
contain also the UV ambiguities related to the renor- 
malons problem and therefore are determined only 
once a summation prescription has been chosen for 
the series (26) which contain IR renormalons. 

(d) The above result is valid only for generic n. For 
integer values of n, some (0 i) and C/(k) are of  the same 
order and the associated cuts in the Borel plane should 
coalesce and have additional divergences. We shall dis- 
cuss this point further in the case n = 2 [the 0 ( 3 )  
model[. 

(e) The first condensate O 1 = <0iDuZDUZI0> is well 
defined as long as n > 2, and its ambiguity [which is 
equal to the IR renormalon of  C~0)(FR) at s = 1/27r] 
is therefore independent of  0. Thus O1(0 ) - O 1 ( 0  = 0) 
is unambiguous for n > 2 and the topological suscep- 
tibility XT, which corresponds in the infinite volume 
limit to 

XT = - ~ [[3(fR)/f 2 ] d201 (0)/d0210=0 , (27) 

is well defined as long as n ~> 2. 
(f) Finally let us note that VEV of pseudoscalar 

operators such as the topological charge density (1/2n) 

4.2 This fact was already suggested in ref. [12], however, our 
finite part prescription is unambiguous and differs from 
that proposed in ref. [12]. The fact that instantons must 
give in fact a contribution of order exp(-2rr/fR) rather 
than exp(-n~r/fR) was also pointed out by Munster [20]. 
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× e OUA v may appear in the OPE (23) via the terms ~v 
C/(~), k odd,  in (25). Such terms are zero for 0 = 0 or 
7r and cannot be seen in the 1/n expansion. 

The case n = 2. We now discuss the mixing o f  the 
condensates with the instantons which occurs for in- 
teger values o f n  on the example o f  the CP l model 
[the 0(3)  non-linear o model] .  Then the first conden- 
sate O t is from (24) 

01 = ClYR 4/n exp(--27r/fR)[1 + O(fR) ] ,  (28) 

and for n = 2 is exactly of  the same order than the 
contribution o f  the one-instanton given by (26) *3 . 
Therefore the contr ibution o f  the one-instanton com- 
puted by (19) behaves like 1/(n - 2) and has a pole at 
n = 2. Since C0 (1) and 01 correspond to cuts in the 
Borel plane which coincide as n = 2, O 1 must have 
also a pole at n = 2 (associated to divergences o f  small 
size instantons) so that the two poles cancel to give 
an additional logarithm off l~  2 exp(--27r/fR ). This 
means that one can no longer separate the contribu- 
t ion o f  instantons to those of  the condensates and 
that only their sum is meaningful. As a consequence, 
the topological susceptibility XT given by (27) diverges 
at n = 2, because o f  small size fluctuations, a pheno- 
menon already noticed by L~ischer [23]. 

This is in fact the consequence o f  a general pheno- 
menon: For  an integer (or rational) number o f  com- 
ponents n, an operator  O with dimension m suffers 
from additional UV divergences, coming from small 
size instantons, which mix O with operators with 
dimension p < m,  via different topological sectors 
[Ak = n - 1  (m - p ) ] .  Therefore additional subtractions 
are needed in order to define the renormalized opera- 

tor  O. 
This may be shown to occur in the so-called "semi- 

classical approximat ion" where one computes only 
the quadratic fluctuations around the k-instanton so- 
lutions and sums over all instantons (or anti-instantons) 
configurations. This approximation corresponds in 
fact (at least formally) to take the limit where the re- 
normalized coupling constant fR goes to zero and the 
0 angle is taken complex .4 and goes to - ioo(or  +i oo) 

, 3  The ident i ty  holds also for the power factor in fR" We do 
not  know if  this is a coincidence or if there exists some 
deep reason for such an identi ty,  like in some super-sym- 
metr ic  theories [22] ,  

~4 The idea o f  taking 0 complex  has already been suggested 
by 't Hooft [24].  

in such a way that the parameter  

z = [f~R 1 exp(- - l r / fR)]n  e x p ( + i 0 ) ,  (29) 

remains finite, and corresponds to the fugacity o f  the 
instantons (or anti-instantons). Such a limit likely ex- 
ists in a finite volume but the existence o f  a thermo- 
dynamic limit is highly nont rivial and has been proved 
up to now only for the 0(3)  model  [7]. If  the above 
limit and the thermodynamic limit exist and com- 
mute,  then the condensates (24) should also have a 
semi-classical limit, and the mixing o f  instantons and 
condensates remains valid, giving for an observable a 
small z expansion involving z k (In z) r (r ~< k)  terms. 
This is indeed the case for the 0(3)  model,  which cor- 
responds in the semi-classical approximation and the 
inf'mite volume limit to a neutral Coulomb gas at tic = 
1, i.e. to a free massive Dirac Field [3,4,7]. The two 
points function (18) has been computed exactly by 
Iwazaki and Yoshie [25] and is found to be a combi- 
nation o f  Bessel functions of  R = i x im [where m is 
the mass gap and m 2 is proport ional  to the fugacity z 
given by (29)] with a small R expansion of  the form 
predicted by our arguments: 

k 

<a(x) a(0)> = l + ~ ] R 2 k ~ ] a x r ( l n R ) r .  (30) 
k =1 r=0 ' 

This seems to us an additional argument for the cor- 
rectness o f  our conjecture , s  

In conclusion, we think that the considerations de- 
veloped here allow a better  understanding o f  the sig- 
nificance o f  instantons, o f  semi-classical methods, and 
o f  the structure o f  the Borel transform in massless 
asymptotically free theories. It remains to understand 
whether instantons-ant i- instantons configurations 
play a role and may be characterized in the same 
manner. 

I am indebted to E. Brezin, S. Elitzur, A. Rouet,  
N. Seiberg, R. Stora, K. Symanzik and J. Zinn-Justin 
for useful conversations at various stages o f  this work. 

, s  However, the  arguments  o f  ref. [ 25 ] for some "topological 
symmet ry  breaking" seems irrelevant since the limit (29) 
explicitly breaks the  in s t an ton -an t i - in s t an ton  (or parity) 
symmet ry .  One may  also ask whether  the semi-classical 
approximat ion (0 = +-i oo) is really close to the  " t rue"  model  
(0 real) ! 
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