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The analytic structure of the Borel transform of renormalized 4~ theory can be deduced from the small regulator expan- 
sion of the regularized theory. The coefficients of Symanzik's local effective lagrangian describing this expansion are shown 
to be ambiguous, although well defined in perturbation. We deduce that the UV singularities of the Borel transform (renor- 
malons) of q~4 are proportional to insertions of local composite operators, as conjectured by Parisi. However, the renormali- 
zation group functions do not a priori contain renormalons. This can be proven at all orders of the 1IN expansion. 

Renormalizable "infrared free" quantum field 
theories such as ~b 4 or QED 4 are known to suffer from 
non-perturbative singularities at high energy [ 1 ]. The 
so-called "Landau ghosts" are related to the "triviality" 
of  such theories, that is to the fact that renormalization 
group arguments [ 1,2] indicate that there is no consis- 
tent way to take the large cut-off limit of  the regular- 
ized,theory such that the renormalized coupling con- 
stant is not driven to zero. Those arguments have been 
consolidated by recent rigorous results from lattice 44 
[3]. 

It is then important to understand what forbids in 
such theories to reconstruct consistent Green functions 
from their renormalized perturbative series, which are 
free of  divergences. It was recognized by Gross and 
Neveu [4] that those renormalization effects are such 
that some individual Feynman amplitudes are positive 
and grow like the factorial of  the number of  vertex, 
and thus should produce a singularity on the positive 
real axis of  the Borel transform of the perturbative 
series, making them non-Borel-summable. Such UV 
singularities were rediscovered by Lautrup [5] and 
't  Hooft [6] and are usually denoted by the generic 
name of  "renormalons". 
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A next step was performed by Parisi [7] who con- 
jectured that UV renormalons were proportional to 
the insertions of  local irrelevant composite operators 
(such as ~b 6, ~bA2¢ .... ). The argument is the following: 
the momentum dependence of  the effective coupling 
constant ~(p) of  the ~b 4 theory is (in the one loop ap- 
proximation) 

~(p)  = [1/g - /32 Ln(p /# ) ] -1 ,  (1) 

where/32 is positive and is the first coefficient of the/3 
function. We get for the Borel transform of (1) 

b(p)  = (p]la) bt~ . (2) 

Parisi argues that inserting b(p) in the Borel trans- 
formed Dyson-Schwinger equations defining the 
Green functions should generate UV singularities, 
when integrating at large momenta, as the Borel vari- 
able b increases. Moreover, (2) is very similar to the 
behaviour of  ~(p) for nonrenormalizable ¢44+e (e > 0): 

g ( p )  ~_ (p /u )e  , (3) 

where the BPHZ theorem tells us that UV divergences 
are proportional to the insertions of local operators 
with arbitrarily large dimensions. It is expected that 
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the same structure occurs for renormalons. 
In this letter we present a new approach to those 

problems which permit to describe precisely the anal- 
ytic properties of  the Borel transform of the renormal- 
ized ~4 theory. In particular we shall give rigorous 
results at all orders of  the 1/N expansion of the vector- 
ial (~2)2 model. The detailed analysis and complete 
proof  will be presented in a subsequent paper. 

The fundamental idea is to relate this question to 
the, small regulator behaviour of  the regularized ~4 
theory. Indeed let us consider some regularized form 
of the theory, characterized by some regulator a and 
by the bare coupling constant gB" The renormalization 
group tells us that, gB being fixed, the renormalized 
coupling constant gR goes to zero with a as 

a ---~ Cl1-1 exp(--1/132gR). (4) 

From eq. (4) we see that the Borel transform with 
respect to gR is related to the Mellin transform with 
respect to a, which describes the small a behaviour of  
the bare Green functions. 

In order to make this idea more precise we shall 
consider the massless ~b 4 theory and use for conve- 
nience a Pauli-Villar regulator, which corresponds to 
the bare action density 

£ = 1 ' (  - A  + a 2A2 + m20)~p + (gB/SN)(dp2) 2 . (5) 

The bare mass mBO is chosen in such a way that the 
renormalized mass is equal to zero. According to 
Symanzik [8], at some order gB k, the small a expansion 
of some P-points irreducible bare function F(BP) isa  
sum of  terms of  the form a 2p Lnqa (p >i O, 0 <~q <~ k) 
and may be described by a "local effective lagrangian" 
(LEL) containing terms of  the form ~b 6, ~8, 4~A2¢, etc. : 

£eff = ~ aZnAn , (6a) 
n=0 

A n = ~ Zi(gB, a)O i [~b]. (6b) 
operators 0 i 
dim Oi=2n+4 

The functions Zi(gB, a) can be obtained in perturba- 
tion under the form 

Zi (gB,  a) = ~ C k q g k  (Ln all) q , (7) 
k,q ' 

where the coefficients Ck, q are dependent upon the 

renormalization scheme chosen to define the operators 
0 i. As a consequence the dominant term (n = 0) corre- 
sponds to the usual coupling constant and wave func- 
tion renormalizations 

l~(e)(gB, a) = z-P(gB, all) I"(RP2n(gR, ll) + O(a 2 L n ' a ) ,  

where (8) 

gR 
dt  

_ f /3(t) = Ln(all),  (9a) 
gB 

and 
gR 

Z(gB, all)=exp( f dt 7(t)/~(t)). (9b) 

The Cal lan-Symanzik 13 and 7 functions are subtrac- 
tion scheme dependent (and here depend on the regu- 
larization). The subdominant terms of  order a 2, a 4 . . . .  
in (8) correspond to the insertions of  operators with 
dimension 6, 8, ... at zero momentum in P(P). 

Now, if we sum the series in gB, using renormaliza- 
tion group arguments to sum the Ln a (as done in ref. 
[8]), we expect for F B a small a expansion of the form 

rB(g B, a)- ~ a 2n ~ 1 
n~>0 p~>0 (Ln all)P 

P 

X ~ Lnq(Ln all)Cn,p,q(gB, U). (10) 
q=0 

From (10) we expect that the Mellin transform of  r '  B 
with respect to a 

oo  

M(s) = J da a -s-1Fb(gB, a ) ,  (11) 
0 

is analytic for Re s < 0 and has branch points at posi- 
tive even integer values of  s. The discontinuity A n at 
s = 2n corresponds to the nth term in (10) and thus 
corresponds to the insertion of the corresponding 
operators of  the LEL in F B (see fig. 1). 

We now restrict ourselves to the 1/iV expansion of 
the ~b 4 model, where explicit calculations can be done 
[9]. It is obtained by introducing a composite field o 
and rewriting the action (5) 

£ = l~b[--A +a2A 2 + m20  + (i/x/N)o] ~ + (1/2gB)o 2. 

(12) 
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{Oi) F{oi}(x; s) 
:<i (dim 0 i -4) = 2n 

~0 

+ 

Re s 
> 

Fig. 1. The analytic structure of the MeUin transform M(s) 
with respect to the UV regulator a. 

We get the 1/N expansion in terms of Feynman dia- 
grams involving the usual ¢ propagator 

D(p) = (p2 + a2p4) - I  , (13) 

and the o propagator which corresponds to the sum of 
the "bubbles diagrams" 

D ( k ) D ( p -  k)) -1 . (14) G ( p ) = ( l  + ~ d(27r) d4k 

The Mellin transforms of D and G have already the 
analytic structure described above. Using tools of per- 
turbation and renormalization theory (or-parametric 
representation, desingularization operators) it is pos- 
sible to show that this structure extends to any ampli- 
tude of the 1]Nexpansion [10]. Let us discuss only 
the final result. 

Theorem. At any order of the 1IN expansion, the 
Mellin transform M(s) of any bare irreducible function 
I'B(X ;gB, a)has the following analytic structure: 
' (a)M(s) is analytic away from the positive real axis 

with branch points at s = 2n (n non-negative integer). 
(b) The discontinuity An(S ) of M(s) at s = 2n ex- 

hibits the so-called "Stokes phenomenon": there are, 
2 n possible determinations of An, depending on the 
sheet developed by the branch points at s = 2p < 2n 
that we consider. 

(c) Each An(s ) may be decomposed into terms 
F(s) which correspond to nonambiguous (single 
valued) insertions of composite operators in F, times 
multivalued coefficients R(s) conjugate to those opera- 
tors and which carry the ambiguity. More precisely, 
we can write 

~. Ri(s + dim 0 i - 4) .  (15) 
I 

! 

In (14) the sum runs over all families of composite 
operators 0 i with dimension greater or equal to 4 and 
® means the usual Borel convolution product 

$ 

f ®g(s) = f dt f(t) g(s - t) (16) 
0 

(the Borel transform of the usual product is the Borel 
convolution product of the Borel transforms). 

The functions F and the coefficients R are such that 
(d) F(O i)(x; s) corresponds diagrammatically to the 

Mellin transform of the function F with insertions of 
the operators 0 i at zero momenta (in some renormali- 
zation scheme which makes those insertions UV finite) 
and is analytic for - 2  < Re s < +2, with branch points 
at s = 2m (m integer > 0). 

(e) Each Ri(s ) is defined only for Re s > 0 and is of 
the form: 

Ri(s ) = O(s) × an analytic function 

along the positive real axis. (17) 

This analyticity property is true only for appropriate 
renormalization procedures. 

(f)  The ambiguity of A n is contained in the R i's, 
that is, there are 2 ni determinations of the Ri's (n i 

1 • = ~dlm 0 i - 4 ) ,  which depend on the sheet that we 
consider. 

The consequences for the Borel transform of  ¢4. 
Let us now discuss the consequences of the above re- 
sult for the analytic structure of the Borel transform 
of renormalized ¢4. Of course the following considera- 
tions will be rigorous only within the 1 [iV expansion 
but are expected to be valid for finite N, since no 
other non-perturbative effects (such as instantons) can 
modify this structure. 

(i) Using (4), (9a)and (9b) the functions F(oi}(s ) 
can be shown to define by formal inverse Borel trans- 
form the perturbative renormalized Green functions 
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of the ¢4 theory (with insertions of  the operators Oi) 

FRen(Oi} (x;gR) = " S "  ds e-S/~2gF{Oi}(x;s). (18) 
0 

(ii) The coefficients R i are nothing else than the 
Mellin transform of the coefficients Z i of  the LEL 
(6a,b) which describes the limit a -+ 0. Therefore the 
terms involving irrelevant operators with dimension 
greater or equal to six are ambiguous (multivalued with 
2(dim Q-4)/2 determinations), although well defined in 
perturbation theory [see (7)]. 

(iii) Since the second discontinuity at s = 2 has two 
+ 

determinations A 1 =~ A i- (see fig. 1), the first discon- 
tinuity A0(s ) has a cut at s = 2, which is the first UV 
renormalon of  the corresponding renormalized Green 
function [ 'Re n. The corresponding discontinuity at s 
= 2 of  A0(s ) is equal to A~(s) -- Ai-(s), and is there- 
fore proportional to the insertion of  dimension-6 op- 
erators [from (ii)]. This can be easily generalized to 
prove that all UV renormalons (the singularities of  the 
functions F(s) on the positive real axis) come from the 
ambiguities of  the LEL (6) and are therefore propor- 
tional to insertions of  composite operators. This ex- 
plains and proves the conjecture by Parisi [7]. 

(iv) The renormalization group functions/3 and 7 
and the anomalous dimensions of  the composite op- 
erators 0 i are obtained from derivatives with respect 
to gR (gB being fixed) of  the coefficients of  the LEL,  
that is of  the Ri's. From point (e) of  the theorem, it 
follows that it is possible to define renormalization 
schemes such that the renormalization group func- 
tions do not have UV renormalons (this was also a 
long-standing conjecture [ 11 ]). An important and 
still unsolved question is to know whether dimensional 
renormalization satisfies this condition (this is essen- 
tial for the consistency of  Wilson's e expansion in 
critical phenomena [ 12]). 

Let us end with some more general remarks. Our 
analysis may be applied without difficulties t o  massive 
¢4 and to other infrared free theories such as QED4, 
with the same conclusions. Recently some authors 
have proposed various "non-or thodox" quantization 
procedures for such theories in order to try to escape 
triviality [13 -15] .  However, in order to construct a 
theory whose Green functions have the same pertur- 
bative expansion as ¢4 (for instance), one has to 
"add" to the lagrangian an infinite number of  expo- 

nentially small counterterms associated to irrelevant 
operators with arbitrarily large dimensions, in order to 
cancel the ambiguities due to UV renormalons. Accord- 
ing to the notion of  LEL [8], this should be equivalent 
to introduce again some fundamental UV cutoff  A of  
order 

A "~ exp(1/J32gR) , (19) 

in the theory. The question is to know whether it is 
possible to do this without violating some of  the axi- 
oms of  continuum quantum field theory or modifying 
the field content of  the theory. 

Finally, one may ask why the coefficients of  
Symanzik's LEL are ambiguous, although they are well 
defined in perturbation theory. This is in fact because 
those coefficients suffer from infrared ambiguities 
which make them non-Borel summable and are related 
to the problem of IR renormalons [16,17]. (Those 
coefficients correspond to some irreducible functions 
of  the massless theory at zero momenta.) However, 
that problem is not present in UV free theories such 
as two-dimensional nonlinear sigma models or four- 
dimensional gauge theories, where the LEL is well de- 
fined and the action improvement program [ 16] per- 
fectly consistent. In such theories UV renormalons 
problems occur only in the definition of  composite 
operators with strictly positive dimension [ 18]. 

This work is supported by the Department of  Ener- 
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