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We analyze the structure of the Borel transform of the two-dimensional O(N) non-hnear ~r 
model within xts 1IN expansion We check the existence of IR singularities (IR renormalons) and 
the presence of non-perturbatwe terms which orgamze themselves in an operator expansion h la 
Shifman-Valnshtein-Zakharov We prove that renormalons cancel between the different terms 
of the operator expansion, so that there is a well-defined resummation procedure of the perturbative 
series. We suggest that this mechamsm provides a general solution of the IR renormalons problem 
for massless UV free field theories 

1. Introduction 

In a w e l l - k n o w n  ser ies  of pape r s ,  Shi fman,  Va insh te in  and  Z a k h a r o v  (SVZ)  [1] 

sugges ted  tha t  it  was poss ib le  to  t ake  into  account  the  la rge  d i s t ance  n o n - p e r t u r b a -  

t ive effects of Q C D  with  the  he lp  of the  o p e r a t o r  p roduc t  expans ion .  The  bas ic  

idea  was the  fo l lowing;  the  p roduc t  of two currents / .A, / .B (for ins tance)  m a y  be  

e x p a n d e d  into  

T { / A ( x ) ,  JB(0)} = Y C AB ( x ) 6 . ,  (1.1) 
x ~ O  n 

w h e r e  the  sum runs  ove r  local  o p e r a t o r s  ~Tn (p rope r ly  r e no rma l i z e d )  and  the  C A  B (x) 

d e p e n d  on x [2]. In  [1], S V Z  as sumed  tha t  the  expans ion  (1.1) holds  b e y o n d  

p e r t u r b a t i o n  theory ,  so tha t  one  m a y  wr i te  

(OIT{IA(x) , /B(O)}Io)  = AB Y~ C .  ( x ) '  (0l~?.10), (1.2) 
t l  

where  the  vacuum expec t a t i on  va lues  (0[~7.[0) a re  a l lowed  to be  non-ze ro ,  and  

p a r a m e t r i z e  the  n o n - p e r t u r b a t i v e  effects of  Q C D  (in p e r t u r b a t i o n  theory ,  (0[~7. [0) = 

0 at  all orders) .  T h e  coefficients  C A  ~ (x) a re  given by  p e r t u r b a t i o n  theory .  

Pract ica l ly ,  S V Z  and  coworke r s  used  the  o p e r a t o r  expans ion  (OE)  (1,2) by  

ma tch ing  it with d i spe r s ion  re la t ions  (and by  re ta in ing  the  first o p e r a t o r s  of 
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dimension <~6 and the first order(s) in ~s for the CAB) to look for instance at the 
meson spectrum of QCD. This "QCD sum rules formalism" has now a firm 
phenomenological status and the existence of "quark and gluon condensates" is 
recognized as an essential feature of gauge theories. Those condensates <01~10> 
have to be estimated from experimental data, Monte Carlo computations or semi- 
classical evaluations. 

However,  the validity of this expansion is not obvious, and was extensively 
discussed by SVZ in [1]. Indeed, it relies finally on a (somewhat phenomenological) 
extension of perturbative arguments. A related and important problem concerns 
the mathematical consistence of the expansion (1.2). The non-perturbative quan- 
tities (0It?, 10) are exponentially small, typically 

(Ol~?. IO) -- exp (d . /32as) ,  (1.3) 

where f12 is the first term of the 3 function and dn the canonical dimension of tTn. 
It is not consistent to incorporate such terms as long as the perturbative series in 

AB as, C ,  (x, as), have not been properly summed. But those series are expected to 
be divergent so that even if there is a domain of physical parameters where the 
first perturbative corrections are smaller than the first non-perturbative ones (as 
argued in [1]) this situation disappears at large orders in as. Thus a resummation 
pflacedure for the perturbative series has to be defined. However,  according to our 
present knowledge, difficulties are expected in the usual program of Borel summa- 
tion of the perturbative series. Indeed, even disregarding the problems of instantons 
and of the behaviour of the Borel transform at infinity, one expects the presence 
of infrared (IR) singularities on the positive real axis of the Borel transform [3]. 
A simple argument to locate such singularities, usually called IR renormalons, has 
been given by Parisi [4]. In a massless UV free theory such as QCD (32 < 0), the 
Borel transformed effective coupling constant i (P ,  b) should behave at small 
momenta as 

if(p, ~ ) - I p l  b~2 (1.4) 

(b is the Borel variable). Inserting (1.4) in the (Borel-transformed) Dyson-  
Schwinger integral equations should give IR singularities at b = - 2 n / 3 2 ,  n ~ •. 

Moreover,  Parisi argued in [4] that (by analogy with IR divergences below 4 
dimensions) these singularities could be classified in terms of the coefficients C, of 
the OE (1.1), and so were related to the appearance of the non-perturbative 
expectation values (1.3). This relationship between the existence of an " IR tachyonic 
Landau singularity" (which corresponds to (1.4)) and some "vacuum instability" 
was previously noted by Gross and Neveu [5] and by Olesen [6]. However,  it seems 
to us that this relationship has not received a more quantitative formulation and 
that the problem of the summation of the perturbative series of gauge theories has 
still to be understood. 
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In this paper we shall look at these points within the 1IN expansion of the O(N) 
non-linear sigma model at two dimensions. As gauge theories it is asymptotically 
free [9] and its perturbative expansion is made around a "wrong vacuum" since 
the classical theory describes N - 1 interacting Goldstone bosons but the Mermin-  
Wagner-Coleman theorem [7] ensures the dynamical restoration of the O(N) 
symmetry and the non-perturbative generation of a mass gap for any positive 
coupling constant. In particular, the perturbative expansion has IR divergences 
which cancel only for the "physical" O(N) invariant observables [8]. The 1IN 
expansion takes into account these non-perturbative effects and is a powerful tool 
to study the theory, since it allows partial infinite resummation of the usual 
perturbative series [9]. Moreover,  there are no instantons (N > 3), thus the structure 
of non-perturbative effects is expected to be simpler. 

Our purpose is to characterize the analytic structure of the Borel transform (with 
respect to the coupling constant) of any O(N) invariant observable at an arbitrary 
order of the 1IN expansion. The result is stated in theorem A (subsect. 3.3) and 
proves that, within the 1/N expansion: 

there are non-perturbative terms which organize themselves formally in an 
operator  expansion but have IR renormalons; 

nevertheless, there is a Borel summation prescription for those terms which 
makes the SVZ operator  expansion unambiguous and gives the right result; with 
such a prescription, IR renormalons are cancelled between the different non- 
perturbative terms. 

Moreover,  we shall argue this mechanism goes beyond the 1IN expansion and 
may provide a general solution for the problem of IR renormalons. 

This paper is organized as follows: 
In sect. 2 we introduce the O(N) model and its 1/N expansion (subsect. 2.1) 

and show that one recovers the operator  expansion at leading order N = ~ (subsect. 
2.2) and more generally at the order of tree diagrams (subsect. 2.3), i.e. in cases 
where the perturbative series are convergent (no Borel transform is needed). 

In sect. 3 we analyse the Borel transform of any order of the 1/N expansion. 
We adapt desingularization techniques of B erg6re-Lam and the author [ 10, 11]. Basic 
definitions are given in subsect. 3.1. For technical reasons one first has to look 
at the "bare"  theory below 2 dimensions (subsect. 3.2) and then to take the limit 
d-~ 2 (subsect. 3.3), where the complete analytic structure of the Borel transform 
(in the first sheets) is obtained in theorem A. The result is discussed in subsect. 3.4. 

In sect. 4 we discuss the possible validity of our result beyond the 1 / N  expansion 
and for other models. Various implications are examined. 

Finally in appendix A the technicalities of the Borel transforms are recalled. In 
appendix B we discuss the obtaining of the coefficients of the operator  expansion 
in perturbation theory for the O(N) model. Appendix C is devoted to another 
integral representation for the 1/N expansion needed in sect. 3 and used in appendix 
D for explicit computations of IR renormalons at first 1 / N  order. 
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2. T h e  structure of  the O ( N )  m o d e l  tor N = oo 

2 1 THE 1IN EXPANSION OF THE O(N) SIGMA MODEL 

First we briefly recall how to obtain the 1/N expansion of the O(N) non-linear 
or model. The generating functional reads 

Z [ J ] =  f ~[S]@[a ] exp { _ N  I ddx {½ (O~S.O~S)+ lo~(x)[S2(x)- 1]}} 

×exp 1 /ddx l (x )S (x )} ,  (2.1) 

where S(x) is a N-component real vector field defined in the d-dimensional euclidian 
space; the Lagrange multiplier a (x) fixes the constraint 

S2(x) = 1, Vx. (2.2) 

ga is the bare coupling constant and g(x) the source term. Integrating over the S 
field we get 

Z [ J ] =  I @[a] exp {-½NSea[a]}exp {~N I (xl 

with 

-~  +~(x) 

I 
]y)J(x)J(y) dx dy / , 

(2.3) 

S~[a ]  : Tr Ln [-A + a  ( x ) ] - I  f ddx a(x) . (2.4) 

The limit N = oo is obtained by taking the constant saddle point of Sen, c~ (x)= ac, 
given by 

f d d k  1 _ 1  (2.5) 
(xl Ix)= (2¢r) d k2+a~ gB" 

The integral (2.5) is UV divergent for d/>2.  Using dimensional interpolation 
[12] and taking d = 2 - e  (Re e >0),  (2.5) makes sense and gives 

Otc = [gBF (½ e )( 4"tr ) (~- 2)/2] 2/~ • (2.6) 

At N = ~ only the connected 2-point function survives and is 

gB (2.7) G2(p) - p2 + Otc(gB) ' 

SO that ac(ga) is the square of the physical mass at N = ~ .  
At  d = 2 a wave function and a coupling constant renormalization are needed. 

We define the renormalized coupling constant g by 

1 1 = - Z ( g ) ,  Z(g)  = 1 +g/z-~F(le)(4rr) ~/2 1 (2.8) 
gB g 
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(where/x  is the subtract ion mass scale), so that  at d = 2 

O/c = tZ 2 e - 4 ~ / g  (2.8) 

The  renormal ized 2-po in t  funct ion is 

GR(p) =ZG2(p) g (2.10) 
- p 2 + O t c "  

Comput ing  the f luctuat ions ot -- ac + d a round  ac in (2.3) we get the 1 / N  expansion.  
Its per tu rba t ive  rules are i l lustrated in (fig. 1). The  two p ropagato rs  are the S 
p ropaga to r  (fig. la)  given by 

1 
D ( p ) =  2 , (2.11) 

P +~c  

and the a7 p ropaga to r  (fig. lb )  which is - ( 1 / N ) G ( p )  with 

G ( p ) = [ ~ [  ddk 1 ] -1  
(2.12) 

(27r) a (k2+ac)((p+k)2+ac)J • 

The  factors associated to $ .  S • 8 vert ices and to internal  S loops are i l lustrated 
in (figs. lc ,  d). The  internal  S loops with only one or two ~ insert ions are forb idden 
(figs. le ,  f). 

The  renormal izabi l i ty  of the 1IN expansion was shown in [13] within the B P H Z  
scheme (see also [14]). This point  will be discussed in sect. 3. 

2 2 THE ANALYTIC STRUCTURE AT N = oo 

As  a first step let us discuss the analyt ic s t ructure (in the coupl ing constant)  of 
the leading order  N = oo. In a manner  analogous to the one used in sect. 3, we 
first look at the bare theory  at d = 2 - e  (Re e >0 ) .  Using the techniques of [11], 
the 2-po in t  G reen  funct ion given by (2.7) has the expansion 

I ° : o  ( 2 , , )  (k --Udc)J • 

• : - 2  

(a) (b) N 

(2.13) 

(c) (d) 

(el I f )  

Elements of the 1/N expansion (a) The S propagator D(p), (b) the ~ propagator G(p), (c) Fig 1 
the interaction vertex, (d) general internal S loop; (e, f) the mternal loops forbidden m the expansion 

(-1) ~n 
1 n 
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P.F. stands for "Hadamard 's  finite part" [15] (P.F. 1/(p2) "+1 is unambiguously 
defined for - ½ d + n + l ~ ) ;  a,(d) is a combinatorial factor ( a , (d )=  
F( ld ) /F (n  +ld)  2"(n !)2); A is the laplacian operator with respect to p. (2.13) is 
an expansion in powers of ac since, using (2.5) and integration rules of dimensional 
interpolation [12, 16], we get 

gB S dak (k2)" 
(2~r)d (k2+a~) = ( - ~ ) ~ .  (2.14) 

The point is that this expansion may be easily interpreted as an operator expansion: 
indeed a~' corresponds to (a n) at N = oo and the integral (2.14) is simply equal to 
the (bare) vacuum expectation value of [S(x)(-A)"S(x)] for N = ~ .  So we may 
rewrite (2.13) as 

G2(p) = ~ Fl.~(p, ga)(O~)+F2,n(p)(S(-A)~S). (2.15) 
n = O  

This is, in fact, an explicit realization of the operator expansion into non-analytic 
terms for massless superrenormalizable theories (here d = 2 - e )  [4, 11, 17, 18]. 
The operator a is related to the operator O~,S • O~,S via the equations of motion 
[9], namely 

a "  = (-0~,S • O~,S) ~ + contact terms. (2.16) 

The limit d = 2 of (2.13) is performed by taking into account the renormalization 
with (2.8) and (2.10). The composite operators a "  and S(-A)"$ need no additional 
renormalization at leading order in 1IN. We get for the renormalized two-point 
function 

GR(p, g)=Y~ (-1)"gS[(p2)-l-~;/x].  ( a ~ ) + ~  am(d)za"6(p)" (S(-A)mS) ,  (2.17) 
n rl 

where the distribution S[(p2) -1 ";/~] is obtained by subtracting the pole of 
P.F.(p2) 1 , a t e = 0 ;  

+tz F(~e)a,(d)A 8(p)] ,  (2.18) S[(p2) - in; i z]=! im[P.F. (p2) -a- ,  ~ 1  n 

and is a finite distribution at d = 2. 
The expansion (2.17) is exactly the VSZ operator expansion (1.1). The ordinary 

perturbative part is given by the terms n = 0, m = 0 in (2.17), namely 

GR (p, g)pert = t$(p) + gS[ ~ ; Iz] , (2.19) 

but non-perturbative terms proportional to the v.e.v., 

((--0~$ O~S)n)N=oo = t.~ 2n e -4=n/~ , 
(2.20) 

((SA "S))u =oo = tz 2m e - 4 " i r m / g ,  
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have to be taken into account. One may check that the coefficients of the expansion 

coincide with those obtained from the perturbative OE (appendix B). 

In the following we shall rescale the renormalized coupling constant 

g-+g'= g (2.21) 
41r 

in order not to deal with (4~r) factors. 

The (modified) Borel transform (A.1) is a Mellin transform with respects to the 
squared mass ac//X 2 (2.9). In this paper we often look first at the bare theory at 

d = 2 - e  (Re e > 0) in order not to deal with renormalization. Nevertheless we 
shall be interested into the analytic structure of the Mellin transform with respects 
to ac: 

const 

[(s) = fo da~ a~-~f(ac), (2.22) 

which is not the Borel transform with respect to g (or gB) at d = 2 - e  anymore. 

For simplicity we shall use the term "Borel transform" for the Mellin transform 

(2.22), keeping in mind that it coincides with the Borel transform (A.1) only for 
d = 2, but that the inverse representation (A.2) always holds 

f ds (aJ[(s) (2.23) 
/ (a t )  = 2i---~ 

The Borel transform of the propagator D (2.11) is then in momentum space for 

d ~< 2 [forgetti~ag the distribution-like character of D and its singularities at p = 0, 
and integrating up to ac = eo in (2.22)]: 

/ ~ ( p ,  S) = (p2) s - l v (  S + 1 ) F ( s )  = (p2 ) - s  1/~(S) , (2.24) 

The poles at s = - 1 ,  - 2  . . . .  are irrelevant and given by the behaviour at ac = oo. 

The relevant poles of F(s) at s = 0, 1 . . . .  give simply the Taylor expansion of D 
around ac = 0 (see fig. 2). 

2 3 THE ANALYTIC STRUCTURE OF THE G PROPAGATOR 

Let us now look at the o~ propagator (-1/N)G(p) (2.12). Since G = (D * D )  -1 

(where * stands for the convolution product), using the expansions (2.13)-(2.17) 

of D we may expand G in terms of the operators a and S(-Am)S. The final result 
is 

G(p) = G0(p)[  1 + ~  (p)Go(p)] -a (2.25) 

~ - "  ~ - "  - - -  Q'C • + OL2C : : + 

Fig 2 The operator expansion of the $ propagator. 
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where  Go(p)  is the " p e r t u r b a t i v e "  ~ p r o p a g a t o r  and is given at d -- 2 - e  by 

1 -1  

and at d = 2  by 

f l  1 q- /.£)]-1, 
o0(pl= tg  So(p; 

and where  ~ (p)  contains  the powers  of a¢ and is at d -- 2 - e of the fo rm 

Z ( p )  = __1 Z (a)N=~(S(--A)" ~$)u=~:~D, ~(p) ,  +'~ Z (aP)u=~oFp(p) , 
g8 n,m~O p>O 

n+rr t~O 

and at d = 2 

E(p) =! 2 
g n,m~O 

n + r n # O  

(2.26) 

(2.27) 

(2.28) 

( a ) T v = o o ( S ( - a ) m S ) N = ~ o D - , m ( P ) + ½  Z (av)N=~Sv(P;P,)" 
p>0 

(2.29) 
In (2.26)-(2.29),  

D, .m(p)  = ( - 1 ) " a m ( d ) A ~ ( p  2) - " - '  , (2.30) 

and Fp(p)  (Sp (p ; / z ) )  is the " IR-f in i te  pa r t "  (the " I R - s u b t r a c t e d  par t " )  of the l - l o o p  
graph with p mass  insert ions [11] (see fig. 3). 

So, G ( p )  may  also be  wri t ten as an ope ra to r  expans ion  of the fo rm 

G ( p )  = Y, Go(p,  g)(~7)u=~, (2.31) 
e 

where  the compos i t e  ope ra to r s  6 are now of the fo rm 

J 
6 = a "  ['I (SAm'S),  n a n d J ~ 0 ,  

i=1 
(2.32) 

m r > O ,  

fi -- ,,~,~tx.,x, = [ D - ~  * -----'£2---£3~ - 
(al 

r~ . . . . . .  g . . . . .  gL__o___.~__~.__o___ 

(b) 

E = - O -  = L < ~ >  . : , . !  < S - A S > - -  ~ ' . . ! < ~ > ~  
g g 2 

n=l , m=O n=l , m=2 p=l 
÷ 

(d 

Fig 3 Dmgrammatlc mterpretatton of the expansion of the o7 propagator (a) eq (2 25), (b) expansion 
of the perturbatlve propagator Go, (c) operator expansion of Y~ (2 28)-(2.30) 
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Irns 

1 2 3 Res = 
O • • • • • 

(a) 

Ires 

1 2 ~ Res 

(hi 

Fig 4. Analytic structure of the Borel transform of G(p) at (a) d = 2 - e  and (b) d = 2. 

and  where  Ge(p, g) is a ser ies  wi th  a finite rad ius  of conve rgence  (depend ing  on 
do/2 p) i n g a t d = 2 ( i n g B a t d = 2 - e ) . F o r ~ T g i v e n b y ( 2 . 3 2 ) w e h a v e ( ( 7 ) N = ~ = o ~ c  , 

+ s 
where  de = 2(n ~ = 1  m~) is the  d imens ion  of (7. 

F r o m  (2.31), we m a y  wr i te  the  Bore l  t r ans fo rm G of G as 

d ( p ,  s) = (p2)~+'/2-'d,(s), (2.33) 

whe re  G ( s )  has  the  fo l lowing  analy t ic  s t ruc ture :  

A t  d = 2 - e, G (s) has  single po les  at  s of the  fo rm 

s , . k = n + ( l + k ) ½ e ,  n, k e N .  (2.34) 

Each  ser ies  of po les  at f ixed n c o r r e s p o n d s  to the  expans ion  in gB of the  G e ' s  

such tha t  dc=n (see fig. 4a)*. 

A t  d = 2, G ( s )  has now b ranch  po in t s  at  each  s = n ~ N*. 

A c c o r d i n g  to a p p e n d i x  A,  the  d i scon t inu i ty  a long the  nth  cut  is given by  the  

" o r d i n a r y "  Bore l  t r ans fo rm Go(P, s) of the  Ge(p, g)for de = n [see (A.4)].  H o w e v e r ,  

the  fact  tha t  these  ser ies  a re  conve rgen t  impl ies  tha t  each  d i scon t inu i ty  is analytic 
in the  who le  complex  s p lane .  A n  i m p o r t a n t  c o n s e q u e n c e  is tha t  one  mee t s  such 

a cut  at s = n with the same discontinuity in the  d i f ferent  R i e m a n n  sheets  g e n e r a t e d  

by  the  p rev ious  b r anch  po in t s  at p < n. (See fig. 4b).  

* In addltton G(s) has irrelevant single UV poles at s = (1 -n  +½e) corresponding to the behavlour 
of G as ac ~ oo. 
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3. The  general structure of the I/N expansion 

The result of the sect. 2 is that the operator  expansion holds at the tree order 
of the 1/N expansion. Now we intend to understand whether  this remains true, 
and how, within the next terms of this expansion. For that purpose we shall 

investigate the analytic structure of the Borel transform of an arbitrary amplitude 
of the 1/N expansion by using the desingularization techniques of [10, 11]. 

3.1 AN c~ PARAMETRIC REPRESENTATION FOR THE BOREL TRANSFORM 

First we need a Schwinger-Symanzik representat ion for those amplitudes. We 
recall that the usual propagator  D(p) (2.11) may be written 

oO 

D(p, ac) = Jo dot e -'~(p~+'~°) . (3.1) 

Similarly, we write the propagator  G(p) (2.12) as 

i0 o G(p,o~c) = d a M ( a ,  ac) ~ -  e -~p2, (3.2) 

with 

r + '~  ds  ~ d ( s )  , _ . ~  
M(c~, ac) = - - -  a c ot (3.3) 

J-,o~ 2i7r F(l  +s -~e )  ' 

where e = 2 - d ,  t~(s) is the Borel transform of G (2.33) and where the derivatives 
with respects to a in (3.2) are introduced in order to make the integral convergent 

at a = 0 .  
Let G be some graph of the 1/N expansion. We denote ~ ( G )  (~(G)) the set 

of D (G) propagators  of G. Using (3.1) and (3.3), the integrations over  internal 
momenta  may be performed in the standard way to get for the amplitude IG of G 

the representat ion 

oO 

O~c) = fo ~ dora M,,(a,,, o~)~G[exp {--pdG(a)p}PG(c~) d/2], (3.4) IG(p, 

where each a~ is associated to a line a of G, Ma = e x p . ( - a ~ a ~ )  if a ~ ( G )  and 
Ma is given by (3.3) if a ~ ~(G)  and where 

~G = I-[ , (3.5) 
a~ (G)  

pdG(a)p and PG(~) are the usual Symanzik functions of G. Eq. (3.4) holds if the 
amplitude 16 is U V  convergent. In order to make  power-counting rules simple we 
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associate to each line a, 

an I R  degree _Sa = - 1  

= l + ~ e  

and U V  degrees ga = - 1 - n 

1 
= l - n - ~ e k  

The I R  superficial degree of G is 

(G) = ½dL(G)+Y~ _Sa +A - N  
a 2 ' 

443 

if a ~ ~ ( G )  
(3.6) 

i f a  ~ J ( G )  ; 

n ~ N ,  if a ~ ( G )  
(3.7) 

n ,k~N,  if a ~ ~?(G). 

(3.8) 

where L(G)  is the number  of internal loops of G; A and N are respectively the 
number  of derivative couplings in G and of derivatives with respect to some external 
momen ta  of G, if needed. 

The main problem is that we cannot apply the standard techniques of [10, 11] 
to study the Borel t ransform of IG(p, ac) at two dimensions for two basic reasons: 

(a) First, those technics apply when the a integrand of (3.4) is F I N E  [19], that 
is has a "generalized Taylor  expansion in every Hepp ' s  sectors". This is not the 
case for the function Ma(a, ac) for the G-propagator ,  which contains infinite series 
of 1 /Ln a as a -*0 coming f rom the cuts of G(s)  in the representat ion (3.3). 

(b) Second, the amplitude has to be subtracted because of UV-divergent  

(sub)graphs. The point is that we need a subtraction scheme in the 1IN expansion 
which corresponds to a definite subtraction scheme in the usual weak coupling 
(perturbative) expansion. This is not the case for the B P H  subtractions at zero 
momen ta  which were used in [13, 14]; indeed such subtractions are known to give 
IR  divergences in the perturbat ive expansion which describes a massless theory. 
The modified soft mass renormalization scheme of [20] avoids that problem but 
introduces additional non-analyticity in the counter terms and is very difficult to 
handle explicitly*. 

For those reasons we choose (as already done in sect. 2) to work in two steps: 
First we look at the (bare) dimensionally regularized theory at d = 2 - e (Re e > 0), 

where the a- integrands are in fact FINE.  This avoids point (a) and defines amplitudes 
meromorphic  in the half-plane Re d < 2. 

Then we take into account renormalization and per form the limit d ~ 2 by using 
dimensional re normalization [16] (the minimal subtraction scheme), which is known 
to respect the Ward  identities of the O(N)  invariance of the model [9]. 

* Moreover, the Ward identities of the model have to,be restored by fimte counterterms in the usual 
way 

and the U V  degrees of G are defined as 

A - N  
o3(G) = l d L  (G)+Y~ & + - - - ~ ,  (3.9) 

a 
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So we first study the bare amplitude IG at d = 2 - e (Re e > 0). Then the functions 
M~ are FINE and have the following expansion at a = 0: i f  a ~ ( G )  we have 
obviously 

( -1)"  
M , ( a ,  ac) = E a a c d . ,  d. = , (3.10) n n 

~=o n! 

and if a ~ (¢(G), from (3.3) and (2.34), 

where 

M o ( a ,  ac) E , .k~/2 ,.~k+1~/2 = a ac  gn,k, (3.11) 
n,k 

- 1  
Res {C)(s); S,.k = n + (k + 1)~e}. (3.12) 

g,.k = F ( 1  + n  + l k e )  

One can show that the amplitude IG defined by (3.4) for d small enough is 
meromorphic in the half-plane {Re d < 2} with poles at any d such that there is 
some connected one-particle irreducible (C1PI) subgraph S in G such that, for 
some set of {ga} given by (3.7) 

a3(s) = 0. (3.13) 

This leads to discrete series of poles at rational d with a point of accumulation at 
d = 2. So d = 2 will be in general an essential singularity, and there is a cut and 
other singularities on the real axis d > 2 (fig. 5). For Re d < 2 away from those 
discrete UV poles the convergent integral representation holds [21]: 

o o  

where the subtraction operator  ~ is a sum of products of Taylor operators over 
all nests X of divergent subgraphs S of G [22]: 

= ~  I] (_~.~-t(~). (3.15) 
Jr" S ~ "  

Using (2.22) and the homogeneity properties of the integrand of (2.14), the Borel 
transform/~G(P, s) of I c  has the following integral representation: 

(3.16) 

3.2. STRUCTURE OF THE BARE AMPLITUDES AT d = 2 - e  

The fact that the integrand of (3.16) is now FINE implies that the Borel transform 
fc(P,  s) is meromorphic in s and that the representation (3.16) is convergent for 
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Re d 
= : % : ~ . . / v v x A t , ~ r v x .  

2 3 

Fig. 5. Analytic structure of a regularized amphtude in d : d = 2 is an essential singularity with a cut at 
d > 2 and an accumulation of poles at d < 2 

R e  s d i f ferent  f rom its poles .  M o r e  prec ise ly ,  one  can ex t end  the  t echn iques  used  

in [11] to  classify those  po les  in t e rms  of essent ia l  g - subgraphs  E of G*. T h e  resul t  

is the  fol lowing:  

Proposition I: Le t  G be  some  g raph  and  e ~ the  U V  poles  of G given by  (3.13). 

T h e  Bore l  t r ans fo rm of G,  IG(P, s),  is m e r o m o r p h i c  in the  pos i t ive  ha l f -p l ane  with 

single po les  at va lues  of s such tha t  t he re  is some  g-essent ia l  E c G and  some  choice  

of {ga, a E E} such tha t  

s = ~ (G) - o3 (E) .  (3.17) 

This  s t ruc ture  c o r r e s p o n d s  to  the  fo l lowing  expans ion  of IG: 

IG(p, ac)~-- ~ FE(p, ~c)I(G/E~ (C~c), (3.18) 
E_~G 

w h e r e  the  sum runs  ove r  the  (infinite) set  of g -es sen t i a l s  E in G.  

I (G/E) (ac) = (ac)°(G/E)I (G/E) (1) (3.19) 

is the  ba r e  a m p l i t u d e  of the  r e d u c e d  g raph  ( G / E f t * .  

FE(p ,  Otc) is the  " IR- f i n i t e  p a r t "  of IE(p,o~c) and  is a ( formal)  ser ies  in 

{a2+(~/2)k ; n, k e N} of the  fo rm 

FE(p, otc)~-- ~ (oG) E" (~-~-g"~fE,lgal(P) , (3.20) 
tg,} 

o b t a i n e d  f rom IE by:  

(i) Inser t  the  expans ions  (3.10), (3.11) of the  funct ions  Ma  into the  in tegra l  

r e p r e s e n t a t i o n  (3.14) of IE. 

(ii) T a k e  the  "f ini te  p a r t "  of each  t e rm  of th;s expans ion ,  which gives the  fE,{g}'S. 

* According to [11], an essential g-subgraph of G is (at non-exceptional momenta) a (connected) 
subgraph E of G containing all its external vertices plus a family of derivatwes versus external 
momenta of E internal to G 

** (G/E) is obtained by reducing E to one vertex v m G and by putting on lines going to v the 
corresponding couphng derivatwes The amplitude of (G/E) does not depend on the p's, so that 
we get the homogeneity relation (3.19) 
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Comment: The proof of this proposition is a straightforward extension of tech- 
niques of [11] and will not be given here. In our case the poles given by (3.17) 
have necessarily Re (s) > 0. So any g-essential E gives series of sequences of poles 
at 

s=~(G/E)+n+~ek, n ,k~N.  (3.21) 

We now have to check that this diagrammatic expansion corresponds to an operator  
expansion as for the N = ee order (2.15). 

Proposition 2. Let N(p,) be some bare Green function of the model at d = 2 -  e. 
Order by order within the 1 / N  expansion, the following expansion over all com- 
posite operators (Tn (product of derivatives of o~ and $ fields at the same point) holds 

~d(p,, ac) ~- 52 ~.(p,,  ac)((7.), (3.22) 
n 

where each term of the 1/N expansion of ~7. is a series in a2/2ocgB and so 
corresponds to a perturbative series in gB and where each term of the 1/N expansion 
of the vacuum expectation value of (7., (~7.), is proportional to a~" (where d.  is the 
canonical dimension of 6.) .  

This expansion reflects the meromorphic structure of the Borel transform of ~, 
which has (order by order) series of single poles at 

s=d,+½ek, k e N .  (3.23) 

Proof. Diagrammatically, the reduced graphs (G/E)  of the expansion (3.18) are 
obviously related to various composite operators (Tn at different 1IN orders. 
Moreover,  the sequences of poles (3.21) given by some E with n # 0 (which give 
c~' contribution in FE) come from the terms with n ¢ 0 of the expansion (3.10), 
(3.11) of the functions Ma. Those terms come from the operator  expansions (2.15) 
and (2.31) of the propagators D and G, which involve vacuum expectation values 
(at order N = co) of operators of the form (2.32). When summing upon all graphs 
present in the 1 / N  expansion of ~, it is possible to reorganize all those contributions 
into an expansion of the form (3.22) (this needs a careful but not difficult analysis 
which will not be given here). 

An explicit example is given in fig. 6. Let us note that many essentials contribute 
to the leading term (n = 0) since the reduced graph may correspond to the observable 
(S) 2 = ~. 

3 3 STRUCTURE OF THE R E N O R M A L I Z E D  AMPLITUDES AT d = 2  

As already discussed in subsect. 3.1, the subtraction schemes at zero momenta 
of [13, 14, 20] are not suited to our study of the renormalized theory at d = 2. For 
that reason we shall use dimensional renormalization (the minimal subtraction 
scheme or MS) [16] which is known to lead to an IR-finite perturbative expansion 
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I * ' ] o  
(d) .,. [ . g-1 .. a'c 

Ftg. 6. Dmgrammatlc interpretation of the first terms of the expansion (3.22) for the irreducible two 
points function at order ( l / N )  1. (a) the two graphs of 1/N expansion, the terms (b), (c), (d) correspond 

to operators (~), ((0~,$)) z and (a) at order N = 0o, the term (e) to (a) at order ( l / N )  1. 

[8] and which respects the Ward  identities [9] (the O(N)  invariance) and the 
"quan tum chirality identities" [13, 20] (S 2 = 1) in the perturbat ive phase. Unfortu-  
nately, there is no corresponding explicit subtraction scheme in the 1 / N  expansion; 
indeed, we have seen in subsect. 3.1 that d = 2 may be a branch point and /or  an 
essential singularity, which cannot be subtracted as a pole (via some Cauchy 
integration for instance). For that reason we must define the MS scheme implicitly 
in the following way. 

Lemma: (a) Let  G be some graph of the 1/N expansion. The renormalized 
amplitude I ~  s of G is defined at d = 2 -  e (Re e > 0) by 

,~*(s) K , , I Ms (p, ac) = Y. Io/us(P,, ac) l-I t~O- s tg ; /x ) ,  (3.24) 
{s} s 

where: 
(i) The sum is per formed over  all families (eventually empty) of disjoint C1PI 

divergent subgraphs S of G (at d = 2). 
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(ii) Each counter term Ks(g; /x)  is defined as a series in the renormalized coupling 
constant g [given by (2.6) and (2.8) as a function of a¢] of the form 

Ks(g ; ix) = Y~ g"Ix -~"ks., (e ) , (3.25) 
tl 

obtained by summing the counterterms (of the MS scheme) of the perturbative 
expansion corresponding to S (consequently each ks. ,(e)  is a polynomial in l / e ) .  
The series (3.25) has a finite radius of convergence as long as (Re e > 0) and so 
defines an analytic function of g (or ac). 

(iii) t~ is the usual subtraction mass scale [the same as in (2.8)] 
(iv) In (3.24) and in the following _w*(s) stands for _o)(s) at e = 0. S is divergent 

at d = 2 iff oo*(s) ~ [~. 
(b) The amplitude I ~  s has a limit as e ~ 0 provided that 

Arg e ~ ] -  ½"rr, 0[U]0,  l~'n'[ . 

Comments:  The fact that (3.24) defines a finite amplitude at d = 2 is not obvious: 
indeed the counterterms are defined perturbatively and the bare amplitudes contain 
also non-perturbat ive terms (propositions 1 and 2). One may introduce an IR  cut 
off (finite volume or external symmetry breaking term) which eliminates the non- 
perturbat ive terms in (3.22). The counterterms of the minimal subtraction scheme 

do not depend on the I R  cut off so that one may sum up the perturbat ive expansion 
order by order to get an 1 I N  expansion which is now UV finite, then, set the IR  
cut off to zero and recover (3.24). A complete and rigorous proof is rather delicate 
and will not be given here. 

With this subtraction scheme we can now go to e = 0. The main result is: 
Theorem A .  (a) At each order of the 1 / N  expansion, the Borel t ransform of 

any renormalized Green function ~MS(p, S) at two dimensions is analytic in s away 
from the positive real axis and has branch points at each entire point s e N. 

(b) Each discontinuity As~MS at s = p  in the first sheet (fig. 7a) may be written 

as a sum over all operators  (7, of dimension d n =  p : 

Apc~MS(s) = Y. c~S(s )  * ~ S ( s ) ,  (3.26) 

d ~  = p  

where c~S(s )  is the ordinary Borel transform (see appendix A) of the term dual 
to (7,, ~ s ,  in the formal operator  expansion obtained by the techniques exposed 
in appendix B. More precisely, each N~s is at each order of the 1 / N  expansion a 

0 1 2 3 0 1 ~  - 2 ~ 3  

(b) 

Fig. 7, The  two dif ferent  cuts at  s = 2 which give the first I R  r eno rma lon .  
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(divergent) series of the form 

c~MS (g) = 2 k 
g Gn, k, (3.27) 

k 

and ~ s  (s) is given by the convergent series* 

k - 1  
S 

@~(g) = ~ r ( k  - 1~) G.,k.  (3.28) 

Similarly t ~  s is the ordinary Borel transform of <~?~s>, and is given by the 
discontinuity at s = p  of the Borel transform ~ s  (s)**, * is the Borel convolution 
product  which reads 

Ij ~ *~(s )  = d u ~ ( u ) ~ ( s - u ) .  (3.29) 

(c) The discontinuities at s --p (p t> 2) in the different sheets corresponding to 
the branch points at q < p  are in general different from the first one given by (3.26). 

Proof: The principle of the proof is the following. We first look at the analytic 
structure of the Borel transform of ~MS at d = 2 - e .  Using prop. 2 and lemma 1, 
one can show that, order by order in the 1 / N  expansion, (~MS(p,, S), is meromorphic 

1 like t~ with infinite series of single poles at s = n + ~ e k  (n, k ~ N) corresponding to 
the new operator  expansion 

~MS(p,,  ac)  = Y~ Ms ~ ,  (p,, c~c)(~?~s>, (3.30) 
n 

where (~7~ s> is now the v.e.v, of the renormalized operator  ~7, and is (in the 1 / N  

expansion) of the form 

<e~s>  d = a c" {series in g~}, 

MS and where each (~, (p,, ac) is a perturbative series in gs (and so in g) converge/at 
for Re e > 0; each term of the corresponding series in g, G,.k (e) corresponds to IR 
and UV-subtracted amplitudes of the perturbation theory and so has a limit as 
e --> 0 which is the Gn,k of (3.27). 

We now have to take the limit e ~ 0 with Arg e = 0 fixed. The crucial point is 
that each series of poles at s = n +½ek, n fixed, coalesces to give a cut along s = n + A, 
arg A = 0, and that no other singularity appears as e--) 0. This may be shown by 
the following argument, developed in appendix C. 

The amplitudes subtracted at zero momenta  according to the usual Zimmermann 
scheme may be represented by a "complete Mellin representat ion" [23]. In this 
representation, (given in appendix C) general arguments show that there are no 
other  singularities than the above cuts at e = 0. Then one can argue that the finite 

* T h e  t e r m  k = 0 has  to  be  u n d e r s t o o d  as 6(s). 
** ~ S ( s )  has  in f ac t  a s ingle  b r a n c h  p o i n t  a t  s = p  so  t h a t  ~ S ( s )  is a n a l y n c  o n  the  r ea l  axis  s > d . .  
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counterterms needed to recover the MS subtracted amplitude do not destroy the 
structure and simply modify the discontinuities. So we get part  (a). 

Starting now from the fact that those cuts are the limit of the series of poles, 
one uses (3.30) to get (3.26). Indeed, for e # 0, Arg e = 0, the discontinuity along 
the line {s = p  +e'°x} may be written in the form (3.26), but now ~ s  is defined 

1 on the line Arg s = 0 as a sum of Dirac distributions at s = ~ek, k ~ N and d ~ s  on 

the line Arg (s - p )  = 0 as a sum of Dirac distributions at s =p +~ek, k ~ N. 
Now the distribution c ~ s  with discrete support  at e > 0 tends towards (3.28) as 

e ~ 0 ;  indeed, using (2.6) and (2.8), to the term gk in (3.27) corresponds the 
distribution 

A(~ k)= ~ F(½e) k ( k + m - 1 ) ! 6 ( s _ ( k + m ) ½ e ) ,  (3.31) 
m=0 m ! ( k - 1 ) !  

which tends towards sk-t /F(k)  as e ~ 0. ~ s  being equal to the discontinuity of 

~ s  for any e/> 0, we finally get part  (b) of the theorem. 
The arguments developed here do not permit  us to look at the singularities in 

other sheets than the first one. The CM representat ion is a more adequate tool for 
that problem. In appendix D we use it to look explicitly at point (c) at order ( l / N )  1. 

3 4 THE STATUS OF THE O PE R A T O R  EXPANSION AND IR RENORMALONS 

Now we can see how the operator  expansion makes sense. Using (3.26) and the 
inverse Borel transform (2.23) we get that the operator  expansion 

~dMS(p,, g ) =  ~ ~ s  (p ,  g)(~7~s (g)),  (3.32) 
n 

is exact at each order of the 1/N expansion with the following resummation 
prescriptions which make it unambiguous. 

(i) All ~,(p, ,  g) are defined as the Borel sum (A.6) of (3.27) with the same 
prescription of integration on a complex line above (or under) the positive real axis. 

(ii) The non-perturbat ive quantities (~7~S(g)) are defined without ambiguities 
since each ordinary Borel transform ~ s  is analytic for Re s > dn. 

The remarkable  point is that we have obtained that result quite independently 
of the presence and of the nature of the IR  renormalons on the positive real s axis 
of the ordinary Borel transform ~,. Those singularities come obviously from point 
(c) of theorem A. However ,  since the discontinuities Ap(~ given by (3.26) are real 
for p < s  < p  + 1, they are equal in the first sheet above or under the positive real 
axis; one concludes that the first IR  renormalon of the perturbative series ~0 Ms is 
at s = 2 (and not at s = 1) and corresponds to the operators  of dimension 4 (see 

fig. 7). 
Similarly, the first IR  renormalon of ~MS (corresponding to the operator  (OS) 2) 

is at s = 1. From (3.32) when adding the two contributions associated to the 
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operators ~ and (OS) 2, the corresponding singularities at s = 2 must cancel, leaving 

the next renormalon at s = 3. This mechanism holds at all orders; namely, when 

adding the terms corresponding to the operators of dimensions ~<P in the operator 

expansion, all renormalons at s <~ P + 1 cancel. 
Of course one would like to have more details on the nature of those singularities 

in the 1 / N  expansion. Unfortunately, the techniques developed here cannot cope 
with that problem in general. We have checked in appendix C the presence of such 

renormalons at the order 1IN. At that order those singularities of the Borel 

transform c~0(s) are single poles at s = 2, 3, 4 . . . .  and are checked to be proportional 

to the terms c~, (s) dual to some of the operators of the corresponding dimension. 

The renormalon at s = 2 is for instance dual to the operator a • a, the renormalons 

at s = 3 dual to a . a • c~ and O~,a . O,a, etc . . . .  One expects that such a feature 

remains at next orders. 

4. General  discussion 

(1) Let us first outline the results of this paper: At  any arbitrary order of the 
1 / N  expansion, we have shown that in the O(N) or model: 

(i) There are IR renormalons at s = 4~-n, n/> 2 on the positive real axis of the 

Borel transform of the perturbative expansion. 
(ii) Non-perturbative terms proportional to vacuum expectation values of all 

invariant operators are present. 
(iii) Those terms are organized in an operator expansion h la SVZ at all orders. 

(iv) There is a well-defined Borel summation prescription of the perturbative 

series which deals with IR renormalons and makes the operator expansion unam- 
biguous. Basically, the operator expansion manages to cancel the IR renormalons 

of its different perturbative parts, as explained in subsect. 3.4. 

(2) The technics of this paper may be applied without difficulties to the two- 

dimensional U(N) Gross-Neveu Model [5]. One can show similarly that the vacuum 
expectation values of the fermion condensates associated to the spontaneous break- 

down of the (discrete) Z2 chiral symmetry organize in a SVZ operator expansion 
which cancels the corresponding IR renormalons. 

(3) It seems reasonable to think that those results are not modified when summing 
the 1 / N  expansion to get the o- model for finite N (the 1 / N  expansion is likely 

Borel summable [24, 25]). One expects that the branch points of the Borel transform 
are only shifted to s = 2n//32 with/32 = (N - 2)/27rN but that their structure remains 
the same. The cancellation of IR  renormalons which takes place is, in fact, the 
only possible way to make the SVZ operator expansion consistent with the Borel 

resummation procedure. So we conjecture that the same phenomenon occurs in 
four-dimensional gauge theories (with massive or massless fermions). It is interesting 
to note that SVZ found heuristically that an optimal summation procedure for the 
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operator  expansion was their "Borel  improvement"  [1], that is precisely the use 
of the Borel transform. 

However ,  it seems to us that any direct a t tempt  to get a rigorous proof of that 
fact (even for the o- model for finite N)  needs a non-perturbat ive use of the 
Dyson-Schwinger  equations and is a formidable program [26]. 

(4) The mechanism described above which deals with IR  renormalons is some- 
what different to what happens for instantons in quantum mechanics or in massive 
fields theories [27]. 

In the case of instantons, one can write any quantity E as 

E ( g ) =  ~ E(")(g), (4.1) 
n = 0  

where E(") (g)-O([E(1)(g)]  ") is the sum of n instanton contributions. However ,  
each E (") is ambiguous even at leading order O([E~l)(g)] n) (this is related physically 
to the instability of instantons-anti- instantons configurations, and mathematical ly 
to Stockes phenomenon,  i.e. to the different ways .to catch those configurations in 
the functional integral). This ambiguity in the definition of E (") is raised only when 
making precise the integration prescription around the corresponding singularity at 
s = nSo of the Borel transform of ~-,n-I ]~-.(p) z-v=0~ (g) (So is the action of the instanton). 

In the operator  expansion (3.32), the terms of order O([e2/a2~] ") given by 

operators  ~Tk of dimension dk = 2n, are ambiguous only at next order O([eZm2g]"+l), 
but the v.e.v. ~Tk (g) = (0[~Tk [0) are given by perturbat ion theory only up to a numerical 
factor. Indeed, the ~Tk'S satisfy the R G  equation* 

[tx O~+ fl(g) ~g -y,,(g)]~Y(g) = O , (4.2) 

which determines the 6k'S up to dimensionless factors Ck**: 

f g --2n + y,,(g) 
{Tk(g) = Cklx 2" exp du /3(g) (4.3) 

(5) However ,  the cancellation of renormalons at s = -(2//32)(n + 1) between the 
term of order n and those of order < n  fixes strong constraints on the C~'s. For 
instance, the existence of a renormalon at s = - 4 / / 3 2  fixes the value of the first 
perturbative term <01(~s)210>. An interesting question is: can all non-perturbat ive 
quantities be fixed in that way? In such a case one could say that (formally) 
perturbation theory contains enough information to recover the full theory. One 
could also imagine numerical estimations of the first non-perturbat ive terms based 
on that scheme. 

3,n is an operator mixing all ~Tk with dimension 2n. 
** The RG functions/3(g) and 3',(g) are Borel summable and so computable from perturbative theory 

Thxs may be checked m the 1/N expansion; the reason why there are no IR renormalons, at least 
in the MS scheme, is that/3 and the 3,'s are not modified when there is an IR cut off 
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(6) In sect. 3 we never  made  precise the integrabili ty at infinity of the Borel  

t ransform.  In fact we expect  no p rob lem order  by order  in the 1 / N  expansion but 

it is possible that  in the full theory  this condit ion breaks  down,  so that  the Borel  

sum itself is only asymptot ic  [3]*. With  this restriction this does not  change our  

conclusions.  
(7) In the case of the non- l inear  or model ,  the existence of a "spin wave 

condensa te" ,  <0l(0,S)210)~ 0, is obviously related to the res torat ion of the O ( N )  

symmetry .  This is self-evident in the limit N = co since we have then** 

(01a,S a ,SI0)  = - (phys ica l  mass) 2 . (4.4) 

(8) The  presence  of condensates  is often justified by the existence of non-  

per turbat ive  effects such as instantons [1]. It is interesting to note  that  the existence 

of instantons is not  necessary to get  such condensates .  
However ,  the p rob lem of taking into account  instantons in the opera to r  expansion 

in a mathemat ica l ly  consistent  way has still to  be unders tood  [29] and is obviously 

related to a correct  unders tanding  of the dense instanton gas p rob lem [30]. 

I am grateful  to E. Br6zin and J. Zinn-Jus t in  for their interest and for  a careful 

reading of the manuscript ,  and to C. de Calan for  useful discussions. I thank also 

Pr. K. Symanzik  and H.J.  de Vega  for  st imulating discussions. 

A p p e n d i x  A 

BOREL TRANSFORMS 

A convenient  object  to s tudy non-Bore l  summable  functions is the (modified) 

Borel  t ransform [31] 

)~(s) = C/g f (g ) .  (A.1) 

If f ( s )  is analytic in some disc Re  ( g - 1 ) > p - 1  tangent  to the origin g = 0 (and has 

an ad hoc behaviour  as g --) O, which we do not  make  precise), f (s)  is analytic away 
f rom the positive real axis s ~ R + and the following inverse representa t ion  holds***: 

f (g)  = Ic d2t~ e-S/~f(s) ' (A.2) 

where  the (anticlockwise) con tour  c encircles R + (fig. 8) (A. 1) is nothing o ther  than 

* 't Hooft's argument for such a singularity is based on the existence of an infinite number of resonances 
at arbitrary large energy. This is not the case for the non-hnear o- model [28]. 

** 0,$ O~,S is subtracted according to some normal product algorithm and may perfectly well have a 
negative vacuum expectation value 

-*** f(s) depends on the upper bound of integratmn m (A.1) but its dlscontmuity along R + does not. 
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llms C 

Res 
m 

Fig. 8 Integration contour for the reverse Borel t ransform (A.2) 

a Laplace transform with respect to I/g, or a Mellin transform with respect to 
exp ( - I / g ) .  

If f(g) has an asymptotic expansion 

f ( g ) =  ~ gkCk, (A.3) 
k=0 

and is Borel summable (i.e. satisfies the Nevanlinna-Sokal theorem [32]), the 
discontinuity at s = 0, Ao~ given by 

1 [7(s +ie) - f ( s - ie )] ,  (A.4) Aof(S) = 2i~ 

is equal to the ordinary Borel transform )~(s) of [, 

T(S)=ES k-1 Ck 
k r ( k ) '  (A.5) 

where s-1/F(O) has to be understood as 8(s). (A.2) is nothing other than the usual 
inverse Borel transform 

/ i  c o  

f(g) = | ds e ~/gf(s). (A.6) 
Jo 

Im u 

$ 
:z 

C 
D Re u 

F~g. 9 Integration contour  from the Borel convolution (A 7). 
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When f is not Borel summable,  as in instanton problems, f(s)  has other branch 
points on the positive real axis which have to be taken into account when one 
writes (A.2) as an integral over  the discontinuities. 

In this paper  the term Borel t ransform denotes in general the transform (A.1) 
and we are more  precise when dealing with the ordinary Borel t ransform (A.5), 

(A.6). 
We finally recall that the Borel t ransform of a product f l " f 2  is the Borel 

A A 
convolution product  f l  * rE: 

f l  * f 2 ( S ) =  Ic du - ~t f l (u) f2(s  - u ) ,  (A.7) 

where the contour c encircles R + (or s - R +) as in fig. 9. 

Appendix B 

THE OPERATOR EXPANSION IN PERTURBATION THEORY 

A simple way to get the terms of the (formal) opera tor  expansion (1.2) in 
perturbat ion theory is to see it as an IR  expansion when some IR  cut off goes to 
zero. In the case of the 2-dimensional non-linear tr model  one may consider the 
theory in a finite volume V or put an external constant magnetic field H. 

General  techniques of studying asymptotic estimates in perturbat ion theory 

[2, 10, 11] can be used to get the following result: within perturbat ion theory, the 
following expansion holds as V ( l / H ) ~  00 for any observable ~:  

~ ( V )  ~ ~n(V)(7~ (V) ,  (B.1) 
n 

where the sum runs over  all composite  operators  (7.. 
(7. (V) is equal to the vacuum expectation value of the renormalized operator  6 .  

and is of the form 

(7.(V)= V -'t"/2 ~ gkP(.).k(Ln V) ,  (B.2) 
k=O 

where d.  is the dimension of the opera tor  (7. and each P(.),k a polynomial (of order 
~<k) in Ln V. 

The term dual to 6. ,  qd.(V), is analytic in V -1, and more precisely 

~n(V)-~ g G,,k(V ), (B.3) 
k = 0  

where each Gn.k(V -1) is a (formal) series in V -1 and corresponds to a sum of U V  
and IR-subtracted* Feynman amplitudes. 

* In the sense of [4, 12]. 
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The key of the proof of the IR finiteness of the non-linear o" model [8] is the 
fact that, for invariant observables, among all operators of dimension 0, only the 
invariant one ~ survives in (B.1). Similarly one expects that in general, only O(N) 
invariant operators tTn are present in (B.1). In fact, to the "naively" invariant 
operators one must add new ones involving the operator Act/o-, which is the 
perturbative analog to the operator  a (in the parametrization S =  
(~, o" = ~ / 1 - z  r2)); it may namely be written as the derivative of the action versus 
the constraint and so is related to the action (O,S 0,S) via the equations of motion [9]. 
[9]. 

Taking V = ~ the ~3n are finite perturbative series (B.3) and the ¢7. are zero 
order by order in g (B.2). It is those ~,  which are assumed to be non-zero in the 
SVZ operator expansion. 

Appendix C 

The complete Mellin (CM) representation of Feynman amplitudes [23] provides 
a systematic tool to study its analytic properties. Indeed, an amplitude is written 
as an integral of the Mellin type, the CM integrand is a product of F functions and 
of linear powers of external invariants and of internal masses, its analytic structure 
allows the determination of any asymptotic expansion. Another  advantage is that 
the renormalization according to the Zimmermann scheme takes a very simple 
form: it results in a modification of the integration path without any change in the 
integrand [23]. It is not difficult to extend the CM representation to our problem. 
Starting from the representation (3.4) we get for some convergent graph G: 

II, r(-x,) 11 S ~ F ( - y ~ )  [I a ;*oro(~o),  (c.1) 
IG ----- JCoc~A G F ( _ E  , X,) k a 

where the variables x I and yk are attached respectively to each one-tree [ or two-trees 
k of G. Sk is the cut invariant corresponding to the two-trees k (and is quadratic 
in external momenta).  The linear function ~0~(x, y) associated to the line a is 

~ = E u~,xl + E  Uakyk -6_,, (C.2) 
t k 

where u~ (u,k)= 0 or 1 following the line a belongs or not to the one-tree / 
(two-trees k). The terms Fa (¢) are given by 

~19(-~p)/F(-q~-6_,,)?F(q~), i f a  ~ ( G ) ,  (C.3a) 

Ca (q~) = -_8o) if a ~ ~ (G) .  (C.3b) 

The integration symbol means 

I ~  '~ dx I dy~ 8(~Xj+~Yk+½d ) (C.4) 
,~ 2izr 2i~r ~1 k 
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and that (x, y) belongs to the intersection of the cell Co: 

C0={ x, Yl R e x  > 0 ,  Re y > 0 } ,  (C.5) 

and of the UV convergence domain AG: 

AG = {x, Y l Re ~0a > 0, '¢a ~ G}. (C.6) 

The only change with [23] is the ~oa's and the functions F~ which have now a more 
complex analytic structure (with cuts at negative ~0 = - n ) .  Similarly, a renormalized 
amplitude according to the Zimmermann scheme (subtractions at zero momenta) 
I R is 

1~ =~ /xc  f JG(x , , y ,  S k ) a :  x°~" , (C.7) 
dCt'3AG 

where the sum runs over cells c delimited by the singularities of the function 
1-I1 f ' (-xl)I-[k F ( - y k )  in (C.1). The multiplicity factor/zc is an integer # 0  only for 
a finite number of cells c such that c (~AG # Q and does not depend on the functions 
F~. JG is the same integrand as in (C.1). The Borel transform [~  is for Re s <0 :  

and its analytic structure is obtained by translating s into the domain Re s > 0 
(Re <g < 0). Without getting into a general study, one may deduce that the sin- 
gularities are branch points at the same positions as in the case of usual propagators, 
and are the right limit of the series of poles occurring at d = 2 - e ,  as claimed in 
subsect. 3.3. 

In order to recover the MS subtracted amplitude, one has to introduce finite 
counterterms. One has in fact 

x ~  s (p) = y r ~ G/US (P) H ( i ~ s ) ,  (C.9) 
Is) s 

where the sum runs over family of disjoint CIPI divergent subgraphs S. The vertex 
corresponding to S in (G/US) has to be oversubtracted according to the superficial 
degree of S (o3(S)/> 0). The counterterms I Ms are renormalized amplitudes taken 
at zero external momenta.  They can depend on g only as 

I-MS e ~ (o(S) 
s t g ) = a ~  ×(se r i e s i n g ) ,  

and so correspond only to a discontinuity at s = _o (S) in the Borel plane. 

Appendix D 

Let us apply the CM representation to study the Borel transform of the 1 / N  

order of the two-point function/ '2 .  It is expressible in terms of the two graphs of 
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fig. 6. The  second one does not depend  on the external m o m e n t a  and by 

homogene i ty  it gives a single cut at s = 1. So we are interested in the one - loop  

graph St. 
Using the CM representa t ion for its ampli tude subtracted at zero momenta ,  one  

gets for its Borel  t ransform the representa t ion 

I f  '°° du F(u -s)F(2-u)F(s - 1) 
,oo 2ilr F - - ~ - s )  (p2)a-~Fc(-u)FD(u-s), (D.1) 

where the functions FD and FG are given respectively by (C.3a) and (C.3b). (D.1) 

holds for - 1  < R e  s < R e  u < 0 .  The  in tegrand has then double  poles at u = s - k  
(k ~ ~) and branch points at u = k c ~. Going  into the domain  Re  s < 0, fR has a 

singularity if the integrat ion contour  is p inched be tween two of those singularities 
(fig. 10). So one gets immediately  the branch points at s = n ~ ~. 

To  get the MS subtracted amplitude,  according to (C.3), one  needs two counter -  

terms which modify the discontinuities of r at s = 0 and s = 1, but  not  the next 

ones. So we start f rom (D.1) to study the singularities at s = n / > 2  in the different 

sheets. 
Moving the integrat ion contour  a round  the poles (u = s -  n) we get for-fR(s) the 

(formal) sum 

/ R ( s ) =  ~" (p2)x- 'F(s-1)((-1)~d,d+bn)F~(n-s)F(2-s+n),  (D.2) 
~=o F ( 2 - s )  \ n? 

where d ,  = ( - 1 ) " / n  ! is the residue of FD at n and b, is irrelevant in the following. 

The  discontinuities of [(s) in the first sheet  are given by theorem A. The  existence 

of an I R  renormalon  at s = 2 comes f rom the difference between that  discontinuity 
at s = 2 and the discontinuity in the sheet  reached by passing under  s = 1 (fig. 7). 

s-2 

klm u 

s-1 

f 
0 

, )  
Re u ---<_.---<..----s_._----<.. 

Fig 10, Analytic structure and integration contour for the integral (D 1) 
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The  difference of fR(s) be tween  those two sheets comes f rom the d iscont inui ty  

of FG at s = 1; one  gets for that  difference 

" 2"a-~F(s -1 )  ( d o d + b o ) 2 i ~ r A i F G ( s ) F ( 2 - s  ) = t p  ) 

p~ 1 + funct ion  at = 2  (D.3) = - 2 i l r  A1FG(2)F(1) s - 2  regular  s 

where  A 1FG(S) = d 1G (s ) /F(s  - 1) is the d iscont inui ty  of FG at s = 1 and  is analyt ic  

for Re  s > 1. 

F r o m  (D.3), the first r e n o r m a l o n  at s = 2 (that is the first s ingulari ty of the 

d iscont inui ty  of ~fR(s) at s = 0) is a single pole and is p ropor t iona l  to do/p 2, which 

cor responds  graphical ly to the term dual  to the opera to r  a • a.  

The  same a rgument s  hold for the next  d iscont inui t ies  at n > 2. At  that  order  of 

1 / N  expansion,  one  may  check that  the various r eno rma lons  are always single 

poles and  are p ropor t iona l  to terms dual  to composi te  opera tors  involving only the 

a field. For  instance,  we get r eno rma lons  at s---3 in terms of the duals of the 

opera tors  a • a • a and  Ova . O.a. A closer look at (D.3) suggests that  those sin- 

gulari t ies may be classified in terms of nests of essentials bu t  we need  to s tudy 

diagrams with m a n y  loops in order  to make  this idea more  precise and  such a study 

becomes  very complicated.  
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