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The perturbative expansion of membrane models describing a d -- n dimensional membrane in a d-dimensional space
with surface tension is proved to be free of infrared divergences for d = n when looking at euclidean invariant quantities.

Membrane models have been introduced by Wallace
and Zia [1] in order to study the critical behaviour of
the interface between two pure phases of a thermody-
namic system. Such models have been generalized by
Lowe and Wallace [2] to the case of a d — n dimen-
sional membrane fluctuating in a d-dimensional space.
The field ¢(x) is given by the n last coordinates of the
membrane expressed (locally) as a function of the
d — n first coordinates x. Keeping only relevant terms
for the long-distance behaviour and from euclidean
invariance the effective action has to be proportional
to the hypervolume of the membrane

_t d-n 172 ,1,2,2 -
A—de x (det g)! /2 + L m2e? (1)

The mass term is introduced in order to stabilize the
membrane and acts as an infrared cutoff. g(x) is the n
X n matrix given by

gab(x) = Sab + a“¢a(x)a“¢b(x) . (2)

The renormalization properties of this model have
been studied in d = n + € dimensions [1—3]. It has an
UV fixed point ¢, = O(e), an IR fixed point at £ =0,
and is asymptotically free at € = 0, as for non-linear

o models in 2 + € dimensions [4], or gauge theories
in 4 + € dimensions. As for these models, there is a
non-abelian symmetry group, here the euclidean group
of displacements in the d-dimensional space, which
acts in a non-linear way in the space of field configu-
rations.

! physique Théorique C.N.R.S.

In this letter we establish another similarity with
non-linear o models [5~ 7] : near the critical dimension
(here d = n), the weak coupling expansion of invari-
ant quantities is infrared finite. In fact, since the
field ¢ is massless, the propagator itself is divergent
ford - n < 2. The relationship of this divergence with
the roughening transition has been discussed by
Lischer [4]. Much more important divergences arise
from interaction terms of the action for d <n. In-
deed, integration over internal loops gives integrals
as [ dk~ [ dk€~1 (where € = d — n) which diverge
logarithmically at zero when € = 0. As for non-linear
o models, such divergences are related to the disap-
pearance of the spontaneously broken phase (that is
of the existence of a well-defined, although delocaliz-
ed membrane) at d = n.

Let us first check the infrared finiteness of the
model in a simple example of invariant observable.
Since the euclidean group acts in a non-local way,
mixing field and coordinates variables, an invariant
observable has in general to be non-local. A two-points
observable is for instance

O1F) = [ a? "y lderg ()] '12
X F {(y-x)* + [6(») — &) %}, 3)

where F(r2) is some function with sufficient decrease
at infinity. Taking for F the function F(rz) = 0(r%
- r2), we get for O the volume of the membrane con-
tained in the sphere of radius r; around the point
(x,9(x)) of the membrane. Various n-points invariant
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quantities may be constructed in the same way, or by
incorporating curvature or invariants of higher dimen-
sionality. Now let us compute first orders of O[F] at
a dimension d just below n (d = n + € with e negative).
As previously explained, the propagator G (x) is diver-
gentasm = 0 as

G(x)=@m~ <201 — ¢/2)[m® =2 + (x2)2e)m°]

+D(x)+0(m), C))
D(x) is the finite part of the massless propagator
Dx)=3n¢re/2 — 1)Ix 12 ¢. (5)

Computing O[F] at first order, divergences as m¢~ 2
cancel immediately between graphs and divergences
as m¢ are proportional to the integral

[exFe?) + @ ored) ®)

which vanishes after integration by parts.
The same kind of cancellations occurs at second
order, so that we get the infrared finite result

OF) = [ dex F(x?) - TF'(x?) 2D (x)
+T2F"(x2) 2(n? + en)D?(x) + O(T3) (7

[the ultraviolet poles at € = Q are contained in D(x),
see eq. (5)].

To prove the infrared finiteness at any order at di-
mension d = n + € (with e negative sufficiently close
to zero), we have used technics developed in ref. [7]
for studying two-dimensional non-linear 6 models. We
shall simply point out the main steps of the proof for
the “interface model” (n = 1) which has some peculiar
simplifications.

First, let us notice that in any invariant operator,
the field ¢ appears only as a difference between two
points, or as spacial derivatives.

Writing such a difference as

00) - 60) = [ ax¥ 3,000), ®)
;

any invariant operator may be decomposed into in-
tegrals (in position space) of products of local oper-
ators involving only derivatives of the field ¢ (that is
of positive dimension). Short-distance divergences are
eliminated by dimensional regularization.

194

PHYSICS LETTERS

11 June 1981

The infrared behaviour of such a product of local
operators A (x) ...x,) may be extracted as in ref. [71.
We get

L
T

A(xy ...xp)= 8“,¢(0))+0(m)
©)
The operators IIK } Oy ¢(0) are the divergent parts
of A. The operator Fyy(x) ... x,) is infrared finite
and is defined by inserting the K operators f dx m x“
X @(x)(i 1...K)in A (disconnected graphs where there are
only such insertions being forbidden) and by retaining
the infrared finite part of it, namely

Pﬂ(“i)(xl e x’))

K
= finite part -IT [T m? f dfx x,,l.d)(x))
Vit “ »

conn

XA(x)...xp). (10)

From eq. (9), the finiteness of an invariant observable
O will be proved if any such “connected insertion” into
O gives zero.

Let us perform a finite rotation ¢ in the plane (u,
¢) (u is some unitary vector in x). Coordinates and
field are transformed, respectively, as

x>x+(cos 0 —1)(xu)u +sin 9§ du ,

¢—>cosO ¢ +sin f (x-u). (11)

After some partial integrations and elimination of
terms independent of ¢ the quadratic term f d%x
é(x)? is transformed into

Jasx 620
> [dexfeos 6 62(x) +2sin0 9Gew)] ,  (12)

so that the mass term mixes with m?  d®x x¢(x). Per-
forming such a transformation in the functional inte-
gral of an invariant observable O we get

€
(0= gelp[fn_sm()ufd xxd)(x)])

(exp [m? sin 6 u f d°x x¢(x)])

(13)
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Expanding the rhs of eq. (13) in powers of sin 8 it is
easy to see that we generate the ‘‘connected inser-
tions” of eq. (10). Eq. (13) ensures that such insertions
into O give zero, and so that Ois infrared finite.

In the general case (n #1) the infrared divergences-
have the same structure but under a general euclidean
rotation, the mass term ¢2 mixes not only with x¢
but with other possible symmetry breaking terms such
as ¢2 3¢... . One has to consider the mixing between
all possible such terms and there is no simple transfor-
mation law such as eq. (12).

Finally we discuss some consequences of this IR
finiteness. Of course such a result has no direct impli-
cations at the critical dimension € = 0, since the model
is then trivial. However, as for the non-linear o model
at 2 + ¢ dimensions (8] , it allows some simplifications
in calculations of critical exponents at d =n + €. Let
us consider the observable O defined by eq. (3). As
shown by Wallace and Zia, there is a coupling constant
but no wavefunction renormalization [11] . Using di-
mensional renormalization, the renormalized quan-
tity Ogr (expressed in terms of the renormalized cou-
pling constant t) obeys to the renormalization group
equation

[ud/ou + B(1)d/ar+ v(1)] Og =0, (14)
where () is related to the § function via
y(¢) =€ +dp/dt — 26/t (15)

since there is only one renormalisation in ¢.

From the one-loop calculation of eq. (7), we get 8
and 1 at order 2, but eq. (15) gives us the third order
of B,

B()=et —4nt® - 8n%e3 + .. (16)
so that we get the index v at second order in €
v=1/'(t,)= /e —3 + O(e) (17)
in agreement with known results [2,9]. Let us recall
that v is defined in ref, [1] from the “bulk correla-
tion length” £, which diverges at ¢, as

E~@ -1V, tor, . (18)

It is interesting to look at the long-distance behaviour
of O (which is related to the volume of the membrane
enclosed in a sphere of radius R). From eq. (14), since
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t =0 is an IR stable fixed point, for 1 <t_, O ~ R¢ as
R — oo (that is, at large scale, the membrane is a well-
defined object). But at the critical temperature f,.
(that is at short distance) O ~ R1/¥, so the membranc
becomes a critical object with dimension

dc=llv=e+éez+.... 19)

Such a behaviour is very similar to the classical
problem of a polymer with a chemical potential as-
sociated to monomers [10] . This similarity is enforced
by results of the limit n - o0 [2], which shows that
for a one-dimensional surface (e =1),v = % +0(1/n),
which is the result for the polymers in a space of
large dimension (>4). However, in this model of a
fluctuating membrane, effects of self interaction of
the membrane or non-planar configurations (bubbles,
...) are not taken into account.

I am very indebted to D. Amit to have focused my
attention on such models. I thank E. Brezin,
B. Derrida, J.M. Luck and C. Itzykson for useful dis-
cussions and E. Brezin for a critical reading of this
manuscript.
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