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The perturbative expansion of membrane models describing a d - n dimensional membrane in a d-dimensional space 
with surface tension is proved to be free of infrared divergences for d ~- n when looking at euclidean invariant quantities. 

Membrane models have been introduced by Wallace 
and Zia [ I ]  in order to study the critical behaviour of  
the interface between two pure phases o f  a thermody- 
namic system. Such models have been generalized by 
Lowe and Wallace [2] to the case o f a  d - n dimen- 
sional membrane fluctuating in a d-dimensional space. 
The field ~ (x )  is given by the n last coordinates of  the 
membrane expressed (locally) as a function of  the 
d - n first coordinates x. Keeping only relevant terms 
for the long-distance behaviour and from euclidean 
invariance the effective action has to be proport ional  
to the hypervolume o f  the membrane 

1 A = };- f d d - n x  (det g) I/2 + ½rn2~ 2 , (1) 

The mass term is introduced in order to stabilize the 
membrane and acts as an infrared cutoff,  g(x) is the n 
X n matrix given by 

gab(x) = ~ab + O•(Pa(X)OtaOb(X)" (2) 

The renormalization properties of  this model have 
been studied in d = n + e dimensions [ 1 - 3 ] .  It has an 
UV fixed point t c = O(e), an IR fixed point at t = 0, 
and is asymptotical ly free at e = 0, as for non-linear 
o models in 2 + e dimensions [4] ,  or gauge theories 
in 4 + e dimensions. As for these models, there is a 
non-abelian symmetry group, here the euclidean group 
o f  displacements in the d-dimensional space, which 
acts in a non-linear way in the space of  field configu- 
rations. 

1 Physique Th6orique C.N.R.S. 

In this letter we establish another similarity with 
non-linear o models [5-  7] : near the critical dimension 
(here d = n), the weak coupling expansion of  invari- 
ant quantities is infrared f'mite. In fact, since the 
field ~ is massless, the propagator itself is divergent 
for d - n ~< 2. The relationship of  this divergence with 
tile roughening transition has been discussed by 
Luscher [4].  Much more important  divergences arise 
from interaction temls of  the action for d ~< n. In- 
deed, integration over internal loops gives integrals 

o o  

as f dek ~ fo dke -1 (where e = d - n) which diverge 

logarithmically at zero when e = 0. As for non-linear 
o models, such divergences are related to the disap- 
pearance of  the spontaneously broken phase (that is 
of  the existence of  a well-defined, although delocaliz- 
ed membrane) at d = n. 

Let us first check the infrared finiteness of  the 
model in a simple example of  invariant observable. 
Since the euclidean group acts in a non-local way, 
mixing field and coordinates variables, an invarianl 
observable has in general to be non-local. A two-points 
observable is for instance 

O[F] = f dd-ny[det g ( y ) ]  1/2 

X F {(y - x)  2 + [¢0")  - ¢ ( x ) l  2} ,  (3) 

where F(r 2) is some function with sufficient decrease 
at infinity. Taking for F t h e  function F ( r  2) = O(r 2 
- r2), we get for O the volume of  the membrane con- 
tained in tile sphere of  radius r 0 around the point  
(x,@(x)) of  the membrane. Various n-points invariant 
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quantities may be constructed in the same way, or by 
incorporating curvature or invariants of  higher dimen- 
sionality. Now let us compute first orders of  O[F] at 
a dimension d just below n (d = n + e with e negative). 
As previously explained, the propagator G(x) is diver- 
gent as m ~ 0 as 

G(x) = (4rr)-e/2p(1 - e/2)[m e-2 + (x2/2e)m e ] 

+ D(x) + O(m) , (4) 

D(x) is the finite part of  the massless propagator 

D(x)=¼rr-e/2r(e/2 - 1)Ix 12-e (5) 

Computing O[F]  at first order, divergences as m e-2 
cancel immediately between graphs and divergences 
as m e are proportional to the integral 

fd'x [F(x 2) + ( 2 x 2 / e ) / Y ( x 2 ) ]  , (6) 

which vanishes after integration by parts. 
The same kind of  cancellations occurs at second 

order, so that we get the infrared finite result 

<O(F)> = f d'x F(x 2) - TF'(x 2) 2nD(x) 

+ T2F"(x 2) 2(n 2 + en)D2(x) + O(T 3) (7) 

[the ultraviolet poles at e = 0 are contained in D(x), 
see eq. (5)].  

To prove the infrared finiteness at any order at di- 
mension d = n + e (with e negative sufficiently close 
to zero), we have used technics developed in ref. [7] 
for studying two-dimensional non-linear o models. We 
shall simply point out the main steps of  the proof  for 
the "interface model" (n = 1) which has some peculiar 
simplifications. 

First, let us notice that in any invariant operator, 
the field 4) appears only as a difference between two 
points, or as spacial derivatives. 

Writing such a difference as 
X 

4)@)- 4)(y) = f dx" 0.4)(x), (8) 
Y 

any invariant operator may be decomposed into in- 
tegrals (in position space) of  products of  local oper- 
ators involving only derivatives of  the field 4) (that is 
of  positive dimension). Short-distance divergences are 
eliminatcd by dimcnsional regularization. 

The infrared behaviour of  such a product of  local 
operators A (x 1 ...Xp) may be extracted as in ref. [7].  
We get 

A(x I ...Xp) = = F(ui)(x 1 ...xp) i_[]13u,4(0) + O ( m )  

(9) 

The operators I IKI  3ui 4)(0) are the divergent parts 
of  A. The operator F(ui)(Xl... Xp)is infrared finite 
and is defined by inserting the K operators f &x  m2xui 
X (~(x)(i 1 ...K) in A (disconnected graphs where there are 
only such insertions being forbidden) and by retaining 
the infrared finite part of  it, namely 

F(ui)(x I "" Xp) 

=finitepart~li~=lm2 f dexxui4)(x)),,conn, ' 

X A (x I ...Xp). (10) 

From eq. (9), the finiteness of  an invariant observable 
O will be proved if any such "connected insertion" into 
O gives zero. 

Let us perform a finite rotation 0 in the plane (u, 
4)) (u is some unitary vector in x). Coordinates and 
field are transformed, respectively, as 

x -+ x + (cos 0 - 1) (x'u)u + sin 0 4)u , 

4) -+ cos 0 4) + sin 0 (x 'u) .  (11 ) 

After some partial integrations and elimination of  
terms independent of  4) the quadratic term f dex 
¢(x) 2 is transformed into 

f dex ¢2 (x) 

-. fd"x [cos  0 4)2(x)+2sinO4)(x'u)] , (12) 

so that the mass term mixes with m 2 f dex x4)(x). Per- 
forming such a transformation in the functional inte- 
gral of  an invariant observable O we get 

( 0 )  = (Oexp[m2 sin 0 u f dex x4)(x)]) (13) 

(exp [m 2 sin 0 u f dex xC(x)] ) 
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Expanding the rhs o f e q .  (13) in powers of  sin 0 it is 
easy to see that we generate the "connected inser- 
t ions" o f e q .  (10). Eq. (13) ensures that such insertions 
into 0 give zero, and so that O is infrared finite. 

In the general case (n 4:1) the infrared divergences. 
have the same structure but under a general euclidean 
rotat ion,  the mass term ~2 mixes not only with x¢  
but with other possible symmetry breaking terms such 
as ¢2 3¢ . . . .  One has to consider the mixing between 
all possible such terms and there is no simple transfor- 
mation law such as eq. (12). 

Finally we discuss some consequences of this 1R 
finiteness. Of course such a result has no direct impli- 
cations at the critical dimension e = 0, since the model 
is then trivial, l lowever,  as for the non-linear o model 
at 2 + e dinaensions [8] ,  it allows some simplifications 
in calculations of  critical exponents at d = n + e. Let 
us consider the observable O defined by eq. (3). As 
shown by Wallace and Zia, there is a coupling constant 
but no wavefunction renormalization [ 11 ] .  Using di- 
mensional renormalization, the renonnalized quan- 
t i ty O R (expressed in terms of  the renormalized cou- 
pling constant t )  obeys to the renormalization group 

equation 

[taa/Ola + O ( t ) O / a t +  7( t ) ]  O R = 0 ,  (14) 

where 3 '( t)  is related to the 13 function via 

7 ( t )  = e + d13/dt - 213]t, (15) 

since there is only one renormalisation in t. 
From the one-loop calculation of  eq. (7), we get/3 

and 3' at order t 2, but eq. (15) gives us the third order 

of  13, 

~( t  ) = e t  - 4 n t  2 - 8 n 2 t  3 + . . . ,  (16) 

so that we get the index v at second order in e 

u = 1/13'(te) = 1/e - ½ + O ( e ) ,  (17) 

in agreement with known results [2,9].  Let us recall 
that v is defined in ref. [ 1 ] from the "bulk correla- 
tion length"/ j ,  which diverges at t c as 

~ ( t  - r e )  - ~  , t --, r e _  . ( 1 8 )  

It is interesting to look at the long-distance behaviour 
of O (which is related to the volume of  the membrane 
enclosed in a sphere o f  radius R ). From eq. (I 4), since 

t = 0 is an IR stable fixed point ,  for t < t c, 0 " - ,R ~ as 
R ~ o~ (that is, at large scale, the membrane is a well- 
defined object).  But at the critical temperature t c 
(that is at short distance) O ~ R 1/ , ,  so the membrane 
becomes a critical object with dimension 

d c = l / u = e  +~e  2 + . . . .  (19) 

Such a behaviour is very similar to the classical 
problem of  a polymer with a chemical potential as- 
sociated to monomers [10].  This similarity is enforced 
by results of  tile limit n ~ ~o [2] ,  which shows that 
for a one-dimensional surface (e 1), _ t = u -  ~ + O(1/n),  
which is the result for the polymers in a space o f  
large dimension ( ~ 4 ) .  However, in this model of  a 
fluctuating membrane,  effects of  self interaction of  
the membrane or non-planar configurations (bubbles, 
...) are not taken into account. 

I am very indebted to D. Amit to have focused my 
attention on such models. I thank E. Brezin, 
B. Derrida, J.M. Luck and C. l tzykson for useful dis- 
cussions and E. Brezin for a critical reading of  this 
manuscript. 
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