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For all two-dimensional chiral models which have a global symmetry, the invariant observables are proved to have an 
infra-red finite weak coupling perturbative expansion. 

The two-dimensional o-models (or chiral theories) 
have been extensively studied during the last years. 
Their geometrical structure leads, for a large class o f  
models, to the existence of  non-local [1] or local [2] 
classical conservation laws, which are proved to be 
preserved by quantization for the O(N)o-model and 
lead to the factorization of  the S matrix [3]. Another 
point of  interest is the similarities of  these models 
with four-dimensional gauge theories: asymptotic 
freedom, dynamical restoration of  symmetry and the 
non-perturbative character of  the particle spectrum. 

In particular, the usual weak coupling expansion 
is performed in the spontaneously broken symmetry 
phase, and suffers from important IR divergencies. 
This is related to the fact that this phase cannot ex- 
ist, from the Mermin-Wagner theorem [4]. It was 
conjectured by Elitzur [5], and proved by the pres- 
ent author [6], that, for the O(N) o-model, that 
those IR divergencies cancel for any O(N) invariant 
observable (another analogy with what is expected 
in four-dimensional gauge theories). 

In this paper we prove that this property is satis- 
fied by all o-models which possess a group of  in- 
variance, namely the models constructed on some 
homogeneous space. Such a space may be considered 
as the space G/H, where G is some Lie group and H 
some compact subgroup of  G, or as a riemannian 
space E such that the metric is "the same" in the 
neighbourhood of  every point of  E (i.e., the group 
of  transformations preserving the metric tensor sends 
any point of  E in the whole space E). These two defi- 
nitions are proven to be equivalent [7]. 

To deal with the most general models, we adopt 
the second, geometrical point of  view. Given a 
riemannian space E, and considering some coordinate 
system (~i)i= 1 ,N' a chiral field ~ with value into E 
may be constructed, whose euclidean action is 

f 1 AHM = dDx ~ [att,~ia#,~/gq(~) + HM(~)] , (1) 

gi] is the metric tensor, HM(~) is a "mass term" break- 
ing geometrical invariance at the point { = 0. We con- 
sider a general term of  the form 

M(~) = Mii~i~ i + Mijk~i~j~k + .... (2) 

(Mii) being symmetric positive definite. The vacuum 
expectation value of  any observable F (~  ) is given by 
the functional integral 

<F>.M = r01 exp(-- t -2AHM) , (3) 

where c/) [~] = i1 x d{(x)([g(~)l)l/2 is the invariant 
measure and t the coupling constant. 

The perturbative expansion is obtained by expand- 
ing the metric tensor around { = 0 

gij(~) =gi/ + ~kgiLk + ~k~lgi],kl + .... (4) 

so that we get the free propagator Di/(x - y )  as the 
inverse of  the operator + 1 

Dff 1 = _gijAx + HMij . (5) 

.1 DiagonalizingMi ] in an orthonormal basis ofgi] we can 
express the propagator as a sum of usual scalar propagators: 
Dij(p) = E~=lDiJ(k)/(pZ + Hm~). 
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We have two kinds of  interaction vertices of  order 
tN(N >~ 1) corresponding (a) to the expansion o f g  
(g-vertices): 

i ~ /k N 

2 gi/,k 1 ...kN0~i0/)(6a) 
J "" 1 

(b) to the expansion of  M (m-vertices): 

2 ""iN+2 " 

To deal not with UV divergencies we use dimensional 
regularization and calculate amplitudes at dimension 
D = 2 - e. Parametrization invariance is not broken 
and the measure terms are known to disappear. 

We now analyse the IR divergencies of  this general 
model. As the mass term is set to zero, the perturba- 
tire expansion diverges at dimension D ~< 2, since 
even the bare propagator becomes gi/p-2 and is not 
a well defined distribution [8]. In ref. [6], general 
methods of  analysis of  IR behaviour were developed 
and applied to the regularized O(N) model at dimen- 
sion D = 2 - e. Those methods may be adapted to 
the general chiral case; indeed the IR structure of  the 
graphs is the same, and only the algebra, related to 
the structure of  the space E, is modified. We give 
only the final result of  this study. 

We consider a graph G which appears in the per- 
turbative expansion of  some function of  the fields 
O(~(x)). At dimension D = 2 - e, the amplitude 
1G(X , IT) of the graph G has an IR asymptotic expan- 
sion in powers of H -  e/2 in terms of  "dominant sub- 
graphs" [6] E of  G: 

IG(X , H) = ~ FE(X ) • I[~/E ] (H) + O(HI-eL(G/2) , 
ECG 

dominant (7) 

FE(X ) is the finite part of  the amplitude of  the domi- 
nant E and so is IR finite. The I[~/E ] 's are the IR 
divergent parts of  the expansion (7) (They diverge 
like a power o f H  - c /2 )  and are the amplitudes of  the 
graphs (G/E) obtained by shrinking E into one ver- 
tex into G. 

The dominant subgraphs E of  G are the subgraphs 
of  G which may be considered as graphs of  the oper- 
ator O with "connected truncated insertions" of the 
field ~i at zero momenta,  that is graphs of  the oper- 

ator 

1 o f a x  c oi,...ie(x) = {fI1/ Mi ,  , ( 8 )  

for some P. (The "C" means that graphs with discon- 
nected part, where there are only insertions o f ~  are 
not taken into account.) The reduced graphs [G/E] 
may be considered as a graph of  the operator 

D&...ip = ~il (x) ... t iP(x) ,  (9) 

at some point x. From eq. (7) we construct the IR 
asymptotic expansion of  the operator O at dimension 
2 - e .  

(O(X))HM = ~ f.p.(OCl...ip(X )) X (Dil""iP)HM . 
e:o (lO) 

The "f.p." means the IR finite part of  the operator 
0 .c • as H-+ O. The (D il"''iP)HM are the divergent tl...zp 
parts of  the expansion and diverge (perturbatively) 
as a power of  H - c / 2 .  This expansion is valid at order 
N provided that e < 2IN, then only operators such 
that P ~< N are present. (The summation over indices 
i I ...ie is understood.)Formula (10) is valid for any 
observable of  any model. As pointed out in ref. [6], 
this result is quite similar to the Wilson operator 
product expansion [9]. 

An ,observable O will be IR finite only if the oper- 
ators OCl...ie(X ) have a zero limit as H ~ 0 for any 
P > 0, so that (O) = f.p.(O). We now prove that this 
is true only for invariant observables of  models de- 
fined on homogeneous spaces. We consider some 
homogeneous riemannian space E and some coordi- 
nates ~i (with origin 0). To any point A of  E we as- 
sociate an isometric transformation r A on E which 
sends O into A and defmes a new coordinate system 
~1 in a neighbourhood of  A such that the metric 
tefisor in the new system (g-A) is the same as in the 
first one (g). We may then consider the coordinates 
~i of  a point of  E as a function of  its coordinates ~-/~1 
in the new system and of  the coordinates a k of A in 
the first system. 

~i = ~i(~-JA, o~k). (11) 

Moreover, the isometries "c A are choosen such that, 
at the origin, this function is infinitely differentiable 
versus ~-/A and ak.  We now consider some invariant 
observable O(g, ~). (For instance the riemannian dis- 
tance between the field at two points ~ (x) and ~(v).) 
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The vacuum expectation value of O is expressed by 
the functional integral (3). If  we made the change of 
variable ~ ~ ~-A into (3), the measure, the observable 
O and the free action are invariant, so that: 

o f " ffA  

X exp [-~2 (A0 [~-A] + f d D x H M ( ~ ) ) l ,  (12) 

the only change occurs in the symmetry breaking 
term: 

M(~) = M(~A, c 0 

=M(0, c 0 + 2-(iADi(a) +M(~A, ~). (13) 

In eq. (13) we have separated the two first terms of 
the expansion of M around ~A = 0, so that/14 has 
the expansion: 

(14) 

Defining a new parameter ~- as 

~i = Dk ((X)~lki(a) = d + O(0~2) , (15) 

we may invert the relation between the functions M 
and ~Q and express the coefficients of the expansion 
of M, namely theMil.., ik, as functions of ~- and of 
the coefficients Mil...i n . We have in fact a linear re- 
lation between M and M : 

Mil ' in (~) :  ~ C{I"'~ P (~)mf • (16) "" 2<~P<N "I.-.'N I...]P ' 

where the c's depend on ~ (and are determined by 
the metric g and the isometry z A). We shall note the 
functional relation of M with/1~ and ~- by 

M = M[/14, ~-] . (17) 

Obviously, as ~- = 0, we have M[M, O] =/14. With 
this notation, putting eq. (13) into eq. (12) and per- 
forming the same change of variables into Z0, we get 
the fundamental identity valid for any invariant ob- 
servable O: 

(O(t~))HM[M, ta ] 

(O(t~) exp[-Hc~iMi] f ~J dx] )HM 
= 0 8 )  

(exp[-Ho~iMi! f ~J dx] )HM 

In eq. (18) we have scaled ~ -~ t~ and a ~ ta in order 
to obtain the usual weak coupling perturbative ex- 
pansion, and inverted the notation M and ~r. If  we 
expand the r ah.s. of eq. (18)in powers of c~, we note 
that the term of order P is precisely the vacuum ex- 
pectation value of the operator oCl...ip defined in 
eq. (8). 

c o  

r ~ h . s . ( 1 8 ) = ~  (_l)Pcdl  ip c (19) ... c~ (Oil...ip)HM . 
P=0 

Indeed, expanding the exponential at the numerator 
we get l/p! times P insertions of HMil~] at zero mo- 
menta, and the disconnected insertions are eliminated 
by the denominator. 

The lJa.s, of eq. (I 8) corresponds to a renormal- 
ization of the symmetry breaking term which depends 
on tc~. Then the term of order P in  c~ (P~> 1) and of 
order N in t is related to derivatives versus the sym- 
metry breaking term (that is versus the MiL.. ) of 
terms of order iV' < N of the perturbative expansion 
of<O>. 

So, if the terms of order N' < N (in t) of (O) have 
been proved to be IR finite, and so independent of 
M as H - +  0, the terms of order N'  < N of O c i are 
proved to have a zero IR limit as H ~ 0 f o r / ~  ~. 
Their finite parts are then equal to zero and from eq. 
(10) (which gives the asymptotic IR b~hgviour of 
(O)) we deduce that the term of order N of (O) is IR 
Finite. So a recursive proof shows that any invariant 
observable of the regularized theory at (D = 2 - e) 
is IR finite at any order of perturbative expansion. 

This result holds independently of the regulariza- 
tion (for instance for the lattice theory). We do not 
deal with the problems of renormalization at D = 2 
(continuous limit) nor with the physics of such gen- 
eral models. The models defined on symmetric spaces 
are proved to be renormalizable and the counter- 
terms are 1R finite [10,11 ] so that renormalization 
preserves the IR finitness of invariant observables. 
These models include the CP N models, the grass- 
mannian models and the principal chiral fields. It 
seems very plausible that those IR cancellations are 
also present in the supersymmetric extensions of 
these o-models [12]. 

I would like to thank E. Br~zin for a critical read- 
ing of this manuscript. 
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