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Abstract: We investigate the interrelation between topology and Narain T-duality of het-

erotic flux vacua. We present evidence that all 5 and 4-dimensional Minkowski space heterotic

flux backgrounds with 8 supercharges have a locus in the moduli space with a T-dual descrip-

tion in terms of a compactification on the product of a K3 surface with a circle or a torus.

A test of this equivalence is provided by calculating the new supersymmetric index on both

sides of the duality. We examine the implications of these dualities for CHL-like orbifolds that

reduce the rank of the gauge group, as well as those that lead to minimal supersymmetry in 4

dimensions. We also discuss properties of flux vacua that preserve minimal supersymmetry in

4 dimensions that cannot be related to conventional compactifications by Narain T-duality.

Along the way we point out a number of properties of these vacua, including the role played

by non-trivial flat gerbes, the appearance of rational worldsheet CFTs in decompactification

limits, and the role of attractive K3 surfaces in backgrounds with minimal supersymmetry.

Finally, we discuss the dual pairs from the perspective of M-theory/heterotic duality.

ar
X

iv
:2

31
2.

08
92

3v
1 

 [
he

p-
th

] 
 1

4 
D

ec
 2

02
3

mailto:israel@lpthe.jussieu.fr
mailto:melnikix@jmu.edu
mailto:ruben.minasian@ipht.fr
mailto:yproto@lpthe.jussieu.fr


Contents

1 Introduction 1

1.1 An extended example 3

1.2 Non-abelian gauge sector 5

1.3 4-dimensional flux vacua 7

1.4 Organization 7

2 Elements of O(Γd,d+16) 8

2.1 Lattice set up 8

2.2 Vertex operators 10

2.3 Dualities and symmetries 10

3 A review of heterotic flux vacua 14

3.1 The topology of principal torus bundles 14

3.2 The geometry of heterotic flux vacua 16

3.3 The gauge bundle 18

3.4 The Bianchi identity and quantization of moduli 21

3.5 Quantization and rationality: 8 supercharges 24

4 Five-dimensional flux vacua 24

4.1 Trivial gauge bundle 25

4.2 Non-trivial gauge bundle 27

4.3 Orbifolds 28

5 N=2 flux vacua in 4 dimensions 30

5.1 Simply connected geometries 30

5.2 Non-trivial fundamental group 34

5.3 Orbifolds and supersymmetry reduction 35

5.4 Examples 39

5.5 Duality and the supersymmetric index 44

6 N=1 flux vacua in 4 dimensions 48

6.1 Quantization of the K3 periods 49

6.2 Obstructions to unwinding 50

7 Outlook 53

– i –



A Cocycle details 55

A.1 Form of the cocycle 55

A.2 Phases for generators of O(Γ1,17) 56

A.3 Phases for generators of O(Γ2,18) 58

A.4 Phases in the T-dual description 59

B Some details on the cohomology of X 60

1 Introduction

A generic string vacuum, when realized by some compactification geometry, is a flux vacuum

with non-zero background values for the field strengths of various p-form fields that appear

in the massless spectrum of a ten-dimensional string theory. Even in the presence of super-

symmetry the study of such generic configurations is challenging. For instance, it is typically

not easy to argue that a supergravity solution with fluxes extends to a solution of the string

equations of motion.

In this context the heterotic string is particularly appealing, since the fluxes in question

involve the heterotic 3-form H and the curvature of the gauge bundle, both of which can be

understood directly in the RNS heterotic worldsheet. Indeed, the possibility of heterotic flux

vacua was appreciated early on in the study of string compactification [1, 2], but the efforts

to overcome challenges in working with a non-Kähler target space in spacetime or a generic

(0,2) supersymmetric non-linear sigma model on the worldsheet have only met with partial

success in subsequent years.

Although we are far from understanding the stringy geometry that underlies a generic

heterotic flux vacuum, there is a particularly nice class of such vacua that preserve at least 4

supercharges on R1,3 [3–5]. The target space X is a holomorphic principal T 2 bundle over a

smooth K3 surfaceM . When the bundle is topologically non-trivial, X is a topologically non-

Kähler SU(3) structure manifold. TheH-flux measures the non-closure of the Hermitian form,

and its quantization requires X to have string scale cycles associated to the fiber directions.

The Ansatz for these geometries was initially motivated from a dual M-theory construc-

tion [6] and developed further by a number of authors, as discussed in [3], but is it required

by the heterotic string? Certainly not for for vacua preserving 4 supercharges: after all,

we know that there are supersymmetric string-perturbative heterotic compactifications on

generic Calabi–Yau manifolds. On the other hand, the preservation of 8 supercharges in

spacetime leads to strong constraints on the worldsheet superconformal theory [7]. These

constraints were applied to heterotic non-linear sigma models in [8, 9], where it was argued

that if a compactification has a geometric description and preserves 8 supercharges, then the

geometry should indeed be a principal T 2 bundle over a K3 surface, and the fibration must be

anti-self-dual. That is, the two curvature 2-forms that characterize the principal T 2 fibration
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must lie in H2
−(M,R). The analysis of [8, 9] missed one important point: it is possible to

obtain a smooth X as a principal T 2 fibration over a singular K3 surface M [10]. Given that

generalization, it is reasonable that these geometries exhaust the possibilities of heterotic flux

vacua with 8 supercharges.

Precisely for the class of flux geometries where M is smooth and the compactification to

4 dimensions preserves 8 supercharges there are gauged linear sigma models with low energy

limit believed to be the corresponding two-dimensional heterotic CFT [11]. When combined

with supersymmetric localization, this linear sigma model technology can be used to calculate

various protected quantities [12–15]. Thus, we can be reasonably confident that these flux

geometries are indeed vacua of the perturbative heterotic string, and we have tools to study

a number of their properties beyond the supergravity limit. This is a crucial point because

the flux geometries have string-scale cycles, and the supergravity analysis is at best a leading

term in a formal α′ expansion.

At first glance it appears that the heterotic flux vacua provide a significant generalization

of the classic compactification on the Kähler geometry X0 = M × T 2. This is certainly the

case from the point of view of heterotic supergravity: the geometries are topologically distinct,

and the flux vacua are topologically non-Kähler. In addition, while the vacua based on X0

have a large volume limit where supergravity is reliable and lifts to both 8 and 6 dimensions,

the same is not true of more generic X: these have string-scale cycles and appear to only

have a lift to 8 dimensions (at least when M is smooth), where the base of the fibration M

is taken to be large.

Nevertheless, over the years there have been a number of works suggesting that there

are relations between the Kähler and non-Kähler vacua. For example, in [16, 17] it was

argued via duality with M-theory compactification on K3×K3 that certain heterotic flux

backgrounds could have a dual description as a compactification on X0. It has also been

pointed out that heterotic T-duality on the torus fiber can relate flux compactifications to

Kähler compactifications [18–22].

In the present work we focus on heterotic flux vacua with an 8-dimensional lift. We point

out that in general X is not simply connected, and the non-trivial fundamental group allows

for more general choices of gauge bundle than usually considered. In particular, the bundle

can be topologically distinct from any gauge bundle pulled back from M , and this allows for

CHL-like constructions in flux compactifications. However, we also argue that a heterotic

flux vacuum will have a locus in the moduli space where the geometry can be T-dualized

to a Kähler space. So, while on one hand we enlarge this class of flux vacua, we also show

that all such compactifications can be reduced to the more familiar class. Of course as usual

in duality, certain features are much easier to understand in one frame than another. We

illustrate this point by mapping global symmetries of the worldsheet theory between the dual

descriptions and considering the corresponding orbifold theories.
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1.1 An extended example

Let us illustrate our main findings in an example—a class of 5 dimensional heterotic flux

compactifications.

Consider the (E8×E8) ⋊ Z2 heterotic string compactified to 9 dimensions on a circle

of radius r with a generic choice of Wilson line a valued in the Cartan subalgebra h ⊂
e8⊕ e8. The resulting 9-dimensional theory has gauge algebra u(1)⊕17, which we decompose

as u(1)phys⊕u(1)⊕16
gauge, where the first factor is associated to the vector multiplet coming from

the translation symmetry of the circle. The Narain moduli space is then given as a quotient

of a Grassmannian Gr(1, 17)/O(Γ1,17) where Γ1,17 is the even self-dual lattice embedded in

R1,17, with O(Γ1,17) the set of lattice isomorphisms, and we take the metric on R1,17 to be

η =

0 1 0

1 0 0

0 0 116

 . (1.1)

We now compactify the theory further on a smooth K3 surface M . The resulting theory

is equivalent to a compactification of the 10-dimensional theory on the 5-dimensional space

Xv, where v ∈ Γ1,17 ⊗ H2(M,Z) determines the topology of the space, and, from the 9-

dimensional perspective, the choice of instanton used to solve the 9-dimensional heterotic

Bianchi identity. When v has a non-zero component corresponding to u(1)phys, the ten-

dimensional interpretation of the vacuum is a 5-dimensional heterotic flux compactification.

On the other hand, when the u(1)phys component of v is zero, we obtain a 5 dimensional

heterotic compactification on a space that is topologically M × S1.

As a simple choice of compactification we considerXk,l = Xv0 labeled by two non-negative

integers k, l, where

v0 =

kωlω
0

 , (1.2)

and ω is a primitive anti-self-dual class in H2(M,Z). The heterotic Bianchi identity requires

kl(−ω.ω) = 24 , (1.3)

where we use . to denote the pairing on H2(M,Z). Recall that M is smooth if and only if it

does not contain an anti-self-dual −2 curve [23, 24]. Thus, to have a smoothM it is necessary

that ω satisfies ω.ω ≤ −4, and there are just a few compatible values of k and l.

Flux quantization leads to constraints on the Narain moduli:

r2 +
1

2
a · a =

l

k
, (1.4)
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where · denotes the standard Euclidean inner product on R16.1 For each choice of ω we then

obtain a set of compactifications Xk,l. Geometrically we will see that kω determines the

curvature of the circle bundle over M , while the second component in v0, lω, determines a

quantized component of the heterotic H-flux shifted by the gauge bundle curvature.

For a fixed choice of ω the Xk,l are related to each in a simple fashion. X1,kl is a simply-

connected manifold with a freely acting G = Zk symmetry, and the resulting quotient is

precisely Xk,l. We can modify the quotient by combining the Zk geometric action with an ad-

ditional symmetry action on the gauge sector, resulting in a free action G′. The quotient by G′

then leads to a modified CHL-like theory, which can also be interpreted as a compactification

on Xk,l with gauge bundle holonomy supported by the non-trivial π1(Xk,l) = Zk.

On the other hand, each Xk,l is a special case of Xv, and elements of O(Γ1,17) act on v in

the fundamental representation, i.e. g ∈ O(Γ1,17) is represented as an 18× 18 integer-valued

matrix satisfying

gtηg = η . (1.5)

The configurations Xv and Xgv are T-dual, and by choosing g appropriately, we can relate a

flux compactification to a compactification on M × S1. For example, given a configuration

X1,l, as above we can find g ∈ O(Γ1,17) such that

v1 = gv0 =

 0

ω

−κω

 , (1.6)

where κ is a lattice vector κ ∈ Γ8 + Γ8 obeying κ · κ = 2l.

The T-duality relates the circle moduli as follows. The compactification Xv0(r,a) is

T-dual to Xv(r
′,a′), with

r′ =
r

2l + a · κ
, a′ = − a+ κ

2l + a · κ
. (1.7)

The quantization condition (1.4) is mapped in the T-dual description to

a′ · κ = −1 . (1.8)

Thus, we traded the non-trivial fibration of a circle with its quantization condition for a

trivial fibration but a non-trivial abelian gauge bundle with a quantization condition on the

projection of the Wilson line along the abelian instanton.

The compactifications on Xv0 and Xv1 are isomorphic at the level of worldsheet CFT. De-

noting the corresponding CFTs by C[Xv0 ] and C[Xv1 ], and the isomorphism by T : C[Xv0 ] →
1As we will discuss in more detail below, this condition implies that the worldsheet CFT associated to the

circle degrees of freedom is rational. This structure also generalizes to 4 dimensional flux compactifications
based on T 2 principal bundles.
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C[Xv1 ], we can then map the action of any symmetry of one theory to the dual formulation.

More precisely, given a symmetry group G0 of C[Xv0 ] with elements g ∈ G0, we also have an

isomorphic action on C[Xv] by a group G with elements T gT −1. It follows that we also have

an isomorphism of orbifold CFTs:

C[Xv0 ]/G0 ≃ C[Xv]/G . (1.9)

As an example of a quotient action, we can consider G0 = Z2, with generator gchl, which we

can write as a product of two actions: gshift, which acts as the shift orbifold of S1, and gflip,

which exchanges the two e8 factors. The latter is a symmetry of C[Xv0 ] if the Wilson line

satisfies (
0 18

18 0

)
a = a. (1.10)

Just as in [25], the resulting CHL orbifold C[Xv0 ]/G0 has a straightforward geometric inter-

pretation: it is a compactification on X2,l with a holonomy turned on for the Z2 factor in the

(E8×E8)⋊Z2 gauge group of the heterotic string. By our arguments this heterotic flux CHL

vacuum has a T-dual description in terms of a CHL orbifold C[Xv]/G.

On one hand, the example shows that the heterotic flux vacua based on Xv0 and their

orbifolds do not add new components to the moduli space of 5–dimensional compactifications:

there is always an equivalent product geometry Xv ≃M×S1. However, as usual with duality,

there may be features that are simpler to understand in terms of the description based on

Xv0 . For instance, it is very easy to see in the Xv0 description that setting a = 0 results

in unbroken e8⊕ e8 gauge symmetry. This is less obvious in the dual description Xv with

r = 1
2
√
l
and a = − κ

2l . As another example, we can consider the equivalence between the two

CHL actions. As we just discussed, the action on Xv0 by gchl = gshiftgflip has a straightforward

geometric interpretation. Its T-dual is given by

g′chl = T gchlT −1 = (T gshiftT −1)(T gflipT −1) . (1.11)

We will see below that the dual action T gshiftT −1 does not have a simple geometric interpre-

tation.

1.2 Non-abelian gauge sector

Our example only involved a choice of abelian gauge background overM in the 9-dimensional

gauge group. More generally, we can consider a decomposition for each e8 factor into

(e8)1,2 ⊃ g1,2⊕C1,2 , (1.12)

where g1,2 is a semi-simple subalgebra and C1,2 is its commutant subalgebra. We can then turn

on irreducible Hermitian Yang-Mills (HYM) connections that fill out the g1,2 factors and at
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the same time take a generic Wilson line valued in the Cartan subalgebra of the commutants

h = h1⊕ h2. Supposing h to have rank r, the topology of the flux vacuum is then determined

by the instanton numbers k1 and k2 for the HYM connections, as well as the vector v of the

form

v =

ων
Λ

 , (1.13)

where Λ ∈ (Γ8 + Γ8) ⊗ H2(M,Z) is constrained to lie in the orthogonal complement to

Γg1 +Γg2 and describes the topology of an additional abelian instanton configuration. Given

such a flux vacuum, we can consider the orbit of the T-duality group GT ⊂ O(Γ1,17), where

GT is the subgroup that preserves the Γg1 + Γg2 sublattice.

Because the action of T-duality is now restricted, it is not necessarily the case that the

T-duality orbit of a heterotic flux vacuum contains a product geometryM×S1. For example,

setting k1 = k2 = 10 and choosing g1 = g2 = e8, we must take

v =

kωlω
0

 , (1.14)

with

kl(−ω.ω) = 4 . (1.15)

With a smooth K3 the only solution is ω.ω = −4, and k = l = 1. Since in this case GT must

preserve the zero entries in v, there is no product geometry in the T-duality orbit.

We can get a better perspective by considering the quantization of the moduli. Since the

Wilson line must also be valued in the commutant of the holonomy of the HYM connection

in this case a = 0, and thus the radius is fixed to its self-dual value: r2 = 1. Since the circle is

now at the self-dual radius, the 9–dimensional theory has an su(2)⊕ e8⊕ e8 gauge symmetry,

and the worldsheet theory for the 5-dimensional target space is better thought of as a fibered

WZW model, as described in [9]. From this perspective we recognize the compactification

as a 5-dimensional lift of a familiar 4-dimensional vacuum with 2 vector multiplets and 129

neutral hypermultiplets discussed in [26]. In this case there is no element in GT that can lead

to a dual product geometry, simply because a compactification on M × S1 will necessarily

have a u(1) spacetime gauge symmetry.

On the other hand, each e8 HYM connection has a moduli space of quaternionic dimension

30k− 248 = 52, and there is a locus in the moduli space where the connection is contained in

an su(2) subalgebra with instanton number 10. At this locus in the moduli space it is possible

to T-dualize the theory by using the map discussed above, leading to a dual configuration

with geometry M × S1 and a gauge instanton with holonomy SU(2) × SU(2) × SU(2), with
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the first factor carrying instanton number 4, and the latter each having instanton number 10.

1.3 4-dimensional flux vacua

While the 5-dimensional example is simple and already illustrates some of our main points,

compactification to 4 dimensions offers new possibilities. For example, there are quotients

C[Xv]/Γ that preserve exactly 4 supercharges in 4 dimensions. The simplest of these has a

geometric action that combines an Enriques involution on the base K3 M with a reflection

symmetry on the torus fiber. We will show that the T-dual geometry is in this case the

Enriques Calabi–Yau 3-fold equipped with an appropriate gauge bundle.2 We will also discuss

a class of such quotients based on a torsional linear sigma model [28], and show how the T-

duality can be understood as a relationship between torsional and conventional linear sigma

models.

As already observed in [3, 5], it is also possible to construct SU(3) structure heterotic

flux vacua as holomorphic T 2 principal bundles over M . These are considerably more subtle

to analyze, and their status as vacua of the perturbative heterotic string is on less solid

ground [29, 30], but, on the other hand, it is possible to think of them as compactifications

of the heterotic 8-dimensional theory, and therefore, to the extent that these vacua exist, we

can also consider the action of T-duality on the corresponding configurations. As expected,

their T-duality orbits cannot include a M × T 2 geometry. We explore these orbits and use

the description to characterize these compactifications. Our main finding is that the base K3

must have Picard number ≥ 18. Such surfaces are quite special, and there is a mathematical

conjecture [31], proven for Picard number 20 and 19 [32], that such K3 surfaces can be

classified through a generalization of the Shioda–Inose construction. Thus, although they

cannot be T-dualized to Kähler geometries, these N=1 heterotic flux vacua may well admit

a classification.

1.4 Organization

In the previous section we gave a sketch of some of the key results of our study. In what

follows we will expand upon this by providing the details and necessary background. Since

our analysis relies on T-duality in a Narain compactification, we will begin in section 2 with

an overview of our conventions for Γ1,17 and the relevant CFT structures, leaving a few

technical aspects to appendices. In section 3 we will review the geometry of heterotic flux

vacua, emphasizing the quantization conditions on the moduli. Sections 4 and 5 are devoted

to flux vacua that preserve 8 supercharges and their orbifolds: we describe the “unwinding

T-dualities” that relate flux vacua to compactifications onM×T 2 and follow the implications

these have for orbifold theories. At the end of section 5, we use linear sigma model technology

to give a non-trivial test of the unwinding isomorphisms. In section 6 we turn to the four-

dimensional flux vacua with SU(3) structure. We then conclude with an outlook, where we

2Unlike in [27], where this manifold first appeared in the context of string duality, here we consider it as
the target space for a heterotic compactification.

– 7 –



comment on type II and M-theory dual descriptions, as well as possible extensions to flux

vacua of [10].
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2 Elements of O(Γd,d+16)

We begin by setting up conventions for the heterotic Narain compactification to d dimensions.3

2.1 Lattice set up

Consider Rd,d+16 equipped with the Minkowski metric η given as above:

η =

 0 1d 0

1d 0 0

0 0 116

 . (2.1)

We denote the corresponding inner product by ·, so that v1 · v2 = vt1ηv2 for any two vectors

v1,2 ∈ Rd,d+16. Next we choose a fiducial embedding of the lattice4

Γd,d+16 = Γd,d + Γ8 + Γ8 ⊂ Rd,d+16 (2.2)

so that the lattice inner product is given by “·”. We denote the generators of Γd,d by eI and

e∗I , with I = 1, . . . , d. These are null vectors satisfying eI · e∗J = δJI . For each Γ8 ⊂ R8 we

choose the generators to be simple roots αi with inner product αi · αj normalized so that

roots have length squared 2, and we denote the two mutually orthogonal sets of roots by αi

and α′
i. We will sometimes abuse the notation and combine the simple roots into a single set

α1, . . . ,α16, with the first 8 corresponding to the first Γ8 factor, and the last 8 to the second

Γ8 factor. With that notation, every lattice point p ∈ Γd,d+16 is uniquely written as

p = wIeI + nIe
∗I +L , (2.3)

3This is a well-known story. A classic review is [33]. A recent overview can be found in introductory sections
of [34]. Our lattice conventions, apart from a signature change, largely follow [35] and [24].

4We choose this form for the lattice because our interest is in the E8 ×E8 heterotic string. The relationship
to Γd,d + Γ16 [36] is nicely reviewed as the “HE→HO” map in [34].
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where

L = ℓ+ ℓ′ =
∑

i ℓ
iαi +

∑
i ℓ

′iα′
i , (2.4)

and w, n, ℓi ℓ′i are integer coefficients. It will also be convenient for us to fix a Cartan–Killing

basis for R16 with orthonormal basis vectors va, a = 1, . . . , 16, with respect to which

L =
∑
a

ℓava . (2.5)

It follows that for any p ∈ Γd,d+16

p · p = 2nIw
I +L ·L ∈ 2Z . (2.6)

Specializing to d = 1, we denote the heterotic moduli as above by a pair (r,a), where

a ∈ R16 is the set of Wilson line parameters. A choice of (r,a) determines a point in the

Grassmannian Gr(1, 17) through the orthogonal basis for R1,17 consisting of vectors π̃ , π,

and π◦
a, a = 1, . . . , 16 written with respect to the fiducial basis as

π̃ = e−
(
r2 + 1

2a · a
)
e∗ − a ,

π = π̃ + 2r2e∗ ,

π◦
a = va + (va · a)e∗ . (2.7)

These have non-zero inner products

π̃ · π̃ = −2r2 , π · π = 2r2 , π◦
a · π◦

b = δab . (2.8)

More generally, we introduce the torus metric and B-field GIJ and BIJ , so that

π̃I = eI −
(
GIJ − BIJ + 1

2aI · aJ
)
e∗J − aI ,

πI = π̃I + 2GIJe
∗J ,

π◦
a = va + (va · aI)e∗I (2.9)

have non-zero inner products

π̃I · π̃J = −2GIJ , πI · πJ = 2GIJ , π◦
a · π◦

b = δab . (2.10)

The parametrization of the Narain moduli space is chosen to be consistent with the NLSM

conventions of [9], so that we can meaningfully relate this structure to the quantization

conditions on the moduli obtained in that work.
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2.2 Vertex operators

The heterotic worldsheet theory consists of the Narain CFT with d + 16 left-moving chiral

bosons XI
L(z), X a

L (z), and d right-moving chiral bosons XI
R(z). For a geometric description

we think of XI
L and XI

R as the holomorphic and antiholomorphic components of the compact

bosons describing the torus, while the X a
L can be thought of as representing the heterotic

worldsheet (Weyl) fermions.

In order to build the full heterotic string we should also include the right-moving fermion

ψI
R(z)—these are the superpartners of XI

R, as well as the Minkowski degrees of freedom for

R1,9−d and the bc–βγ ghost system. These degrees of freedom (and the accompanying right-

moving GSO projection) will play a spectator role in our discussion, so we will for the most

part focus on the Narain CFT.

At a generic point in the moduli space the Narain CFT has a u(1)⊕d+16
L ⊕ u(1)⊕d

R Kac–

Moody symmetry, and the primary operators with respect to this symmetry are the vertex

operators Vp labeled by lattice points in Γd,d+16. These have weights hL(p), hR(p) that depend

on the moduli. With our basis they are expressed as follows. First, the operator’s spin is

determined by p alone:

s(p) = hL(p)− hR(p) =
p · p
2

= nIw
I + 1

2L ·L . (2.11)

The right-moving weight is given by

hR(p) =
1

4
GIJ(π̃I · p)(π̃J · p) , π̃I · p = nI − (GIJ − BIJ + 1

2aI · aJ)w
J − aI ·L , (2.12)

where GIJ denotes the inverse torus metric. In the special case of d = 1 this reduces to

hR(p) =
1

4r2
(π̃ · p)2 = 1

4r2
(
n−

(
r2 + 1

2a · a
)
w− a ·L

)2
. (2.13)

2.3 Dualities and symmetries

Consider the action of a group G on the vertex operators Vp of the following form: for any

element g the action is

g ◦ Vp = U(g,p)Vφg(p) , (2.14)

where φg(p) is a lattice automorphism, and U(g,p) is a phase. Consistency with group

multiplication requires the phases and lattice isomorphisms to obey

U(g2, φg1(p))U(g1,p) = U(g2g1,p) , φg2(φg1(p)) = φg2g1(p) . (2.15)
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Thus, φ can be thought of as a map φ : G → O(Γ), and GΓ = O(Γ)/ kerφ is a subgroup of

the lattice automorphisms.5

In order to give a well-defined map of conformal field theories, the action should also be

compatible with the OPE. This requires φg to be a lattice automorphism, i.e. an invertible

linear map that preserves the inner product, and it also leads to constraints on the phases

U(g,p). When GΓ = 1, i.e. φg = id for all g ∈ G, the requirement is simply that U is a map

U : G → Hom(Γ,U(1)). More generally, the constraint on the U(g,p) is more subtle and

involves a choice of cocycle.6

Recall that when we represent the Narain vertex operators in terms of chiral bosons we

need to include additional zero mode operators to ensure that the operators obey the correct

commutation relations, and the algebra of these operators must satisfy additional require-

ments in order to have an associative OPE [38, 39]. This requires a choice of representative

ε for a class in the group cohomology H2(Γ,U(1)) that satisfies

ε(p2,p1) = eiπp1·p2ε(p1,p2) . (2.16)

We give an explicit formula for this representative in appendix A. In order to be consistent

with the OPE, the phase assignment U(g,p) must obey for all p1,p2 ∈ Γ

U(g,p1 + p2)

U(g,p1)U(g,p2)
=
ε(φg(p1), φg(p2))

ε(p1,p2)
. (2.17)

For a fixed g the ratio of any two solutions U and U ′ to this condition belongs to Hom(Γ,U(1)).

The action of g on the Narain CFT is not in general a symmetry because it acts on

the moduli. More precisely, we have seen above how to express the right-moving weight

hR(p) in terms of the parameters ζ ∈ Gr(d, d + 16). Making this dependence explicit by

writing hR(ζ;p), we then see that for any g we obtain a map on the parameter space µg :

Gr(d, d+ 16) → Gr(d, d+ 16) defined by demanding that for all p ∈ Γ

hR(µg(ζ);p) = φ∗
g(hR(ζ;p)) = hR(ζ;φg(p)) . (2.18)

It is not hard to see that µg defined this way is unique. An action g is then a symmetry of

the Narain CFT with moduli ζ if and only if µg(ζ) = ζ.

T-duality for Γ1,17

Having reviewed the general structure, we specialize to the case of heterotic string on a circle

and discuss the T-duality group O(Γ1,17). The group has the following generators [40], for

5To slightly lighten notation we abbreviate Γd,d+16 to Γ when we are making general statements and there
is not much potential for confusion.

6This is nicely reviewed in some detail in [37]. Our presentation here borrows from a slightly more com-
prehensive discussion in [35].
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each of which we provide the lattice automorphism as an action on

p = we+ ne∗ +L = we+ ne∗ +
∑

i ℓ
iαi +

∑
i ℓ

′iα′
i , (2.19)

a phase U(g,p), and the map of the moduli.7

1. The factorized duality transformation gi with

φgi(p) = ne+we∗ +L , U(gi,p) = eiπnw ,

µgi(r,a) =

(
r

r2 + 1
2a · a

,
−a

r2 + 1
2a · a

)
. (2.20)

2. The circle reflection gref with

φgref(p) = −we− ne∗ +L ; U(gr,p) = 1 ,

µgref(r,a) = (r,−a) . (2.21)

3. Wilson line shifts gs[κ] labeled by κ ∈ Γ8 + Γ8 with

φgs [κ](p) = we+
(
n + κ ·L− 1

2κ · κw
)
e∗ +L− κw . (2.22)

The phase here is a little more complicated and involves a choice of simple roots αI ,

I = 1, . . . , 16 for Γ8 + Γ8. We leave the details to the appendix and merely quote the

result in terms of the bilinear integer-valued map Sκ(L) defined therein:

U(gs[κ],p) = eiπ(w+1)Sκ(L) . (2.23)

The map on the moduli is just a shift of the Wilson line by the lattice vector:

µgs [κ](r,a) = (r,a− κ) . (2.24)

4. The final set of generators consists of rotations in Γ8 + Γ8. As we will not need the

detailed form for these actions, we relegate the general discussion to the appendix, and

here just mention one particular rotation: the exchange of the two Γ8 factors, which

acts by

φgflip(p) = we+ ne∗ +
∑

i ℓ
′iαi +

∑
i ℓ

iα′
i , U(gflip,p) = 1 ,

µgflip(r,a) = µgflip(r, a, a
′) = (r, a′, a) . (2.25)

All of these actions can be interpreted as redefinitions on the chiral bosons. For example, gi
corresponds to XR → −XR while keeping the other bosons fixed, while gref reflects both XL

7The details of the phase computations are given in appendix A.
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and XR. This has an important consequence for the heterotic conformal field theory, because

compatibility with worldsheet supersymmetry requires that the reflection of XR must be

accompanied by a reflection on its right-moving superpartner fermion. Notice, however, that

the action by gigref is simply in the left-moving sector, and so does not have this complication.

T-duality for Γ2,18

A description of the group O(Γ2,18) associated to the heterotic string on T 2 will also be useful

for studying T-duality orbits of four-dimensional compactifications. We leave the specifics of

the cocycle representatives and moduli transformation to the appendix A, and only list our

choice of generators along with their lattice action below.

1. Factorized dualities gi,I in the two circle directions with

φgi,1(p) = n1e1 +w2e2 +w1e∗1 + n2e
∗2 +L ,

φgi,2(p) = w1e1 + n2e2 + n1e
∗1 +w2e∗2 +L . (2.26)

2. Torus isometries gt[R] labelled by a SL(2,Z) matrix R with

φgt [R](p) = RI
Jw

JeI + (R−1)J InJe
∗I +L . (2.27)

3. Reflections gref,I in the two circle directions with

φgref,1(p) = −w1e1 +w2e2 − n1e
∗1 + n2e

∗2 +L ,

φgref,2(p) = w1e1 − w2e2 + n1e
∗1 − n2e

∗2 +L . (2.28)

4. B-field shifts gb[m] labelled by m ∈ Z with

φgb [m](p) = wIeI + (nI +mϵIJw
J)e∗I +L . (2.29)

5. Wilson line shifts gs[κI ] labelled by two lattice vectors8 κI ∈ Γ8 + Γ8 with

φgs [κI ](p) = wIeI + (nI + κI ·L− 1
2κI · κJw

J)e∗I +L− κIw
I . (2.30)

It will be useful to consider Wilson line shifts gs,I [κ] in a single circle direction, defined

by gs,1[κ] = gs[κ, 0] and gs,2[κ] = gs[0,κ].

6. Rotations in the gauge lattice gg[R] labelled by a matrix R ∈ O(Γ8 + Γ8) with

φgg [R](p) = wIeI + nIe
∗I +R(L) . (2.31)

8For the transformation gs[κ1,κ2] to belong to O(Γ2,18), the lattice vector should obey κ1 · κ2 ∈ 2Z.
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3 A review of heterotic flux vacua

3.1 The topology of principal torus bundles

In this section we review aspects of the topology of the 6-dimensional geometry X underlying

the heterotic flux vacua. While a significant portion of the discussion is a review of known

results, we give a more complete discussion of the topology of X and the quantization con-

ditions on the geometric parameters imposed by the presence of fluxes, both in the case of

backgrounds with 8 and 4 supercharges.

Let p : X → M be a T 2 principal bundle over a smooth K3 surface M . The topology

of the torus bundle is specified by two classes ωI ∈ H2(M,Z), I = 1, 2. Denote by TI the

Hermitian line bundles over M associated to the principal bundle with ωI = c1(TI). Recall

that H2(M,Z) is an even self-dual lattice Γ3,19, while H1(T
2,Z) = Z×Z. By fixing a basis for

each of these lattices, the specification of theωI amounts to choosing an integral 2×22 matrix,

and by bringing this matrix to Smith normal form we find that the ωI can be expressed as

ω1 = m1ω
1
p , ω2 = m1m2ω

2
p , (3.1)

wherem1, m2 are non-negative integers, while ω
I
p are linearly independent primitive elements

in Γ3,19. We can complete the latter to a basis for H2(M,Z):

H2(M,Z) = SpanZ{ω1
p,ω

2
p,χ1,χ2, . . . ,χp} (3.2)

which will be convenient for our analysis. We obtain special cases by setting m2 = 0 or

m1 = 0: the former corresponds to X = Y ×S1, where Y is a principal circle bundle over M ,

and the latter to the trivial fibration X =M × T 2.

The homotopy groups of X are determined by the long exact sequence of homotopy

groups for a fiber bundle [41, 42], combined with the Hurewicz theorem and the fact that M

is simply connected. The result is that for i ≥ 3 πi(X) = πi(M), while π2(X) and π1(X) fit

into the exact sequence

1 π2(X) H2(M,Z) H1(T
2,Z) π1(X) 1 .

f
(3.3)

The map f is given by integration of the two classesωI , or, using the isomorphismH2(M,Z) ≃
H2(M,Z), by intersection of cycles: for any class C ∈ H2(M,Z)

f(C) = ω1.Ct1 +ω
2.Ct2 , (3.4)

where tI are the generators of H1(T
2,Z) ≃ Z×Z. The non-trivial homotopy groups of X are

then

π1(X) ≃ H1(T
2,Z)/im(f) , π2(X) ≃ ker f . (3.5)
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By using (3.1) and (3.2), it is easy to see that

π1(X) = Zm1 × Zm1m2 . (3.6)

The integral cohomology of X is easy to determine by the Leray–Serre spectral sequence

because the base space is simply connected, and the fiber does not degenerate.9 We summarize

the results here and present the details in appendix B. Denoting for brevity H•(X,Z) by

H•(X), we find that for m1,m2 > 0

H0(X) = Z , H1(X) = 0 , H2(X) = Z20 × Zm1 × Zm1m2 ,

H3(X) = Z42 × Zm1 , H4(X) = Z20 × Zm1 , H5(X) = Zm1 × Zm1m2 ,

H6(X) = Z . (3.7)

When m2 = 0, then after factoring out a circle in X = Y × S1, we find for m1 > 0

H0(Y ) = Z , H1(Y ) = 0 , H2(Y ) = Z21 × Zm1 ,

H3(Y ) = Z21 , H4(Y ) = Zm1 , H5(Y ) = Z . (3.8)

In either case it is not hard to check that these results are consistent with the universal

coefficients theorem and Poincaré duality.

When both circles are non-trivially fibered there are two independent torsion subgroups:

those in H2(X) and H3(X). The former is isomorphic to π1(X), while the latter characterizes

flat abelian gerbes over X. We have the important result that the universal cover ν : X̃ → X

is itself a T 2 principal bundle over the same base [42]. The same result holds for Y when

m2 = 0: its universal cover Ỹ is an S1 principal bundle over M . In either situation the

cohomology is torsion-free whenever the space is simply connected.

We end this topological review with a description of line bundles over X withm1,m2 > 0.

A line bundle L → X is topologically characterized by its first Chern class c1(L) ∈ H2(X).

As we show in the appendix,

H2(X) = H2(M)/SpanZ{ω1,ω2} , (3.9)

which shows that every line bundle over X is topologically equivalent to a pullback bundle

p∗(L) where L → M is a line bundle over M , and two such pulled-back bundles p∗(L1) and

p∗(L2) are isomorphic if and only if there exist integers kI such that L1 ≃ L2⊗T ⊗k1
1 ⊗T ⊗k2

2 .

In particular, each TI pulls back to a trivial bundle, and it will be useful for us to demonstrate

this explicitly.

Fix a good cover U for M consisting of open sets Ua with Uab denoting non-trivial double

intersections. Then the line bundles TI have transition functions τ Iab, and if we denote by θI

9Equivalently we could also apply the Gysin spectral sequence in two steps, as discussed in [3], for example.
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the local fiber coordinates, then on each Uab these satisfy

ei(θ
I
a−θIb ) = p∗(τ Iab) . (3.10)

Expressed in terms of the Čech coboundary operator δ, we have δθI = −i log p∗(τ I), so that

the torus coordinates provide the trivialization of the transition functions. If we denote by

AI connections the TI bundles, then

δ p∗(AI) = id log p∗(τ I) = −dδθ , (3.11)

so that

ΘI = dθI + p∗AI (3.12)

are 1-forms on X. These nowhere vanishing 1-forms are dual to the two global commuting

vector fields ∂
∂θI

, and the curvature F I = dAI measures their non-closure:

dΘI = p∗(F I) . (3.13)

The classesωI are identified with [F I/2π] ∈ H2(M,R) under the natural inclusionH2(M,Z) ↪→
H2(M,R).

More generally, if (λ,A) denote the transition functions and compatible connection for a

line bundle L→ X, with δA = id log λ, then for any integer kI there is gauge-equivalent data

(λ,A) ∼ (λeikIδθ
I
,A− kIdθ

I) . (3.14)

These large gauge transformations are the geometric origin of the Wilson line shifts of Narain

T-duality that we will study below.

3.2 The geometry of heterotic flux vacua

We now turn to the geometric structure underlying a heterotic flux vacuum based on the torus

bundle p : X → M . We will first describe the generic fibration where the ωI are linearly

independent and hence both circles are non-trivially fibered.

Fix a hyper-Kähler structure on M with Kähler form J and holomorphic (2,0) form Ω.

The complex structure on X is then determined by writing a holomorphic (1,0) form

Θ = Θ1 + τΘ2 , (3.15)

where we introduced τ = τ1 + iτ2—a complex constant valued in the upper half-plane, and

we take the (3,0) form on X to be proportional to Θ ∧Ω. The SU(3) structure on X is then
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given in terms of a smooth real function ϕ onM—this is the heterotic dilaton—and the forms

JX = e2ϕJ + i
α′ρ2
2τ2

Θ ∧Θ , ΩX = e2ϕ
√
α′ρ2
τ2

Ω ∧Θ . (3.16)

Here we also introduced ρ2—a positive parameter that determines the volume of the T 2 fiber,

as well as an explicit factor of the string tension α′.10

In order to satisfy the differential conditions for minimal supersymmetry, the complex

structure on M must be constrained so that dΘ has no (0,2) component. To describe this

more concretely, let

F = F 1 + τF 2 , (3.17)

and now decompose this complex 2-form by type:

F = F + F ′ + F ′′ , F ∈ A(1,1)(M) , F ′ ∈ A(2,0)(M) , F ′′ ∈ A(0,2)(M) . (3.18)

Here we denote by Ap,q(M) the space of (p, q) forms on M . Supersymmetry then requires

F ′′ = 0, or, equivalently,

J ∧ F = 0 , Ω ∧ F = 0 . (3.19)

The complex conjugate 2-form F = F 1 + τF 2 has (1, 1) and (0, 2) components, which we

denote, respectively, by F and F
′
. When F ′′ = 0, we can write these various forms explicitly

in terms of the components of the F I :

F = (F 1)1,1 + τ(F 2)1,1 , F ′ = (τ − τ)(F 2)2,0 ,

F = (F 1)1,1 + τ(F 2)1,1 , F
′
= (τ − τ)(F 2)0,2 . (3.20)

We used F ′′ = (F 1)0,2 + τ(F 2)0,2 = 0 to eliminate the (F 1)0,2 and (F 1)2,0 components.

Although (3.19) superficially resembles zero-slope HYM conditions, it should be borne in

mind that because F is a complex 2-form, the equations are of a very different character from

HYM when F ′ ̸= 0 and are not in any obvious sense a deformation of the HYM conditions.

The heterotic H-flux is also fixed by supersymmetry:

H = i(∂̄ − ∂)JX = iJ ∧ (∂̄ − ∂)e2ϕ +
α′ρ2
2τ2

[
(F

′ − F ) ∧Θ+ (F ′ − F ) ∧Θ
]

= Hh +Hv,I ∧ΘI , (3.21)

10The explicit appearance of α′ signals an important subtlety in the construction: whenever the torus
fibration is non-trivial, there will be string-scale cycles, so that the supersymmetry conditions and equations of
motion must be treated formally as a power-series in α′. A discussion of this expansion and its consequences
for solutions can be found in [30].
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where the “horizontal” and “vertical” components of H are

Hh = iJ ∧ (∂̄ − ∂)e2ϕ ,

Hv,I = α′GIJ

(
(F I)2,0 + (F I)0,2 − (F I)1,1

)
, (3.22)

and GIJ is the metric on the torus

G =
ρ2
τ2

(
1 τ1
τ1 |τ |2

)
. (3.23)

3.3 The gauge bundle

To complete the specification of the heterotic background we need to describe the gauge

bundle, which we will choose as follows. Let P → M be a principal E8×E8 bundle with

a connection A and structure group GP ⊆ E8×E8. Denote the associated adjoint bundle

Ad(P). The pullback bundle p∗(P) → X then has the connection Ah = p∗(A) and transition

functions that only depend on the base coordinates. We will consider a more general family

of connections on p∗(P) of the form

AX = Ah + aIΘ
I , (3.24)

where the aI are sections of p∗(Ad(P)). Such a connection has curvature

FX = Fh + aIF
I + (DhaI) ∧ΘI + 1

2 [aI , aJ ]Θ
I ∧ΘJ , (3.25)

where Dh is the pullback of the covariant derivative on the vector bundle Ad(P) with con-

nection A. Supersymmetry requires AX to be a zero-slope HYM connection, i.e.

JX ∧ JX ∧ FX = 0 , ΩX ∧ FX = 0 , ΩX ∧ FX = 0 . (3.26)

The geometry—in particular (3.19)—implies that these conditions hold if and only if

[aI , aJ ] = 0 , DhaI = 0 , J ∧ Fh = 0 , Ω ∧ Fh = 0 , Ω ∧ (Fh + aIF
I) = 0 . (3.27)

Just as in our discussion of line bundles on X, p∗(P) may admit large gauge transformations

that are not pulled back from M . Namely, let κI ∈ A0,0(M, e8⊕ e8) be two covariantly

constant and commuting sections such that exp[2πκI ] = id ∈ E8×E8.
11 Then, if gab denote

the transition functions of p∗(P) relative to the cover U described above, so that the connection

transforms according to

AX,a = gabAX,bg
−1
ab + gabdg

−1
ab , (3.28)

11In order for such sections to exist it must be that GP is strictly contained in E8 ×E8.
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then we have a large gauge transformation

(g,AX) → (fgf−1,AX + fdf−1) , (3.29)

where f = eκIθ
I
. In terms of our horizontal–vertical decomposition we then obtain the gauge

transformation

Ah + aIΘ
I → (2Ah − fAhf

−1 + κIA
I) + (aI − κI)Θ

I . (3.30)

With that preparation we can finally state our assumptions on AX : we will restrict attention

to AX that are gauge-equivalent to a configuration where the horizontal component Ah is

given by the pullback p∗(A) of a HYM connection from the base. This leads to a delineation

of solutions into two classes.

1. The complexified torus curvature F has no (2, 0) component. In this case the conditions

in (3.27) imply that the connection A is HYM, and the geometry preserves 8 super-

charges. The aI then encode the Wilson line parameters, and after a suitable gauge

fixing their expectation values correspond to scalar moduli in the vector multiplets of

the effective four-dimensional theory.

2. F has a non-zero (2, 0) component. In this case (3.27) can be solved by taking A
to be HYM and setting aI = 0, or by taking a large gauge transformation of that

configuration. Having fixed such a connection AX , supersymmetry prevents continuous

deformations AX → AX + aIΘ
I .

Having discussed the general structure of the gauge bundle, we will now restrict the structure

group GP to be a subgroup of the Cartan torus TE ⊂ E8×E8. This will allow us to avoid

many technical and expository complications, but at least in the case of theories with 8

supercharges it also captures the essential physics of interest to us, because it should be

possible to reach more general configurations by moving in the moduli space.

We do not have a general proof of the last claim, but we believe the following example

offers a persuasive picture. Suppose we compactify the heterotic string on M , and we choose

an irreducible HYM connection with gauge group E8×E8 and instanton number 12 in each

E8 factor. The moduli space of the instantons includes reducible connections, and we can go

to a degeneration locus where the connection is non-zero just in an su(2) ⊕ su(2) ⊂ e8⊕ e8
subalgebra, with instanton number 12 for each su(2) factor. An su(2) connection can in turn

become reducible, where the su(2)–valued curvature takes the form

Fsu(2) =

(
0 Fu(1)

−Fu(1) 0

)
. (3.31)

If M is at a generic point in its moduli space, then the resulting connection must necessarily

be singular, and supergravity may not be a good guide to the physics. But, if on the other
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hand we tuneM to a special point in the moduli space where the abelian curvature Fu(1)/2π is

not only HYM but also an integral class, then we can obtain a perfectly smooth supergravity

description of the reducible connection. It would be interesting to make this example rigorous,

generalize it to other gauge configurations, and then relate it to earlier studies of K3 with

abelian gauge sector such as [43–46].

The situation in the case of configurations with 4 supercharges is more subtle since a

superpotential may obstruct the deformations. Nevertheless, we will for the most part confine

our discussion to line bundle configurations even in that case.

We now describe the abelian gauge bundle. Let TE = R16/(Γ8+Γ8) be the Cartan torus

of E8×E8, and fix k linearly independent lattice vectors in σs ∈ Γ8 + Γ8. Such a choice

determines a homomorphism Zk → TE and therefore an embedding of a torus T k ↪→ TE :

(ϕ1, . . . , ϕk) → ϕsσs . (3.32)

We then set the connection to be

A = Asσs , (3.33)

where As is a HYM connection on the U(1) bundle over M corresponding to the fiber co-

ordinate ϕs. Denote by Λs the corresponding first Chern class, so that the image of Λs in

H2(M,R) coincides with [Fs/2π]. The lattice vector

Λ = Λsσs ∈ (Γ8 + Γ8)⊗Z H
2(M,Z) (3.34)

determines the topology of this abelian E8×E8 principal bundle P → M . In fact the iso-

morphism class of a E8×E8 bundle P →M is specified by the Pontryagin classes of the two

simple factors.12 To express these it is convenient to expand A and Λ in a basis of simple

roots for Γ8 + Γ8:

Λ = Λ1 +Λ2 , Λ1 =
8∑

i=1

Λi
1αi , Λ2 =

16∑
i=9

Λi
2αi , (3.35)

The isomorphism class of the corresponding E8×E8 → M bundle is determined by the two

Pontryagin classes:

p1(P1) =
8∑

i,j=1

Λi
1 ∪Λ

j
1αi ·αj , p1(P2) =

16∑
i,j=9

Λi
2 ∪Λ

j
2αi ·αj , (3.36)

and the Pontryagin class of P is given by the sum of these classes.

Similarly, we expand the Wilson line parameters as aI = aiIαi, so that the full connection

12See, for example, the appendix of [47] for a proof.
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is expressed as

AX =
∑16

i=1

(
Ai + aiIΘ

I
)
αi . (3.37)

Large gauge transformations are generated by lattice vectors κI ∈ Γ8 +Γ8, giving an equiva-

lence

(A,aI) ∼ (A+ κIA
I ,aI − κI) . (3.38)

We note that this formulation automatically ensures that the bundle satisfies the global

anomaly constraint familiar from heterotic string Calabi–Yau compactification based on a

Hermitian vector bundle E , which is required to satisfy c1(E) = 0 mod 2 [48, 49]. This is

really nothing other than the requirement that the connection can be lifted to a connection

on a principal E8×E8 bundle, and this is ensured by picking the σs to be lattice vectors.

3.4 The Bianchi identity and quantization of moduli

The data described above satisfies the supersymmetry conditions for any choice of dilaton

profile ϕ over the baseM . The dilaton profile is determined, up to a constant that we identify

with the string coupling, by solving the Bianchi identity, which in our background reduces to

a scalar equation on M :

dHh + d
(
Hv,I ∧ΘI

)
=
α′

4

[
trR2

+ − trF2
X

]
+O(α′2) . (3.39)

Here R+ is the curvature of the H-twisted connection S+ on the tangent bundle with tr taken

in the fundamental representation of so(6), while the trace for the gauge curvature is defined

to be in the fundamental of so(16) ⊕ so(16) ⊂ e8⊕ e8. The resulting PDE for ϕ is quite

non-trivial, since, for example, it depends implicitly on a choice of Ricci-flat metric on M . In

some cases existence and uniqueness of solution can be demonstrated—such results go back

to [4]—but, as discussed in [30], these results should be considered in the α′ expansion. One

consequence of that treatment is that the (2,0) component of the curvature F , i.e. F ′, must

be ∂̄-closed and therefore must be a constant multiple of the holomorphic (2,0) form Ω. As a

result, (F I)1,1 and (F I)2,0 are separately closed, and dHv,I = 0. Since (3.19) implies that the

(F I)1,1 curvature components are anti-self-dual (ASD) with respect to the Ricci-flat metric

on M , the Bianchi identity can be rewritten in terms of the Hodge star ∗ on M—constructed

using the hyper Kähler metric—as

α′GIJ(∗F I) ∧ F J =
α′

4

[
trR2

+ − trF2
X

]
+O(α′2) . (3.40)

A crucial aspect of the heterotic compactification is that the H-flux has a specific form
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in terms of the B-field and the Chern–Simons forms for the connections AX and S+:

H = dB − α′

4
CS3(AX) +

α′

4
CS3(S+) . (3.41)

We take the B-field to have the following decomposition into vertical and horizontal terms:

B = p∗(Bh) + p∗(Bv,I) ∧ΘI + 1
2α

′bϵIJΘ
I ∧ΘJ . (3.42)

The parameter b must be a constant to be consistent with the form of H required by su-

persymmetry. We set ρ1 = b and introduce the parameter ρ = ρ1 + iρ2 valued in the upper

half-plane, which corresponds to the torus Kähler modulus. Plugging the expansion of B into

H and comparing to the constraint from supersymmetry, we can obtain explicit expressions

for dBv,I and Bh.

So far the construction has introduced a number of geometric ingredients with continuous

deformation parameters. In particular, we have:

1. a choice of hyper-Kähler metric on M , accompanied by a shift of Bh by a form in

H2(M,R);

2. the constant shift of the dilaton, which determines the string coupling;

3. the parameters associated with the T 2 fiber, i.e. the choice of torus metric G, the torus

B-field b, and the Wilson line parameters aI .

A telltale feature of a flux vacuum is that the integrality conditions on the choice of flux

constrain the deformations to lie in a sub-locus of the naive parameter space of supergravity

solutions. This holds in the vacua at hand as well [9], which can be seen by showing that the

1-forms

B′
v,I = Bv,I +

α′

4
tr{aIA} (3.43)

transform as connections on two line bundles under a combination of gauge and gerbe trans-

formations, and with 1
2πα′dB′

v,I having integral periods . Plugging the explicit form of B into

H and using (3.22), we find that the closed 2-form

1

2πα′

{
α′GIJ(− ∗ F J)− α′bϵIJF

J − α′

4
tr{aIaJ}F J − α′

2
tr{aIF}

}
(3.44)

must also have integral periods, or, equivalently its cohomology class must be the image of

an integral class under the inclusion H2(M,Z) → H2(M,R). We will denote that integral

class by νI and abuse notation by identifying νI with its image in H2(M,R). With similar

abuse for the classes ωI = [F I/2π], as well as Λ, we have

νI = GIJ(− ∗ωJ) +

(
1

2
aI · aJ − bϵIJ

)
ωJ + aI ·Λ . (3.45)
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From this we immediately see that the parameters associated to the torus fiber must obey

stringent quantization conditions. We will explore these in more detail below.

Coming back to the Bianchi identity and making a horizontal/vertical expansion while

dropping O(α′2) terms, we find the topological requirement

−νI ∪ωI = −1

2
p1(TM ) +

1

2
p1(P) . (3.46)

Since H4(M,Z) = Z we lose no topological information by simply integrating both sides to

get a single integral condition. We can follow [18] to make this structure O(Γd,d+16)–covariant

by noting that the topological and quantization conditions are encoded via the vector

v =

ων
Λ

 ∈ Γd,d+16 ⊗Z H
2(M,Z) . (3.47)

Denote by • the tensor inner product inherited from the “·” inner product on Γ and the “.”

inner product on H2(M,Z). The topological Bianchi identity then takes the form

−1

2
v • v = 24 , (3.48)

while v, the torus parameters, and the K3 metric are further constrained by the quantization

conditions (3.45) . In particular, for a fixed choice of v that satisfies the topological Bianchi

identity there may not exist continuous parameters that satisfy (3.45) .

Before we leave the general discussion, we should make a comment on the existence of

smooth solutions and string-scale cycles. The latter are a necessary result of the quantization

of the torus moduli. On the other hand, the volume of the K3 base M can be taken to

be arbitrarily large, meaning that the background has a lift to 8 dimensions. This is a key

point, since it allows us to use 8-dimensional intuition to discuss properties of the solution.

For example that perspective will largely motivate our T-duality discussion. We note that

for a class of backgrounds that admit a gauged linear sigma model description the T-duality

transformations can be lifted to (0, 2) dualizations à la Buscher that do not receive corrections

from worldsheet instantons [22], so at least for this class of vacua there is good reason to believe

that the T-dualities indeed relate isomorphic heterotic worldsheet theories. We will assume

that the same holds for all of the heterotic flux vacua we describe, whether or not there is a

linear sigma model realization.

Because we require M to support a number of abelian HYM connections, there are non-

trivial constraints on the geometry of M , and we might worry that these constraints force M

to be singular. Recall that a volume 1 hyper-Kähler metric on M is singular if and only if

there is a zero-size −2–curve, i.e. a class C ∈ H2(M,Z) with C.C = −2 that is annihilated

by J and Ω: equivalently, C is ASD. Thus, a necessary condition for a smooth geometry is

that Λi.Λi ≤ −4 for each i , and, similarly, ωI .ωI ≤ −4 for I = 1, 2.
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3.5 Quantization and rationality: 8 supercharges

For backgrounds that preserve 8 supercharges the quantization conditions take a particularly

simple form because ∗ωI = −ωI . Using that in (3.45) and comparing to (2.9) , we find

that (3.45) reduces to

π̃I · v = 0 . (3.49)

This has an important consequence for the decompactification limit of the theory to 8 dimen-

sions: the 8–dimensional theory is a heterotic compactification on T 2 with parameters chosen

so that there exist non-zero lattice vectors p ∈ Γ2,18 with hR(p) = 0: thus, the SCFT has an

enhanced chiral algebra of holomorphic higher spin currents.

For example, if we set aI = 0 the complexified Kähler parameter ρ and the complex

structure τ should obey, following from (3.49), the pair of equations in H2(M,Z):

0 =τ2ν1 − ρ2ω
1 + (ρ1τ2 − τ1ρ2)ω

2 , (3.50a)

0 =− τ1ν1 + ν2 − ρ1ω
1 − (ρ1τ1 + ρ2τ2)ω

2 . (3.50b)

Whenever the classes ωI ∈ H2(M,Z) are linearly independent, these equations can be solved

for νI ∈ H2(M,Z) if and only if τ1, ρ1, τ
2
2 , ρ

2
2 and ρ2/τ2 are valued in Q. It implies that

τ should solve a quadratic equation aτ2 + bτ + c = 0 with integer coefficients a, b, c and

discriminant D = b2 − 4ac < 0; in other words τ should belong to the imaginary quadratic

number field Q[
√
D]. Due to the condition ρ2/τ2 ∈ Q, ρ ∈ Q[

√
D] as well. These are precisely

the conditions under which the bosonic CFT associated to T 2 is rational [50]. The lattices of

purely left- and right-moving momenta have maximal rank two and the spectrum decomposes

into a finite number of primary fields with respect to the extended chiral algebra.13

Even when aI ̸= 0 (3.49) implies that the T 2 CFT has an infinite set of operators

with purely left-moving momentum whenever ωI ̸= 0. Thus, while the anti-holomorphic

sector of the CFT may not have an enhanced chiral algebra, the holomorphic sector remains

highly constrained. The significance of this condition is not clear to us, nor is it clear what

implications it has for the full cL = 15, cR = 9 SCFT describing the compactification to

4 dimensions: for example, the vertex operators of the T 2 theory that generate the higher

spin currents must presumably be dressed by fields from the base geometry in order to yield

well-defined fields, and it is not clear how the dressing will affect the dimensions of the full

operator.

4 Five-dimensional flux vacua

In this section we specialize the general framework to the case where one circle is trivially

fibered. Taking the decompactification limit we then obtain a 5–dimensional geometry Y →
13It was observed some time ago in [22] that T-duality covariance of the flux geometries implies such

rationality, but here we see it directly from the quantization conditions.
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M—a circle bundle determined by a single ASD class ω ∈ H2(M,Z). The quantization

conditions reduce to

ν =
(
r2 + 1

2a · a
)
ω+ a ·Λ ∈ H2(M,Z) , (4.1)

which is equivalent to π̃ · v = 0.

Expanding the classes in terms of the special basis introduced in (3.2) as

ω = kωp , Λi =M i
pωp +M iαχα , ν = lωp +Nαχα (4.2)

leads to the quantization conditions

k
(
r2 + 1

2a · a
)
+M i

p(αi · a) = l , (αi · a)M iα = Nα . (4.3)

Let us denote the corresponding worldsheet CFT by Cv(r,a).

4.1 Trivial gauge bundle

There are examples of flux compactifications with p1(TY ) = 0, where the gauge bundle can

be taken to be trivial:

v =

ων
0

 , (4.4)

and the quantization conditions are

ω = kωp , ν = lωp , k
(
r2 + 1

2a · a
)
= l , kl(−ωp.ωp) = 24 . (4.5)

Since −ωp.ωp ≥ 4, there is a finite number of solutions to the Bianchi identity, and for each

of them the combination of moduli r2 + 1
2a · a is quantized. By making the volume of M

large, we see that the theory has a 9-dimensional decompactification limit to a heterotic string

compactified on a circle. We can perform a T-duality in the 9–dimensional theory, and the

vector v transforms in the fundamental representation of O(Γ1,17) [18]. For example, using

the generators defined in section 2, we have the factorized duality

giv = gi

kωp

lωp

0

 =

 lωp

kωp

0

 . (4.6)

The moduli are transformed as

µgi(r,a) =

(
kr

l
,−ka

l

)
. (4.7)
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When interpreted in terms of the 5-dimensional geometry this in general leads to a topology

change. For example, the original background has π1(Y ) = Zk, while the dual one has

fundamental group Zl. Of course the corresponding CFTs are isomorphic:

Cgiv
(
µ−1
gi

(r,a)
)
≃ Cv (r,a) . (4.8)

Whenever k > 1, the non-simply connected background Y can be constructed as a freely-

acting Zk orbifold of a simply-connected background Y with k = 1. We will discuss the

structure of the orbifolds in more detail in the following section, but for now let us focus on

the case of a simply connected geometry with topology specified by the vector

v =

ωp

lωp

0

 (4.9)

and quantization condition r2 + 1
2a · a = l.

Consider now the action

gigs[κ]v =

−1
2κ · κ 1 κ·
1 0 0

−κ 0 116


ωp

lωp

0

 =

(l − 1
2κ · κ)ωp

ωp

−κωp

 = v′ . (4.10)

If it is possible to find κ ∈ Γ8+Γ8 so that κ ·κ = 2l, then we obtain an isomorphism of CFTs

Cv(r,a) ≃ Cv′(r′,a′) , (4.11)

with (r′,a′) = µ−1
gi

(µgs [κ]
−1(r,a)) ,

v′ =

 0

ωp

−κωp

 , r′ =
r

2l + a · κ
, a′ = − a+ κ

2l + a · κ
. (4.12)

We conclude that Narain T-duality can unwind the circle fibration.

It is perhaps not obvious that we can always find a κ satisfying κ ·κ = 2l. This is possible

because the Bianchi identity and smoothness of M restrict l ≤ 6, and it is not hard to see

that by choosing κ to lie in an Γa3 sublattice we can generate all l ≤ 13.14

The quantization conditions on the parameters of Cv′ is a′ ·Λ′ = ωp, and this is indeed

satisfied because a′ · κ = −1. On the other hand, r′ is now unconstrained, and there is a

decompactification limit to 6 dimensions. Inverting the map, we obtain

r =
r′

r′2 + 1
2a

′ · a′
, a = −κ− a′

r′2 + 1
2a

′ · a′
, (4.13)

14We can also obtain all l ≤ 6 by taking κ ∈ Γa1 + Γa1 + Γa2 or κ ∈ Γa1 + Γa1 + Γa1 + Γa1 .
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so we see that r′ → ∞ corresponds in the original parameters to taking r → 0 and a → −κ.

We can also see that r′ → 0 sends r → 0, but now a → −κ− 2a′/(a′ · a′).

4.2 Non-trivial gauge bundle

A simple example of a non-trivial bundle is given by

Λ1 = Λ1α1 , Λ2 = Λ2α9 , (4.14)

in which case

Λ1 •Λ1 = 2Λ1.Λ1 , Λ2 •Λ2 = 2Λ2.Λ2 , (4.15)

and the Bianchi identity for a simply–connected Y is

−lωp.ωp −Λ1.Λ1 −Λ2.Λ2 = 24 . (4.16)

Smoothness of M now puts even stronger constraints on l. For example, if both Λ1 and Λ2

are non-zero, then each contributes at least +4 to the left-hand-side of the Bianchi identity,

meaning l ≤ 4.

We can now again attempt to T-dualize Cv to a product geometry. Starting with

v =

ωp

lωp

Λ

 , (4.17)

we find

v′ = gigs[κ]v =

(l − 1
2κ · κ)ωp + κ ·Λ

ωp

Λ− κωp

 . (4.18)

If we can choose κ such that κ ·Λ = 0 and κ · κ = 2l, then the underlying geometry of Cv′
will be a straight product. Clearly for this configuration there is no problem in finding such

a κ because Λ only has non-zero entries in two of the simple roots of Γ8 + Γ8.

This simple “unwinding” duality generalizes to many other gauge configurations, involv-

ing both abelian and non-abelian factors. Moreover, it is quite plausible that a smooth

5-dimensional heterotic flux compactification with any other choice of gauge bundle can be

deformed to this configuration by moving in the moduli space of connections with fixed p1(P1)

and p1(P2), while keeping the heterotic string weakly coupled. If this is the case then every

five-dimensional heterotic flux vacuum is equivalent to a compactification on M × S1.
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4.3 Orbifolds

So far we restricted attention to the simply connected 5-dimensional geometries. Their non-

simply connected relatives are obtained as freely-acting orbifolds, and, as is familiar in ge-

ometry and topology, in taking the quotient we can introduce new non-trivial structures.

For instance, given a covering Ỹ → Y , we know that Y can support flat but topologically

non-trivial circle bundles classified by a choice of torsion class in H2(M,Z), or, equivalently,
a class in Hom(π1(Y ),U(1)). In this section we will describe such quotients in the context of

5–dimensional flux compactifications and their “unwound” duals with geometry M × S1.

For simplicity we will work with a trivial gauge bundle, but the results can be generalized

in a straightforward (but somewhat cumbersome) fashion. In this situation the topology of

the simply connected Y1 is specified by the vector

v1 =

 ωp

l1ωp

0

 , (4.19)

and the Bianchi identity constrains

l1 =
24

−ωp.ωp
. (4.20)

Y1 has a continuous freely-acting U(1) isometry that shifts the fiber coordinate θ → θ + α.

Consider a Zk subgroup of this isometry group generated by α = 2π/k. To describe the

quotient geometry Y = Y1/Zk we can work with an invariant fiber coordinate θ′ = kθ, with

identification θ′ ∼ θ′ + 2π. On overlaps for the circle bundle these satisfy eiθ
′
a = (τab)

keiθ
′
b ,

showing that the fibration p : Y → M is determined by the first Chern class kωp, i.e. one

that is k times larger than that of our original simply connected space p̃ : Y1 → M . The

metric and connection on Y can be expressed in terms of the torus parameters r1 and a1
associated to the Y0 compactification as

r =
r1
k
, a =

a1
k
. (4.21)

While the geometry would allow a quotient for any k, the flux quantization conditions require

k to divide ν = l1ωp. Setting l = l1/k, we then obtain the theory Cv = Cv1/Zk, with

v =

kωp

lωp

0

 . (4.22)

It is instructive to consider this orbifold in the 9-dimensional decompactification limit. There

we see that we are performing a shift orbifold by group Gshift ≃ Zk, with generator gshift,
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which acts on the vertex operators Vp by

gshift ◦ Vp = e2πin/kVp . (4.23)

The orbifold theory has a quantum symmetry Ggerbe with generator ggerbe that acts as:15

ggerbe ◦ Vp = e2πiw/kVp , (4.24)

leading to the CFT equivalence Cv/Ggerbe ≃ Cv1 .
But, we argued above that Cv1 is T-dual to Cv′ with v′ = gigs[κ]v1, with κ chosen so that

κ · κ = 2l1. Thus, on the “unwound” side we can find a T-dual symmetry group G′
shift, with

generator

g′shift = T gshiftT −1 , (4.25)

where T = gigs[κ]. Using the phase factors described in section 2, we find

g′shift ◦ Vp = U(gshift, φT −1(p))Vp = e2πiw/ke−2πiκ·L/kVp . (4.26)

This is also a shift orbifold, but now without a simple geometric interpretation since it acts

on the winding modes of the string: the action is ggerbe accompanied by an additional shift

on the gauge degrees of freedom. The bottom line is that once we know how to relate a

simply connected heterotic flux geometry and corresponding CFT Cv1 to a compactification

on M × S1, we can also obtain a dual description of the more general Cv CFT by taking an

orbifold Cv′/G′
shift, but the latter quotient does not have a geometric interpretation.

As another example of an orbifold action that preserves spacetime supersymmetry, we

suppose that l1 is divisible by 2, so that Cv1 has an order 2 shift symmetry. The quotient

geometry will then have π1(Y ) = Z2, which is just right to turn on a Z2 holonomy for the

principal (E8×E8)⋊Z2 bundle and thereby reduce the rank of the spacetime gauge group to

8. We can implement this by taking a CHL orbifold of Cv1 by combining the shift symmetry

with the gflip action on the bundle given in (2.25). In order for this to be a symmetry of Cv1 ,
we must choose the Wilson lines symmetrically, i.e.

a =

8∑
i=1

ai (αi +αi+8) . (4.27)

We take the CHL action to be generated by

gchl = gshiftgflip , (4.28)

and the resulting quotient Cv1/Gchl will lead to a 5–dimensional compactification with gauge

15Our name for this symmetry follows [35], since in a higher-dimensional setting such an action can be
interpreted as turning on a flat non-trivial gerbe for the B-field along the lines discussed in [51].
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group of rank 8.

There is a T-dual “unwound” theory Cv′1 obtained by using a vector κ that is invariant

under the flip φgflip(κ) = κ and satisfying κ · κ = 2l1. We can find such a vector because l1
is even, so that κ can be expressed in the same form as the symmetric Wilson line above.

In the T-dual “unwound” geometry Cv′1 we can again find the corresponding dual group

G′
chl, with generator g′chl = T gchlT −1. We can show that T commutes with gflip whenever κ

is invariant, so that

g′chl ◦ Vp = gflipg
′
shift ◦ Vp = e2πiw/ke−2πiκ·L/kVφgflip

(p) . (4.29)

So, we find a dual description of a CHL orbifold of a flux vacuum as a CHL–like orbifold of

a compactification on M × S1, but once again the orbifold does not have a simple geometric

interpretation because the shift acts non-trivially on the winding sectors.

5 N=2 flux vacua in 4 dimensions

We now turn our attention to 4-dimensional heterotic compactifications preserving 8 super-

charges. Consider the 8-dimensional theory obtained by compactifying the E8×E8 heterotic

theory on a torus T 2. The parameters associated to this theory include the T 2 complex

structure and (complexified) Kähler moduli τ and ρ, valued in the upper half-plane, as well

as two continuous Wilson line parameters aI . The 4-dimensional theory is constructed by

compactifying again on a K3 surface M while solving the 8-dimensional heterotic Bianchi

identity with a choice of ASD classes on M : two classes ωI ∈ H2(M,Z) identified with the

(1, 1) primitive curvatures of the T 2 bundle, and a lattice vector Λ ∈ (Γ8 + Γ8)⊗H2(M,Z)
which encodes the topology of the gauge bundle.

5.1 Simply connected geometries

The quantization conditions (3.49) are most easily understood for backgrounds with Wilson

line parameters satisfying aI ·Λ = 0. Consider a simply-connected space Xv built using two

primitive elements ωI
p in the lattice H2(M,Z). The classes νI are then required to be integral

combinations of the ωI
p, and the vector v takes the following form:

v =


ω1

p

ω2
p

l11ω
1
p + l12ω

2
p

l21ω
1
p + l22ω

2
p

Λ

 , (5.1)

with lIJ ∈ Z. The quantization conditions can be expressed in terms of those four integers as

ρ = l∗11τ − l∗12 , ρτ = l∗21τ − l∗22 , (5.2)
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where we introduced l∗IJ = lIJ − 1
2aI ·aJ . For these equations to admit solutions in the upper

half-plane, the l∗IJ must satisfy

l∗11 > 0 , l∗22 > 0 , (l∗12 + l∗21)
2 < 4l∗11l

∗
22 . (5.3)

Similar (although less constraining) inequalities hold for the integers lIJ . The topological

Bianchi identity reads

−lIJωI
p.ω

J
p − 1

2Λ •Λ = 24 . (5.4)

Notice that the combination l21 − l12 disappears from the Bianchi identity, as it encodes the

Θ1 ∧Θ2 component of the B-field b = 1
2(l

∗
21 − l∗12).

We observe that the Bianchi identity admits a limited number of solutions, extending

the findings already obtained for five-dimensional vacua. Consider for example two classes

ωI
p of equal self-intersection −ωI

p.ω
I
p = 2k, with k ≥ 2 a requisite bound for anti-self-duality

and smoothness. The requirement of a smooth K3 base M imposes that the two classes can

intersect at most at 2(k−1) points, i.e. |ω1
p.ω

2
p| ≤ 2(k−1).16 Taking into account the bound

on l12 + l21 coming from the quantization conditions, we arrive at the inequality

−lIJωI
p.ω

J
p > 2k(l11 + l22)− 4(k − 1)

√
l11l22

> 2(l11 + l22) + 2(k − 1)(
√
l11 −

√
l22)

2

> 2(l11 + l22) , (5.5)

resulting in a finite set of permissible values for l11 and l22. In the case of a trivial gauge

bundle, we obtain l11, l22 ≤ 10, while turning on a non-trivial Λ further restricts the range

of admissible values. Similar bounds can be derived in cases where ω1
p and ω2

p have different

self-intersection, resulting in a limited set of distinct topologies.

The above configurations can be T-dualized to the trivial product M × T 2 by the action

of a O(Γ2,18) transformation of the form

T = gigs,1[κ1]gs,2[κ2]gb[m] . (5.6)

Here gi = gi,1gi,2 represents a product of factorized dualities in the two circle directions, κI are

two lattice vectors taken such that κI ·Λ = 0, and m is an integer parametrizing the B-field

shift. This T-duality transformation generalizes to O(Γ2,18) the “unwinding” transformation

16This condition emerges from the necessity for the ASD classes ω1
p +ω

2
p and ω1

p −ω2
p not to be −2 curves,

leading to |ω1
p.ω

2
p| ≤ 1

2
(−ω1

p.ω
1
p −ω2

p.ω
2
p)− 2.
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introduced in section 4. The T-dual configuration is described by the vector

v′ = T v =


(l11 − 1

2κ1 · κ1)ω
1
p + (l12 +m− κ1 · κ2)ω

2
p

(l21 −m)ω1
p + (l22 − 1

2κ2 · κ2)ω
2
p

ω1
p

ω2
p

Λ− κ1ω
1
p − κ2ω

2
p

 . (5.7)

We can choose κI and m such that

κ1 · κ1 = 2l11 , κ2 · κ2 = 2l22 , κ1 · κ2 = l12 + l21 , m = l21 , (5.8)

yielding an equivalent description of the compactification as a direct product M × T 2, with

torus and Wilson line parameters given by (τ ′, ρ′,a′1,a
′
2) = µ−1

T (τ, ρ,a1,a2).

Quantization of Wilson lines

The unwinding duality gives an isomorphism between the theories defined by v and v′ = T v:

Cv′(τ ′, ρ′,a′1,a′2) ≃ Cv(τ, ρ,a1,a2) , (5.9)

and the moduli of the two CFTs are related by (τ ′, ρ′,a′1,a
′
2) = µ−1

T (τ, ρ,a1,a2). Consider

the configuration defined by v in (5.1). Let us for now set the parameters a1 and a2 to zero.

In the absence of Wilson lines, the T 2 parameters of Cv are fixed by flux quantization to the

values

τ =
l(12) + i

√
l11l22 − l2(12)

l11
, ρ = l(12) − l12 + i

√
l11l22 − l2(12) , (5.10)

where lIJ are the integers that appear in the expansion of νI in a basis of primitive classes,

and we have introduced the symmetrized quantity l(12) =
1
2(l12 + l21). The torus parameters

of the T-dual theory Cv′ can be obtained using the map µT , and we find

τ ′ =
−l(12) + i

√
l11l22 − l2(12)

l22
, ρ′ =

i

4
√
l11l22 − l2(12)

. (5.11)

By construction, this T-dual theory is flux-free and describes a M × T 2 compactification. As

a trade-off, the space Xv′ is endowed with a new abelian instanton configuration

Λ′ = Λ− κ1ω
1
p − κ2ω

2
p , (5.12)
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with two line bundles over the curves that used to characterize the torus fibration. In addition,

the duality has produced non-trivial Wilson lines in both circle directions:

a′1 =
−l22κ1 + l(12)κ2

2(l11l22 − l2(12))
, a′2 =

l(12)κ1 − l11κ2

2(l11l22 − l2(12))
. (5.13)

Notice that the parameters a′1 and a′2 satisfy

a′1 ·Λ′ = ω1
p , a′2 ·Λ′ = ω2

p . (5.14)

These are nothing but the quantization conditions (3.45) for the T-dual configuration: turning

on an abelian curvature for the two u(1) factors defined by κ1 and κ2 forbids any continuous

Wilson line degree of freedom in the same direction. This condition can be understood

in the four-dimensional effective theory as a Higgsing mechanism: turning on an abelian

instanton removes a full vector multiplet from the theory, and the complex scalar of this

multiplet corresponds to the Wilson line modulus in the associated u(1) factor. From the

point of view of the six-dimensional compactification, we know that turning on a Wilson line

leads to a contribution to the vertical component of H from the Chern–Simons term, but

since spacetime supersymmetry requires this component to vanish, it must be canceled by a

suitable contribution from the vertical component of the B-field. The results of [9] show that

this can only be done for suitably quantized Wilson line parameters. It should be possible

(and very possibly enlightening) to understand this quantization directly from the topological

quantization conditions of the heterotic gerbe, as well as from the worldsheet theory.

In the Xv′ ≃ M × T 2 geometry the classes ν′I encode the integrality conditions on the

Wilson lines, and they could be shifted to zero by an extra T-duality. Using two additional

lattice vectors κ′
1, κ

′
2 that satisfy κ′

I ·κJ = δIJ and κ′
I ·Λ = 0, we can obtain the configuration

v′′ = gs,1[κ
′
1]gs,2[κ

′
2]v

′ =


0

0

0

0

Λ− κ1ω
1
p − κ2ω

2
p

 . (5.15)

This additional T-duality does not affect the abelian instanton configuration. However, the

Wilson line parameters get shifted to the values

a′′1 =
−l22κ1 + l(12)κ2

2(l11l22 − l2(12))
+ κ′

1 , a′′2 =
l(12)κ1 − l11κ2

2(l11l22 − l2(12))
+ κ′

2 , (5.16)

and become orthogonal to Λ′′.
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5.2 Non-trivial fundamental group

Although we have not considered non-simply connected geometries in the above discussion,

every such configuration can be obtained as a quotient of a simply connected configuration

by some freely-acting isometries. Let X0 be a simply connected geometry defined by two

primitive classes ωI
0. In general, the classes ν0,I associated to the vertical H-flux components

are not primitive elements of H2(M,Z). For every pair of integers (k1, k2) such that ν0,I/kI
belongs to H2(M,Z), there exists a Zk1×Zk2 quotient of X0 compatible with the quantization

conditions. Indeed, the space X0 admits a freely acting group Gshift ≃ Zk1 × Zk2 generated

by the two isometries gshift,1 and gshift,2, where gshift,I acts by a translation of 2π/kI in

the I-th circle direction. The quotient space X = X0/Gshift is characterized by integral

classes ωI = kIω
I
p and νI = ν0,I/kI . This new configuration has a fundamental group

π1(X) ≃ Zk1 × Zk2 . Its torus and Wilson line parameters are related to the moduli of the

simply connected theory as

τ =
k1τ0
k2

, ρ =
ρ0
k1k2

, a1 =
a0,1
k1

, a2 =
a0,2
k2

. (5.17)

Just as in our discussion of five-dimensional compactifications, the Gshift orbifold action gives

an isomorphic G′
shift = T GshiftT −1 action in the unwound T-dual description. The two Gshift

generators act on vertex operators with a phase U(gshift,I ,p) = e2iπnI/kI , and on the T-dual

side this phase becomes

g′shift,I ◦ Vp = e2πiw
I/kIe−2πiκI ·L/kIVp . (5.18)

Although the quotient theory in the original description can be understood as a compacti-

fication on a non-simply connected space X, this is not the case anymore in the unwound

description: the G′
shift T-dual action does not have a simple geometric interpretation in terms

of a quotient of X ′
0 ≃M × T 2.

The possibility of CHL-like orbifolds, introduced in section 4, extends to four-dimensional

compactification. The above Gshift action can be combined with an action in the gauge sector.

From the point of view of the quotient geometry, the gauge action is understood as turning

on a Zk1 × Zk2 holonomy for the gauge bundle, supported on the non-trivial fundamental

group. This leads to CHL-like theories with a possibly reduced gauge group rank. A new

feature of the six-dimensional geometries, compared to their five-dimensional counterparts, is

the possibility of turning on a flat gerbe in the quotient geometry. As described in section 3,

a generic flux configuration has a fundamental group π1(X) ≃ Zm1 × Zm1m2 with m1 > 0,

where the two integers are obtained by fixing a basis in Smith normal form for the torus Chern

classes. The space X can support non-trivial flat gerbes, since their topology is classified by

the torsion subgroup of H3(X,Z), which evaluates to{
H3(X,Z)

}
tors

= Zm1 . (5.19)
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Passing to the simply-connected cover X0 of X, any such flat gerbe on X has an equivalent

description in terms of a Zm1 × Zm1m2-equivariant gerbe on X0 [35]. Notice that the group

cohomology group H2(Zm1 × Zm1m2 ,U(1)), characterizing orbifold Zm1 × Zm1m2 actions on

B-fields [52], is given by

H2 (π1(X),U(1)) = Zm1 . (5.20)

This motivates the interpretation of flat gerbes on X = X0/π1(X) as encoding the possibility

of discrete torsion in the orbifold of the simply-connected theory [53, 54].

5.3 Orbifolds and supersymmetry reduction

The orbifold construction described above leads to large families of topologically distinct flux

compactifications, with different flat structures and possibly reduced gauge group rank. By

construction, the orbifolds always act freely on the space X0, leading to smooth quotient

configurations. Any such quotient geometry X is a principal T 2 bundle fibered over a K3

surface, albeit with different topological data than the one of X0—this is consistent with

the result of [42]. Consequently, the orbifold compactifications preserve 8 supercharges in

spacetime. As we will now discuss, the six-dimensional geometries also admit orbifolds that

preserve only 4 supercharges.

Consider the by now familiar six-dimensional space Xv → M , with the corresponding

CFT denoted by Cv(τ, ρ,a1,a2). As described in [55], this six-dimensional space can be used

to construct orbifold geometries that partially break supersymmetry. Indeed, some spaces Xv

admit a cyclic group G of isometries such thatXv/G preserves exactly four supercharges. This

class of geometries is obtained by tuning the surface M to a specific locus in the K3 moduli

space where it admits a non-symplectic group action, and then extending this non-symplectic

action to the total space. The quotient N=1 geometries Xv/G are generically singular and,

X being non-Kähler, little is known about the existence of a smooth supergravity solution

upon resolution. A partial answer has been recently discussed in [56], where the existence of

conformally balanced metrics is shown for crepant resolutions of non-Kähler orbifolds with

isolated singularities. The belief that X/G could lead to a smooth SU(3) structure heterotic

background after resolution of its singularities is also supported by the existence of a torsional

linear sigma model framework for the N=1 quotients [28].

Orbifold construction

Let us describe the orbifold construction in more detail. In general, the quotient of X by the

discrete isometry group G will break the hyper-Kähler symmetry of the K3 base M , while

still preserving the SU(3) structure on X—this is the assumption of minimal supersymmetry.

We can construct such N=1 orbifolds by lifting the G-action on M to an action on the torus

bundle X, subject to some requirements on the T 2 fibration. On the base, G must act as a

non-symplectic automorphism of the K3 surface M , which is a Kähler isometry of M with

a non-trivial action on H2,0(M). The non-symplectic group GM ⊂ Aut(M) of a K3 surface
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is finite and cyclic [57, 58]. For our purposes, it will be sufficient to consider K3 surfaces M

with a non-symplectic group of order two or three, but for now we can allow for the general

case GM ≃ Zk. The cyclic group GM is generated by an isometry σ : M →M such that

σk = idM , σ∗J = J , σ∗Ω = ζkΩ , (5.21)

where ζk = e2πi/k denotes a k-th primitive root of unity. Given such a non-symplectic

automorphism of order k, the lift of the GM = ⟨σ⟩ isometries of M to G = ⟨σ̂⟩ isometries

of the total space X is provided by specifying a Zk action on the T 2 fiber. In order to

preserve the holomorphic (3,0) form on X, the lift σ̂ should act by the phase σ̂∗Θ = ζ̄kΘ on

the holomorphic (1,0) form. This constrains the Zk action on the T 2 fiber to be a rotation,

which restricts the order of the orbifold group to k ∈ {2, 3, 4, 6}. In addition, the T 2 complex

structure parameter τ is fixed, up to a SL(2,Z) redefinition, to the value τ = ζ3 for k ∈ {3, 6}
or τ = ζ4 for k = 4. The resulting torus cyclic isometry can be represented by the SL(2,Z)
action σ̂ : θI → RI

Jθ
J , where R satisfies

Rk = 12 , RtGR = G . (5.22)

Of course, defining this G-action locally is not sufficient: the isometry should be compatible

with the fibration structure of X.

Consider the cover U = {Ua}a∈I of M introduced in section 3, taken such that Zk acts

on the indexing set I as σ(Ua) = Uσ(a).
17 Recall that the T 2 principal bundle X is defined by

local trivializations ψa : Ua × T 2 → π−1(Ua), with transition functions ψab = ψ−1
a ψb given

by

ψab : Ub × T 2 → Ua × T 2

(p, eiθ
I
b ) 7→ (p, eiθ

I
a) = (p, τ Iab(p)e

iθIb )
. (5.23)

The bundle isomorphism σ̂ is specified by the local action σ̂a = ψ−1
σ(a)σ̂ψa of the form

σ̂a : Ua × T 2 → Uσ(a) × T 2

(p, eiθ
I
a) 7→ (p′, eiθ

′I
a ) = (σ(p), eiR

I
Jθ

J
a )

. (5.24)

On all non-empty double overlaps Uab, consistency of this local action with the patching

requires σ̂aψab = ψσ(a)σ(b)σ̂b, which translates to the condition

σ∗τ Iσ(a)σ(b) =
∏
J

(τJab)
RI

J (5.25)

on transition functions. Whenever this conditions is satisfied, the connection 1-forms AI on

the line bundles TI can be consistently taken such that σ∗AI
σ(a) = RI

JA
J
a . The corresponding

17If U does not satisfy this property, one can consider the refined cover ∩g∈Gg(U). We refer to [59] for more
details on invariant open covers of G-spaces.
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Chern classes satisfy

σ∗ωI = RI
Jω

J . (5.26)

This implies that the nowhere vanishing 1-forms ΘI transform as σ̂∗ΘI = RI
JΘ

J under the

lift, and the resulting symmetry of X preserves its SU(3) structure.

The G-action on M should also lift to an action on the gauge bundle. Generically, the

orbifold acts non-trivially in the gauge sector.18 We choose the lift to act as a global O(Γ8+Γ8)

order k action ϕsσs → R(ϕsσs) on the fiber coordinates. Following the same reasoning as

that for the T 2 lift, we require the Chern class Λ of abelian instantons to satisfy

σ∗Λ = R(Λ) . (5.27)

In the presence of Wilson lines, the above condition should extend to the component aIω
I of

the gauge curvature. This requires the pair of Wilson line parameters (a1,a2) to belong to the

sublattice of (Γ8 + Γ8)
2 defined by R(aI) = RJ

IaJ . From the quantization conditions (3.45)

we then easily see that the 2-forms νI obey σ∗νI = (R−1)J IνJ .

We can summarize the above conditions as follows. The lift of the G-action on the T 2

and gauge bundles is represented by the Zk ⊂ O(Γ2,18) subgroup generated by

gk = gt[R]gg[R] =

R 0 0

0 R−t 0

0 0 R

 . (5.28)

Let Xv → M be a six-dimensional heterotic flux geometry, fibered over a K3 base equipped

with a non-symplectic automorphism σ. This non-symplectic symmetry of M lifts to a su-

persymmetric action on Xv if the vector v ∈ Γ1,17 ⊗H2(M,Z) satisfies

σ∗v = gkv , (5.29)

and the T 2 and Wilson line parameters obey (τ, ρ,a1,a2) = µgk(τ, ρ,a1,a2).

The N=1 quotient geometries Xv/G obtained by this orbifold construction are generi-

cally singular. Indeed, the SL(2,Z) rotation of the torus fiber leaves a number of points of

T 2 invariant. The quotient geometry will thus inherit the same number of singularities based

at each point of M that is fixed by σ. Requiring that σ acts freely is too restrictive: any

non-symplectic automorphism of order k ≥ 3 has a non-empty fixed locus, whose topological

structure is constrained by both the topological Lefschetz fixed point formula and the holo-

morphic Lefschetz formula (see, for example [60]). This singles out k = 2, as freely-acting K3

18A non-trivial action on the E8 ×E8 bundle is required in the linear sigma model construction of [28].
Indeed, the left-moving fermions associated to the gauge sector should couple to the (0, 2) vector multiplets
in order to cancel some of the gauge anomalies. The orbifold has a non-trivial action on vector multiplets by
construction, so there has to be a corresponding action on charged gauge fermions. This should also hold in
the non-linear sigma model.
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non-symplectic automorphisms of order two exist—they are nothing but Enriques involutions.

For k ≥ 3 the quotients Xv/G unavoidably contain a singular locus, although the situation

with k = 3 is much simpler since there exist Z3 non-symplectic actions on K3 with only three

isolated fixed points.

As a last general remark, note that any non-symplectic automorphism σ of M naturally

provides an isometry of the second integral cohomology H2(M,Z) ≃ Γ3,19 given by the

pullback σ∗. The curves left invariant by σ∗ form the sublattice Γinv ⊂ H2(M,Z). Since

the (2,0) holomorphic form transforms non-trivially, Γinv has to be contained in the Picard

lattice of M . We denote by (Γinv)
⊥ its orthogonal complement in Γ3,19. Remarkably, the

topology of the fixed locus of M uniquely determines both Γinv and (Γinv)
⊥ as well as the

action of σ∗ on the two sublattices (the details of these actions can be found in [57, 60]). The

vector v specifying the bundle Xv can thus be constructed from the explicit decomposition

of Γinv + (Γinv)
⊥ ⊂ H2(M,Z).

T-dual configurations and their quotients

Consider the condition σ∗v = gkv required to lift the non-symplectic action on M to a

G ≃ Zk orbifold of Xv → M . For every O(Γ2,18) element T , the vector v′ = T v describes

an isomorphic compactification Xv′ → M . This T-dual configuration admits a G′ ≃ Zk

symmetry acting on the base M by the non-symplectic automorphism σ, and on the T 2 and

gauge bundle by the O(Γ2,18) action

g′k = T gkT −1 . (5.30)

This action is consistent with the fibration structure of the T-dual configuration Xv′ , since

the vector v′ obeys σ∗v′ = g′kv
′.

Generically, g′k does not belong to O(Γ2,2) × O(Γ8 + Γ8), and the T-dual action is non-

geometric. Specifically, for the “unwinding” T-duality T = T [κ1,κ2,m] introduced in (5.6),

we can read off the dual O(Γ2,18) action

g′k = T [κ1,κ2,m]T [κ′
1,κ

′
2,m]−1gt[R′]gg[R] , (5.31)

where R′ = R−t and κ′
I = (R−1)J IR(κJ). For a generic choice of the lattice vectors

parametrizing T , the T-dual G′ action mixes the T 2 and gauge degrees of freedom. However,

if the κI are such that R(κI) = RJ
IκJ , we are led to the much simpler T-dual action

g′k = gt[R′]gg[R] . (5.32)

This form of g′k now has the exact same geometric interpretation as gk: a SL(2,Z) isometry

of the torus by R′ = R−t accompanied by a global rotation R in the gauge sector. However,

recall that the G action on vertex operators also involves a phase U(gk,p). In the T-dual

description, the symmetry groupG′ acts with a different phase U(g′k,p).
19 It might be that the

19Details on the computation of this U(g′k,p) are spelled out in appendix A.4.
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resulting G′ action does not have a simple geometric interpretation but involves, for example,

an action on winding modes, similarly to what we found for CHL quotients in section 4.

5.4 Examples

We now examine some examples of quotient geometries that preserve 4 supercharges.

Smooth Z2 quotients

Let us first focus on Z2 orbifolds. The construction starts from a K3 base M tuned to the

Enriques locus. The Enriques involution σ2 acts freely onM , and the holomorphic (2, 0) form

transforms as σ∗2Ω = −Ω. We can lift the Enriques involution to a G ≃ Z2 action on the

configuration Xv →M using the O(Γ2,18) element20

g2 = gref gflip . (5.33)

In other words, the action on X combines the Enriques involution on the base with a reflection

on both T 2 coordinates and an exchange gflip = gg[Rflip] of the two E8 factors of the gauge

bundle. As explained above, this Z2 lift is compatible with the fibration structure of Xv if

the vector v satisfies the condition (5.29). Here this condition amounts to σ∗2v = gref gflipv.

We can solve this requirement in the following way. Recall the Enriques action on the second

integral cohomology of M :

Γinv = (2Γ1,1) + (2Γ8) , (Γinv)
⊥ = Γ1,1 + (2Γ1,1) + (2Γ8) , (5.34)

where the two sublattices correspond to even and odd classes under the pullback by σ2.

The condition on v constrains ωI and νI to belong to (Γinv)
⊥, while Λ should split as

Λ = Λ(+) +Λ(−) where the two factors Λ(+) and Λ(−) are respectively elements of Γinv and

(Γinv)
⊥ and satisfy Rflip(Λ(±)) = ±Λ(±). The action of µg2 on the moduli

µg2(τ, ρ,a1,a2) = (τ, ρ,−Rflip(a1),−Rflip(a2)) , (5.35)

constrains the Wilson line parameters aI ∈ Γ8 + Γ8 to be antisymmetric under the exchange

of their two Γ8 components.

We can of course consider Z2-symmetric configurations Xv that are T-dual to direct

product geometries Xv′ ≃ M × T 2, using the O(Γ2,18) element T defined in (5.6). In order

for the T-dual configuration to admit a geometric Z2 quotient g′2, the transformation T must

be parametrized by lattice vectors κI such that Rflip(κI) = −κI . This condition is easily

satisfied for most configurations, and the T-duality leads to a trivial product configuration

with

Λ′ = Λ− κ1ω
1 − κ2ω

2 . (5.36)

20In the above orbifold set up, the reflection gref corresponds to the SL(2,Z) action gref = gt[−12].
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We see that the T-duality introduces abelian instantons in configurations that are antisym-

metric with respect to the exchange of the two E8 factors. However, this antisymmetry is

compensated by the non-trivial transformation of the classes ωI under the Enriques involu-

tion, resulting in σ∗2Λ
′ = Rflip(Λ

′). The T-dual theory corresponds, after orbifolding, to a

compactification on the Enriques Calabi–Yau manifold (M×T 2)/Z2, endowed with an abelian

gauge bundle with non-trivial holonomy turned on for the Z2 factor of (E8×E8)⋊ Z2.

When viewed from the 8-dimensional perspective, this example may at first appear to be

slightly puzzling, since it appears that we are able to put the 8-dimensional theory on a non-

spin manifold—the Enriques surface—while preserving supersymmetry. This is reminiscent

of the six-dimensional IIB orientifold compactification recently discussed in [61], and the

resolution to the seeming puzzle is similar in spirit: the 8–dimensional gravitinos are charged

under a lift of the Z2 reflection symmetry inherited from the torus, and by turning on a

non-trivial holonomy for this symmetry supported by the fundamental group of the Enriques

surface, we obtain well-defined gravitinos and preserve four supercharges in four dimensions.

Singular Z3 orbifolds

We now turn our attention to Z3 N=1 orbifolds. The construction requires a K3 surface M

admitting a non-symplectic automorphism of order three, with only three isolated fixed points.

An example of such K3 manifold is obtained by taking M to be a double cover of a del Pezzo

surface dP6 of degree six, branched over a curve of genus seven. Such a construction yields a

K3 surface, as can be checked from the Euler characteristic χ(M) = 2χ(dP6)−(2−2×7) = 24.

The surface dP6 can be represented as a complete intersection of tridegree (1, 1, 1) in a

projective ambient space P1 ×P1 ×P1. Denoting the projective coordinates of the a-th P1 by

ya = [ya0 : ya1 ] and by x the homogeneous coordinate describing the branched cover, the K3

surface M admits the algebraic description

p1(y
1, y2, y3) = 0 , x2 = p2(y

1, y2, y3) , (5.37)

where p1 and p2 are polynomials of respective degree (1, 1, 1) and (2, 2, 2) in the P1 homo-

geneous coordinates. The polynomials can be tuned to the symmetric locus p1(y
2, y3, y1) =

p1(y
1, y2, y3) and p2(y

2, y3, y1) = ζ3p2(y
1, y2, y3) while keeping the hypersurface M smooth.

On this locus, the Kähler isometry of the projective space

σ3 · [x : y10 : y11 : y20 : y21 : y30 : y31] = [ζ23x : y20 : y21 : y30 : y31 : y10 : y11] (5.38)

descends to M , providing a non-symplectic automorphism of order three, with σ∗3Ω = ζ3Ω.

The three isolated fixed points of σ3 are located at y1 = y2 = y3 and x = 0. This example is

the one introduced in [28], and is amenable to a torsional linear sigma model description of

the orbifold.
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We lift the action of σ3 to the T 2 bundle by the SL(2,Z) action

R =

(
−1 1

−1 0

)
. (5.39)

Note that this T 2 rotation leaves the three points (θ1, θ2) = (0, 0), (2π3 ,
4π
3 ), (4π3 ,

2π
3 ) invariant.

The quotient space X/G will consequently inherit nine isolated C3/Z3 singularities.

The Z3 action on the gauge bundle should also be specified. In contrast to the Z2 outer

automorphism of E8×E8, there is no canonical choice of Z3 action on E8×E8, so we need to

fix an embedding Z3 ⊂ O(Γ8 + Γ8). A convenient choice in the following will be to pick two

roots β1 and β2 of Γ8 + Γ8 at an angle β1 · β2 = −1. The product of Weyl reflections

R = Rβ2
Rβ1

(5.40)

provides an order three lattice isometry, with R2 = Rβ1
Rβ2

. An advantage of such construc-

tion is that the phase U(gg[R],p) associated to this Z3 action can be explicitly computed.

We give a choice of representative in appendix A.4.

An example with trivial gauge bundle

Consider a simply-connected configuration Xv → M with trivial gauge bundle, fibered over

the K3 surface M introduced above. The bundle is described by a vector v of the form (5.1)

with Λ = 0. The lift of the Z3 action to Xv requires σ∗3v = g3v, where g3 is the O(Γ2,18)

element defined in (5.28). This condition constrains the torus classes ωI
p to obey σ∗3ω

1
p =

−ω1
p +ω

2
p and σ∗3ω

2
p = −ω1

p. In terms of these classes, the vector v must be of the form

v =


ω1

p

ω2
p

l1ω
1
p + l2ω

2
p

(−l1 − l2)ω
1
p + l1ω

2
p

0

 . (5.41)

The Bianchi identity reads

−l1
(
ω1

p.ω
1
p +ω

2
p.ω

2
p −ω1

p.ω
2
p

)
= 24 , (5.42)

and for a smooth K3 surface M this restricts the integer l1 to values 1 ≤ l1 ≤ 4.

The second integral cohomology of M splits under the action of σ∗3 as [62]

Γinv = (3Γ1,1) + (−3Γ∗
e6) , (Γinv)

⊥ = Γ1,1 + (3Γ1,1) + (−Γa2)
5 . (5.43)

Every −Γa2 factor in the cohomology sublattice (Γinv)
⊥ is generated by two curves x, y with

intersection x.x = y.y = −2, x.y = 1, and on which the non-symplectic automorphism acts as

σ∗3x = −x− y and σ∗3y = x. We can thus pick a (−Γa2)
2 sublattice of (Γinv)

⊥ with generators
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x1, y1 and x2, y2, and set

ω1
p = x1 − x2 , ω2

p = −y1 + y2 . (5.44)

The Bianchi identity is straightforwardly solved by taking l1 = 4. Using a B-field shift

parametrized by m = −l2 − 4, we can bring v to the simple form

v = gb[m]


ω1

p

ω2
p

4ω1
p + l2ω

2
p

−l2ω1
p + 4ω2

p

0

 =


ω1

p

ω2
p

4ω1
p − 4ω2

p

4ω2
p

0

 . (5.45)

The above configuration can then be “unwound” to M × T 2 using the transformation T =

gigs,1[κ1]gs,2[κ2], with two lattice vectors such that κ1 · κ1 = κ2 · κ2 = 8 and κ1 · κ2 = −4.

We easily see that these conditions are satisfied by the two Γ8 + Γ8 vectors

κ1 = 2β1 , κ2 = 2β2 , (5.46)

and this is also consistent with the requirement R(κI) = RJ
IκI for our choice of order three

rotation R = Rβ2
Rβ1

.

The topology of the T-dual configuration is described by the vector

v′ = T v =


0

0

ω1
p

ω2
p

−κ1ω
1
p − κ2ω

2
p

 , (5.47)

which represents a product geometry M ×T 2 equipped with an abelian bundle Λ′ = −κIω
I
p.

We can observe that this configuration obeys

σ∗3v
′ = g′3v

′ , (5.48)

with the order three O(Γ2,18) element g′3 = T g3T −1 = gt[R−t]gg[R].

The T 2 and Wilson line parameters of the two configurations can also be tracked through

the duality. Starting from a configuration v without Wilson lines,21 the initial theory is

described by the parameters

τ = ζ3 , ρ = 4(ζ3 + 1) , aI = 0 , (5.49)

21In principle, the condition (τ, ρ,a1,a2) = µg3(τ, ρ,a1,a2) allows for non-trivial Wilson lines parameters
satisfying R(a1) = −a1 − a2 and R(a2) = a1. The following discussion stays valid when such parameters are
turned on.
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which solve the quantization conditions and are invariant under the action of µg3 . The T-dual

configuration v′ has parameters

τ ′ = ζ3 + 1 , ρ′ = 1
24(2ζ3 + 1) , a′1 = − 1

12(2κ1 + κ2) , a′2 = − 1
12(κ1 + 2κ2) . (5.50)

Notice that the quantization conditions on v′ amount to

a′I ·Λ′ ∈ H2(M,Z) , (5.51)

and those conditions are obeyed for the specific choices of a′I and Λ′ of the T-dual geometry.

Moreover, we easily see that the action

µ−1
g′3

(τ ′, ρ′,a′1,a
′
2) =

(
1

1− τ ′
, ρ′,−R(a′1) +R(a′2),−R(a′1)

)
(5.52)

of the T-dual Z3 symmetry on the moduli leaves invariant the parameters associated to v′.

Finally, let us note that to fully specify the orbifold of the T-dual worldsheet CFT, it is

necessary to compute the phase factor U(g′3,p) that enter into the action of g′3 on vertex

operators. For the unwound example described above, the cocycle representatives can be

chosen such that U(g′3,p) = U(g3,p). The Z3 orbifold can therefore be understood in the

T-dual description as the same geometric quotient as in the original theory. This feature is

not generic: for different configurations, one should expect that the T-dual orbifold does not

always have a geometric interpretation.

Having obtained a T-dual Kähler description of the Z3 action, a question naturally arises:

how can we understand the Z3 quotient of the T-dual theory? On the unwound side, the orb-

ifold corresponds to a Z3 symmetry of the direct product geometry X ′ ≃M×T 2 accompanied

by an order three action on the gauge bundle. The action on the six-dimensional Kähler ge-

ometry is by a non-symplectic action on the K3 factorM along with an order three rotation of

the torus. This isometry of X ′ leads to a quotient with nine C3/Z3 singular points. The sin-

gular X ′/Z3 geometry admits a smooth Ricci-flat resolution: the orbifold corresponds to the

Borcea–Voisin construction of Calabi–Yau threefolds [63, 64]. However, the understanding of

the resolved geometry necessitates a description of the gauge bundle. Indeed, on the unwound

T-dual side, the gauge bundle is non-trivial by construction: the T-duality introduces two

abelian instantons fibered over the classes ω1 and ω2. If those curves were to intersect the

singular locus of the order three K3 automorphism, then the resolution of the singularities

would also impact the gauge instantons. However, it is possible to construct geometries where

this is not the case. Consider the K3 surface M defined by (5.37). This surface inherits three

classes C1, C2, C3 from its ambient projective space P1 × P1 × P1, cut out by hyperplanes of

the form P1 × P1. The curves Ci have zero self-intersection and intersect each other at two

points. Under the non-symplectic automorphism (5.38), they transform by the permutation
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σ∗3Ci = Ci+1. The torsional geometry X →M can be constructed from two classes

ω1 = C1 − C2 , ω2 = C1 − C3 , (5.53)

with the ASD condition on ωI requiring the three P1 factors to be of the same size. A generic

curve representing the class Ci does not intersect the fixed locus of σ3. Therefore, we can

expect that the Kähler resolution of the (M×T 2)/Z3 orbifold geometry will be unobstructed.

It would be interesting to better understand the resolved geometry and its worldsheet real-

ization. If the resolution modes admit a description in terms of twisted marginal operators of

the unwound (0, 2) CFT, then studying the corresponding modes on the T-dual non-Kähler

side could give some insight on the existence of a non-Kähler SU(3)-structure resolution of

the X/Z3 quotient geometry.

5.5 Duality and the supersymmetric index

The supersymmetric index of N=2 four-dimensional heterotic vacua was introduced in [65]

for K3 × T 2 compactifications and generalized in [13, 14] to heterotic flux vacua. Our aim

is to reformulate the index in a duality-covariant way and examine in particular the effect

of the unwinding dualities. We refer to the aforementioned publications for conventions and

details.

Let us consider for definiteness a compactification to four dimensions endowed with the

pullback of a rank r HYM bundle P on K3 with structure group in the second E8 factor with

vanishing first Chern class. We will consider later on possible line bundles and Wilson lines in

the first E8 factor only. Since c1(P) = 0, the (0, 2) SCFT associated with the non-linear sigma

model contains a non-anomalous left-moving U(1)L symmetry, associated to a holomorphic

current J(z), that will eventually be used for the left-moving GSO projection. We also denote

by J̄(z̄) the R-current of the right-moving N=2 superconformal algebra.

We first define the dressed elliptic genus of the (0, 2) two-dimensional SCFT with target

space T 2 ↪→ X
p→ M and central charges (c, c̄) = (14 + r, 9) as the following trace in the

Ramond–Ramond sector :

Zdeg(q, q̄;y) =
1

η̄2(q̄)
Trr

{
yJ0 J̄0(−1)FqL0−c/24q̄L̄0−c̄/24

}
, (5.54)

where J0 (resp. J̄0) is the zero-mode of the U(1)L current (resp. the U(1)R current) and

(−1)F = exp iπ(J0 − J̄0). One can then obtain the new supersymmetric index proper as:

Znew(q, q̄) =
η̄2(q̄)

2η(q)

1∑
γ,δ=0

qγ
2

{(
ϑ1(q|y)
η(q)

)8−r

Zdeg(q, q̄;y)

}∣∣∣∣∣
y=qγ/2eiπδ

. (5.55)

The dressed elliptic genus of flux N=2 compactifications to four dimensions was obtained

in [13, 14] using a UV completion of the corresponding (0, 2) non-linear sigma model as a

(0, 2) gauged linear sigma model [11] and supersymmetric localization, building on previous
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works about the ordinary elliptic genera [66, 67]. From this result a geometric formulation of

the dressed elliptic genus was derived for any compactification such that the K3 base M is

realized as a subvariety of a weighted projective space.

In the absence of Wilson lines, the Γ2,10 lattice splits into a (2, 2) lattice and the E8

lattice. The former is the lattice associated with the T 2 fiber, spanned by

p = wIeI + nIe
∗I = pL + pR (5.56)

in R2,2, where the nI (resp. the wI) are the momenta (resp. the winding numbers). The

decomposition in left- and right-moving components is defined through the basis vectors

e1L =
1√
2τ2ρ2

(
τ2e1 + ρ2e

∗1 + (τ1ρ2 + τ2ρ1)e
∗2) ,

e2L =
1√
2τ2ρ2

(
−τ1e1 + e2 − ρ1e

∗1 + (τ2ρ2 − τ1ρ1)e
∗2) ,

e1R =
1√
2τ2ρ2

(
−τ2e1 + ρ2e

∗1 + (τ1ρ2 − τ2ρ1)e
∗2) ,

e2R =
1√
2τ2ρ2

(
τ1e1 − e2 + ρ1e

∗1 + (τ2ρ2 + τ1ρ1)e
∗2) . (5.57)

This basis satisfies

eaL · ebL = δab , eaR · ebR = −δab , eaL · ebR = 0 , (5.58)

and the left and right projections are defined by pL = (p · eLa)e
a
L and pR = −(p · eRa)e

a
R. As

we have seen in subsection 3.4 the moduli of the T 2 are quantized in such a way that the T 2

CFT is rational, or in other words the sublattices ΓL = Γ2,2 ∩ R2,0 and ΓR = Γ2,2 ∩ R0,2 are

both rank two lattices. Elements of the lattice Γ2,2 with pR = 0 are such that the momenta

n1 and n2 can be expressed in terms of the winding numbers w1 and w2:

n1 =
ρ2
τ2

(w1 + τ1w
2)− ρ1w

2 ∈ Z , (5.59a)

n2 =
ρ2
τ2

(τ1w
1 + |τ |2w2) + ρ1w

1 ∈ Z . (5.59b)

Note that any lattice vector in ΓL can be expressed purely in terms of the winding numbers,

using (5.59):

pL =

√
2ρ2
τ2

(
w1e1L +w2(τ1e

1
L + τ2e

2
L)
)
. (5.60)

In the geometrical formulation for the dressed elliptic genus derived in [13] from the torsional

GLSM approach, the coupling between the Γ2,2 lattice of the two-torus and the anti-self-dual

(1,1) forms ω1 and ω2 associated with the curvatures of the torus bundle appeared naturally
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in the formula in terms of a formal extension of the winding lattice as a module overH2(M,Z):

pω =

√
2ρ2
τ2

(
ω1e1L +ω

2(τ1e
1
L + τ2e

2
L)
)
. (5.61)

As noticed above, this element of the winding lattice can be also viewed as an element of the

lattice ΓL of purely left-moving momenta. Adding the Γ8 associated with the first E8 factor,

one can then use the same lattice formalism as in subsection 2.1 and associate to the principal

torus bundle the element v = ωIeI + νIe
∗I of Γ2,10 ⊗H2(M,Z), where the classes ν1 and ν2

are given by (3.50). We recall that, for the time being, there are neither Wilson lines nor line

bundles in the first E8 factor.

In terms of v, one can express the dressed elliptic genus in a manifestly T-duality covariant

presentation. As for the ordinary elliptic genus [68] we define first the formal power series

with bundle coefficients:

Eq,y =
∞⊗
n=0

∧
−yqn

P∗ ⊗
∧

−y−1qn
P ⊗

∞⊗
n=1

SqnT ∗
M ⊗

∞⊗
n=1

SqnTM , (5.62)

where

∧
t
P =

∞∑
k=0

tk
∧k

P , StTM =
∞∑
k=0

tkSkTM , (5.63)

∧k and Sk being respectively the k-th exterior product and the k-th symmetric product. One

has then

Zdeg(q, q̄;y) = q
r−2
12 yr/2

∫
M

ch
(
Eq,y

)
td
(
TM
) ∑
p∈Γ2,10

q
1
2
p2
L

η2(q)

q̄
1
2
p2
R

η̄2(q̄)
e−p·v , (5.64)

where as in subsection 2.1, · denotes the inner product on Γ2,10 preserving the R2,10 metric η.

Using the splitting principle, let c(TM ) = (1 + ψ1)(1 + ψ2) and c(P) =
∏r

a=1(1 + ξa).

One obtains then the final expression for the dressed elliptic genus, given as a function of the

vector v ∈ Γ2,10 ⊗H2(M,Z):

Zdeg(q, q̄;y|v) =
∫
M

r∏
a=1

iϑ1
(
q
∣∣y−1e ξa

)
η(q)

2∏
i=1

η(q)ψi

iϑ1
(
q
∣∣eψi

) ∑
p∈Γ2,10

q
1
2
p2
L

η2(q)

q̄
1
2
p2
R

η̄2(q̄)
e−p·v , (5.65)

where it is understood that the integral over the base M selects the top form. This index,

although non-holomorphic, transforms under the action of the (worldsheet) modular group

as a Jacobi form of weight -2 and rank r/2, whenever the Bianchi identity (3.40) is satisfied

in cohomology [13]. The dressed elliptic genus (5.65) is also invariant under the action of a
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space-time perturbative duality g ∈ O(Γ2,10):

Zdeg(q, q̄;y|gv) = Zdeg(q, q̄;y|v) , (5.66)

where it is understood that the index Zdeg(q, q̄;y|gv) is computed using the left/right decom-

position p = pL + pR of Γ2,18 lattice vectors defined by the T-dual moduli.

Unwinding the index

The dressed elliptic genus (5.65) has been given in an O(Γ2,10) covariant way, allowing to

understand its transformation under topology-changing perturbative dualities. Explicitly,

one would want to map the new supersymmetric index of a torsional compactification to the

new supersymmetric index of a K3×T 2 compactification with an extra abelian gauge bundle.

The main example discussed in subsection 5.1 involved a torus fibration built out of two

primitive elements of H2(M,Z), corresponding to the vector

v =


ω1

p

ω2
p

l11ω
1
p + l12ω

2
p

l21ω
1
p + l22ω

2
p

0

 , (5.67)

where ρ = l11τ − l12 and ρτ = l21τ − l22. Recall that in the present context v is a vector of

Γ2,10 rather than a vector of Γ2,18, but it does not change the logic.

This configuration can be T-dualized by an O(Γ2,18) transformation T of the form (5.6),

with κ1,2 ∈ Γ8 to a configuration describing a direct product K3 × T 2, endowed with an

abelian bundle characterized by Λ′ ∈ Γ8 ⊗H2(M,Z) and quantized Wilson lines in the same

E8, i.e. with parameters a′I such that a′I · Λ
′ ̸= 0. A further duality—Wilson line integer

shift of parameters κ′
1,2 ∈ Γ8—allows to disentangle the Wilson lines from the abelian gauge

bundle, see around (5.15), reaching the configuration specified by the vector

v′′ =


0

0

0

0

Λ′′

 , (5.68)

with Wilson line parameters a′′1,2 given by (5.16) and abelian gauge bundle specified by Λ′′ =

−κ1ω
1
p − κ2ω

2
p. For definiteness, and without loss of generality, let us consider that the

non-zero entries of the 8-dimensional vector −κ1ω
1
p−κ2ω

2
p are the first s ones, such that the

a′′1,2 Wilson line parameters have non-zero entries only for the remaining 8− s components.

A better understanding of the dressed elliptic genus Zdeg(q, q̄;y|v′′) associated with the

T-dual “unwound” configuration is obtained in the fermionic description, especially regarding
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the gauge bundle. The set of 8 chiral bosons with momentum lattice Γ8 are then traded for

a set of 8 left-moving fermions. For a given spin structure [α, β] the contribution to the path

integral from the 8− s fermions supporting the Wilson lines of parameters a
′′
I is given by [69]

Zw [ αβ ]
(
q
∣∣a′′

I

)
=

8∏
a=s+1

1

η(q)
ϑ

[
α+2a

′′a
I wI

β+2a
′′a
I mI

] (
q
∣∣0) , (5.69)

where we have used the orthonormal basis (2.5). In this expression wI and mI are the winding

numbers along the worldsheet space-like and time-like one-cycles respectively. After a Poisson

resummation on m1 and m2, which are traded for n1 and n2, one obtains indeed left- and

right-moving momenta of the expected form described in subsection 2.1.

As far as the abelian gauge bundle is concerned, the coupling of the Γ2,10 lattice vectors

with the background vector v′′ given by (5.15) in the dressed elliptic genus (5.65) takes the

form

e−p·v = ep·
(
ω1

pκ1+ω2
pκ2

)
= exp

s∑
a=1

ℓa
(
ω1

pκ
a
1 +ω

2
pκ

a
2

)
. (5.70)

In the fermionic presentation, it gives a contribution to the dressed elliptic genus of the form:

Zl [
α
β ]
(
q
∣∣Λ′) = s∏

a=1

1

η(q)
ϑ [ αβ ]

(
q
∣∣∣eω1

pκ
a
1+ω

2
pκ

a
2

)
. (5.71)

After summing over the spin structures, these terms will appear in the new supersymmetric

index (5.55) exactly on the same footing as Fermi multiplets transforming as sections of

abelian bundles over the base M , see the first term in the integrand of (5.65). Thus we

have demonstrated that, by the chain of Narain dualities described in subsection 5.1, the new

supersymmetric index of flux compactifications with eight supercharges can be recast in the

form of the new supersymmetric index for K3×T 2 compactifications with appropriate Wilson

lines an abelian gauge bundles.

6 N=1 flux vacua in 4 dimensions

The observations in the previous sections show that four-dimensional heterotic vacua pre-

serving 8 supercharges can always be connected to flux-free M ×T 2 configurations by Narain

T-duality. The N=2 requirements force the torus classes to be primitive (1, 1) forms, so these

classes enter on the same footing as any abelian instanton in the gauge sector. It is then

natural to expect that there exists a duality exchanging torus and gauge data.

Our goal in this section will be to repeat a similar T-duality analysis for geometries with

only 4 supercharges. As reviewed in section 3, anti-self-duality of the torus Chern classes

is not required for heterotic geometries with minimal supersymmetry: the classes ωI can

have non-zero (2, 0)⊕ (0, 2) components as long as the complex combination ω1 + τω2 stays

orthogonal to Ω. Turning on such components leads to drastic consequences for the heterotic
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geometry. In particular, a crucial modification is the necessity of a formal α′ expansion of

the internal fields to solve the leading order equations of motion: the curvature R+ of the

H-twisted connection is no longer horizontal, and the Bianchi identity can only be solved at

first order in α′. The same α′ expansion is necessary for a derivation of the flux quantization

conditions as in [9]. Another difference that will play an important role in the following is the

quantization of Wilson line parameters. As described in section 3, there are no continuous

deformations of the parameters aI , and it is always possible to set aI = 0 by a large gauge

transformation.

6.1 Quantization of the K3 periods

Supersymmetry and flux quantization impose strong conditions on the K3 surface M used to

build the heterotic geometry. A particularly simple example corresponds to configurations for

which the torus Chern classes only have (2, 0)⊕(0, 2) components. To ensure supersymmetry,

the complexified T 2 curvature must be proportional to the holomorphic 2-form of M :

γΩ = ω1 + τω2 , (6.1)

where γ is a non-zero complex constant. Consequently, supersymmetry fixes the periods of

the K3 manifold. In particular, its Picard number is ϱ(M) = 20: in other words, M is

an attractive K3 surface.22 By the Shioda–Inose theorem [71], this attractive K3 surface

is completely characterized by the SL(2,Z) equivalence class of the positive-definite even

matrix D, where we denote by DIJ = ωI .ωJ the intersection numbers of the torus classes.

In addition, for the definition (6.1) of the holomorphic 2-form to be consistent with the

condition Ω.Ω = 0, the torus complex structure is fixed to the value

τ =
−D12 + i

√
detD

D22
. (6.2)

After gauging away the Wilson line parameters, the quantization conditions (3.45) take the

simple form

ν2 − τν1 = ρ(ω1 + τω2) . (6.3)

For this equation to admit solutions, the torus parameters (τ, ρ) are constrained to belong

to the same quadratic field, corresponding to the conditions on the moduli of a rational T 2

CFT, as in the N=2 case.

Configurations with a purely holomorphic complexified T 2 curvature are quite special: in

a generic N=1 geometry, the classes ωI also have (1, 1) components. When this is the case,

the complexified T 2 class decomposes as

ω1 + τω2 = ξ + γΩ , (6.4)

22We refer to [70] for a pedagogical description of attractive K3 manifolds.
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in terms of a complex primitive (1, 1) form ξ and a complex constant γ. The quantization

conditions (3.45) relate the Hodge duals of the torus classes to a linear combination of the

four integral classes ωI and νI . Since the Hodge operator acts with a definite sign on ξ and on

Ω, the quantization conditions can be used to extract their expansion in integral cohomology:

γΩ =
1

2iρ2

(
−ρ̄(ω1 + τω2)− τν1 + ν2

)
, (6.5a)

ξ =
1

2iρ2

(
ρ(ω1 + τω2) + τν1 − ν2

)
. (6.5b)

In particular, the holomorphic 2-form is defined by four integral classes, and the Picard

number of the base satisfies ϱ(M) ≥ 18. Note that K3 surfaces of high Picard rank are quite

special in the K3 moduli space. In particular, it has been conjectured in [31] that an analogue

of the Shioda–Inose theorem exists when ϱ(M) ≥ 18, and the case ϱ(M) = 19 was proved

in [32].

The decomposition (6.5) of ξ and Ω in integral cohomology yields a solution to the flux

quantization conditions. However, not every choice of integral classes leads to a well-defined

K3 geometry. The forms ξ and Ω must obey

Ω.Ω = 0 , Ω.ξ = 0 , Ω.ξ̄ = 0 , (6.6)

as well as the inequalities Ω.Ω̄ > 0 and ξ.ξ̄ ≤ 0. These equations fix the value of the torus

moduli (τ, ρ) and constrain the allowed intersection numbers of the four integral classes. In-

deed, the above equalities can be rewritten as polynomial equations for τ , and the intersection

numbers must be chosen such that these polynomials admit a root in the upper half-plane.

When this holds, the complexified Chern class (6.4) defines a principal T 2 bundle over the

K3 surface M with quantized τ and ρ parameters, which preserves minimal supersymme-

try. Note that the geometry might be subject to additional constraints due to smoothness

requirements for the K3 surface. Let us also emphasize that, while the complex constant γ

superficially looks like a continuous parameter that can be used to deform off the N=2 locus

where the torus Chern classes are ASD, this is not the case. As already pointed out in [30],

such deformations of a N=2 geometry induce complex structure deformations of X that are

incompatible with the supersymmetry conditions on the flux. In the present analysis, we see

another crucial difference: flux quantization fixes the SU(2) structure of the K3 base to a

specific integral locus which cannot be reached by a smooth deformation of a generic N=2

geometry.

6.2 Obstructions to unwinding

The N=1 flux geometries admit an action of the T-duality group O(Γ2,18). However, we will

see that T-duality transformations act within this class, and these configurations cannot be

connected by duality to a direct product M × T 2. This is, of course, not surprising: any
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T-dual theory should preserve exactly 4 supercharges, whereas a compactification on M ×T 2

preserves twice more supersymmetry, unless orbifolded.

To study the O(Γ2,18) action in detail, we can split the 2-forms specifying the fibration

structure of X into their self-dual and anti-self-dual parts. For the Chern classes of the T 2

fibration, we can extract from (6.4) the self-dual (2, 0)⊕ (0, 2) components:

ω1
+ =

iτ̄

2τ2
γΩ− iτ

2τ2
γ̄Ω̄ , ω2

+ = − i

2τ2
γΩ+

i

2τ2
γ̄Ω̄ . (6.7)

Abelian gauge instantons are characterized by the vector of classes Λ = [ 1
2πF

sσs] and, up to

a large gauge transformation, the curvatures Fs must be (1, 1) primitive forms. The vector

Λ can be split as

Λ = Λ0 − aIω
I , (6.8)

where Λ0 encodes anti-self-dual classes corresponding to a HYM connection pulled back from

the base M . The Wilson line parameters aI are quantized and could be shifted away by

a large gauge transformation, however we keep them in the present discussion as they are

generically produced by T-duality. When the parameters aI are non-trivial, Λ has non-

vanishing (2, 0) ⊕ (0, 2) components. Turning on those self-dual components introduces new

terms in the expansion (6.5) of Ω in integral cohomology. The self-dual components of the

classes νI can be obtained from this expansion.

To summarize, supersymmetry imposes strong constraints on the self-dual part v+ of v,

which has to be of the form

v+ =
i

2τ2


τ̄

−1

ρ+ 1
2a1 · (a2 − τ̄a1)

ρτ̄ + 1
2a2 · (a2 − τ̄a1)

a2 − τ̄a1

 γΩ+ c.c. . (6.9)

Note that v+ is completely determined by the moduli and the complex constant γ. In addition,

it is not too hard to see that the first four components of v+ are non-zero, no matter what

values the Wilson line parameters take. This is a first sign that the presence of (2, 0)⊕ (0, 2)

components for v obstructs unwinding dualities: the analysis of section 5 relied on dualizing

v using Wilson line shifts to set the classes ν1 and ν2 to zero, and this is no longer possible.

To make this argument more precise, we need more information on the T-duality orbit
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of v+. Let us introduce the quantity

h(τ, ρ,a1,a2) =
i

2τ2


τ̄

−1

ρ+ 1
2a1 · (a2 − τ̄a1)

ρτ̄ + 1
2a2 · (a2 − τ̄a1)

a2 − τ̄a1

 (6.10)

that appears in the self-dual part (6.9) of v. While this h is written as a vector, it is not

a proper O(2, 18,R) multiplet but has a more intricate transformation law under T-duality.

The vector v admits the decomposition

v = v(1,1) + hγΩ+ h̄γ̄Ω̄ , (6.11)

and its contribution to the Bianchi identity can be written

−1
2v • v = −1

2v(1,1) • v(1,1) +
ρ2
τ2

|γ|2Ω.Ω̄ , (6.12)

using h · h = 0 and h̄ · h = −ρ2/τ2. Both h and γ transform under T-duality. Their general

transformation law can be derived from the action of O(Γ2,18) generators. There is essentially

one possibility for a duality g ∈ O(Γ2,18) to preserve the form (6.11) of v: g must act on h as

gh(τ, ρ,a1,a2) = fg(τ, ρ,a1,a2)h(µ
−1
g (τ, ρ,a1,a2)) , (6.13)

with some complex moduli-dependent constant fg(τ, ρ,a1,a2). When this is the case, the

corresponding T-dual configuration Xv′ = Xgv respects the decomposition (6.11), with new

parameters (τ ′, ρ′,a′1,a
′
2) = µ−1

g (τ, ρ,a1,a2) and a complex constant γ′ = fg(τ, ρ,a1,a2)γ.

We can easily see that the O(Γ2,18) generators gt[R], gb[m], gs,I [κ] and gg[R] yield a transfor-

mation rule of this sort.23 However, the generators gi,I and gref,I satisfy a different identity:

gh(τ, ρ,a1,a2) = fg(τ, ρ,a1,a2)h(µ
−1
g (τ, ρ,a1,a2)) . (6.14)

For those T-duality transformations, the dual geometries are characterized by a vector v′ = gv

which splits in self-dual and anti-self-dual parts as

v′ = v′(1,1) + h′γ̄′Ω̄ + h̄′γ′Ω , (6.15)

where h′ = h(µ−1
g (τ, ρ,a1,a2)) and γ′ = fg(τ, ρ,a1,a2)γ. At first, this T-dual geometry

seems incompatible with supersymmetry: it explicitly breaks the form (6.11) required by the

supersymmetry equations. In particular, the complexified curvature of the T 2 fibration of

23The SL(2,Z) transformations gt[R] have a non-trivial factor fgt[R] = (R2
2 − R2

1τ)
−1, while the other

generators have fg = 1.
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Xg′ is given by

ω′1 + τ ′ω′2 = ξ′ + γ̄′Ω̄ , (6.16)

and has (1, 1) and (0, 2) components, which is incompatible with the conditions in (3.19).

This apparent inconsistency is resolved by looking at the action of the transformation g on

the holomorphic (1, 0) form Θ, which transforms as

g : Θ → Θ′ = fg(τ, ρ,a1,a2) Θ̄ . (6.17)

In particular, any T-duality under which h transforms by (6.14) must act non-trivially on the

SU(3) structure. The holomorphic 3-form ΩX transforms as

g : ΩX → ΩX′ = eiα
′
e2ϕ

√
α′ρ′2
τ ′2

Ω ∧ Θ̄ , (6.18)

where the overall phase factor is defined by eiα
′√
ρ′2/τ

′
2 = fg(τ, ρ,a1,a2)

√
ρ2/τ2 and could

be absorbed in a redefinition of ΩX′ . In the T-dual picture, Θ is now a (0, 1) form, and

supersymmetry requires

J ∧ F = 0 , Ω̄ ∧ F = 0 , (6.19)

instead of (3.19). The complexified curvature F is constrained to have (1, 1) and (0, 2)

components only, and this is the case for the T-dual geometry.

Examining the action of T-duality generators in detail, we find that every generator

obeys one of the two conditions (6.13) and (6.14). Consequently, the same holds for a generic

O(Γ2,18) element. As a result, all T-dual configurations of an N=1 geometry are non-trivially

fibered: their complexified first Chern class has a non-trivial component proportional to Ω

or to Ω̄. As expected, we find that Narain T-duality cannot undo the torus fibration of this

class of backgrounds. Torsional geometries with minimal supersymmetry are disconnected

from flux-free M × T 2 compactifications.

7 Outlook

In this work we examined a large class of heterotic flux vacua distinguished by the topologically

non-Kähler target space as the underlying geometry. In vacua that preserve 8 supercharges

we argued that all such vacua can be deformed to a locus in the moduli space where a T-

duality relates the vacuum to a more familiar compactification on a topologically Kähler

space. By taking quotients of these dual pairs we uncovered surprising relations between

Kähler and non-Kähler compactifications, and studying the implications of these relations

may well provide some general lessons for heterotic flux vacua, and perhaps flux vacua in

general.
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For instance, the Z3 quotient flux geometry described in section (5.3) is singular. While

the existence of a torsional linear sigma model realization suggests that this is indeed a well-

defined CFT, it is not clear whether the orbifold singularities can be resolved by a marginal

deformation. The existence of the conventional Kähler T-dual geometry may shed light on

the nature of these singularities. If there is indeed a mechanism to resolve these non-Kähler

singularities, it may well generalize to other non-Kähler flux geometries.

As we mentioned in the introduction, there are flux configurations that preserve 8 super-

charges and are not covered by our analysis. These are geometries introduced in [10], where

the base of the torus fibration is allowed to degenerate in such a way that the local geometry

is of the form (C2 × T 2)/Γ, where C2/Γ is a standard K3 orbifold singularity, but there is

an added shift on the torus fiber such that the action on the total space is free.24 Since our

analysis is ultimately based on compactifying an 8-dimensional heterotic string theory on a

K3 manifoldM , it does not immediately extend to the case whenM has orbifold singularities.

Nevertheless, we can still ask what is the action of T-duality on these configurations—

after all the total space still has two commuting isometries. A possible resolution comes

from [35], where just such singularities were studied in toroidal Zn orbifolds of type II string,

and it was argued that the T-dual of the local singularity of this form is a singular geometry

C2/Zn × S1 equipped with a flat but topologically non-trivial B-field gerbe. It would be

interesting to see if such structures arise in the T-duals of the geometries studied in [10] and

to precisely identify the singular Kähler geometries and the gerbe structures.

Another clear line of investigation is to return to the M/F-theoretic origins of heterotic

flux vacua [6]. For instance, we might consider the duals of 3-dimensional heterotic flux vacua

realized as M-theory compactification on K3×K3 = M ×Mf , where we think of M as the

base K3 geometry, while identifying M-theory compactified on Mf with the heterotic string

on T 3. The data describing the abelian gauge bundle and T 3 fibration on the heterotic side

of the duality is encoded in the choice of the M-theory G-flux. Taking Mf to be elliptically

fibered we can identify the corresponding Γ2,18 = Γ2,2 + Γ8 + Γ8 lattice in H2(Mf ,Z) with

the T 2 Narain lattice of the heterotic theory. Then, as in [6], we have a clear picture of the

significance of various components of G ∈ H2(M,Z)× Γ2,18:

1. activating components in the negative-definite part of Γ2,2 will lead to backgrounds with

4 supercharges;

2. a component in the positive-definite part of Γ2,2 is dual to a non-trivial T 2 fibration;

3. a component in the Γ8 + Γ8 lattice corresponds to an abelian instanton.

Finally, T-duality on the heterotic side can be understood as automorphisms of Mf that act

on the Γ2,18 lattice. This clear set-up seems ideally suited to investigating the action of various

quotient constructions across string duality with reduced supersymmetry, and it should be

24The simplest example is a Z2 action on C2 × S1 which acts on the local coordinates as (z1, z2, θ) →
(−z1,−z2, θ + π).
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useful to investigate which heterotic orbifold actions dualize to “non-geometric” actions on

the M-theory side along the lines of [72].

We can also consider adding non-perturbative ingredients to the discussion: for example,

it seems reasonably clear that we can introduce 5-branes in the 8–dimensional compactification

while preserving supersymmetry. How does this addition affect the effective theory of the flux

vacua?

These and other questions indicate that while heterotic flux vacua may indeed be “un-

wound” to more familiar configurations, they provide a useful duality frame for a subset of

the string landscape, and we suspect there are general lessons to be learned that may be

applied to backgrounds where we do not have as much control.

Appendix

A Cocycle details

In this appendix we give the explicit form for the cocycle factor ε(p1,p2) used in our compu-

tations, as well as details of the phase calculations for the generators.

A.1 Form of the cocycle

As discussed in [37–39], this is far from unique, but physical quantities are independent of

the choice.

For each Γ8 factor, we define an antisymmetric bilinear form

Ω(ℓ1, ℓ2) =
1

2

∑
i>j

(
ℓi1ℓ

j
2 − ℓi2ℓ

j
1

)
αi ·αj , (A.1)

where the αi denote the simple roots. Decomposing

Γd,d+16 = Γd,d + Γ8 + Γ8 , (A.2)

we then take

ε(p1,p2) = exp

[
iπ

2

(
n1iw

i
2 − wi

1n2i
)
+ iπΩ(ℓ1, ℓ2) + iπΩ(ℓ′1, ℓ

′
2)

]
(A.3)

It is a nice exercise to check that this satisfies the conditions

ε(p2,p1) = eiπp1·p2ε(p1,p2) , ε(p1,p3)ε(p2,p3) = ε(p1 + p2,p3) , (A.4)

and

ε(p1,p2)ε(p1 + p2,p3) = ε(p1,p2 + p3)ε(p2,p3) . (A.5)
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The first two conditions are necessary so that the operators commute and the OPE closes.

The last condition follows from associativity of the OPE.

A.2 Phases for generators of O(Γ1,17)

In this appendix we provide some details for the phases in the actions on the Narain CFT

quoted in the text. We fix the form

p = we+ ne∗ +L (A.6)

as the initial form of the lattice vector.

We begin with the factorized duality gi, for which

φgi(p) = ne+we∗ +L , (A.7)

and therefore

ε(φgi(p1), φgi(p2))

ε(p1,p2)
= eiπ(n1w2+w1n2) . (A.8)

On the other hand, with U(gi,p) = eiπnw, we calculate

U(gi,p1 + p2)

U(gi,p1)U(gi,p2)
= eiπ(n1w2+w1n2) , (A.9)

and we can also check that U(gi, φgi(p))U(gi,p) = 1.

Next, for the reflection gref

φgref(p) = −ne− we∗ +L , (A.10)

ε(φgref(p1), φgr(p2))

ε(p1,p2)
= 1 , (A.11)

so we can set U(gref,p) = 1.

The Wilson line shift is more complicated. Using the explicit form of the cocycle and the

action

p′ = φgs [κ](p) = we+
(
n + κ ·L− 1

2κ · κ
)
e∗ +L− κw (A.12)

we find

ε(p′
1,p

′
2)

ε(p1,p2)
= exp [iπ (w1Sκ(Λ2) + w2Sκ(Λ1))] , (A.13)
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where

Sκ(Λ) = −
∑
i

κiLi −
∑
i>j

κiLjαi ·αj = Ω(κ,L)− 1
2κ ·L , (A.14)

where i, j ∈ {1, . . . , 16}, and we slightly abused our previous notation by combining the simple

roots α and α′ into a single set of 16 vectors. We compare this to the ratio of phases obtained

with

U(gs[κ],p) = eiπ(w+1)Sκ(L) , (A.15)

which leads to

U(gs[κ],p1 + p2)

U(gs[κ],p1)U(gs[κ],p2)
= exp [iπ (w1Sκ(L2) + w2Sκ(L1))] . (A.16)

We also have the composition

U(gs[κ2], φgs[κ1](p))U(gs[κ1],p) = U(gs[κ2 + κ1],p)e
−iπw(w+1)Sκ2 (κ1)

= U(gs[κ2 + κ1],p) , (A.17)

where the last equality follows because Sκ2(κ1) ∈ Z.
Next we consider the phases associated to a rotation of Γ8 +Γ8. Since any such rotation

can be obtained as a product of Weyl reflections (see, for example [73]), we can restrict

attention to Rβ, where β is a root, and the action on the simple roots is

Rβ(α) = α− (β ·α)β . (A.18)

Denoting this reflection by gg[β], and setting p′ = φgg[β](p), we then compute

ε(p′
1,p

′
2)

ε(p1,p2)
= exp [2πi (Sβ(L1)Ω(β,L2) + Sβ(L2)Ω(β,L1))] . (A.19)

We set

U(gg[β],p) = e2πiSβ(L)Ω(β,L)+iπΩ(β,L) , (A.20)

and this satisfies

ε(p′
1,p

′
2)

ε(p1,p2)
=

U(gg[β],p1 + p2)

U(gg[β],p1)U(gg[β],p2)
, (A.21)

as well as U(gg[β],p
′)U(gg[β],p) = 1. The induced map on the moduli is

µgg[β](r,a) = (r,a− (a · β)β) . (A.22)
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A.3 Phases for generators of O(Γ2,18)

In the following section, we collect the relevant details of the action of O(Γ2,18) on vertex

operators and on the associated moduli. The T 2 parameters are encoded in two constants τ

and ρ valued in the upper half-plane.

Factorized dualities act with a phase

U(gi,1,p) = eiπn1w
1
, U(gi,2,p) = eiπn2w

2
. (A.23)

Their action on moduli is

µgi,1(τ, ρ,a1,a2) =(
ρ+ 1

2a1 · (a2 − τ̄a1),
ρ2τ +

1
2τ2a1 · a2

ρ2 +
1
2τ2a1 · a1

,
−τ2

ρ2 +
1
2τ2a1 · a1

a1,−
τ1ρ2 + τ2ρ1 +

1
2τ2a1 · a2

ρ2 +
1
2τ2a1 · a1

a1 + a2

)
,

µgi,2(τ, ρ,a1,a2) =(
−τ̄

ρτ̄ + 1
2a2 · (a2 − τ̄a1)

,
−ρ2τ̄ − 1

2τ2a1 · a2
ρ2|τ |2 + 1

2τ2a2 · a2
,a1 −

τ1ρ2 − τ2ρ1 +
1
2τ2a1 · a2

ρ2|τ |2 + 1
2τ2a2 · a2

a2,
−τ2

ρ2|τ |2 + 1
2τ2a2 · a2

a2

)
.

(A.24)

Let us also quote the action µgi of the product gi = gi,1gi,2 of the two factorized dualities:

µgi(τ, ρ,a1,a2) =(
−ρ̄− 1

2a1 · (a2 − τa1)

τ ρ̄+ 1
2a2 · (a2 − τa1)

,
−τ2ρ̄

τ2|ρ|2 + 1
2ρ2|a2 − τa1|2 + 1

4τ2(a
2
1a

2
2 − (a1 · a2)2)

,

−(ρ2|τ |2 + 1
2τ2a

2
2)a1 + (τ1ρ2 − τ2ρ1 +

1
2τ2a1 · a2)a2

τ2|ρ|2 + 1
2ρ2|a2 − τa1|2 + 1

4τ2(a
2
1a

2
2 − (a1 · a2)2)

,
(τ1ρ2 + τ2ρ1 +

1
2τ2a1 · a2)a1 − (ρ2 +

1
2τ2a

2
1)a2

τ2|ρ|2 + 1
2ρ2|a2 − τa1|2 + 1

4τ2(a
2
1a

2
2 − (a1 · a2)2)

)
,

(A.25)

where we denoted for brevity a2 = a · a and |a|2 = a · ā.
For the SL(2,Z) transformations gt[R] corresponding to T 2 isometries, the cocycle con-

dition is compatible with U(gt[R],p) = 1, and the moduli action takes the following form:

µgt [R](τ, ρ,aI) =

(
R1

2 +R2
2τ

R1
1 +R2

1τ
, ρ,RJ

IaJ

)
, (A.26)

with the usual PSL(2,Z) action on τ . We can also set U(gref,I ,p) = 1 for the T 2 reflections.

The action of µgref,I reads

µgref,1(τ, ρ,a1,a2) = (−τ̄ ,−ρ̄,−a1,a2) , µgref,2(τ, ρ,a1,a2) = (−τ̄ ,−ρ̄,a1,−a2) , (A.27)

with a complex conjugation of the T 2 parameters.
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Both B-field shifts and Wilson line shifts require a non-trivial phase. We take

U(gb[m],p) = eiπmw1w2
,

U(gs[κI ],p) = eiπw
1Sκ1 (L+ 1

2
κ1)+iπw2Sκ2 (L+ 1

2
κ2)+

iπ
2
w1w2Sκ1 (κ2)−Sκ2 (κ1)) . (A.28)

The corresponding transformation law of the moduli is

µgb [m](τ, ρ,a1,a2) = (τ, ρ+m,a1,a2) ,

µgs [κI ](τ, ρ,a1,a2) =
(
τ, ρ+ 1

2ϵ
IJaI · κJ ,a1 − κ1,a2 − κ2

)
. (A.29)

Finally, the action of Γ8 + Γ8 rotations is identical to the one already discussed for O(Γ1,17)

dualities.

A.4 Phases in the T-dual description

In this appendix, we make some comments on the action of the T-dual group G′ = T GT −1 on

the vertex operators Vp , given an action of the group G. Every element g′ of G′ is obtained

by conjugating some g ∈ G by the transformation T . Since T has an action φT on the Γd,d+16

lattice, we can obtain the lattice action of g′ = T gT −1 by

φg′ = φT φgφ
−1
T . (A.30)

Whenever φT acts non-trivially on Γd,d+16, we must also define a phase U(T ,p) in order for

the action of T on vertex operators to be compatible with the operator product expansion.

The phase associated to the inverse transformation T −1 is

U(T −1,p) = U(T , φT −1(p))−1 , (A.31)

which ensures that the product law T −1 ◦ (T ◦ Vp) = Vp is satisfied. Every element g of the

group G also has a corresponding phase U(g,p). This phase obeys the cocycle condition (2.17)

and the group law (2.15), since we assume a well-defined action of G.

Consider now an element g′ = T gT −1 of G′. We define the phase U(g′,p) by

U(g′,p) = U(T , φgT −1(p)) U(g, φT −1(p))U(T −1,p) . (A.32)

We can easily check that this phase obeys the cocycle condition (2.17). Moreover, for two

elements g′1 and g′2 of G′, we can check that U(g′2, φg′1
(p))U(g′1,p) and U(g′2g

′
1,p) agree. In

other words, the product law (2.15) for the phases associated to G implies the product law

for the phases associated to G′. We emphasize that this construction does not necessitate

an embedding G ⊆ H of the group G in a bigger group H, with T ∈ H. The phases

U(g′,p) define a consistent G′ action without having to specify such embedding in H or the

corresponding phases U(h,p) for every h ∈ H.
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As a particular case, notice that if an element g ∈ G has a trivial lattice action φg(p) = p,

then the conjugated element g′ also has φg′(p) = p and the corresponding phase, defined

in (A.32), takes the simple form

U(g′,p) = U(g, φ−1
T (p)) . (A.33)

Let us also describe in more details the case of a cyclic group G ≃ Zk. The action of G

is fully specified by the action of a generator g, with φk
g(p) = p and

U(g, φk−1
g (p)) . . . U(g, φ2

g(p))U(g, φg(p))U(g,p) = 1 . (A.34)

As an example, consider the product of Weyl reflections R = Rβ2
Rβ1

introduced in section 5,

where the two roots β1 and β2 are at a 2π
3 angle, i.e. β1 · β2 = −1. This transformation

generates a Z3 subgroup of O(Γ8+Γ8). Since β1 ·β2 = −Sβ1
(β2)−Sβ2

(β1), we can—without

loss of generality—order the two roots such that Sβ1
(β2) is even and Sβ2

(β1) is odd. We

define the following cocycle25 associated to R:

U(R,p) = eiπ(Sβ1
(L)β1·L+Sβ2

(Rβ1
(L))β2·Rβ1

(L))

= eiπ(Sβ1
(L)β1·L+Sβ2

(L)(β1+β2)·L+(β1·L)(β1+β2)·L) . (A.35)

We can easily check that U(R,p) satisfies the cocycle property (2.17). Moreover, we can

compute

U(R,φR(p)) = eiπ(Sβ1
(L)β2·L+Sβ2

(L)β1·L+(β1·L)β2·L) ,

U(R,φR2(p)) = eiπ(Sβ1
(L)(β1+β2)·L+Sβ2

(L)β2·L+(β1·L)β1·L) , (A.36)

and we see that U(R,p) satisfies the Z3 condition

U(R,p)U(R,φR(p))U(R,φR2(p)) = 1 . (A.37)

As a result, any action obtained by conjugation of this Z3 group by some transformation T
will satisfy the same Z3 product law. For the unwinding T-duality T = gigs,1[2β1]gs,2[2β2] dis-

cussed in section 5, the cocycle condition for T is solved by the choice U(T ,p) = eiπw
InI . Com-

puting the explicit form of the orbifold phase using (A.32) yields U(T g3T −1,p) = U(g3,p).

B Some details on the cohomology of X

Because the base M is simply connected, it is easy to use the Leray–Serre spectral sequence

to calculate the cohomology of X.26 This spectral sequence has Ep,q
2 = Hp(M,Hq(F )) as its

25Here we slightly abuse notation by writing U(R,p) instead of U(gg[R],p) and φR instead of φgg[R].
26Since M is simply connected, we can avoid the complications of having to work with local coefficients.

See, for example, chapter 5 of [41] for an introduction.
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second stage, where F = T 2 denotes the torus fiber, and the spectral sequence converges to

⊕p+q=kE
p,q
∞ = Hk(X). In our case it will degenerate when we take cohomology at the second

page.

The universal coefficients theorem determines the cohomology groups Hp(M,Hq(F )). In

general [74] these are given by the exact sequence

0 Ext(Hp−1(M), Hq(F )) Hp(M,Hq(F )) Hom(Hp(M), Hq(F )) 0

(B.1)

But, this simplifies because Ext(H,G) = 0 whenever H is a freely generated. Thus, we find

Hp(M,Hq(F )) =


Hp(M)

Hp(M)×Hp(M)

Hp(M) ,

(B.2)

and the second page of the spectral sequence has the form

H0(M) 0 H2(M) 0 H4(M)

H0(M,H1(F )) 0 H2(M,H1(F )) 0 H4(M,H1(F ))

H0(M) 0 H2(M) 0 H4(M)

d22 d24

d21 d23

(B.3)

We indicated the d2 map, and it is clear that d3 = 0, so that Ep,q
3 = Ep,q

∞ . All of the maps

are fixed in terms of the cup product and the classes ωI :

H0(M,H1(F )) H2(M)

(x1, x2) (x1ω
1 + x2ω

2) ,

d21

d21

(B.4)

H0(M) H2(M,H1(F )) H4(M)

(x) (xω1, xω2)

(C1, C2) (C1 ∪ω2 − C2 ∪ω1) ,

d22 d23

d22

d23

(B.5)
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H2(M) H4(M,H1(F ))

(C) (C ∪ω1, C ∪ω2) .

d24

d24

(B.6)

So, we find H0(X) = Z and H6(X) = Z, while

H1(X) = ker d21 , H2(X) = ker d22 ⊕H2(M)/ im d21 ,

H3(X) = ker d23/ im d22 ,

H4(X) = H4(M)/ im d23 ⊕ ker d24 , H5(X) =
(
H4(M)⊕H4(M)

)
/ im d24 . (B.7)

To study the groups in detail, we identify H4(M) ≃ Z, so that C ∪ω1 = C.ω1 ∈ Z, and then

we use the basis {ω1
p,ω

2
p . . . , } and its dual basis.

We have three distinct situations to consider. First, there is the trivial fibration with

m1 = 0. In this case the cohomology is determined by the Künneth formula, and of course

every group is free. In what follows we will leave this case out and work with m1 > 0.

1. H1(X). There are two non-trivial possibilities.

(a) m1 > 0, m2 = 0. In this case just one circle is fibered non-trivially andH1(X) = Z.
We may as well factor out the trivial circle from X = Y × S1 and work with Y

directly.

(b) m1 > 0, m2 > 0. Both circles are non-trivially fibered, and H1(X) = 0.

2. H2(X). If a circle is non-trivially fibered, ker d22 = 0, so we just need to consider the

quotient H2(M)/ im d21.

(a) When m1 > 0 and m2 = 0, then im d21 = Span{m1ω
1
p}, and therefore H2(X) =

Z21 × Zm1 .

(b) When m1 > 0 and m2 = 0, then im d21 = Span{m1ω
1
p,m1m2ω

1
p}, and therefore

H2(X) = Z20 × Zm1 × Zm1m2 .

Notice that in either case the torsion subgroup reproduces the torsion subgroup of

H1(X) = π1(X)/[π1(X), π1(X)].

3. H3(X). To study this group it is convenient to expand C2 in the dual basis:

C2 = aω∗
p1 + bω∗

p2 + Ĉ2 . (B.8)

Then

d23(C1, C2) = C1.ω
2 − C2.ω

1 = m1

(
m2C1.ω

2
p − Ĉ2.ω

1
p − a

)
= m1

(
m2C1.ω

2
p − a

)
,

(B.9)
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where we used Ĉ2.ω
1
p = 0. We see therefore, that a is determined, and ker d23 =

Z22 × Z21:

ker d23 = {(C1, (m2C1.ω
2
p)ω

∗
p1 + bω∗

p2 + Ĉ2)} . (B.10)

The quotient by im d22 gives rise to possible torsion in H3(X). This is because

im d22 = Span{(m1ω
1
p,m1m2ω

2
p)} , (B.11)

and therefore the element (ω1
p,m2ω

2
p) generates a Zm1 subgroup in H3(X). This is the

only source of torsion, so we conclude that whenever m1 > 0

H3(X) = Z2×22−2 × Zm1 . (B.12)

Note that when m2 = 0, so that X = Y × S1, then the Künneth formula determines

H2(X) = H2(Y ) , H3(X) = H3(Y )×H2(Y ) , (B.13)

so that

H3(Y ) = Z21 . (B.14)

4. H4(X). If m1 > 0, then im d23 = m1Z:

d23(0,−ω∗
p1) = m1 . (B.15)

Thus,

H4(M)/ im d23 = Zm1 . (B.16)

The free part of the group comes from ker d24, and this depends on whether m2 = 0 or

not:

(a) m1 > 0,m2 > 0. Then ker d24 = Span{Ĉ} = Z20.

(b) m1 > 0,m2 = 0. Then ker d24 = Span{ω∗
p2, Ĉ} = Z21.

5. H5(X). Here we obtain

im d24 = Span{(m1, 0), (0,m1m2)} . (B.17)

So, the free part is the isomorphic to the free part of H1(X), while the torsion part is

the Pontryagin dual to the torsion in H2(X).
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