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1 Université Paris-Saclay, CEA, CNRS, Institut de physique théorique
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Abstract

Mobiles are a particular class of decorated plane trees which serve as codings for planar

maps. Here we address the question of enumerating mobiles in their most general

flavor, in correspondence with planar Eulerian (i.e., bicolored) maps. We show that the

generating functions for such mobiles satisfy a number of recursive equations which lie

in the field of integrable systems, leading us to explicit expressions for these generating

functions as ratios of particular determinants. In particular we recover known results

for mobiles associated with uncolored maps and prove some conjectured formulas for

the generating functions of mobiles associated with p-constellations.

1 Introduction

Mobiles denote a particular class of decorated plane trees carrying integer labels and

subject to a number of local rules – to be detailed below – around their vertices.

Mobiles were introduced in [BDG04], where it was shown that they provide a bijective

coding of general classes of planar maps.

Recall that a planar map is a connected graph drawn on the two-dimensional sphere

(or equivalently on the plane) without edge crossings, and considered up to continuous

deformations (see [Sch15] for a comprehensive introduction to maps). The problem of

enumerating maps has attracted a lot of attention since the seminal work of Tutte in the

early 60’s[Tut63], and many enumeration techniques for maps with various topologies

were developed over the years, ranging from matrix integral techniques [Bré+78] to the

so-called topological recursion approach [EO07; Eyn16].

In this quest for enumerative formulas, the discovery of the coding by mobiles was an

important step as it allowed one to get a recursive construction of planar maps, tran-

scribed into a set of recursive equations for their generating functions. An interesting

feature of the coding is that the decorations carried by the mobiles allow one to keep

track of some of the geodesic distances between marked “points” (i.e., vertices, edges or

faces) on the associated map. This property led to a number of results on the statistics

of distances between points within random maps [BDG03].
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Of particular interest is the generating function Ri for mobiles rooted at a vertex

labelled by some positive integer i which, via the bijection with maps, enumerates

planar maps with two marked points at a prescribed distance constrained to remain

less than i – see the next section for a precise definition. Indeed, it was soon realized

[BDG03] that, for many map families of interest, the recursive equations obeyed by

the Ri’s for i ≥ 1 turn out to be integrable [DG05; Di 05]. In particular, fully explicit

expressions for Ri were obtained for a number of families of planar maps: these include

quadrangulations – in bijection with so-called well-labelled trees [Sch98] which are a

particularly simple example of mobiles –, triangulations, and more generally maps with

prescribed face degrees. In this latter case, an interesting link with continued fractions

was established in [BG12], which allows one to understand the precise form of the Ri’s

as ratios of Hankel determinants.

The most general family of mobiles that were introduced in [BDG04] are those mobiles

which code for so-called planar Eulerian maps. Recall that a planar Eulerian map

is a planar map whose all vertices have even degree, which, if the map is rooted, is

equivalent to the condition that the map be canonically face-bicolored, i.e., with faces

colored in black and white with no two adjacent faces of the same color. Such maps are

also called hypermaps in the literature, to emphasize the fact that they encompass the

case of usual uncolored general maps1. A natural question is therefore that of finding

an explicit expression for the Ri’s in this extended family of mobiles. It is precisely

the purpose of the present paper to obtain such a formula thanks to the machinery

developed for solving integrable systems.

Before we proceed, let us recall that expressions for Ri in the context of genuine Eu-

lerian maps were conjectured in the restricted case of p-constellations [BDG03], which

are Eulerian maps with only p-valent black faces, and white faces whose degrees are

multiples of p. So far, these conjectured formulas were proved only for the case of Eu-

lerian triangulations, in connection with the theory of multicontinued fractions [AB12].

The approach developed here allows us: (i) to formulate the mobile enumeration prob-

lem in the framework of integrable systems (ii) to recover known results for general

uncolored maps, (iii) to prove the conjectured formulas for p-constellations and (iv) to

extend these formulas to the general family of mobiles coding for planar Eulerian maps

with bounded face degrees.

The paper is organized as follows:

Section 2 is devoted to the definition of mobiles. We first discuss in Section 2.1 the

local rules on labels satisfied by mobiles in their most general flavor as obtained from

their correspondence with Eulerian maps. We then define in Section 2.2 a number

of generating functions for mobiles and half-mobiles and derive the set of recursive

1Indeed, starting from a general uncolored map, we get a bicolored one by first coloring all faces
in white, and by then inflating all the edges into black bivalent faces separating the original faces.
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equations which determine them. These generating functions can be expressed as the

entries of two semi infinite matrices P and Q which are shown to “quasi-commute” in

Section 2.3. We discuss in Section 2.4 the case of mobiles with bounded vertex degrees

in correspondence with maps with bounded face degrees and show that the Ri’s, as well

as the other (half-mobile) generating functions, admit large i limits which are formal

power series in the weights attached to the mobile vertices. We end this section by

discussing in Section 2.5 mobiles with a weight g per labeled vertex, corresponding to

a weight g per vertex of the associated map: we show in particular that our recursive

system of equations admits a unique combinatorial solution for which Ri and the other

generating functions of interest are formal power series in
√
g.

The goal of Section 3 is to place our equations within the framework of integrable

systems and to use the associated machinery to obtain a number of properties that

must be satisfied by the operators P and Q. We first show that, thanks to their

quasi-commutation property, we can build out of the operators P and Q an isospectral

system: more precisely we build in Section 3.1 a discrete Lax equation. We define

and compute in Section 3.2 the associated spectral curve E(x, y) as the characteristic

polynomial of a suitable endomorphism expressing the action of P in the eigenvector

space of Q associated with an arbitrary eigenvalue x. In Section 3.3 we introduce the

notion of branch points and double points of the spectral curve and prove some crucial

identity involving these double points (Lemma 3.3). We then construct in Section 3.4

the matrix wave function associated to the discrete Lax equation whose entries are given

by common right (resp left) eigenvectors ψ (resp ϕ) of P and Q at the branch points of

generic x. In Section 3.5 we prove that, as limit of a well defined matrix determinant,

ψ and ϕ take the form of Baker-Akhiezer functions via the so-called Reconstruction

formula.

Section 4 presents the proof of our main theorem, namely Theorem 4.3, giving in par-

ticular an explicit expression for Ri. Note that, appart from Lemma 3.3, this section

does not make use of the results of Section 3 and is thus self-contained. Starting

from the spectral curve and its double points we define in Section 4.1 a set of specific

Baker-Akhiezer functions ψ and ϕ in the form of appropriate determinants. Thanks

to a suitable scalar product introduced in Section 4.2 we reconstruct explicitly in Sec-

tion 4.3 the entries of the operators P and Q as scalar products of these Baker-Akhiezer

functions. These entries are shown to satisfy half of the recursion relations wanted for

the mobile generating functions. In order to show that the second half of the wanted

equations is also satisfied, we construct in the same way in Section 4.4 the entries

of Q and P transposed. We conclude our proof in Section 4.5: in particular we ob-

tain an explicit expression for the generating functions Ri of mobiles as bi-ratios of

determinants.

In Section 5 we present a number of applications of our main result: we first recover
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in Section 5.1 the expression for Ri found in [BG12] for the case of mobiles associated

to general (uncolored) planar maps with bounded face degrees. We then prove in

Section 5.2 the formula for Ri conjectured in [BDG03] and [Di 05] in the case of p-

constellations.

We gather in Section 6 a number of concluding remarks. Some technical points are

discussed in various Appendices.

2 Mobiles

2.1 From Eulerian maps to mobiles

The rules which define mobiles are directly inherited from their correspondence with

maps. Several classes of mobiles may thus be defined, in connection with several classes

of maps. In this paper, we discuss mobiles in their most general flavor, as obtained

from their bijection with Eulerian planar maps.
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Figure 1: A pointed Eulerian (i.e. face bicolored) planar map with root vertex v0. Edges are
oriented clockwise around black faces and counterclockwise around white faces. Each vertex
is labeled by its oriented geodesic distance from the root vertex.

Recall than a planar map is a cellular embedding of a graph in the sphere, considered

up to continuous deformation. It is therefore made of vertices, edges and faces, the

degree of a vertex (resp. a face) being the number of its incident half-edges (resp. edge

sides). A planar map is said Eulerian if its vertices all have even degree. Equivalently,

this is a planar map which may be face-bicolored, i.e. whose faces may be colored, say

in black and white so that no two adjacent faces are of the same color. Note that for

a given Eulerian map, there are exactly two possible such colorings (related to each

other by exchanging the colors). In the following, we shall always assume that our

Eulerian maps are endowed with one of their two bi-colorings, i.e. a Eulerian map will
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in practice refer to a face-bicolored map. Let us now see how decorated trees emerge

as a coding for Eulerian maps.

Since each edge in an Eulerian map separates a black and a white face, we may orient

canonically all the edges of the map by demanding that their incident black face lies on

their right when following the orientation. In other words, edges are oriented clockwise

around the black faces and counterclockwise around the white faces (see Fig. 1). If we

now consider a pointed Eulerian map, i.e. with a distinguished root vertex v0, we may

label each vertex v of the map by its oriented geodesic distance from the root vertex,

defined as the length (= number of edges) of any shortest path from v0 to v following

edges of the map and respecting their orientation. This label is a non-negative integer

i(v) satisfying i(v0) = 0 and

for each edge e oriented from v to v′: i(v′) ≤ i(v) + 1 . (2.1)

v’

=i i

j

i
j

(b)

ji i+1

i

j

(a)

<<j i +1 j =

e

v

v’

(   )i v

(   )ij =

Figure 2: Local rule for the construction of a mobile, applied to each oriented edge e of
an Eulerian map, linking a vertex v to a vertex v′ with respective labels i and j. Either
j = i+ 1 and we do the construction (a) resulting in a labeled vertex with label j connected
by a regular edge to a white vertex and a bud (▶−−) connected to a black vertex, or j ≤ i
and we do the construction (b) resulting in a flagged edge with labels i, j connecting a white
to a black vertex.

A mobile is then constructed from the pointed Eulerian map as follows: we first add a

black (resp. white) vertex at the center of each black (resp. white) face. For each edge

e oriented from v to v′, we do the following construction: if i(v′) = i(v) + 1, we draw a

new edge from v′ to the white vertex at the center of the white face incident to e and

attach a bud (pointing towards e) to the black vertex at the center of the black face

incident to e (see Fig. 2-(a)). If i(v′) ≤ i(v), we draw instead a new edge between the

black and white vertices at the center of the black and white faces incident to e and

put labeled flags on both sides of this edge: a flag with label i(v) on the side of v and
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Figure 3: Applying the rules of Fig. 2 to all the edges of a pointed Eulerian map results into
a mobile (right). In red: an edge of type i → i + 1 is in correspondence with a corner at a
labeled vertex with label i+1. In green: an edge of type i → j with j ≤ i is in correspondence
with a flagged edge with labels i, j. In brown: the bud associated to the marked red corner
(see text).

a flag with label i(v′) on the side of v′ (see Fig. 2-(b)). It was shown in [BDG04] that

the graph formed by this newly drawn edges forms a connected plane tree which spans

all the original vertices of the map but the root vertex v0 (see Fig. 3 for an example).

This tree, endowed with all its decorations (buds, flags) and labels forms the desired

mobile.

We arrive at the following definition of mobiles, entirely dictated by their construction

from the associated Eulerian maps.

Definition 2.1 A mobile is a plane tree formed of:

• three types of vertices: black vertices, white vertices and labeled vertices which

carry positive integer labels;

• two types of edges: regular edges and flagged edges which carry pairs of non-

negative integer labels (one on each side of the edge). Regular edges necessarily

connect a white vertex to a labeled one. Flagged edges necessarily connect a black

vertex to a white one.

The labels obey the following local rules around black and white vertices:

• given a black vertex, the sequence of labels on its incident flagged edges, as read

clockwise around this vertex, is non-increasing at the crossing of each flagged edge

and non-decreasing between two consecutive flagged edges.

• given a white vertex, the sequence of labels on its incident flagged edges and
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adjacent labeled vertices, as read clockwise around this vertex, is non-decreasing

at the crossing of each flagged edge, constant between a flag and the next flag or

labeled vertex, and decreasing by 1 between a labeled vertex and the next flag or

labeled vertex.

• black vertices are decorated by buds by putting exactly j − i buds between two

consecutive flagged edges with consecutive labels i and j (recall that j ≥ i by

definition).

The vertex maps reduced to a single (black, white or labeled) vertex are not considered

as mobiles.

The label rules around black and white vertices directly follow from the mobile edge

construction rules, as described above, applied to the sequence of edges around a given

black or white face in an Eulerian map. Note that a mobile necessarily contains a

flagged edge (since the rule around a white vertex cannot be fulfilled if all its incident

edges are regular), hence it contains a black and a white vertex (since a flagged edge

connects a black to a white vertex). Note also that, from the label rules, the minimum

label imin on a mobile is necessarily carried by a flag and satisfies imin ≥ 0. Note

finally that buds clearly constitute a redundant information but we introduce them

to guaranty that the total degree of a black vertex (counting buds as incident half

edges) is identical to that of the associated black face. We have the following bijection

[BDG04]:

Theorem 2.1 Bouttier Di Francesco Guitter (BDG) bijection

The above mapping is a bijection between pointed Eulerian maps and mobiles with

minimum label imin = 0 (or equivalently mobiles having at least a flag labeled 0).

In particular, pointed Eulerian maps with a marked edge e oriented from v to v′ at

respective oriented distance i(v) and i(v′) from the root vertex are in bijection with

mobiles having at least a flag labeled 0 with a marked flagged edge with flag labels i(v)

and i(v′) if i(v′) ≤ i(v), or with a marked corner at a labeled vertex with label i(v′) if

i(v′) = i(v) + 1 (see Fig. 3).

Note that the constraint that the mobile has minimum label imin = 0 follows from the

fact that any edge oriented towards the root vertex will create a flagged edge with one

of its labels equal to 0. For convenience, this constraint is not included in the above

definition of mobiles, whose minimal label is only required to be non-negative. We will

see later how to simply re-instore the constraint when necessary. Clearly the rules

around black and white vertices are invariant by a global shift of the labels. We have

thus the following corollary

Corollary 2.1 Given some fixed integer imin ≥ 0, mobiles whose minimum label is imin

are in bijection with pointed Eulerian maps.
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The correspondence between these mobiles and pointed Eulerian maps is moreover ob-

tained by exactly the same construction as above providing we now endow the Eulerian

maps with a new labeling of vertices equal to their oriented geodesic distance from the

root vertex plus imin.
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Figure 4: Top right: reconstruction of the vertex labels around a black face from the envi-
ronment of the associated black vertex in the mobile. Bottom right: reconstruction of the
vertex labels around a white face from the environment of the associated white vertex in the
mobile.

To conclude this section, let us mention that the labels around black or white vertices in

a mobile are simply two different but equivalent codings for sequences of labels satisfying

(2.1) along the oriented edges around a black or a white face in a pointed Eulerian

map. At a white vertex, the sequence is trivially recovered by going counterclockwise

around a vertex and ignoring the first encountered label of each flagged edge (which

is identical to the preceding label counterclockwise). In particular the degree of the

associated white face is also, as it should, the degree of the white vertex on the mobile

(see Fig. 4 for an example). Around a black vertex, this sequence is recovered instead by

considering the clockwise cyclic sequence of labels i1, i
′
1, i2, i

′
2, · · · ip, i′p, where ik → i′k

denotes the passage from a flagged edge to the next (hence i′k ≥ ik) and i′k → ik+1

denotes the crossing of a given flagged edge (hence ik+1 ≤ i′k with the convention

ip+1 = i1), and replacing each step ik → i′k by a sequence of i′k − ik steps, each with

increment +1 (so as to obtain the sequence i1, i1+1, i1+2, · · · i′1, i2, i2+1, i1+2, · · · i′2,
· · · ip, ip + 1, i′1 + 2, · · · i′p ). In particular, the degree of the associated black face in the

Eulerian map is given by
∑p

k=1(i
′
k − ik +1), which is precisely, as it should, the degree

of the black vertex (counting the buds) (see Fig. 4 for an example).
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2.2 Enumeration of mobiles

We now come to the enumeration of mobiles. More precisely we shall consider gener-

ating functions for mobiles with a weight gk per white vertex of degree k and a weight

g̃k per black vertex of degree k. From the BDG bijection, this amounts to weigh the

Eulerian maps with a weight gk (resp. g̃k) per white (resp. black) face of degree k. As

i jB

ij

i jW Ri

ij

i

Figure 5: Schematic picture of a black half-mobile enumerated by Bij , a white half-mobile
enumerated by Wij and a mobile with a marked corner (or a single labeled vertex), as enu-
merated by Ri.

was done in [BDG04], we shall consider three families of generating functions:

• the generating functions Ri (i ≥ 1) for mobiles with a marked corner at a labeled

vertex with label i. For convenience, we incorporate also in Ri a conventional

additional term 1, which we interprete as enumerating the vertex map made of a

single isolated vertex with label i (recall that this vertex map is not considered

as a mobile – the generating function for genuine mobiles is thus Ri − 1).

• the generating functions Wi,j (0 ≤ j ≤ i) for white half-mobiles as obtained by

cutting a mobile at a flagged edge with labels i and j and keeping only the part of

the mobile lying on the side of its white incident vertex. Note that we keep also

in the half-mobile the flagged edge itself with its labels i and j so that i denotes

the flag label on the left when going towards the white vertex (see Fig. 5).

• the generating functions Bi,j (0 ≤ i ≤ j) for black half-mobiles as obtained by

cutting a mobile at a flagged edge with labels i and j and keeping only the part

of the mobile lying on the side of its black incident vertex. Again we keep in the

half-mobile the flagged edge itself with its labels i and j so that i denotes the

flag label on the left when going towards the black vertex (see Fig. 5).

The generating functions Ri, Bi,j and Wi,j satisfy a closed set of equations that deter-

mine them completely as power series in the weights gk and g̃k. These equations are
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Figure 6: A schematic picture of the Equations (2.3) giving the expressions of Bij and Wij

respectively.

best expressed upon introducing the semi-infinite matrices P and Q with entries

Pi,j =


Bi,j if j ≥ i
Ri if j = i− 1
0 if j < i− 1

Qi,j =


Wi,j if j ≤ i
1 if j = i+ 1
0 if j > i+ 1

(2.2)

for i, j ≥ 0. We may then write the following two equations:

Bi,j =
∑
k≥1

g̃k(Q
k−1)i,j for i ≤ j,

Wi,j =
∑
k≥1

gk(P
k−1)i,j for i ≥ j. (2.3)

The first equation relies simply on a census of all possible environments of the first

encountered black vertex in a black half mobile enumerated by Bi,j (see Fig. 6): if

this vertex has degree k in the decorated mobile (hence receives the weight g̃k), this

environment is coded by a path of length k− 1 from “height” i to height j (the height

being the label around the associated black face). The height at each elementary step

either increases by 1, say from n to n′ = n+ 1, giving rise to a bud with no weight (=

multiplicative factor 1) or decreases weakly, say from m to m′ ≤ m, giving rise to a

white half mobile enumerated byWm,m′ . The sum of factors over all path configurations

is clearly counted by (Qk−1)i,j, hence the formula. As for the environments of the first

encountered white vertex in a white half mobile enumerated by Wi,j: if this vertex has

degree k (hence receives the weight gk), it is again coded by path of length k − 1 from

height i to height j, whose height at each elementary step may now either decrease

by 1, say from n to n′ = n − 1, giving rise to a mobile with a distinguished corner

at a vertex labeled n or to an isolated vertex labeled n (the two possibilities being
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enumerated by Rn) or it may increase weakly, say from m to m′ ≥ m, giving rise to a

black half mobile enumerated by Bm,m′ (see Fig. 6). The sum of these factors over all

path configurations is now counted by (P k−1)i,j.
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i
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m
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Figure 7: Left: the mobiles enumerated by Ri form a sequence of mobiles planted at a
univalent labeled vertex with label i, counted by Li. This implies the relation Ri = 1/(1−Li).
Right: a schematic picture of the relation Li =

∑
k≥1 gk(P

k−1)i−1,i.

To close the system, we must also give the equation for Ri. It is obtained by noting that

the mobiles counted by Ri form a sequence of an arbitrary number of mobiles planted

at a univalent labeled vertex with label i (see Fig. 7-left). Denoting Li the generating

function for these latter mobiles, we may therefore write Ri =
∑

k≥0(Li)
k = 1/(1−Li)

(this expression includes a first term 1 accounting for the vertex map with label i, as

desired). As for Li, it is determined along the same line as before upon inspecting the

possible environments of the white vertex incident to the univalent vertex i: if this

vertex has degree k (hence receives the weight gk), the environment is coded by path

of length k − 1 from height i− 1 to height i and the sum over all path configurations

is therefore now counted by (P k−1)i−1,i. We deduce:

Ri = 1/

(
1−

∑
k≥1

gk(P
k−1)i−1,i

)
(2.4)

for i ≥ 1. It is interesting to note that Ri may be alternatively obtained by a another

equation, now depending explicitly on the g̃k’s instead, namely:

Ri = 1 +
∑
k≥1

g̃k(Q
k−1)i,i−1 (2.5)

for i ≥ 1. This equation may be understood combinatorially as follows: Ri−1 enumer-

ates mobiles with a marked corner at a vertex with label i. If we call imin the minimum
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label of any such mobile, this mobile is associated with a pointed Eulerian map having

a marked oriented edge e pointing from a vertex v with label i− 1 to a vertex v′ with

label i under the labeling by oriented distances from the root vertex plus imin. This

oriented edge selects in turn a bud in the mobile, namely the bud incident to the black

vertex at the center of the black face incident to e and pointing towards e. We may

therefore re-root the mobile at this bud (see Fig. 3 for an example of such re-rooting)

and recover Ri − 1 by enumerating these bud-rooted mobiles. The environment of the

black vertex incident to the root bud, of arbitrary degree k (hence weighted by g̃k) is

coded by a path of length k − 1 from height i to height i− 1 (as obtained by reading

the surrounding labels clockwise around the associated black face in the map, starting

from the distinguished bud). Such environments are enumerated by (Qk−1)i,i−1, leading

directly to the above expression for Ri.

2.3 Computation of [P,Q]

The equations (2.2)–(2.3) may be rephrased as(
P −

∑
k≥1

g̃kQ
k−1

)
+

= 0

(
Q−

∑
k≥1

gkP
k−1

)
−

= 0 (2.6)

where (·)+ (resp. (·)−) denotes the upper (resp. lower) part of the matrix at hand,

namely the upper (resp, lower triangular) matrix obtained by keeping only those ele-

ments (·)i,j with j ≥ i (resp. i ≥ j). This implies that (P −
∑

k g̃kQ
k−1) is a strictly

lower triangular matrix, whose commutator with Q is therefore a lower triangular ma-

trix. We deduce that [P,Q] is a lower triangular matrix. Similarly, (Q −
∑

k gkP
k−1)

is a strictly upper triangular matrix, whose commutator with P is thus an upper tri-

angular matrix. We deduce that [P,Q] is also an upper triangular matrix, hence it is

diagonal. We arrive at the following property:

Proposition 2.1 [P,Q] is a diagonal matrix with diagonal elements

[P,Q]i,i = −δi,0 = −(e0e
t
0)i,i (2.7)

where ek is the vector whose coordinates are (ek)j = δk,j

Proof:
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The diagonal elements may be computed via:

[P,Q]i,i = [P −
∑
k≥1

g̃kQ
k−1, Q]i,i

=


(P −

∑
k≥1

g̃kQ
k−1)i,i−1Qi−1,i −Qi,i+1(P −

∑
k≥1

g̃kQ
k−1)i+1,i for i ≥ 1

−Q0,1(P −
∑
k≥1

g̃kQ
k−1)1,0 for i = 0

=


(Ri −

∑
k≥1

g̃k(Q
k−1)i,i−1)− (Ri+1 −

∑
k≥1

g̃k(Q
k−1)i+1,i) for i ≥ 1

−(R1 −
∑
k≥1

g̃k(Q
k−1)1,0) for i = 0

= −δi,0

(2.8)

where we used (2.5). □

We could have obtained the same result via:

[P,Q]i,i = [P,Q−
∑
k≥1

gkP
k−1]i,i

=


Pi,i−1(Q−

∑
k≥1

gkP
k−1)i−1,i − (Q−

∑
k≥1

gkP
k−1)i,i+1Pi+1,i for i ≥ 1

−P0,1(Q−
∑
k≥1

kgkP
k−1)1,0 for i = 0

=


Ri(1−

∑
k≥1

gk(P
k−1)i−1,i)−Ri+1(1−

∑
k≥1

gk(P
k−1)i,i+1) for i ≥ 1

−R1(1−
∑
k≥1

gk(P
k−1)0,1) for i = 0

= −δi,0

(2.9)

upon using now (2.4).

Combinatorial interpretation

Interestingly enough, eq. (2.7) has a nice combinatorial explanation as follows: consider

the generating function Hi of pointed Eulerian maps (with weights gk – resp. g̃k – per

white face – resp. black face of degree k) with a marked oriented edge e pointing away

from a vertex at distance i from the root vertex (see Fig. 8). The marking of this edge

is equivalent, in the associated mobile, to either the marking of a flagged edge with

labels i and j ≤ i if the extremity of e is at distance j ≤ i from the root vertex, or to

the marking of a corner at a labeled vertex with label i + 1 if the extremity of e is at

distance i+ 1 from the root vertex. The first case corresponds to mobiles enumerated

by
∑

j≤iWi,jBj,i if we ignore the constraint that the mobiles in bijection with maps
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Figure 8: Schematic picture of Hi and Ki (left) and of the relation Hi = Ki (right).

must have their minimum label equal to 0, while the second case corresponds to mobiles

enumerated by Ri+1−1 (recall that Ri+1 incorporates a conventional term 1 which does

not account for any acceptable mobile). The constraint of having minimum label 0 is

automatic if i = 0 but, if i ≥ 1, we must eliminate those mobiles having a minimum

label larger than 1. Starting from these mobiles, we still get an acceptable mobile

by shifting all the labels by −1. In other words, the mobiles to be subtracted are

enumerated by
∑

j≤i−1Wi−1,jBj,i−1 +Ri − 1. We end up with

Hi =



(
Ri+1 − 1 +

∑
j≤i

Wi,jBj,i

)
−

(
Ri − 1 +

∑
j≤i−1

Wi−1,jBj,i−1

)
for i ≥ 1

R1 − 1 +
∑
j≤0

W0,jBj,0 for i = 0

=


(QP )i,i − (QP )i−1,i−1 for i ≥ 1

(QP )0,0 − 1 for i = 0

(2.10)

Consider now the generating function Ki of pointed Eulerian maps with a marked

oriented edge e pointing towards a vertex at distance i from the root vertex (see Fig. 8).

The marking of this edge is now equivalent, in the associated mobile, to either the

marking of a flagged edge with labels i and j ≥ i if the origin of e is at distance j ≥ i

from the root vertex, or to the marking of a corner at a labeled vertex with label i

if the origin of e is at distance i − 1 from the root vertex. The first case corresponds

to mobiles enumerated by
∑

j≥iBi,jWj,i if we ignore the constraint that the desired

mobiles must have their minimum label equal to 0, while the second case corresponds

to mobiles enumerated by Ri − 1. Note that this second case is possible only if i ≥ 1.

The constraint of having minimum label 0 is taken into account as above and we end

14



up with

Ki =



(
Ri − 1 +

∑
j≥i

Bi,jWj,i

)
−

(
Ri−1 − 1 +

∑
j≥i−1

Bi−1,jWj,i−1

)
for i ≥ 2

(
R1 − 1 +

∑
j≥1

B1,jWj,1

)
−

(∑
j≥0

B0,jWj,0

)
for i = 1

∑
j≥0

B0,jWj,0 for i = 0

=


(PQ)i,i − (PQ)i−1,i−1 for i ≥ 2

(PQ)1,1 − (PQ)0,0 − 1 for i = 1

(PQ)0,0 for i = 0

(2.11)

Now, on a Eulerian map with its canonical edge orientation, and for each vertex on the

map, there is an equal number of edges oriented away from this vertex and towards

this vertex. Indeed, the orientations alternate when turning around the vertex (whose

degree is even by definition – see Fig. 8). We deduce in particular that

Hi = Ki . (2.12)

Equating the above expressions for Hi and Ki, we obtain

[P,Q]i,i − [P,Q]i−1,i−1 = 0 for i ≥ 2

[P,Q]1,1 − [P,Q]0,0 = 1

[P,Q]0,0 = −1

(2.13)

from which (2.7) follows immediately.

2.4 Mobiles with bounded degrees

From now on, we will assume that our mobiles have black and white vertices with

bounded degrees. More precisely, we impose that the degree of a black vertex is bounded

by p and that of a white vertex bounded by q, where p and q are fixed integers such

that (p − 1)(q − 1) > 1. Clearly those mobiles code for Eulerian maps with bounded

face degrees, with black faces of degree at most p, and white faces of degree at most q.

Note that the degrees of the labeled vertices in the mobiles remain unbounded.

In practice, the degree restriction is achieved in the generating functions Ri, Bij and

Wij by keeping non vanishing gk’s only for 1 ≤ k ≤ q and non vanishing g̃k’s only for

1 ≤ k ≤ p. From now on, it is thus implicitly assumed that

Ri := Ri(g1, . . . , gq, g̃1, . . . , g̃p) for i ≥ 1, (2.14)
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and similarly for Bij (j ≥ i ≥ 0) and Wij (i ≥ j ≥ 0).

From (2.2)–(2.3), we immediately see that Bi,j = 0 for j > i+ p− 1, while Wij = 0 for

j < i − q + 1: the matrix P therefore has one band below the diagonal (with entries

Ri) and p bands on or above the diagonal (with entries Bi,i+k, 0 ≤ k ≤ p − 1), and

the matrix Q has one band above the diagonal (with entries 1) and q bands on or

below the diagonal (with entries Wi,i−k, 0 ≤ k ≤ q − 1). From their interpretation as

mobile generating functions, all these non-vanishing entries are formal power series of

the coupling constants gk and g̃k with non-negative integer coefficients.

Recall that, by definition, the minimum label in a mobile or a half-mobile in non-

negative: let us denote by R
(0)
i (respectively W

(0)
ij and B

(0)
ij ) the generating function of

those mobiles (respectively white and black half-mobiles) in the set enumerated by Ri

(respectively by Wij and by Bij) and whose minimum label is 0. We note that, in a

mobile in the set enumerated by Ri (i ≥ 2) and whose minimum label is positive, we

may shift all labels by −1 and get a mobile in the set enumerated by Ri−1: we deduce

the relations

R1 = R
(0)
1 + 1 ,

Ri = R
(0)
i +Ri−1 for i ≥ 2 .

(2.15)

Similarly we have

Wi,i−k = W
(0)
i,i−k +Wi−1,i−1−k for i ≥ k + 1 and 0 ≤ k ≤ q − 1 ,

Bi,i+k = B
(0)
i,i+k +Bi−1,i−1+k for i ≥ 1 and 0 ≤ k ≤ p− 1 .

(2.16)

Now it is easily seen that, if we fix the numbers mℓ (1 ≤ ℓ ≤ q) of white vertices of

degree ℓ of and the numbers nℓ (1 ≤ ℓ ≤ p) of black vertices of degree ℓ in a mobile,

the maximal difference of labels in this mobile is bounded. This implies that, for i large

enough,[
gm1
1 · · · gmq

q g̃n1
1 · · · g̃np

p

]
R

(0)
i = 0

i.e.
[
gm1
1 · · · gmq

q g̃n1
1 · · · g̃np

p

]
Ri =

[
gm1
1 · · · gmq

q g̃n1
1 · · · g̃np

p

]
Ri−1 .

(2.17)

More precisely, we have the property:

Proposition 2.2 For fixed non-negative integers mℓ (1 ≤ ℓ ≤ q) and nℓ (1 ≤ ℓ ≤ p),

there exist a positive integer i0 := i0(m1, . . . ,mq, n1, . . . , np) and a non-negative integer

r(m1, . . . ,mq, n1, . . . , np) such that

∀i ≥ i0,
[
gm1
1 · · · gmq

q g̃n1
1 · · · g̃np

p

]
Ri = r(m1, . . . ,mq, n1, . . . , np) . (2.18)

Introducing the formal power series

R := R(g1, . . . , gq, g̃1, . . . , g̃p) =
∑

m1,...,mq≥0
n1,...np≥0

r(m1, . . . ,mq, n1, . . . , np)g
m1
1 · · · gmq

q g̃n1
1 · · · g̃np

p ,

(2.19)
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we thus have, as formal power series,

lim
i→∞

Ri = R . (2.20)

The same argument holds for black or white half-mobiles.

Proposition 2.3 For fixed k, 0 ≤ k ≤ q − 1, for fixed non-negative integers mℓ (1 ≤
ℓ ≤ q) and nℓ (1 ≤ ℓ ≤ p), there exist a positive integer jk := jk(m1, . . . ,mq, n1, . . . , np)

and a non-negative integer ak(m1, . . . ,mq, n1, . . . , np) such that

∀i ≥ jk,
[
gm1
1 · · · gmq

q g̃n1
1 · · · g̃np

p

]
Wi,i−k = ak(m1, . . . ,mq, n1, . . . , np) . (2.21)

Introducing the formal power series

αk :=
∑

m1,...,mq≥0
n1,...np≥0

ak(m1, . . . ,mq, n1, . . . , np)g
m1
1 · · · gmq

q g̃n1
1 · · · g̃np

p , (2.22)

we thus have, as formal power series,

lim
i→∞

Wi,i−k = αk . (2.23)

Proposition 2.4 For fixed k, 0 ≤ k ≤ p− 1, for fixed non-negative integers mℓ (1 ≤
ℓ ≤ q) and nℓ (1 ≤ ℓ ≤ p), there exist a positive integer ℓk := ℓk(m1, . . . ,mq, n1, . . . , np)

and a non-negative integer bk(m1, . . . ,mq, n1, . . . , np) such that

∀i ≥ ℓk,
[
gm1
1 · · · gmq

q g̃n1
1 · · · g̃np

p

]
Bi+k,i = bk(m1, . . . ,mq, n1, . . . , np) . (2.24)

Introducing the formal power series

βk :=
∑

m1,...,mq≥0
n1,...np≥0

bk(m1, . . . ,mq, n1, . . . , np)g
m1
1 · · · gmq

q g̃n1
1 · · · g̃np

p , (2.25)

we have, as formal power series,

lim
i→∞

Bi,i+k = βk . (2.26)

The formal power series R, αk and βk are linked via the following identity:

Proposition 2.5 We have

R− 1 =

min(q−1,p−1)∑
k=1

kαkβk. (2.27)
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Proof:

From the relation Ri = R
(0)
i + Ri−1, we deduce that, for i ≥ 0, Ri+1 − 1 =

∑i
j=0R

(0)
j+1

and therefore, from the BDG bijection, Ri+1 − 1 is the generating function for pointed

Eulerian planar maps with a marked oriented edge of type j → j + 1 (after labeling

vertices by their oriented distance from the root vertex) for some j satisfying 0 ≤ j ≤ i.

Taking the i → ∞ limit, we deduce that R − 1 is the generating function for pointed

Eulerian planar maps with a marked oriented edge of type j → j+1 for arbitrary j ≥ 0.

By a similar argument, Wi,i−kBi−k,i enumerates pointed Eulerian planar maps with a

marked oriented edge of type j → j − k for some j satisfying k ≤ j ≤ i. Taking the

i→ ∞ limit, we deduce that αkβk is the generating function for pointed Eulerian planar

maps with a marked oriented edge of type j → j−k for arbitrary j ≥ k. Consider now

a white face f in a pointed Eulerian map and denote by t(f) the number of oriented

edges incident to f that are of type j → j + 1 for some arbitrary unfixed j (i.e., those

oriented edges along which the label increases by 1). Similarly, denote by sk(f) the

number of oriented edges incident to f that are of type j → j − k for some arbitrary

unfixed j (i.e., those oriented edges along which the label decreases by k). In order

to recover the same label after one turn around f , we have the consistency relation

t(f) =
∑min(p−1,q−1)

k=1 k sk(f). Summing over all white faces f and all pointed maps, the

left hand side adds up to R− 1 (enumerating pointed maps with a marked edge along

which the label increases) while the right hand side adds up to
∑min(q−1,p−1)

k=1 kαkβk
(pointed maps with a marked edge along which the label decreases by k, weighted by

k and summed over k). The desired identity (2.27) follows immediately. □

2.5 Mobiles with a weight g per labeled vertex

We will specialize to the case where g1 = g̃1 = 0 and

gk = g
k−2
2 λk , k = 2, . . . , q ,

g̃k = g
k−2
2 λ̃k , k = 2, . . . , p .

(2.28)

In the Eulerian map language this corresponds to forbidding faces of degree 1 and giving

a weight λk (resp λ̃k) per white (resp black) face of degree k. Assuming that there are nk

(resp. mk) such faces we also have an overall factor g
∑

k≥2(
k−2
2

)(nk+mk) = gE−F = gV−2

if E,F ,V are the total numbers of edges, faces and vertices. Here we used∑
k≥2

k − 2

2
(nk +mk) =

1

2

∑
k≥2

(k nk + kmk)−
∑
k≥2

(nk +mk) =
1

2
(2E)− F (2.29)

and the Euler relation V − E + F = 2 for planar maps. In the mobile language this

correspond to assigning the weight λk (resp. λ̃k) per white (resp. black) vertex of degree

k (where the degree incorporates the number of buds for black vertices), together with

an overall factor gV−1 where V is total number of labeled vertices in the mobile. Recall
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that we have indeed V = V − 1 since the root vertex of the (pointed) map is absent

from the mobile.

Lets us now show that:

Proposition 2.6 Using the scaling (2.28), the equations (2.3) and (2.5) have a unique

solution for which Ri (i ≥ 1), Wi,j (i ≥ j ≥ 0) and Bi,j (j ≥ i ≥ 0) are formal power

series in
√
g.

This solution is precisely the one that we are looking for when we are interested in the

enumeration of mobiles.

Proof:

The proof is given in Appendix A □.

From its definition as a mobile generating functions we can furthermore infer that

Ri has an expansion in integer powers of g whose general term is polynomial in

λ2, ..., λq, λ̃2, ..., λ̃q and 1
1−λ̃2λ2

with nonnegative integer coefficients. In the case of

half-mobile generating functions Bi,j or Wi,j, it is simple exercise to show that their

overall power in
√
g is √

gj−i−1+2V (2.30)

where V is now the total number of labeled vertices in the half-mobile. In particular if

j− i is even then the expansion of Bi,j and Wi,j has only half-integer powers of g while

if j − i is odd it has only integer powers. Again the general terms in these expansions

are polynomials in λ2, ..., λq, λ̃2, ..., λ̃q and
1

1−λ̃2λ2
with nonnegative integer coefficients.

Remark 2.1 To summarize, for g1 = g̃1 = 0, it will be enough to show that the

expressions that we obtain for the generating functions Ri, Bi,j and Wi,j have power

series expansions in
√
g for the scaling (2.28) to guarantee that they also have power

series expansions in all the gk’s and g̃k’s for k ≥ 2 with positive integer coefficients.

3 Integrable systems

From the preceeding section, the enumeration of mobiles in the restricted context of

bounded degrees boils down to finding the solution of the following problem dictated

by eqs (2.2) to (2.5): find two semi–infinite band matrices, (Qn,m)n,m≥0 having one

band above and q − 1 bands below diagonal, and (Pn,m)n,m≥0 having one band below
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and p− 1 bands above diagonal, such that

Pn,n−1 = Rn, Qn,n+1 = 1,(
P −

p−1∑
k=0

g̃k+1Q
k

)
+

= 0,

(
Q−

q−1∑
k=0

gk+1P
k

)
−

= 0,(
P −

p−1∑
k=0

g̃k+1Q
k

)
n,n−1

= 1,

(
Q−

q−1∑
k=0

gk+1P
k

)
n,n+1

=
1

Rn+1

.

(3.1)

Note that this algebraic problem could possibly have many solutions, but combinatorics

of mobiles guarantees that there is a unique one such that Pn,m and Qn,m are formal

power series of the coupling constants gk and g̃k. Moreover this solution is such that

Rn has a limit as n→ ∞.

As we have seen in Proposition 2.1, these relations imply that Q and P quasi commute,

namely

[P,Q] = −e0et0, (3.2)

which is a Lax equation, much studied in the literature of integrable systems, and

whose general solution [Kri77a; Kri77b; Kri78; BBT03] is expressed through algebraic

geometry. However, we cannot directly use the general solution here, because the

mobiles correspond to highly degenerate initial conditions, and although the method is

very similar to the general solution of [Kri77a; Kri77b; Kri78] a new proof is required

here in the context of mobiles.

Our approach uses the general framework of integrable systems: in the present section,

we shall explain in a sketchy way how necessary conditions lead us to some isospectral

integrable system, in Lax form, and to Baker-Akhiezer functions. Then, we will pro-

ceed backwards In Section 4, and show that specific Baker-Akhiezer functions indeed

produce a solution to our combinatorial problem of counting mobiles.

The reader who is not interested in knowing how the solution emerges from the general

framework of integrable systems may skip this section and go directely to Section 4.

3.1 Isospectral system

Let us describe a number of general facts concerning band matrices.

Definition 3.1 Let A = (Ai,j)i,j≥0 be a semi–infinite band matrix with a+ lines above

diagonal and a− lines below. A semi–infinite vector ψ⃗ is called a right (resp. left)

eigenvector of A with eigenvalue x, iff

Aψ⃗ = xψ⃗ (resp. ψ⃗tA = xψ⃗t ). (3.3)

We shall denote by Vx(A) (resp.Ṽx(A)) the vector space of right (resp. left) eigenvectors

of A for the eigenvalue x.
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We have the following theorem:

Theorem 3.1 If the upper-most and lower-most diagonals of A have non–vanishing

entries, then for any x ∈ C, the space Vx(A) (resp.Ṽx(A)) of right (resp. left) eigen-

vectors of A for the eigenvalue x is a vector space of dimension a+ + a−, namely

dimVx(A) = dim Ṽx(A) = a+ + a−. (3.4)

More precisely, let us call the set of a++a− consecutive integers Wn = {n−a−, . . . , n+
a+ − 1} the nth “window”. Take n ≥ a−. Let ψ⃗ be a right eigenvector, the map

LWn(x) : Vx(A) → CWn

ψ⃗ 7→ {ψi}i∈Wn (3.5)

is an isomorphism.

The map Λn(x) := LWn+1(x)L−1
Wn

(x) from CWn to CWn+1 is a companion matrix of size

a+ + a−, linear in x. More precisely we have, for n ≥ a−:

Λn(x) = LWn+1(x)L−1
Wn

(x) =


0 1 0 . . .
...

. . . 0
0 . . . 0 1

−An,n−a−
An,n+a+

. . . x−An,n

An,n+a+
. . .

−An,n+a+−1

An,n+a+

 . (3.6)

Proof:

If ψ⃗ is a right eigenvector of A for the eigenvalue x, i.e. Aψ⃗ = xψ⃗, then for every

m > 0, we have:

ψm−1 =
1

Am−1+a−,m−1

(
xψm−1+a− −

a++a−−1∑
j=0

Am−1+a−,m+jψm+j

)
, (3.7)

and, for every m ≥ a+ + a− − 1:

ψm+1 =
1

Am+1−a+,m+1

(
xψm+1−a+ −

a++a−−1∑
j=0

Am+1−a+,m−jψm−j

)
. (3.8)

Using these equations, we see that every ψm can be expressed as a linear combination

of ψi with i restricted to the nth window Wn. This implies that the vector space Vx(A)

of eigenvectors of A for the eigenvalue x is isomorphic to CWn , hence has dimension

a+ + a−. The same is true for left eigenspaces.

The fact that Λn(x) is a companion matrix of the form (3.6) is obtained by a simple

computation. □
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As an application, since Q is a band matrix with 1-band above and q− 1 bands below

diagonal, we have

dimVx(Q) = dim Ṽx(Q) = q. (3.9)

Similarly, P is a band matrix with p−1 bands above and 1 band below diagonal, hence

we have

dimVy(P ) = dim Ṽy(P ) = p. (3.10)

Let us now discuss the action of P on Vx(Q). We have:

Theorem 3.2 If ψ⃗ ∈ Vx(Q), then ϕ⃗ = Pψ⃗ satisfies

Qϕ⃗ = xϕ⃗+ ψ0e0 (3.11)

i.e.

∀n ≥ 0 ,
∑
m≥0

Qn,mϕm = xϕn + ψ0δn,0. (3.12)

The map

π : PVx(Q) → Vx(Q)

ϕ⃗ 7→ LWn(x)
−1(ϕn+1−q, . . . , ϕn−1, ϕn) (3.13)

is well defined, and independent of n for n ≥ q. The map π ◦ P is an endomorphism

of Vx(Q).

Proof:

Let ψ⃗ ∈ Vx(Q), we have:

QPψ⃗ = PQψ⃗ + [Q,P ]ψ⃗ = P (xψ⃗) + ψ0e0 = xPψ⃗ + ψ0e0. (3.14)

If ϕ⃗ = Pψ⃗ we thus have:

∀n ≥ 0 ,
∑
m≥0

Qn,mϕm = xϕn + ψ0δn,0. (3.15)

Let n ≥ q, and let
⃗̂
ϕ = LWn(x)

−1(ϕn+1−q, . . . , ϕn−1, ϕn). By definition of LWn(x), we

have
⃗̂
ϕ ∈ Vx(Q). Since n ≥ q then 0 /∈ Wn, and thus ϕ̂m = ϕm for all m ∈ Wn.

Moreover, ϕ̂m and ϕm satisfy the same recursion relation of order q for all m > 0. In

particular they coincide in any other window that doesn’t contain 0. This shows that

π is independent of n for all n ≥ q. □

Definition 3.2 For n ≥ q, we may write π◦P in the canonical basis of CWn as a q×q
matrix, polynomial in x:

Dn(x) := LWn(x). π ◦ P .LWn(x)
−1. (3.16)
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More explicitly, we have:

Dn(x) = diag(Rn−q+1, . . . , Rn)Λn−1(x)
−1 + diag(Pn−q+1,n−q+1, . . . , Pn,n)

+

p−1∑
j=1

diag(Pn−q+1,n−q+1+j, . . . , Pn,n+j) (Λn+j−1(x) . . .Λn+1(x)Λn(x))
(3.17)

with Λn as in eq (3.6) for A = Q, namely

Λn(x) =


0 1 0 . . .
...

. . . 0
0 . . . 0 1

−Qn,n−q+1 −Qn,n−q+2 . . . x−Qn,n

 . (3.18)

Example 3.1 (Quadrangulations (q = 2, p = 4 and g1 = g̃1 = g̃3 = 0))

Dn(x) =
(

x(
Rn−1

Qn−1,n−2
− Qn,n−1Pn−1,n+2) Pn−1,n+2(x

2 − Qn+1,n) + Pn−1,n −
Rn−1

Qn−1,n−2

−Pn,n+3Qn,n−1(x
2 − Qn+2,n+1) − Pn,n+1Qn,n−1 + Rn xPn,n+3(x

2 − Qn+2,n+1 − Qn+1,n) + Pn,n+1x

)
.

(3.19)

Lemma 3.1 Changing the window n→ n+ 1 amounts to performing the conjugation

Dn+1(x) = Λn(x)Dn(x) Λn(x)
−1. (3.20)

Theorem 3.3 (Isospectral system) The eigenvalues of Dn(x) are independent of n

for n ≥ q.

Proof:

This is an immediate consequence of the previous lemma. □

Eq (3.20) is a discrete Lax equation2, and the matrices (Dn(x),Λn(x)) form a Lax

pair with the discrete time n, and spectral parameter x. Dn(x) is an isospectral Lax

matrix (meaning that its spectrum is independent of n). We start entering the realm

of integrable systems.

3.2 Spectral curve

Definition 3.3 (Spectral curve) Let n ≥ q. We define the spectral curve as the

characteristic polynomial of the endomorphism π ◦ P , namely:

E(x, y) := det
(
y IdVx(Q) − π ◦ P Vx(Q)

)
= det(y Idq×q −Dn(x)). (3.21)

The spectral curve is the locus of the eigenvalues of Q and π ◦ P for their common

eigenvectors.

Vx(Q) ∩ Vy(π ◦ P ) ̸= {0} ⇔ E(x, y) = 0. (3.22)

Notice that E(x, y) is a polynomial of x and y, and is independent of n since n ≥ q.

2In a continuous time t, the Lax equation would be ∂tD = [L′,D], which implies that the eigenvalues
are conserved ∂t det(y − D(x, t)) = 0. Here we have its discrete time analog. Indeed the eigenvalues
of Dn(x) are independent of n.
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Definition 3.4 From eqs (2.3) and (2.20) to (2.26) the following limits exist for the

combinatorial solutions that we are looking for:

αk := lim
n→∞

Qn,n−k (3.23)

and

βk := lim
n→∞

Pn,n+k, R := lim
n→∞

Rn. (3.24)

We define the following Laurent polynomials ∈ C[z, 1/z]:

X(z) := z +

q−1∑
i=0

αiz
−i, Y (z) :=

R

z
+

p−1∑
i=0

βiz
i. (3.25)

Definition 3.5 (Potentials) We also define the following polynomials, called the “po-

tentials”:

Ṽ (x) :=

p∑
k=1

g̃k
k
xk, V (y) :=

q∑
k=1

gk
k
yk. (3.26)

Theorem 3.4 The αi, βi can be found as follows: the equations (3.1) imply that the

generating functions X(z) and Y (z) satisfy the system of algebraic equations

Ṽ ′(X(z))+ = Y (z)+ , V ′(Y (z))− = X(z)− ,

Y (z)− Ṽ ′(X(z)) ∼
z→∞

1

z
+O(1/z2),

X(z)− V ′(Y (z)) ∼
z→0

z

R
+O(z2).

(3.27)

The last two conditions are not independent, they can be obtained by computing

− Res z→∞ Y dX = Res z→0 Y dX = 1, and can be reformulated as

min(q−1,p−1)∑
k=1

kαkβk = R− 1. (3.28)

This identity is nothing but Equation (2.27), whose combinatorial interpretation was

given in Section 2.4.

Example 3.2 (Quadrangulations (q = 2, p = 4 and g1 = g̃1 = g̃3 = 0)) Take

Ṽ (x) = g̃4
4
x4 + g̃2

2
x2 and V (y) = g2

2
y2. We have

X(z) = z + α1z
−1 , Y (z) =

R

z
+ β1z + β3z

3. (3.29)

They have to satisfy:

β3 = g̃4, β1 = 3g̃4α1 + g̃2, α1 = Rg2, α1β1 = R− 1. (3.30)

This gives

Rg2(g̃2 + 3g̃4Rg2) = R− 1 (3.31)
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and thus

R =
1

6g̃4g22

(
1− g̃2g2 −

√
(1− g̃2g2)

2 − 12g22 g̃4

)
. (3.32)

Here we choose the unique branch which is a power series of the coupling constants

(i.e. the minus sign in front of the square-root), namely:

R = 1 + g̃2g2 + g̃22g
2
2 + 3g̃4g

2
2 + . . . (3.33)

Substituting Qn,m → αn−m and Pn,m → βm−n, in (3.17) and (3.18) we see that Dn(x)

and Λn(x) have large n limits:

Λ∞(x) =


0 1 0 . . .
...

. . . 0
0 . . . 0 1

−αq−1 −αq−2 . . . x− α0

 (3.34)

D∞(x) = RΛ∞(x)−1 +

p−1∑
k=0

βkΛ∞(x)k. (3.35)

Theorem 3.5 (Spectral curve as a resultant) (x, y) ∈ C×C belongs to the spec-

tral curve iff there exists z ∈ C∗ such that x = X(z) and y = Y (z):

{(x, y) | E(x, y) = 0} = {(X(z), Y (z)) | z ∈ C∗}. (3.36)

Since it can be parametrized by a complex variable, this implies that the spectral curve

is a genus zero Riemann surface. As a consequence we have

E(x, y) = Resultant(zq−1(X(z)− x), z(Y (z)− y)) (3.37)

namely

E(x, y) = 1

αq−1

det



1 α0 − x α1 . . . αq−1

. . . . . . . . .

1 α0 − x α1 . . . αq−1

βp−1 . . . β0 − y R
. . . . . . . . .

βp−1 . . . β0 − y R
βp−1 . . . β0 − y R


(3.38)

with p lines in the upper part and q lines in the lower part.

Proof:

By definition, the resultant of two polynomials vanishes if and only if they have a

common zero. The determinant form (3.38) is the standard formula for the resul-

tant. Notice that if z is a common zero of X(z) − x and Y (z) − y, then the vector
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(zp+q−1, . . . , z, 1) is in the kernel of the resultant matrix, and vice-versa, any vector in

the kernel must be of that form. □

The two poles at z = ∞ and z = 0 with respective asymptotics Y ∼ Ṽ ′(X) and

X ∼ V ′(Y ) imply that the spectral curve must be of the form

E(x, y) = −1

gq

(
(Ṽ ′(x)− y)(V ′(y)− x)−

p−2∑
i=0

q−2∑
j=0

Ci,jx
iyj

)
. (3.39)

Moreover, the condition (3.28) implies that Cp−2,q−2 = gqg̃p.

Definition 3.6 (Newton polytope) Let us write

E(x, y) =
∑

(i,j)∈N

Ei,jxiyj. (3.40)

where N ⊂ {0, . . . , p} × {0, . . . , q} is a finite set of integer points in Z2, called the

Newton polytope of E.

Remark that E0,q = 1, Ep,0 = g̃p
gq
, Ei,q−1 =

gq−1δi,0−g̃i+1

gq
, Ep−1,j =

g̃p−1δj,0−gj+1

gq
, and

Ep−2,q−2 = g̃p are trivial functions of the coupling constants gk and g̃k.

The remaining N = (p− 1)(q− 1)− 1 coefficients Ei,j with i ≤ p− 2 and j ≤ q− 2 and

(i, j) ̸= (p− 2, q − 2), are non-trivial combinations.

In general the points (i, j) ∈ N are called as follows:

• if (i + 1, j + 1) is on the boundary or outside of the convex envelope of N , then

Ei,j is called a Casimir. It is a rational fraction of the coefficients gi, g̃i.

• if (i + 1, j + 1) is strictly inside the convex envelope of N , then Ei,j is called a

conserved Hamiltonian.

Proposition 3.1 (Conserved quantities) The coefficients of Ei,j with (i+ 1, j + 1)

strictly inside the convex envelope of N , written as polynomials of the Qi,j’s and Pi,j’s

using eq (3.21), i.e. –after elimination– as polynomials of the Ri’s, are thus conserved

quantities. In fact these generate ALL the conserved quantities.

Proof:

Since E(x, y) as given by eq (3.21) is actually independent of n for n ≥ q, it is clear that

all Ei,j are conserved quantities. The restriction of being inside the convex envelope, is

just because those that are outside (the so called Casimirs) are independent of the Qi,j

or Pi,j: they are obvious constants. The fact that these generate all conserved quantities

is a classical result in integrable systems, and outside the scope of this article, we admit

it here. □
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Example 3.3 (Quadrangulations (q = 2, p = 4 and g1 = g̃1 = g̃3 = 0)) From

eq (3.19), we have

TrDn(x) = x

(
Rn−1

Qn−1,n−2

−Qn,n−1Pn−1,n+2 − Pn,n+3(Qn+2,n+1 +Qn+1,n) + Pn,n+1

)
+x3 Pn,n+3 (3.41)

detDn(x) =
(
RnPn−1,n+2Qn+1,n −

Rn−1Pn,n+1Qn,n−1

Qn−1,n−2

+
Rn−1Pn,n+3Qn,n−1Qn+2,n+1

Qn−1,n−2

+Pn−1,nPn,n+1Qn,n−1 − Pn−1,n+2Pn,n+1Qn,n−1Qn+1,n

−Pn−1,nPn,n+3Qn,n−1Qn+2,n+1 + Pn−1,n+2Pn,n+3Qn,n−1Qn+1,nQn+2,n+1

−RnPn−1,n +
Rn−1Rn

Qn−1,n−2

)
+

x2

Qn−1,n−2

(
−RnPn−1,n+2Qn−1,n−2 −Rn−1Pn,n+3Qn,n−1

−Rn−1Pn,n+3Qn+1,n −Rn−1Pn,n+3Qn+2,n+1

+Pn−1,nPn,n+3Qn−1,n−2Qn,n−1 +Rn−1Pn,n+1

)
+x4

Rn−1Pn,n+3

Qn−1,n−2

(3.42)

There are thus five invariants (the coefficients of x and x3 in Tr Dn(x) and the coef-

ficients of x0, x2, x4 in detDn(x)), but some of them are trivialy independent of n, for

instance Pn,n+3 = g̃4 and Qn,n−1/Rn = g2 .

Proposition 3.2 (Left eigenvectors) We could have proceeded in the same way with

left eigenvectors in Ṽx(Q), and in the windows W̃n = {n− 1, n, n+1, . . . , n+ q− 2} =

Wn+q−2 for n ≥ 1, and define

D̃n(x) = LW̃n
(x)π̃ ◦ P tLW̃n

(x)−1 (3.43)

where π̃ is defined as:

π̃ : P tṼx(Q) → Ṽx(Q)

ϕ⃗ 7→ LW̃n(x)−1(ϕn−1, . . . , ϕn+q−2) (3.44)

such that the map π̃ ◦ P t is an endomorphism of Ṽx(Q). This yields the same spectral

curve

det(y Idq×q − D̃n(x)) = det(y Idq×q −Dn(x)) = E(x, y). (3.45)

Proof:

Let Ẽ(x, y) = det(y−D̃n(x)). For the same reason as for E(x, y), it is also independent

of n for n large enough, and can thus be obtained from the large n limit: in this limit

it is the same as E(x, y). □
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Remark 3.1 Changing the window n→ n+1 amounts to a conjugation with transition

matrix Λ̃n(x) = LW̃n+1
(x)L−1

W̃n
(x) as in eq (3.6) with a+ = q − 1, a− = 1, namely

Λ̃n(x) =


0 1 0 . . .
...

. . . 0
0 . . . 0 1

− 1
Qn+q−1,n

x−Qn,n

Qn+q−1,n
. . . −Qn+q−2,n

Qn+q−1,n

 . (3.46)

3.3 Branchpoints and double points

For generic (x, y) on the spectral curve we have that

dimVx(Q) ∩ Vy(π ◦ P ) = 1. (3.47)

Given x, there are generically q distinct values of z, denoted zi(x), i = 0, 1, . . . , q−1 (the

ordering doesn’t matter, an ordering can be defined locally in each simply connected

open domain of the spectral curve not containing singularities of X or X−1), such that

X(zi(x)) = x , {z0(x), z1(x), . . . , zq−1(x)} = X−1(x). (3.48)

Branch points

There exist non–generic points at which the zi(x) are not distinct: these are called

branchpoints. There are q branchpoints, denoted a0, . . . , aq−1 on the spectral curve,

which are the q solutions of:

X ′(ai) = 0. (3.49)

Generically branchpoints are simple, i.e. X ′(z) has a simple zero at z = ai. From now

on, we assume that the coupling constants gk and g̃k are generic and all branchpoints

are simple. The case of non-simple branchpoints is similar with more technical details,

and anyway it can be obtained by analytic continuation.

Simple branchpoints are also solutions of

Ey(X(ai), Y (ai)) := ∂yE(X(ai), Y (ai)) = 0. (3.50)

Double points

There also exist non–generic points at which the zi(x) are distinct, but the Y (zi(x))

are not distinct, these are called double points. Double points are pairs (wa, w̄a) such

that:

X(wa) = X(w̄a) , Y (wa) = Y (w̄a) and wa ̸= w̄a. (3.51)

By convention, we shall call wa the one with the lowest modulus

|wa| ≤ |w̄a|, (3.52)
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and for generic gk’s and g̃k’s we have |wa| < |w̄a|, that we shall assume in the following.

Double points are also solutions of

Ey(X(wa), Y (wa)) = 0 = Ey(X(w̄a), Y (w̄a)), (3.53)

as well as

Ex(X(wa), Y (wa)) = 0 = Ex(X(w̄a), Y (w̄a)). (3.54)

Let N be the number of double points and define

∆(z) :=
N∏
a=1

(z − wa) , ∆̄(z) :=
N∏
a=1

(z − w̄a). (3.55)

They are such that

Lemma 3.2 The number of double points is

N = (p− 1)(q − 1)− 1, (3.56)

and

zN−1Ey(X(z), Y (z)) = (g̃p)
q−1∆(z) ∆̄(z)X ′(z) . (3.57)

Proof:

The left hand side of eq (3.57) is a Laurent polynomials of z, it could have neg-

ative powers of z. As z → 0 we have X(z) ∼ αq−1z
1−q and Y (z) ∼ R/z, and

Ey(x, y) = (q − 1)Ep−1,q−1x
p−1yq−2(1 + o(1)) which behaves as Ey(X(z), Y (z)) ∼

(q − 1)Ep−1,q−1α
p−1
q−1R

q−2z−(p−1)(q−1)z−(q−2). If we define N = (p − 1)(q − 1) − 1, we

see that

zN+q−1Ey(X(z), Y (z)) (3.58)

is a polynomial of z, it has no negative powers, and is not vanishing at z = 0. Moreover,

at z → ∞, we have X(z) = O(z1) and Y (z) = O(zp−1), so it behaves like

O(zN+q−1X(z)p−1Y (z)q−2) = O(zN+q−1zp−1z(p−1)(q−2)) = O(z2N+q). (3.59)

In other words, zN+q−1Ey(X(z), Y (z)) is a polynomial of z of degree 2N + q.

Its zeros must be either the branch-points, i.e. the q zeros of the polynomial zqX ′(z),

or the double points. This implies that there are N pairs of double points. We have

that

zN+q−1Ey(X(z), Y (z)) ∝ zqX ′(z)∆(z)∆̄(z) (3.60)

and

deg∆ = deg ∆̄ = N. (3.61)

□
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Remark: The number N of double points is the number of interior points in the

Newton polytope of E . In fact this is a general result in algebraic geometry: when the

curve has genus zero (it has a rational parametrization), the number of double points

is always equal to the number of interior points of the Newton polytope.

Lemma 3.3 For a = 1, . . . , N we have:

w̄N−1
a

∆(w̄a)∆̄′(w̄a)
= − wN−1

a

∆′(wa)∆̄(wa)
. (3.62)

Proof:

Let (x, y) be a point on the spectral curve. For a small deviation around this point

along the spectral curve we have:

0 = E(x+ δx, y + δy) =δxEx(x, y) + δyEy(x, y)

+
1

2

(
(δy)2Eyy(x, y) + 2δyδxExy(x, y) + (δx)2Exx(x, y)

)
+ ...

(3.63)

For double points we have:

Ex = Ey = 0 (3.64)

and the second order expansion vanishes, namely

(δy)2Eyy(X(wa), Y (wa)) + 2δyδxExy(X(wa), Y (wa)) + (δx)2Exx(X(wa), Y (wa)) = 0.

(3.65)

This is a second order equation for the variable δy
δx
, therefore its two solutions satisify:(

δy

δx

)
1

+

(
δy

δx

)
2

= −2
Exy
Eyy

(3.66)

with Exy and Eyy evaluated at (X(wa), Y (wa)) = (X(w̄a), Y (w̄a)).

At the double points (wa,w̄a) the equation (3.66) becomes

Y ′(wa)

X ′(wa)
+
Y ′(w̄a)

X ′(w̄a)
= −2

Exy
Eyy

. (3.67)

Let’s calculate the residue of the one form dx
Ey :

Res
z→wa

dx

Ey
=

X ′(wa)

X ′(wa)Exy + Y ′(wa)Eyy
. (3.68)

Using eq (3.67) we obtain the identity:
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X ′(wa)

X ′(wa)Exy + Y ′(wa)Eyy
= − X ′(w̄a)

X ′(w̄a)Exy + Y ′(w̄a)Eyy
(3.69)

and therefore

Res
z→wa

dx

Ey
= − Res

z→w̄a

dx

Ey
. (3.70)

Using

Res
z→wa

dx

Ey
= Res

z→wa

X ′(z)dz

Ey(X(z), Y (z))
= Res

z→wa

zN−1dz

∆(z)∆̄(z)
=

wN−1
a

∆′(wa)∆̄(wa)
(3.71)

and a similar equation for the residue at w̄a, we obtain the desired equation (3.62).

□

3.4 Asymptotic behavior of eigenvectors

At this stage, we know the spectral curve, i.e. the eigenvalues of Q and π ◦ P .

The so-called “reconstruction method” in integrable systems consists in recovering the

eigenvectors from the spectral curve. Knowing both the eigenvalues and the eigenvec-

tors, we can recover the full operators Q and π ◦ P (or Dn(x)).

The reconstruction method relies on the fact that eigenvectors must be (by Cramer’s

formula), rational functions of z and, if we know their poles and zeros, we can find

them explicitely.

Reconstruction by necessary conditions. Let y be an eigenvalue of Dn(x), i.e.

(x, y) is on the spectral curve E(x, y) = 0, and therefore there exists z such that

x = X(z) and y = Y (z). Let us denote ψ⃗n(z) be the corresponding eigenvector of

Dn(x), i.e.

Dn(x).

ψn−q+1(z)
...

ψn(z)

 = y

ψn−q+1(z)
...

ψn(z)

 . (3.72)

By definition the q × q matrix y Idq×q −Dn(x) is not invertible, but, for generic z, one

can invert its q − 1× q − 1 minors, and the formula of eigenvectors is a Cramer’s like

formula, a ratio of minors:

Proposition 3.3 (Cramer’s formula for eigenvectors)

∀m ∈ Wn , ψm(z) = (−1)n−m ψn(z)
deti ̸=n;j ̸=m(y Idq×q −Dn(x))

deti ̸=n;j ̸=n(y Idq×q −Dn(x))
. (3.73)

It is possible to normalize the eigenvectors so that for every n, ψn(z) is a Laurent

polynomial of z.
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Proof:

Formula (3.73) just comes from solving the linear system (y Idq×q −Dn(x))ψ⃗n = 0. In

the window Wn, one can choose ψn(z) = deti ̸=n;j ̸=n(y Idq×q −Dn(x))fn(z) where fn(z)

is some Laurent polynomial of z. This gives

∀m ∈ Wn , ψm(z) = (−1)n−m fn(z) det
i ̸=n;j ̸=m

(y Idq×q −Dn(x)) (3.74)

which is a Laurent polynomial of z for all m ∈ Wn. Then by the recursion ψm+1(z) =

X(z)ψm(z)−
∑m

k=m−q+1Qm,kψk(z), we see that ψm will remain a Laurent polynomial

for all m ≥ n.

We have
fn+1(z)

fn(z)
= − deti ̸=n;j ̸=n(y Idq×q −Dn(x))

deti ̸=n+1;j ̸=n(y Idq×q −Dn+1(x))
. (3.75)

□

Behavior at double points. If some zk(x) approaches wa, there exists another

branch zk̄(x) approaching w̄a:

zk(x) → wa ⇒ ∃k̄ ̸= k , zk̄(x) → w̄a. (3.76)

Notice from formula (3.73) that, up to a multiplicative constant, the eigenvectors are

rational functions of x and y and therefore, at the double points, the two eigen-

vectors ψ⃗(zk(x)) and ψ⃗(zk̄(x)) tend to be proportional. This implies that when

(x, y) = (X(wa), Y (wa)) = (X(w̄a), Y (w̄a)) is a double point, we have

dimVx(Q) ∩ Vy(π ◦ P ) = 1. (3.77)

This implies

Lemma 3.4

ψn(w̄a)/ψn(wa) = λa (3.78)

is independent of n, for n large enough.

Similarly

ϕn(w̄a)/ϕn(wa) = µa (3.79)

is independent of n, for n large enough.

Proof:

Using eq (3.73) in the window Wn, we see that for all m ∈ Wn we have

ψm(w̄a)

ψn(w̄a)
=
ψm(wa)

ψn(wa)
, (3.80)
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and thus, and choosing m = n− 1, we get

ψm(w̄a)

ψm(wa)
=
ψn(w̄a)

ψn(wa)
=
ψn−1(w̄a)

ψn−1(wa)
. (3.81)

It then holds in all windows larger than n, and therefore by recursion on n, it implies

that λa is independent of n after a certain rank.

The proof for the left eigenvectors ϕn is similar, using the matrix D̃n(x). □

Complete basis of eigenvectors. As we already saw, given x, there are generically

q distinct values of z, denoted zi(x), i = 0, 1, . . . , q − 1 such that X(zi(x)) = x. Then,

for all i, Y (zi(x)) is an eigenvalue of Dn(x), which implies that ψ(zi(x)) ∈ Vx(Q). In

particular the q × q matrix

Ψn(x) :=


ψn−q+1(z

0(x)) ψn−q+1(z
1(x)) . . . ψn−q+1(z

q−1(x))
...

...
ψn−1(z

0(x)) ψn−1(z
1(x)) . . . ψn−1(z

q−1(x))
ψn(z

0(x)) ψn(z
1(x)) . . . ψn(z

q−1(x))

 (3.82)

is a matrix whose columns are eigenvectors of Dn(x), and thus

Dn(x)Ψn(x) = Ψn(x).diag(Y (z0(x)), . . . , Y (zq−1(x))). (3.83)

For generic x, the zi(x) are all distinct, the Y (zi(x)) are all distinct and all those

vectors are linearly independent. We thus have detΨn(x) ̸= 0, and

Dn(x) = Ψn(x).diag(Y (z0(x)), . . . , Y (zq−1(x)))Ψn(x)
−1. (3.84)

By construction we have

Ψn+1(x) = Λn(x)Ψn(x), (3.85)

and thus using (3.18)

detΨn+1(x)

detΨn(x)
= detΛn(x)

= (−1)q−1Qn,n−q+1

= (−1)q−1g̃pRnRn−1 . . . Rn−q+2. (3.86)

Proposition 3.4 (Large n) From (3.34), we see that Λ∞ is the companion matrix of

the Laurent polynomial X(z), i.e. its eigenvalues are zi(x) for i = 0, . . . , q− 1, and its

eigenvectors form the Vandermonde matrix of the 1/zi(x), namely

Λ∞(x) = V(x).Z(x).V(x)−1 (3.87)

where

Z(x) = diag(z0(x), . . . , zq−1(x)), (3.88)
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and

V(x) =


z0(x)1−q z1(x)1−q zq−1(x)1−q

z0(x)2−q z1(x)2−q zq−1(x)2−q

...
...

z0(x)−1 z1(x)−1 zq−1(x)−1

1 1 . . . 1

 . (3.89)

This implies that at large n we have

D∞(x) = V(x)

(
RZ(x)−1 +

q−1∑
k=0

βkZ(x)
k

)
V(x)−1 (3.90)

and

Ψn(z) =
n→∞

V(x)Z(x)nC(x)(1 + o(1)) (3.91)

where C(x) = diag(C(z0(x)), . . . , C(zq−1(x))) is a diagonal matrix, independent of n,

i.e. C(z) is a function of z, independent of n. This is equivalent to

ψn(z) =
n→∞

C(z)zn(1 + o(1)). (3.92)

Similarly we define

Ṽ(x) =


1 1 . . . 1

z0(x)−1 z1(x)−1 zq−1(x)−1

...
...

z0(x)2−q z1(x)2−q zq−1(x)2−q

z0(x)1−q z1(x)1−q zq−1(x)1−q

 . (3.93)

and we get

Φn(z) =
n→∞

Ṽ(x)Z(x)−n−N+1C̃(x)(1 + o(1)) (3.94)

where C̃(x) = diag(C̃(z0(x)), . . . , C̃(zq−1(x))) is a diagonal matrix, independent of n,

i.e. C̃(z) is a function of z, independent of n. This is equivalent to

ϕn(z) =
n→∞

C̃(z)z−n−N+1(1 + o(1)). (3.95)

Proof:

Let’s prove first eq (3.91), we define:

Ψ̃n(x) = Z(x)−nV(x)−1Ψn(z). (3.96)

From eq (3.84) we get

Ψ̃n(x)diag(Y (z0(x)), . . . , Y (zq−1(x)))Ψ̃n(x)
−1 = Z−n(x)V−1(x)Dn(x)V(x)Zn. (3.97)
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For large n, eq (3.97) leads to the commutation relation[
lim
n→∞

Ψ̃n(x), diag(Y (z0(x)), . . . , Y (zq−1(x)))
]
= 0. (3.98)

In addition from eq (3.85) we get

Ψ̃n+1(x)Ψ̃n(x)
−1 = Z−n−1(x)V−1(x)Λn(x)V(x)Zn(x). (3.99)

Taking the limit, eq (3.99) implies that

lim
n→∞

Ψ̃n+1(x)Ψ̃n(x)
−1 = Idq×q. (3.100)

Eq (3.98) implies that, for generic x, at large n Ψ̃n(x) is a diagonal matrix. In addition,

eq (3.100) implies that for large n, Ψ̃n(x) is independent of n. Therefore, Ψ̃n(x) is

equivalent to a diagonal matrix independant of n for each generic x. Hence, we can

write:

Ψ̃n = C(x)(1 + o(1)) (3.101)

where C(x) = diag(C(z0(x)), . . . , C(zq−1(x))) is a diagonal matrix, independent of n.

Equivalently,

ψm(z
j(x)) = (zj(x))mC(zj(x))(1 + o(1)) (3.102)

for all m = n− q+1, ..., n and j = 0, ..., q− 1, recall that the points (zj(x))0≤j≤q−1 are

such that X(zj(x)) = x. Since this is true for every generic point x, we deduce that

ψm(z) = zmC(z)(1 + o(1)) (3.103)

for all z ∈ CP 1.

The same works for matrix wave function of left eigenvectors Φn(x).

□

Remark 3.2 We must have

C(w̄a) = lim
n→∞

λaC(wa)X
n
a = 0, (3.104)

therefore C(w̄a) = 0 and thus C(z) must be proportional to ∆̄(z).

3.5 Reconstruction formula and Baker-Akhiezer functions

Lemma 3.5 We have

ψn(z)

∆̄(z)
= zn

(
1 +

N∑
a=1

Hn,a

z − w̄a

+ Sn(1/z)

)
(3.105)
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where Sn(1/z) ∈ C[1/z]. Moreover

1 + Sn(1/z) =
kn∑
k=0

Sn,n−kz
−k , Sn,n = 1, (3.106)

with kn some fixed integer less than or equal to N .

Similarly

ϕn(z)

∆(z)
= z−n

(
1 +

N∑
a=1

H̃n,a

z − wa

+ S̃n(z)

)
(3.107)

where S̃n(z) ∈ C[z]. Moreover

1 + S̃n(z) =
k̃n∑
k=0

S̃n,n+kz
k , S̃n,n = 1, (3.108)

with k̃n some fixed integer less than or equal to N .

Proof:

We know that ψn(z)’s highest degree is zn+c where c is independent of n. Up to

multiplying by a power of z, we may assume that the highest degree is zn+N and thus

z−nψn(z)/∆̄(z) = 1+O(1/z). It follows that z−nψn(z)/∆̄(z) is a rational fraction of z

that can have simple poles at z = w̄1, . . . , w̄N , and possible poles at z = 0. □

Definition 3.7 Let us set w0 = z and w̄0 = z′, λ0 = µ0 = 1 and let the (N+1)×(N+1)

matrices Sn(z
′, z) and S̃n(z

′, z):

Sn(z, z
′)a,b := δa,b − δa,0δb,0 − λa

wn
a w̄

−n
b

wa − w̄b

(3.109)

S̃n(z, z
′)a,b := δa,b − δa,0δb,0 − µa

wn
a w̄

−n
b

wa − w̄b

, (3.110)

for a, b = 0, . . . , N .

Let us also define

hn := det

(
δa,b − λa

wN
a w̄

−n
b

wa − w̄b

)
a,b=1,...,N

, (3.111)

h̃n := det

(
δa,b − µa

wN
a w̄

−n
b

wa − w̄b

)
a,b=1,...,N

. (3.112)

Lemma 3.6 Let us define the so-called Baker-Akhiezer functions:

ψ̂n(z) := lim
z′→∞

∆̄(z)

hn
z′n+1 detSn(z

′, z) =
zn∆̄(z)

hn
det

(
1

w̄−n
b

z−w̄b

λaw
n
a δa,b − λa

wn
a w̄

−n
b

wa−w̄b

)
(3.113)
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ϕ̂n(z
′) := lim

z→∞

∆(z)

h̃n
z−n+1 det S̃n(z

′, z) =
z′−n∆(z′)

h̃n
det

(
−1 w̄−n

b

µa
wn

a

z′−wa
δa,b − µa

wn
a w̄

−n
b

wa−w̄b

)
.

(3.114)

They satisfy for all a = 1, . . . , N :

ψ̂n(w̄a) = λaψ̂n(wa), ϕ̂n(w̄a) = µaϕ̂n(wa). (3.115)

We have

ψn(z) =

∑kn
k=0 Sn,n−khn−kψ̂n−k(z)∑kn

k=0 Sn,n−khn−k

, ϕn(z) =

∑k̃n
k=0 S̃n,n+kh̃n+kϕ̂n+k(z)∑k̃n

k=0 S̃n,n+kh̃n+k

. (3.116)

Proof:

Eq (3.116) is just the solution of the linear equations ψn(w̄a) = λaψn(wa) for the

residues Hn,a in terms of the Sn,k of (3.105), written as a Cramer’s determinant. The

Cramer’s determinant coefficient of Sn,k is ψ̂n−k. Same thing for ϕn. □

Theorem 3.6 (Reconstruction formula) We have Sn,n−k = δk,0 and S̃n,n+k = δk,0.

This implies that

ψn(z) = ψ̂n(z), ϕn(z) = ϕ̂n(z). (3.117)

Proof:

This theorem is rather important in the theory of integrable systems. Here we shall

admit the proof (in fact all the steps of the proof will appear in Section 4 below). Let

us just give a sketch of the proof:

1) we shall find a scalar product for which < ϕ̂m, ψ̂n >= δn,m. This will be used to

show that X(z)ψ̂n(z) =
∑

m Q̂n,mψ̂m(z) and that Q̂n,m =< ϕ̂m(z), X(z)ψ̂n(z) > is a

band matrix of the size that we want for Q. Similarly Y (z)ψ̂n(z) =
∑

m P̂n,mψ̂m(z)

and P̂n,m =< ϕ̂m(z), Y (z)ψ̂n(z) > is a band matrix of the size that we want for P .

2) The matrices Sn,m (lower triangular) and S̃n,m (upper triangular) are a change of

basis from ψ̂n to ψn and ϕ̂n to ϕn. This means that the band matrices Q and P will

be equal to conjugations of the band matrices Q̂, P̂ by these triangular matrices, and

this will change their band widths unless the triangular matrices are in fact diagonal.

This implies that S and S̃ must be diagonal, and thus identity.

All this scalar product technique is described below in Section 4.

□

Conclusion of this section:

By necessary conditions, we have found that the wave functions ψn and ϕn must take

the forms of determinants (3.113) and (3.114). This allows us to recover Q and P as

we shall see below.
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However, let us remark that these determinantal formulas depend on 2N parameters

λa and µa which we still need to find. Keeping λa and µa arbitrary gives the solution

to the doubly infinite problem with Qn,m and Pn,m doubly infinite band matrices, with

indices n and m ranging from −∞ to +∞. Let us call it the “general solution” of the

eigenvector problem.

In our case we need a “special solution” that satisfies the following constraint: we must

impose that Qn,m and Pn,m have entries only for n ≥ 0 andm ≥ 0. This is a very strong

constraint that fixes the coefficients λa and µa, as we shall see in the next section.

4 Proof of the main theorem

So far, we have seen that the combinatorics of mobiles falls into the framework of

integrable systems, and thus a necessary condition for finding a solution to our combi-

natorics problem is to find a solution of the integrable system (3.1) with appropriate

boundary conditions at n = 0. The purpose of this section is to exhibit explicitly this

“combinatorial” solution.

Even though we will use some of the concepts introduced in Section 3, we will redefine

them when required so that the present section is self-contained (apart from use of

Lemma 3.3).

4.1 Spectral curve and Baker-Akhiezer functions

Our first ingredient is given by the spectral curve and its double points. We recall that

the spectral curve, and more precisely the functions X(z) and Y (z) can be found from

the potentials Ṽ (x) and V (y) of (3.26) as follows:

Proposition 4.1 There exist unique coefficients αj, βj and R, formal series of the

gk’s and the g̃k’s, such that the Laurent polynomials

X(z) = z +

q−1∑
j=0

αjz
−j (4.1)

Y (z) =
R

z
+

p−1∑
j=0

βjz
j (4.2)
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satisfy Theorem 3.4, i.e. obey the equations:

αj =

q∑
k=1+j

gk × [z−j]Y (z)k−1 , j = 0, · · · , q − 1

βj =

p∑
k=1+j

g̃k × [zj]X(z)k−1 , j = 0, · · · , p− 1

min(p,q)−1∑
j=1

jαjβj = R− 1.

(4.3)

Proof:

It is well known that the equations (4.1), (4.2) and (4.3) determine R, the αj’s and

the βj’s as algebraic functions of the gk’s and g̃k’s. We note that there exist in general

several solutions to these equations, but exactly one of them is such that R, the αj’s

and the βj’s are formal power series of the gk’s and the g̃k’s, as easily seen by setting

gk = gλk, g̃k = gλ̃k and developing the equations recursively in powers of g, starting

with R = 1 +O(g), αj = gλj+1 +O(g2) and βj = gλ̃j+1 +O(g2). □

From now on, it will always be implicitly assumed when referring to the spectral curve

that we take for R and for the αj’s and the βj’s this latter “combinatorial” solution.

We recall that the spectral curve has N = (p − 1)(q − 1) − 1 > 0 double points, i.e.

pairs (wa, w̄a) such that

X(w̄a) = X(wa) and Y (w̄a) = Y (wa), (4.4)

and we choose for wa the one with smallest modulus |wa| < |w̄a| (the moduli are

generically not equal). We define Xa = wa/w̄a, and thus |Xa| < 1. We also define

∆(z) :=
N∏
a=1

(z − wa) , ∆̄(z) :=
N∏
a=1

(z − w̄a). (4.5)

We recall that the double points satisfy Lemma 3.3:

wN−1
a

∆′(wa)∆̄(wa)
= − w̄N−1

a

∆(w̄a)∆̄′(w̄a)
. (4.6)

The Baker-Akhiezer functions.

Definition 4.1 We define the N-dimensional vectors

ξn := (w̄n
1 − wn

1 , w̄
n
2 − wn

2 , . . . , w̄
n
N − wn

N) (4.7)

(remark that ξ0 = 0⃗ ). We then define:

hn := ξn+1 ∧ ξn+2 ∧ · · · ∧ ξn+N = det(ξn+1, ξn+2, . . . , ξn+N). (4.8)

39



and, for n ≥ 0, the Baker-Akhiezer functions:

ψn(z) :=
zn+1

hn
(zξn+1 − ξn+2) ∧ (zξn+2 − ξn+3) ∧ · · · ∧ (zξn+N − ξn+N+1),

ϕn(z) := ψ−2−n−N(z) =
z−n−N−1

h−n−N−2

(zξ−n−N−1 − ξ−n−N) ∧ · · · ∧ (zξ−n−2 − ξ−n−1).

(4.9)

As we will see later (eq (4.78)) the above definitions of hn, ψn(z), ϕn(z) match (up

to unimportant global factors) the definitions given in eqs (3.111) to (3.114) for some

appropriate choice of λa and µa.

Remark that h−1 = ... = h−N = 0 and that ψn is ill-defined for n = −1, ...,−N while

ϕn is ill-defined for n = −2, ...,−(N + 1).

Proposition 4.2 (Generically defined) Remark that wa and w̄a are algebraic func-

tions of the gk’s and g̃k’s, therefore h0 is an algebraic functions of the gk’s and g̃k’s. It

is not identically vanishing, this implies that for generic gk’s and g̃k’s, we can assume

that

h0 ̸= 0 (4.10)

(the set of gk’s and g̃k’s such that h0 = 0 is at least of codimension 1 ).

Proof:

We only have to prove that there is some gk’s and g̃k’s for which h0 ̸= 0.

This is a consequence of Proposition 4.9 below in the particular case n = 0 □

Proposition 4.3 (Asymptotic behaviors) We have

ψn(z) ∼
z→∞

zn+N+1, ϕn(z) ∼
z→∞

z−n−1, (4.11)

ψn(z) ∼
z→0

(−1)Nhn+1

hn
zn+1, ϕn(z) ∼

z→0

(−1)Nh−n−N−1

h−n−N−2

z−n−1−N . (4.12)

Lemma 4.1 We have

ψn(w̄a) = ψn(wa) , ϕn(w̄a) = ϕn(wa). (4.13)

Proof:

We will prove it for the case a = 1. The other cases are clearly similar. We have:

ψn(w1) =
wn+1

1

hn
det(w1ξn+1 − ξn+2, ..., w1ξn+N − ξn+N+1) . (4.14)
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Let’s denote by D the determinant det(w1ξn+1−ξn+2, ..., w1ξn+N −ξn+N+1). We denote

also ξn,a = (w̄n
a − wn

a ). We have

D = w̄n+1
1 (w1 − w̄1)

∣∣∣∣∣∣∣∣∣
1 w̄1 . . . w̄N−1

1

w1ξn+1,2 − ξn+2,2 w1ξn+2,2 − ξn+3,2 . . . w1ξn+N,2 − ξn+N+1,2
...

...
w1ξn+1,N − ξn+2,N w1ξn+2,N − ξn+3,N . . . w1ξn+N,N − ξn+N+1,N

∣∣∣∣∣∣∣∣∣

= w̄n+1
1 (w1 − w̄1)

∣∣∣∣∣∣∣∣∣
1 w̄1 + w1 . . .

∑N
i=1w

N−i
1 w̄i−1

1

w1ξn+1,2 − ξn+2,2 w2
1ξn+1,2 − ξn+3,2 . . . wN

1 ξn+1,2 − ξn+N+1,2
...

...
w1ξn+1,N − ξn+2,N w2

1ξn+1,N − ξn+3,N . . . wN
1 ξn+1,N − ξn+N+1,N

∣∣∣∣∣∣∣∣∣
(4.15)

where, to go from the first to the second line we performed recursively the operation

Ci → Ci + w1Ci−1 for each columm Ci. We then have :

D = −w̄n+1
1

∣∣∣∣∣∣∣∣∣
w̄1 − w1 w̄2

1 − w2
1 . . . w̄N

1 − wN
1

w1ξn+1,2 − ξn+2,2 w2
1ξn+1,2 − ξn+3,2 . . . wN

1 ξn+1,2 − ξn+N+1,2
...

...
w1ξn+1,N − ξn+2,N w2

1ξn+1,N − ξn+3,N . . . wN
1 ξn+1,N − ξn+N+1,N

∣∣∣∣∣∣∣∣∣

= −w̄n+1
1

∣∣∣∣∣∣∣∣∣
w̄1 − w1 w̄2

1 − w2
1 . . . w̄N

1 − wN
1

w̄1ξn+1,2 − ξn+2,2 w̄2
1ξn+1,2 − ξn+3,2 . . . w̄N

1 ξn+1,2 − ξn+N+1,2
...

...
w̄1ξn+1,N − ξn+2,N w̄2

1ξn+1,N − ξn+3,N . . . w̄N
1 ξn+1,N − ξn+N+1,N

∣∣∣∣∣∣∣∣∣ .
(4.16)

If we denote by D̃ the determinant det(w̄1ξn+1 − ξn+2, ..., w̄1ξn+N − ξn+N+1), then we

have : ψn(w̄1) =
w̄n+1

1

hn
D̃, with

D̃ = −wn+1
1

∣∣∣∣∣∣∣∣∣
w̄1 − w1 w̄2

1 − w2
1 . . . w̄N

1 − wN
1

w̄1ξn+1,2 − ξn+2,2 w̄2
1ξn+1,2 − ξn+3,2 . . . w̄N

1 ξn+1,2 − ξn+N+1,2
...

...
w̄1ξn+1,N − ξn+2,N w̄2

1ξn+1,N − ξn+3,N . . . w̄N
1 ξn+1,N − ξn+N+1,N

∣∣∣∣∣∣∣∣∣ .
(4.17)

Therefore we obtain ψn(w1) = ψn(w̄1) and similarly ψn(wa) = ψn(w̄a) for any a =

2, . . . , N . Since ϕn = ψ−2−n−N we deduce that ϕn(w̄a) = ϕn(wa) for a = 1, . . . , N . □
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4.2 Scalar product

Definition 4.2 We define the scalar product

< f(z), g(z) >:= − Res
z→∞

f(z)g(z) zN−1dz

∆(z)∆̄(z)
. (4.18)

Lemma 4.2 For any bivariate polynomial P(x, y) ∈ C[x, y], and for any n,m ≥ 0, we

have

< ϕm(z),P(X(z), Y (z))ψn(z) > := − Res
z→∞

ϕm(z)P(X(z), Y (z))ψn(z) z
N−1dz

∆(z)∆̄(z)

= Res
z→0

ϕm(z)P(X(z), Y (z))ψn(z) z
N−1dz

∆(z)∆̄(z)

(4.19)

i.e. the scalar product can be calculated either from the residue at ∞ or by that at 0.

Proof:

Remark that ϕm(z)P(X(z), Y (z))ψn(z) is a Laurent polynomial of z, it has poles only

at z = 0 and at z = ∞. Since the sum of residues at all poles must vanish, we only

need to prove that the residues at all the poles wa and w̄a cancel. In other words it is

enough to prove that

0 = Res
z→w̄a

ϕm(z)P(X(z), Y (z))ψn(z) z
N−1dz

∆(z)∆̄(z)
+ Res

z→wa

ϕm(z)P(X(z), Y (z))ψn(z) z
N−1dz

∆(z)∆̄(z)
.

(4.20)

This is true due to eq (4.6) (Lemma 3.3) and to Lemma 4.1. □

Proposition 4.4 We have:

< ϕm(z), ψn(z) >= δn,m. (4.21)

We also have:

∆(0)∆̄(0) =
hn+1h−n−N−1

hnh−n−N−2

. (4.22)

Proof:

If n < m, from the asymptotic behaviors in Proposition 4.3, we see that at large z

ϕm(z)ψn(z) z
N−1

∆(z)∆̄(z)
∼ O(zN−1+n+N+1−m−1−2N) = O(zn−m−1) = O(z−2) (4.23)

and thus the residue at ∞ vanishes. On the contrary, if n > m, we have at z → 0

ϕm(z)ψn(z) z
N−1

∆(z)∆̄(z)
∼ O(zN−1+n+1−m−1−N) = O(zn−m−1) = O(z0) (4.24)

and thus the residue at 0 vanishes. This implies that < ϕm(z), ψn(z) >= 0 if n ̸= m.
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If n = m, the residue at ∞ gives

< ϕn(z), ψn(z) >= 1. (4.25)

We can also compute the same residue at z → 0: this gives equation (4.22). □

Definition 4.3 Let

W = {π ∈ C[z] | ∀a = 1, . . . N, π(w̄a) = π(wa)} (4.26)

W̃ = {π ∈ C[1/z] | ∀a = 1, . . . N, π(w̄a) = π(wa)} (4.27)

Lemma 4.3 We have the following properties:

∀n ≥ 0, ψn ∈ W and ϕn ∈ W̃. (4.28)

If π ∈ C[z] is a polynomial of degree ≤ N which is vanishing at z = 0 and π ∈ W,

then π = 0, namely:

π ∈ W, π(0) = 0, deg π ≤ N =⇒ π = 0. (4.29)

If π ∈ C[1/z] is a polynomial of degree ≤ N which is vanishing at 1/z = 0 and π ∈ W̃,

then π = 0, namely:

π ∈ W̃, π(∞) = 0, deg π ≤ N =⇒ π = 0. (4.30)

Finally we have:

W = C ⊕ span({ψn}n≥0) , W̃ = C ⊕ span({ϕn}n≥0) (4.31)

dim(C[z]/W) = N , dim(C[1/z]/W̃) = N. (4.32)

Proof:

It is obvious that for n ≥ 0, ψn ∈ W. It is obvious also that a polynomial of degree 0,

i.e. a constant is in W. Let now π ∈ W, such that π(0) = 0 and deg π ≤ N . Let us

write:

π(z) =
N∑
k=1

pkz
k. (4.33)

Since π ∈ W, we must have

Ξ


p1
p2
...
pN

 = 0 where Ξ =
(
ξ1, ξ2, . . . , ξN

)
(4.34)

We have det Ξ = h0 ̸= 0, therefore Ξ is invertible, and thus π = 0.
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Then, if π ∈ W, this implies that π − π(0) is a polynomial that vanishes at 0. If

deg π > N , we can recursively subtract from it a linear combination of ψn(n ≥ 0) that

kills recursively the highest degree terms, and since degψn = N +n+1 and ψn(0) = 0,

end up with a polynomial of degree ≤ N and no constant term. By the result above

it is vanishing. This proves that every π ∈ W can be uniquely written as a linear

combination of ψn’s and a constant.

The same works for W̃. □

4.3 Construction of the operators Q and P

Remark that X(z)ψn(z) is a Laurent polynomial of z. If n ≥ q − 1, then X(z)ψn(z)

has only positive powers of z, hence is a polynomial of z and, since X(wa)ψn(wa) =

X(w̄a)ψn(w̄a), it belongs to W.

Proposition 4.5 (Operator Q) There exist some coefficients Qn,m and some Lau-

rent polynomial Un(z) ∈ C[z, 1/z] of degree ≤ N , such that

X(z)ψn(z) =
∑
m≥0

Qn,mψm(z) + Un(z) (4.35)

with Un(z) = 0 if n ≥ q − 1. We have more precisely

Qn,m =< ϕm(z), X(z)ψn(z) > (4.36)

and in particular

Qn,n+1 = 1 (4.37)

Qn,m = 0 if m < n− q + 1 or m > n+ 1. (4.38)

In other words

X(z)ψn(z) =
n+1∑

m=max(0,n−q+1)

Qn,mψm(z) + Un(z)

Proof:

If n ≥ q−1, we see that X(z)ψn(z) = O(zn+2−q) is a polynomial in W that vanishes at

z = 0, therefore it is a unique linear combination of ψm’s, it can be written
∑

mQn,mψm.

For 0 ≤ n < q−1, we subtract from X(z)ψn(z) the linear combination of Qn,mψm that

makes it of degree ≤ N . The remainder Un(z) is then a Laurent polynomial of degree

≤ N .

In all cases, let us compute the scalar product as the residue at ∞:

< ϕm(z), X(z)ψn(z) > =
∑
k

Qn,k < ϕm(z), ψk(z) > − Res
z→∞

zN−1Un(z)ϕm(z)

∆(z)∆̄(z)
dz
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=
∑
k

Qn,kδk,m − Res
z→∞

O(zN−1+N−m−1−2N)dz

= Qn,m − Res
z→∞

O(z−m−2)dz

= Qn,m. (4.39)

Since X(z) ∼ z at large z, we have X(z)ψn(z) ∼ ψn+1(z), and thus Qn,n+1 = 1 and

Qn,m = 0 if m > n + 1. If n ≥ q − 1 we have at z → 0 X(z)ψn(z) ∼ αq−1O(z
1−q+n+1)

i.e. it can be a linear combination of ψm only with m ≥ n− q + 1, therefore Qn,m = 0

if m < n− q + 1. □

Proposition 4.6 (Operator P ) There exist some coefficients Pn,m such that

Y (z)ψn(z) =
∑
m≥0

Pn,mψm(z) +R
(−1)Nh1

h0
δn,0. (4.40)

We have more precisely

Pn,m =< ϕm(z), Y (z)ψn(z) > (4.41)

and

Pn,m = 0 if m < n− 1 or m > n+ p− 1 (4.42)

i.e., we may write

Y (z)ψn(z) =

n+p−1∑
m=max(0,n−1)

Pn,mψm(z) +R
(−1)Nh1

h0
δn,0.

We also have

Pn,n−1 = Rn = R
hn−1hn+1

h2n
. (4.43)

Proof:

Remark that Y (z)ψn(z) ∈ W. It can be uniquely decomposed as a linear combination

of a constant and the ψm’s. The constant can occur only if n = 0, and is then worth

R (−1)Nhn+1

hn
δn,0.

Remark that < ϕm(z), 1 >= 0, so that

Pn,m =< ϕm(z), Y (z)ψn(z) > . (4.44)

Moreover, Y (z) can at most raise the degree by p− 1 and lower it by 1, which implies

that Pn,m = 0 if m > n+ p− 1 or m < n− 1.

By computing the residue at z → 0, we get

Rn = Pn,n−1 = Res
z→0

h−n−Nhn+1

h−n−N−1hn

zN−1z−N−nzn+1Rz−1(1 +O(z))

∆(z)∆̄(z)
dz
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= R
h−n−Nhn+1

h−n−N−1hn

1

∆(0)∆̄(0)

= R
hn−1hn+1

h2n
. (4.45)

□

Lemma 4.4 For l ≥ 1

Y (z)l ψn(z) =
∑
m

(P l)n,mψm(z) +R
(−1)Nh1

h0

(
Y (z)l − P l

Y (z)− P

)
n,0

. (4.46)

Proof:

Remark that Y (z)l−P l

Y (z)−P
is a polynomial of Y (z), and thus a Laurent polynomial of z. We

prove the lemma by recursion on l. For l = 1, we have
(

Y (z)l−P l

Y (z)−P

)
n,0

= (Id)n,0 = δn,0,

so the statement is true for l = 1. Let us write:

c = R
(−1)Nh1

h0
. (4.47)

Assume that the statement holds for l. Then compute

Y (z)l+1ψn(z) = Y (z)

(∑
k

(P l)n,kψk(z) + c

(
Y (z)l − P l

Y (z)− P

)
n,0

)
=

∑
k

(P l)n,kY (z)ψk(z) + c

(
Y (z)

Y (z)l − P l

Y (z)− P

)
n,0

=
∑
k

(P l)n,k

(∑
m

Pk,mψm + cδk,0

)
+ c

(
Y (z)l+1 − P l+1

Y (z)− P
− P l

)
n,0

=
∑
m

(P l+1)n,mψm + cP l
n,0 + c

(
Y (z)l+1 − P l+1

Y (z)− P
− P l

)
n,0

=
∑
m

(P l+1)n,mψm + c

(
Y (z)l+1 − P l+1

Y (z)− P

)
n,0

(4.48)

which is the statement at rank l + 1. □

Theorem 4.1 Let T = Q− V ′(P ). We have

(X(z)− V ′(Y (z)))ψn(z) =
n+N∑

m=n+1

Tn,mψm(z) (4.49)

where

Tn,m =< ϕm(z), (X(z)− Ṽ ′(Y (z)))ψn(z) > . (4.50)
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In particular, the matrix T is a strictly upper triangular matrix and we have

Tn,n+1 =
1

Rn+1

. (4.51)

Otherwise stated, we have

(Q− V ′(P ))− = 0 and (Q− V ′(P ))n,n+1 =
1

Rn+1

(4.52)

as wanted.

Proof:

Remark that (X(z) − V ′(Y (z))) = z
R
+ O(z2) is a polynomial of z, that vanishes at

z = 0. Therefore (X(z)−V ′(Y (z)))ψn(z) ∈ W and vanishes at z = 0, this implies that

it must be a linear combination of ψm’s. We have

(X(z)− V ′(Y (z)))ψn(z) =
∑
m

Qn,mψm(z)−
∑
m

(V ′(P ))n,mψm(z)

+Un(z)− c

(
V ′(Y (z))− V ′(P )

Y (z)− P

)
n,0

(4.53)

Notice that V ′(Y (z))−V ′(P )
Y (z)−P

is a polynomial of Y (z) of degree at most q − 2, and thus a

Laurent polynomial of z of degree at most (q − 2)(p − 1) = N + 2 − p. If we assume

p ≥ 2, this implies that it can have degree at most N . We have

(X(z)−V ′(Y (z)))ψn(z)−
∑
m

Tn,mψm(z) = Un(z)−c
(
V ′(Y (z))− V ′(P )

Y (z)− P

)
n,0

. (4.54)

Both terms in the right hand side are Laurent polynomials of z, with possibly negative

powers of z, however, since the left hand side has no negative powers, all the negative

powers must cancel. Therefore the right hand side is a polynomial of z, of degree ≤ N .

The left hand side vanishes at z = 0 and is in W, therefore the right hand side must be

a polynomial in W, of degree ≤ N and vanishing at 0, therefore it must vanish. This

implies

(X(z)− V ′(Y (z)))ψn(z) =
∑
m

Tn,mψm(z). (4.55)

By taking the scalar product we have

Tn,m =< ϕm(z), (X(z)− V ′(Y (z)))ψn(z) > . (4.56)

It then follows that Tn,m is strictly upper triangular.

Finally we have:

Tn,n+1 = < ϕn+1(z), (X(z)− V ′(Y (z)))ψn(z) >
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= Res
0

h−n−N−2hn+1

h−n−N−3hn

zN−1z−N−n−2zn+1R−1z1(1 +O(z))

∆(z)∆̄(z)
dz

=
1

R

h−n−N−2hn+1

h−n−N−3hn

1

∆(0)∆̄(0)

=
1

R

h2n+1

hn+2hn

=
1

Rn+1

. (4.57)

□

4.4 The operators Q and P transposed

We redo the same with the left eigenvectors ϕn’s.

Proposition 4.7 (Operator P ) There exist some coefficients P̃n,m and some Laurent

polynomial Ũn(z) ∈ C[z, 1/z] of degree ≥ −N , such that

Y (z)ϕn(z) =
n+1∑

m=max(0,n−p+1)

P̃m,nϕm(z) + Ũn(z) (4.58)

with Ũn(z) = 0 if n ≥ p− 1. We have

P̃n,m =< ϕm(z)Y (z), ψn(z) >=< ϕm(z), Y (z)ψn(z) >= Pn,m (4.59)

hence P̃ is the same matrix as that, P , computed in the previous section.

Proof:

If n ≥ p − 1, we see that Y (z)ϕn(z) = O(z−n+p−2) is a polynomial of 1/z in W̃ that

vanishes at z = ∞, therefore it is a unique linear combination of ϕm’s, it can be

written
∑

m P̃m,nϕm. For 0 ≤ n < p − 1, we subtract to Y (z)ϕn(z) the unique linear

combination P̃m,nϕm that makes it of degree ≤ N in 1/z. The remainder Ũn(z) is then

a Laurent polynomial of degree ≥ −N .

In all cases, let us compute the scalar product as the residue at 0. The remainder does

not contribute and we get

< ϕm(z)Y (z), ψn(z) >= P̃n,m =< ϕm(z), Y (z)ψn(z) >= Pn,m (4.60)

therefore P̃n,m = Pn,m. □

Proposition 4.8 (Operator Q) There exist some coefficients Q̃n,m such that

X(z)ϕn(z) =
n+1∑

m=max(0,n−q+1)

Q̃m,nϕm(z) + δn,0. (4.61)

48



We have

Q̃n,m =< ϕm(z)X(z), ψn(z) >=< ϕm(z), X(z)ψn(z) >= Qn,m (4.62)

hence Q̃ coincides with the matrix Q computed before.

Proof:

Remark that X(z)ϕn(z) ∈ W̃. It can be uniquely decomposed as a linear combination

of a constant and the ϕm’s. The constant can occur only if n = 0, and is then worth

δn,0.

Remark that < 1, ψm(z) >= 0, so that

Qn,m =< ϕm(z)X(z), ψn(z) >=< ϕm(z), X(z)ψn(z) > (4.63)

which then coincides with the matrix found before. □

Lemma 4.5 For l ≥ 1

X(z)l ϕn(z) =
∑
m

(Ql)m,nϕm(z) +

(
X(z)l −Ql

X(z)−Q

)
0,n

. (4.64)

Proof:

Remark that X(z)l−Ql

X(z)−Q
is a polynomial of X(z), and thus a Laurent polynomial of z. We

prove the lemma by recursion on l. For l = 1, we have
(

X(z)l−Ql

X(z)−Q

)
0,n

= (Id)0,n = δn,0,

so the statement is true for l = 1.

Assume that the statement holds for l. Then compute

X(z)l+1ϕn(z) = X(z)

(∑
k

(Ql)k,nϕk(z) +

(
X(z)l −Ql

X(z)−Q

)
0,n

)
=

∑
k

(Ql)k,nX(z)ϕk(z) +

(
X(z)

X(z)l −Ql

X(z)−Q

)
0,n

=
∑
k

(Ql)k,n

(∑
m

Qm,kϕm + δk,0

)
+

(
X(z)l+1 −Ql+1

X(z)−Q
−Ql

)
0,n

=
∑
m

(Ql+1)m,nϕm +Ql
0,n +

(
X(z)l+1 −Ql+1

X(z)−Q
−Ql

)
0,n

=
∑
m

(Ql+1)m,nϕm +

(
X(z)l+1 −Ql+1

X(z)−Q

)
0,n

(4.65)

which is the statement at rank l + 1. □
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Theorem 4.2 Let T̃ = P − Ṽ ′(Q). We have

(Y (z)− Ṽ ′(X(z)))ϕn(z) =
n+N∑

m=n+1

T̃m,nϕm(z). (4.66)

T̃n,m =< ϕm(z), (Y (z)− Ṽ ′(X(z)))ψn(z) > . (4.67)

In particular, T̃ is a strictly lower triangular matrix and we have

T̃n,n−1 = 1. (4.68)

Otherwise stated, we have

(P − Ṽ ′(Q))+ = 0 and (P − Ṽ ′(Q))n,n−1 = 1 (4.69)

as wanted.

Proof:

Remark that (Y (z)− Ṽ ′(X(z))) = 1
z
+O(z−2) is a polynomial of 1/z, that vanishes at

z = ∞. Therefore (Y (z) − Ṽ ′(X(z)))ϕn(z) ∈ W̃ and vanishes at z = ∞, this implies

that it must be a linear combination of ϕm’s. We have

(Y (z)− Ṽ ′(X(z)))ϕn(z) =
∑
m

Pm,nϕm(z)−
∑
m

(Ṽ ′(Q))m,nϕm(z)

+Ũn(z)−

(
Ṽ ′(X(z))− Ṽ ′(Q)

X(z)−Q

)
0,n

. (4.70)

Notice that Ṽ ′(X(z))−Ṽ ′(Q)
X(z)−Q

is a polynomial of X(z) of degree at most p− 2, and thus a

Laurent polynomial of z of degree ≥ −(p − 2)(q − 1) = −(N + 2 − q). If we assume

q ≥ 2, this implies that it can have degree ≥ −N . We have

(Y (z)− Ṽ ′(X(z)))ϕn(z)−
∑
m

T̃m,nϕm(z) = Ũn(z)−

(
Ṽ ′(X(z))− Ṽ ′(Q)

X(z)−Q

)
0,n

. (4.71)

Both terms in the right hand side are Laurent polynomials of z, with possibly positive

powers of z, however, since the left hand side has no positive powers, all the positive

powers must cancel. Therefore the right hand side is a polynomial of 1/z, of degree

≥ −N . The left hand side vanishes at z = ∞ and is in W̃, therefore the right hand

side must be a polynomial of 1/z in W̃, of degree ≥ −N and vanishing at ∞, therefore

it must vanish. This implies

(Y (z)− Ṽ ′(X(z)))ϕn(z) =
∑
m

T̃m,nϕm(z). (4.72)

By taking the scalar product we have

T̃n,m =< ϕm(z), (Y (z)− Ṽ ′(X(z)))ψn(z) > . (4.73)
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It then follows that T̃n,m is strictly lower triangular.

Finally we have:

T̃n,n−1 = < ϕn−1(z), (Y (z)− Ṽ ′(X(z)))ψn(z) >

= − Res
z→∞

zN−1z−nzn+1+Nz−1(1 +O(1/z))

∆(z)∆̄(z)
dz

= − Res
z→∞

z−1(1 +O(1/z))dz

= 1. (4.74)

□

4.5 Conclusion of the proof

The combinatorial mobile enumeration problem has a unique solution for which the

mobile or half-mobile generating functions are power series of the gk’s and g̃k’s, with a

well-defined limit when n→ ∞.

As in Section 2.5, we consider mobiles weighted by a weight g per labeled vertex by

setting g1 = g̃1 = 0 and

gk = g
k−2
2 λk, k = 2, ..., q,

g̃k = g
k−2
2 λ̃k, k = 2, ..., p.

(4.75)

From what precedes, we may now state the following theorem, which is our main result:

Theorem 4.3 (Main theorem) Assume g1 = g̃1 = 0 and gk, g̃k as in eq (4.75).

Then the semi-infinite matrices Q and P whose elements are given by the scalar prod-

ucts

Qn,m =< ϕm(z), X(z)ψn(z) > , Pn,m =< ϕm(z), Y (z)ψn(z) > , n,m ≥ 0, (4.76)

are the solution to the combinatorial mobile problem. In particular, we have the ex-

pression

Rn = R
hn−1hn+1

h2n
, hn = det

1≤a,b≤N

(
w̄n+b

a − wn+b
a

)
. (4.77)

Proof:

That the above scalar products indeed satisfy the equations (3.1) is a direct consequence

of Theorem 4.1 and Theorem 4.2. In order to prove that they correspond to the wanted

combinatorial solution, we only have to verify that they define formal power series in
√
g. In practice, this boils down to prove that the Rn’s are indeed power series in g.
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Let us first discuss a number of alternative expressions for Rn. We first note that, as

proved in Appendix B,

hn =
∏
a<b

(w̄a − w̄b)
N∏
a=1

w̄n+1
a det

1≤a,b≤N

δa,b −
∏
c̸=b

(wa − w̄c)∏
c ̸=a

(w̄a − w̄c)

(
wa

w̄a

)n+1

 (4.78)

and we may therefore write

Rn = R
h̄n−1h̄n+1

h̄2n
, h̄n = det

1≤a,b≤N

(
δa,b −

ρa
wa − w̄b

Xn+1
a

)
(4.79)

with

ρa =

∏
c∈{1,··· ,N}

(wa − w̄c)∏
c∈{1,··· ,N}

c ̸=a

(w̄a − w̄c)
=

∆̄(wa)

∆̄′(w̄a)
. (4.80)

From (4.6), we may also write

ρa = −XN−1
a

∏
c∈{1,··· ,N}

(w̄a − wc)∏
c∈{1,··· ,N}

c ̸=a

(wa − wc)
= −XN−1

a

∆(w̄a)

∆′(wa)
. (4.81)

so that, using the identity

det
1≤a,b≤N

(
δa,b −

ρa
wa − w̄b

Xn+1
a

)
= det

1≤a,b≤N

(
δa,b −

ρa
wb − w̄a

Xn+1
a

)
(4.82)

we get the alternative expression

h̄n = det
1≤a,b≤N

δa,b −
∏
c ̸=b

(w̄a − wc)∏
c ̸=a

(wa − wc)

(
wa

w̄a

)n+N

 . (4.83)

In order to prove that Rn’s are power series in g it is enough to prove that:

Proposition 4.9 For n ≥ 0, the h̄n’s given by (4.79), or equivalently by (4.83) are

formal power series in g.

This is done in Appendix C. □

5 Applications

5.1 The case of general planar map

The case of general, i.e. non necessarily face bicolorable maps, is obtained by special-

izing the black face weights of Eulerian maps to g̃k = δk,2 so that only black faces of
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degree 2 are allowed and receive weight 1. These Eulerian maps are clearly in bijection

with general maps upon squeezing the bivalent black faces into single edges, keeping

only as faces the original white faces. The faces of the general maps are weighted by gk
according to their degree k. Note that the canonical orientation on the Eulerian map

is such that, after squeezing, each edge of the general map is oriented both ways. In

particular, the oriented geodesic distance on the (supposedly pointed) Eulerian map is

the true geodesic distance from the root vertex on the associated pointed general map

(i.e. the graph distance using paths on un-oriented edges). Let us now discuss the enu-

meration of the mobiles corresponding to this specialization, with a special emphasis

on the generating function Ri. Note that, in the map language, we may now interpret

R
(0)
i = Ri −Ri−1 for i ≥ 2 (or simply R

(0)
1 = R1 if i = 1) as the generating function for

pointed general planar maps with a marked edge e connecting a vertex v at distance

i− 1 from the root vertex to a vertex v′ at distance i.

5.1.1 Characteristic equation

From (2.3), we deduce that the only non-vanishing elements of P are

Pi,i−1 = Ri , Pi,i = Bi,i = Wi,i =: Si , Pi,i+1 = Bi,i+1 = Wi,i+1 = 1 (5.1)

with Ri and Si given in terms of P only via (2.4) and

Si =
∑
k≥1

gk(P
k−1)i,i. (5.2)

This in turn implies that

Y (z) =
R

z
+ S + z

X(z) = z +
∑
j≥0

z−j
∑

k≥1+j

gk π−j(k − 1;R, S)
(5.3)

where

πm(n;R, S) := [zm]Y (z)n (5.4)

denotes the generating function for three-step paths, i.e. lattice paths in the discrete

Cartesian plane Z×Z, starting at (0, 0) and ending at (n,m), and made of elementary

up-steps (1, 1), level-steps (1, 0) and down-steps (1,−1) with a weight R attached to

each down-step and a weight S attached to each level-step. Here R and S are obtained

through

R = 1/(1−
∑
k≥1

gkπ1(k − 1;R, S)) , S =
∑
k≥1

gkπ0(k − 1;R, S) (5.5)

which are the large i limit counterparts of eqs. (2.4) and (5.2).
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Writing Y (w) = Y (w̄) with w ̸= w̄, we deduce

0 =
Y (w)− Y (w̄)

w − w̄
= − R

ww̄
+ 1 , (5.6)

hence

w w̄ = R (5.7)

while, writing X(w) = X(w̄), we deduce

0 =
X(w)−X(w̄)

w − w̄
= 1 +

∑
j≥1

w−j − w̄−j

w − w̄

∑
k≥1+j

gk π−j(k − 1;R, S)

= 1−
∑
j≥1

R− j+1
2

 j−1∑
n=−j+1

n=−j+1 [2]

xn

 ∑
k≥1+j

gk π−j(k − 1;R, S)

(5.8)

where we have set

x =
√
X =

√
w

w̄
. (5.9)

Multiplying the above equation by R and writing j = |n| + 1 + 2m (with m ≥ 0), we

deduce the characteristic equation

0 =
∑
n∈Z

Bnx
n with Bn = Rδn,0−

∑
k≥2+|n|

gk

⌊ k−2−|n|
2

⌋∑
m=0

π−2m−|n|−1(k−1;R, S)R−m− |n|
2 .

(5.10)

We may compare this equation with the characteristic obtained in [BG12] by a totally

different approach using continued fractions. There, the characteristic equation has

exactly the same form as above, but with another expression for Bn, namely

Bn =
∑
s≥|n|

Asπ|n|(s;R, S)R
|n|
2 , As = R

(
δs,0 −

∑
k≥s+2

gkπ0(k − s− 2;R, S)

)
,

(5.11)

or equivalently

Bn = Rδn,0 −
∑

k≥2+|n|

gk

k−2∑
s=|n|

π0(k − s− 2;R, S) π|n|(s;R, S)R
1+

|n|
2 . (5.12)

This apparently different expression for Bn turns out to be fully equivalent to our

expression, as a consequence of the identity

k−2∑
s=n

π0(k−s−2;R, S) π|n|(s;R, S) =

⌊ k−2−|n|
2

⌋∑
m=0

π−2m−|n|−1(k−1;R, S)R−m−|n|−1 , (5.13)

proved in Appendix D.
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5.1.2 Expression for Ri

We shall consider here general maps whose face degrees are bounded by a fixed integer,

say q, larger that or equal to 3. In other words, we set gk = 0 for k > q. Then X(z) has

terms ranging from z to z−q+1 and the spectral curve has generically N = q − 2 pairs

of double-points (wa, w̄a), a = 1, · · · q − 2 (with |wa/w̄a| ≤ 1 by convention). These

points satisfy waw̄a = R and we may thus write

wa =
√
Rxa , w̄a =

√
R

xa
, xa =

√
wa

w̄a

(5.14)

where the xa, a = 1, · · · q − 2 are the solutions with modulus less than 1 of the char-

acteristic equation (5.10). Note that Bn = 0 for |n| > q − 2, so the characteristic

equation has 2(q − 2) solutions (the xa and their inverses 1/xa), as expected. Our

general expression (4.77) for Ri reads

Ri = R
hi−1 hi+1

h2i
(5.15)

with R given by (5.5) and with

hi = det
1≤a,b≤q−2

(
w̄i+b

a − wi+b
a

)
=

√
R

q−2
det

1≤a,b≤q−2

(
1

xi+b
a

− xi+b
a

)
.

(5.16)

This allows to write eventually

Ri = R
h̃i−1 h̃i+1

h̃2i
, h̃i = det

1≤a,b≤q−2

(
1

xi+b
a

− xi+b
a

)
. (5.17)

This form is precisely the general expression obtained in [BG12] in the framework of

continued fractions.

5.2 The case of p-constellations

A p-constellation is an Eulerian map whose black faces are all of degree p and whose

white faces have a degree multiple of p. The generating functions for the corresponding

mobiles are obtained by setting g̃k = δk,p (we don’t give a non-trivial weight to black

faces as their number can be obtained from the numbers of white faces of all allowed

degrees) and gk = ĝm if k = pm for some m and gk = 0 otherwise.

5.2.1 Characteristic equation

From (2.3), we now deduce that the only non-vanishing elements of P are

Pi,i−1 = Ri , Pi,i+p−1 = Bi,i+p−1 = (Qp−1)i,i+p−1 = 1 (5.18)
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with Ri in terms of P only via

Ri = 1/

(
1−

∑
m≥1

ĝm(P
pm−1)i−1,i

)
(5.19)

As for Q, its only non-vanishing elements are Qi,i+1 = 1 and Qi,i−pm+1 = Wi,i−pm+1

for m ≥ 1. This leads to

Y (z) =
R

z
+ zp−1

X(z) = z +
∑
j≥1

z−p j+1
∑
m≥j

ĝm π
(p)
−p j+1(pm− 1;R)

(5.20)

where

π(p)
m (n;R, S) ≡ [zm]Y (z)n (5.21)

denotes the generating function for p-paths, i.e. lattice paths in the discrete Cartesian

plane Z× Z, starting at (0, 0) and ending at (n,m) and made of elementary up-steps

(1, p− 1) and elementary down-steps (1,−1), with a weight R attached to each down-

step. Here R itself is obtained through

R = 1/(1−
∑
m≥1

ĝmπ
(p)
1 (pm− 1;R)) (5.22)

which is the large i counterpart of eq. (5.19).

If we now consider p-constellations whose white face degrees are bounded, say by p ℓ

(i.e. ĝm = 0 for m > ℓ and therefore q = p ℓ with the notations of Section 2.4),

then X(z) has terms ranging from z to z−p ℓ+1 and the spectral curve has generically

(p−1)(p ℓ−1)−1 = p(pℓ−ℓ−1) pairs of double-points. Now, writing Y (w) = Y (w̄) and

X(w) = X(w̄) displays a clear p-fold symmetry, so the double-points may be classified

in p-uples of pairs, namely

(waΩ
s, w̄aΩ

s),

{
a = 1, · · · , pℓ− ℓ− 1
s = 0, · · · , p− 1

, Ω = e2iπ/p (5.23)

with again |wa/w̄a| ≤ 1 by convention. Note that we have made implicitly a choice of

pair in each p-uple (the pair corresponding to s = 0) but this choice is irrelevant in

what follows as all quantities involved below are invariant under the p-fold symmetry.

For instance, we define

Xa =
wa

w̄a

(5.24)

which is also waΩ
s/w̄aΩ

s for any s. Writing Y (wa) = Y (w̄a) with wa ̸= w̄a, we get

R = w̄p
a(Xa +X2

a + · · ·+Xp−1
a ) = wp

a(X
−1
a +X−2

a + · · ·+X−p+1
a ) (5.25)
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and we may take the choice

wa =

(
R

X−1
a +X−2

a + · · ·+X−p+1
a

)1/p

w̄a =

(
R

Xa +X2
a + · · ·+Xp−1

a

)1/p

.

(5.26)

Writing X(wa) = X(w̄a), we deduce

0 =
X(wa)−X(w̄a)

wa − w̄a

= 1 +
ℓ∑

j=1

w−p j+1
a − w̄−p j+1

a

wa − w̄a

ℓ∑
m=j

ĝm π
(p)
−p j+1(pm− 1;R)

= 1−
ℓ∑

j=1

R−j(Xa + · · ·+Xp−1
a )

j
2 (X−1

a + · · ·+X−p+1
a )

j
2

 p j−2∑
n=−p j+2

n=−p j+2 [2]

X
n
2
a


×

ℓ∑
m=j

ĝm π
(p)
−p j+1(pm− 1;R)

= 1−
ℓ∑

j=1

R−j(Xa + · · ·+Xp−1
a )j

(
p j−1∑
n=1

X−n
a

)
ℓ∑

m=j

ĝm π
(p)
−p j+1(pm− 1;R)

(5.27)

hence the characteristic equation

Xpℓ−ℓ−1
a =

ℓ∑
j=1

R−j(1 + · · ·+Xp−2
a )j

(
p j−1∑
n=1

Xpℓ−ℓ−1+j−n
a

)
ℓ∑

m=j

ĝm π
(p)
−p j+1(pm− 1;R)

(5.28)

which is a polynomial equation of degree 2(pℓ − ℓ − 1) in Xa (the coefficients in the

sum over n are non-negative), hence gives 2(pℓ − ℓ − 1) solutions, as wanted (the Xa

and 1/Xa for a = 1, · · · , pℓ− ℓ− 1).

As a simple example, consider Eulerian p-angulations, made of black and white faces of

degree p only, with a weight g per white face (the number of black and white faces are

necessarily the same). The corresponding mobiles are obtained by setting ĝm = gδm,1

(so that ℓ = 1) and the characteristic equation reads

Xp−2
a = R−1(1 + · · ·+Xp−2

a )

(
p−1∑
n=1

Xp−1−n
a

)
g Rp−1 , (5.29)

or equivalently

(1 +Xa + · · ·+Xp−2
a )(1 +X−1

a + · · ·+X−p+2
a ) =

1

g Rp−2
(5.30)

with R = 1/(1− g(p− 1)Rp−2) from (5.22). Using this last equation, we may write the

following alternative form for the characteristic equation:

p−2∑
n=1

(p− 1− n)
(
Xn

a +X−n
a

)
=

1

g Rp−1
. (5.31)
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5.2.2 Expression for Ri

Let us denote by N0 = pℓ− ℓ− 1 the number of p-uples of pairs of double-points of the

spectral curve. From the general expressions (4.83) and (4.79) respectively, we have,

Ri = Rh̄i−1h̄i+1/(h̄
2
i ) with the following two equivalent expressions for h̄i:

h̄i = det
1≤a,b≤N0
0≤s,t≤p−1

δa,bδs,t −
∏

(c,u)̸=(b,t)

(w̄aΩ
s − wcΩ

u)∏
(c,u)̸=(a,s)

(waΩs − wcΩu)
X i+N0p

a

 (5.32)

and

h̄i = det
1≤a,b≤N0
0≤s,t≤p−1

δa,bδs,t −
∏

(c,u) ̸=(b,t)

(waΩ
s − w̄cΩ

u)∏
(c,u)̸=(a,s)

(w̄aΩs − w̄cΩu)
X i+1

a

 (5.33)

Using the first expression (5.32) and performing the products, we deduce

h̄i = det
1≤a,b≤N0
0≤s,t≤p−1

(
δa,bδs,t − U

(i)
a,b ×

1

p

p−1∑
r=0

(
Ωt−sVa,b

)r)
(5.34)

where

U
(i)
a,b =

∏
c ̸=b

(w̄p
a − wp

c )∏
c ̸=a

(wp
a − wp

c )
X i+1+p(N0−1)

a , Va,b =
wb

w̄a

. (5.35)

Here we used∏
u̸=t

(w̄aΩ
s − wbΩ

u)∏
u̸=s

(waΩs − waΩu)
= X1−p

a

∏
u̸=t

(Ωs − wb

w̄a
Ωu)∏

u̸=s

(Ωs − Ωu)
=
X1−p

a

p

∏
u̸=t

(1− wb

w̄a

Ωu−s)

=
X1−p

a

p

p−1∑
r=0

(
Ωt−swb

w̄a

)r

.

(5.36)

Now the matrix in eq. (5.34) is a block-circulating matrix, so we may write its deter-

minant as a product of determinants (see Appendix E for details):

h̄i =

p−1∏
s=0

det
1≤a,b≤N0

(
δa,b − U

(i)
a,bV

s
a,b

)
=

p−1∏
s=0

det
1≤a,b≤N0

(
δa,b − U

(i)
a,b

(
wb

w̄a

)s)

=

p−1∏
s=0

∏
1≤b≤N0

ws
b∏

1≤a≤N0

w̄s
a

det
1≤a,b≤N0

(
δa,b

(
wa

w̄a

)−s

− U
(i)
a,b

)
=

p−1∏
s=0

det
1≤a,b≤N0

(
δa,b − U

(i)
a,bX

s
a

)

=

p∏
s=1

ui+s

(5.37)
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with

ui = det
1≤a,b≤N0

δa,b −
∏
c ̸=b

(w̄p
a − wp

c )∏
c ̸=a

(wp
a − wp

c )
X i+p(N0−1)

a

 . (5.38)

Using this factorization of h̄i, we deduce

Ri = R
ui ui+p+1

ui+1 ui+p

(5.39)

with ui as above.

Using now the second expression (5.33) for h̄i, we get instead the alternative expression

h̄i =

p∏
s=1

vi+s , Ri = R
vi vi+p+1

vi+1 vi+p

, with vi = det
1≤a,b≤N0

δa,b −
∏
c ̸=b

(wp
a − w̄p

c )∏
c̸=a

(w̄p
a − w̄p

c )
X i

a

 .

(5.40)

Using the explicit form (5.26) of wa and w̄a in terms of Xa, we may express ui and vi
in terms of Xa only, namely

ui = det
1≤a,b≤N0

δa,b −
∏
c ̸=b

(ξa − χc)∏
c̸=a

(χa − χc)
X i

a


vi = det

1≤a,b≤N0

δa,b −
∏
c ̸=b

(χa − ξc)∏
c ̸=a

(ξa − ξc)
X i+p(N0−1)

a


ξa ≡ Xa + · · ·+Xp−1

a , χa ≡ X−1
a + · · ·+X−p+1

a .

(5.41)

In particular, ui reads

ui = det
1≤a,b≤N0

(
δa,b −

σa
(ξa − χb)

X i
a

)
=

∑
K⊂{1,··· ,N0}

∏
a∈K

(−σaX i
a)× det

a,b∈K

(
1

ξa − χb

)
=

∑
K⊂{1,··· ,N0}

∏
a∈K

(−τaX i
a)
∏

a,b∈K
a<b

(ξa − ξb)(χa − χb)

(ξa − χb)(χa − ξb)

(5.42)

with

σa ≡

∏
c

(ξa − χc)∏
c̸=a

(χa − χc)
, τa ≡

∏
c ̸=a

(ξa − χc)∏
c̸=a

(χa − χc)
(5.43)
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and similarly

vi = det
1≤a,b≤N0

(
δa,b −

σ̃a
(χa − ξb)

X i
a

)
=

∑
K⊂{1,··· ,N0}

∏
a∈K

(−σ̃aX i
a)× det

a,b∈K

(
1

χa − ξb

)
=

∑
K⊂{1,··· ,N0}

∏
a∈K

(−τ̃aX i
a)
∏

a,b∈K
a<b

(ξa − ξb)(χa − χb)

(ξa − χb)(χa − ξb)

(5.44)

with

σ̃a ≡ Xp(N0−1)
a

∏
c

(χa − ξc)∏
c ̸=a

(ξa − ξc)
, τ̃a ≡ Xp(N0−1)

a

∏
c ̸=a

(χa − ξc)∏
c ̸=a

(ξa − ξc)
(5.45)

which is precisely the form that was conjectured in [BDG03] and [Di 05].

6 Conclusion

In this paper we showed that the system of equations satisfied by the mobile generating

functions falls into the category of integrable systems. In particular we exhibited an

explicit formula for the generating function Ri of mobiles rooted at a labeled vertex i

as the ratio of appropriate (N × N) determinants involving the double points of the

spectral curve. Note that in our derivation, the fact that the operator P and Q take

the form of band matrices was crucial in our analysis. In our case this property was

guaranteed by the fact that our mobiles have unlabeled vertices of bounded degrees.

We know however from the continued fraction analysis of [BG12] that for p = 2 this

result can be extended to white unlabeled vertices of unbounded degree: in that case

the expression for Ri involves Hankel determinants which are typically of size i×i hence
growing with i. It is therefore likely that our results may be extended to the case of

mobiles with undounded black and white vertex degrees, but the explicit expression

for Ri is yet to be determined. A first step in this direction would be to study mobile

enumeration problems for which the derivatives of the potentiels (Ṽ (x) and V (y))

are rational fractions of x and y. Indeed we expect in this case that the P and Q

operators still remain band matrices, allowing us to extend our construction in a quite

straightforward way.

Another direction of study would be to consider the case of (face-bicolored) maps drawn

on higher genus and/or nonorientable surfaces, in correspondence with unicellular mo-

biles [Bet22].
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A Proof of Proposition 2.6

Let us rewrite the equations (2.3) and (2.5) in a way which shows that Ri, Wi,j and

Bi,j have an expansion as power series in
√
g.

We first use (2.5) to write:

Ri = 1 + λ̃2Wi,i−1 +
∑
k≥3

λ̃k
√
gk−2 (Qk−1

)
i,i−1

(A.1)

while from (2.3) we get:

Wi,i−1 = λ2Ri +
∑
k≥3

λk
√
gk−2 (P k−1

)
i,i−1

. (A.2)

From these two equations we deduce that:

Ri =
1

1− λ̃2λ2
+

1

1− λ̃2λ2

∑
k≥3

√
gk−2

{
λ̃k
(
Qk−1

)
i,i−1

+ λ̃2λk
(
P k−1

)
i,i−1

}
Wi,i−1 =

λ2

1− λ̃2λ2
+

1

1− λ̃2λ2

∑
k≥3

√
gk−2

{
λ̃kλ2

(
Qk−1

)
i,i−1

+ λk
(
P k−1

)
i,i−1

}
.

(A.3)

As for Bi,i+1 we immediatly obtain from (2.3) that:

Bi,i+1 = λ̃2 +
∑
k≥3

λ̃k
√
gk−2 (Qk−1

)
i,i+1

. (A.4)

We now use:

Wi,i = λ2Bi,i +
∑
k≥3

λk
√
gk−2 (P k−1

)
i,i

Bi,i = λ̃2Wi,i +
∑
k≥3

λ̃k
√
gk−2 (Qk−1

)
i,i

(A.5)

to deduce that:

Wi,i =
1

1− λ̃2λ2

∑
k≥3

√
gk−2

{
λ̃kλ2

(
Qk−1

)
i,i
+ λk

(
P k−1

)
i,i

}
Bi,i =

1

1− λ̃2λ2

∑
k≥3

√
gk−2

{
λ̃k
(
Qk−1

)
i,i
+ λ̃2λk

(
P k−1

)
i,i

}
.

(A.6)
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Finaly for j < i− 1 we may use the property that (P k−1)i,j = 0 for k − 1 < i− j to

write:

Wi,j =
∑

k≥i−j+1

√
gk−2λk(P

k−1)i,j (A.7)

which involves only strictly positive power of
√
g since i− j + 1 > 2.

Similarly for j > i + 1 we may use the property that (Qk−1)i,j = 0 for k − 1 < j − i

to write:

Bi,j =
∑

k≥j−i+1

√
gk−2λ̃k(Q

k−1)i,j (A.8)

which involves only strictly positive power of
√
g since j − i+ 1 > 2.

From (A.3),(A.4),(A.6),(A.7) and (A.8) it is clear that the generating functions Ri, Bi,j

and Wi,j have formal series expansions in powers of
√
g and their coefficients

√
gn are

uniquely determined recursively from the knowledge of the coefficients
√
gm of these

generating functions for all m < n. In other words these equations determine uniquely

the expansions of Bi,j, Wi,j and Ri to all orders in
√
g from the initial values given by:

Ri =
1

1− λ̃2λ2
+O(

√
g), Wi,i−1 =

λ2

1− λ̃2λ2
+O(

√
g) Bi,i+1 = λ̃2 +O(

√
g)

Bi,j = O(
√
g) for j = i or j > i+ 1,

Wi,j = O(
√
g) for j = i or j < i− 1.

(A.9)

It is clear from the form of the recursive equations (A.3),(A.4),(A.6),(A.7) and (A.8)

that the coefficients in these expansions are polynomial in λ2, ..., λq, λ̃2, ..., λ̃q and
1

1−λ̃2λ2

with nonnegative integer coefficients.

B Proof of the equality (4.78)

We adapt and extend here a similar proof given in Appendix B of [BDG03]. Consider

the N ×N matrices M (n) and H with entries

M
(n)
a,b = δa,b −

∏
c ̸=b

(wa − w̄c)∏
c ̸=a

(w̄a − w̄c)

(
wa

w̄a

)n+1

Ha,b =
w̄b−1

a∏
c ̸=a

(w̄a − w̄c)
,

(B.1)

a, b = 1, · · · , N . We have

(M (n)H)a,b =
w̄b−1

a∏
c ̸=a

(w̄a − w̄c)

(
1−

(
wa

w̄a

)n+1
1

w̄b−1
a

N∑
e=1

w̄b−1
e

∏
c̸=e

(wa − w̄c)

(w̄e − w̄c)

)
. (B.2)
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Now the function

fb(x) =
N∑
e=1

w̄b−1
e

∏
c ̸=e

(w − w̄c)

(w̄e − w̄c)
(B.3)

is a polynomial in w of degree at most N − 1 which satisfies fb(w̄a) = w̄b−1
a , so that the

polynomial fb(w)−wb−1 (of degree at most N − 1 since 1 ≤ b ≤ N) vanishes at the N

distinct points w̄a, a = 1, · · · , N . We deduce that fb(w) = wb−1 for 1 ≤ b ≤ N and

(M (n)H)a,b =
w̄−n−1

a∏
c ̸=a

(w̄a − w̄c)

(
w̄n+b

a − wn+b
a

)
. (B.4)

The identity (4.78) follows immediately since∏
a

∏
c ̸=a

(w̄a − w̄c)× det
1≤a,b≤N

Ha,b =
∏

1≤a<b≤N

(w̄a − w̄b) . (B.5)

C Proof of Proposition 4.9

Let us set g1 = g̃1 = 0 and

gk = g
k−2
2 λk , k = 2, . . . , q ,

g̃k = g
k−2
2 λ̃k , k = 2, . . . , p ,

(C.1)

where it is implicitly assumed that λq ̸= 0 and λ̃p ̸= 0 and |λ2λ̃2| < 1.

From eq (4.3) we first deduce that

α0 = λ2β0 +O(
√
g)

β0 = λ̃2α0 +O(
√
g)

(C.2)

hence α0 = O(
√
g) and β0 = O(

√
g). We also deduce that for j > 0,

αj = λj+1
√
gj−1Rj +O(

√
gj),

βj = λ̃j+1
√
gj−1 +O(

√
gj)

(C.3)

From the third equation in (4.3) we deduce:

R− 1 = λ2λ̃2R +O(
√
g) (C.4)

and

R =
1

1− λ2λ̃2
+O(

√
g). (C.5)

In practice, (C.1),(C.2),(C.3) and (C.5) are the first terms of a systematic expansion

of αj, βj and R in power of
√
g. We now look for double points wa, w̄a solutions of
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X(wa) = X(w̄a) and Y (wa) = Y (w̄a), i.e:

wa +

q−1∑
j=0

αjw
−j
a = w̄a +

q−1∑
j=0

αjw̄
−j
a ,

R

wa

+

p−1∑
j=0

βjw
j
a =

R

w̄a

+

p−1∑
j=0

βjw̄
j
a.

(C.6)

where we impose by convention that |wa| < |w̄a|. From these equations we deduce:

wa ∼
√
g

ηa
R, w̄a ∼

ξa√
g

(C.7)

where ηa and ξa are solutions of the system of equations:

q−1∑
j=1

λj+1η
j
a = ξa

p−1∑
j=1

λ̃j+1ξ
j
a = ηa

(C.8)

as obtained by equating the leading order of the lhs and rhs of the equations in (C.6)

(all of order 1√
g
). Finding the solutions of the system is equivalent to finding the roots

of polynomial of degree (p−1)(q−1) = N+1. Removing the unwanted trivial solution

(ξa, ηa) = (0, 0), we are left with exactly N solutions (generically) which yield the

desired double points wa,w̄a. We have in particular

Xa =
wa

w̄a

=
gR

ηaξa
(1 +O(

√
g)) (C.9)

We finally deduce that:

h̄n = det
1≤a,b≤N

δa,b −
∏
c ̸=b

(wa − w̄c)∏
c ̸=a

(w̄a − w̄c)
Xn+1

a


= 1−

(
g

1− λ2λ̃2

)n+1 N∑
a=1

1

(ξaηa)n+1

∏
c̸=a

1

1− ξa
ξc

(1 +O(
√
g))

(C.10)

which is a first term of a systematic expansion in powers of
√
g. Let us now see in

details how this expansion works:

From eq (4.3) we have

αj = λj+1g
j−1
2 Rj + λj+2g

j
2 (j + 1)β0R

j + o(g
j+1
2 ) (C.11)

βj = λ̃j+1g
j−1
2 + λ̃j+2g

j
2 (j + 1)α0 + o(g

j+1
2 ) (C.12)
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with

α0 =
√
g

2λ2λ3

1− λ2λ̃2
+ o(

√
g) (C.13)

β0 =
√
g

2λ̃2λ̃3

1− λ2λ̃2
+ o(

√
g). (C.14)

then we may thus write

αj = λj+1g
j−1
2 Rj + γjg

j+1
2 Rj + o(g

j+1
2 ) (C.15)

βj = λ̃j+1g
j−1
2 + γ̃jg

j+1
2 + o(g

j+1
2 ). (C.16)

Let us set wa = g
1
2 za and w̄a = g

−1
2 z̄a: the system of equations (C.6) becomes

gza + g

q−1∑
j=1

γjR
jz−j

a +

q−1∑
j=1

λj+1R
jz−j

a = z̄a +

q−1∑
j=1

gjλj+1R
j z̄−j

a +

q−1∑
j=1

γjg
j+1Rj z̄−j

a +O(g2),

R

za
+

p−1∑
j=1

gjλ̃j+1z
j
a +

p−1∑
j=1

gj+1γ̃jz
j
a = g

R

z̄a
+

p−1∑
j=1

λ̃j+1z̄
j
a + g

p−1∑
j=1

γ̃j z̄
j
a +O(g2).

(C.17)

This can be written as:

q−1∑
j=1

λj+1R
jz−j

a − z̄a = −gza − g

q−1∑
j=1

γjR
jz−j

a + gλ2Rz̄a
−1 +O(g2),

p−1∑
j=1

λ̃j+1z̄
j
a −

R

za
= gλ̃2za − g

R

z̄a
− g

p−1∑
j=1

γ̃j z̄
j
a +O(g2).

(C.18)

Define the functions f and h as

f(z, z̄) =

q−1∑
j=1

λj+1R
jz−j − z̄ , h(z, z̄) =

p−1∑
j=1

λ̃j+1z̄
j − R

z
(C.19)

As we have seen above f(z, z̄) = h(z, z̄) = 0 fixes the leading order to (z∗a, z̄
∗
a) = ( R

ηa
, ξa)

Writing z = z∗a + δza, z̄a = z̄∗a + δz̄a and linearizing (C.18) to first order in δza and δz̄a
we get a linear system involving the matrix

D =

∂f
∂z
| z=z∗a
z̄=z̄∗a

∂f
∂z̄
| z=z∗a
z̄=z̄∗a

∂h
∂z
| z=z∗a
z̄=z̄∗a

∂h
∂z̄
| z=z∗a
z̄=z̄∗a

 . (C.20)

Its determinant is

det(D) = − 1

R

∑
j

jλj+1η
j+1
a

∑
j

jλ̃j+1ξ
j−1
a +

η2a
R
. (C.21)
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For λa = λqδq,a and λ̃a = λ̃pδp,a we get

det(D) = −N
R
η2a ̸= 0. (C.22)

We may deduce from this special case that the determinant does not vanish generically.

Therefore, the matrix D is invertible, which means that there is a second order expan-

sion of wa and w̄a and recursively there is an expansion to all orders. Furthermore,

since the rhs of the equation (C.18) is an integer power of g, the expansion of za and

z̄a is also an integer power of g.

Let us calculate the second order expansion. Defining f1 and h1 as

f1(z, z̄) = −z −
q−1∑
j=1

γjR
jz−j + λ2Rz̄

−1

h1(z, z̄) = λ̃2z −
R

z̄
−

p−1∑
j=1

γ̃j z̄
j

we have (
δza
δz̄a

)
= gD−1

(
f1(z

∗
a, z̄

∗
a)

h1(z
∗
a, z̄

∗
a)

)
. (C.23)

We can see now that the expansion of h̄n is given by integer powers of g.

D Proof of the identity (5.13)

To prove (5.13), we first use πm(n;R, S) = R−mπ−m(n;R, S) (as obtained by reversing

the height of the enumerated paths) to write the r.h.s. of this equation as

⌊ k−2−|n|
2

⌋∑
m=0

π−2m−|n|−1(k − 1;R, S)R−m−|n|−1 =

⌊ k−2−|n|
2

⌋∑
m=0

π2m+|n|+1(k − 1;R, S)Rm

=
k−2∑
s=n

π|n|(s;R, S)

⌊ k−s−2
2

⌋∑
m=0

π+
2m(k − s− 2;R, S)Rm ,

(D.1)

where π+
m(n;R, S) denote tree-step paths from (0, 0) to (n,m) which remain above

height 0. Indeed the r.h.s. in the first line above enumerates three-step paths from

(0, 0) to (k − 1, 2m + |n| + 1) for all possible positive m, with an extra weight Rm.

By marking the last passage at height |n| (which is a step (s, |n|) → (s + 1, |n|) for

some s between 0 and k − 2), the path is decomposed into a first part enumerated

by π|n|(s;R, S) and a last part enumerated by π+
2m(k − s − 2;R, S) (paths of length

k− s− 2 from height |n|+1 to height |n|+1+2m which remain above height |n|+1).

Proving eq. (5.13) therefore reduces to proving
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−m

0

1
2

m

0

−2

0

−1

m2

−1

0

Figure 9: Sketch of the proof of Eq (D.2) for a given fixed r: a path enumerated by π0(r;R,S)
and minimum height −m (top) is bijectively mapped onto a path enumerated by π+

2m(r;R,S)
(bottom). The weight of the former path is Rm times that of the latter.

π0(r;R, S) =

⌊ r
2
⌋∑

m=0

π+
2m(r;R, S)R

m (D.2)

for some arbitrary r, which is done as follows (see Fig. 9 for an illustration): consider

a path enumerated by π0(r;R, S) and mark the step before the first passage at height

−1 (which is a step (s1, 0) → (s1 + 1,−1) for some s1 ≥ 0), then the step before the

first passage at height −2 (which is a step (s1 + 1 + s2,−1) → (s1 + 1 + s2 + 1,−2)

for some s2 ≥ 0) and so on up to the step before the first passage at height −m
where −m is the minimum height reached by the path (this last marked step is of

type (s1 + 1 + s2 + 1 + · · · + sm,−m + 1) → (s1 + 1 + s2 + 1 + · · · + sm + 1,−m) for

some sm ≥ 0). The last part of the path is a path from height −m to height 0 which

remains above height −m. The m marked steps are down steps, hence contribute Rm

to π0(r;R, S). Replacing these steps by up steps creates paths of length r from height

0 to height 2m which remain above height 0, as enumerated by π+
2m(r;R, S). This

mapping is bijective since the steps which have been reversed are easily identified as

the steps just after the last passage at the heights 0, 1, · · ·m − 1 in the image path.

Eq (D.2) follows immediately.

E Proof of the factorization (5.37)

Consider the matrix

M :=

(
δa,bδs,t − U

(i)
a,b ×

1

p

p−1∑
r=0

(
Ωt−sVa,b

)r)
1≤a,b≤N0
0≤s,t≤p−1

(E.1)
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whose determinant gives the desired h̄i. This matrix is block-circulating (recall that

Ωp = 1), i.e. may be written as

M=


(ma,b(0))1≤a,b≤N0

(ma,b(1))1≤a,b≤N0
(ma,b(2))1≤a,b≤N0

· · · (ma,b(p−1))
1≤a,b≤N0

(ma,b(p−1))
1≤a,b≤N0

(ma,b(0))1≤a,b≤N0
(ma,b(1))1≤a,b≤N0

· · · (ma,b(p−2))
1≤a,b≤N0

(ma,b(p−2))
1≤a,b≤N0

(ma,b(p−1))
1≤a,b≤N0

(ma,b(0))1≤a,b≤N0
· · · (ma,b(p−3))

1≤a,b≤N0
...

...
...

. . .
...

(ma,b(1))1≤a,b≤N0
(ma,b(2))1≤a,b≤N0

(ma,b(3))1≤a,b≤N0
· · · (ma,b(0))1≤a,b≤N0


(E.2)

with blocks formed of N0 ×N0 matrices m(t) with elements (m(t))a,b := ma,b(t) given

by

ma,b(t) = δa,bδt,0 − U
(i)
a,b ×

1

p

p−1∑
r=0

(
ΩtVa,b

)r
. (E.3)

Introducing the p× p matrix

A =


0 1 0 · · · 0
0 0 1 · · · 0
...

. . . . . . . . . 0

0 0
. . . . . . 1

1 0 0 · · · 0

 , (E.4)

we may write

M =

p−1∑
t=0

m(t)⊗ At . (E.5)

Now A is easily diagonalized into A = P ·D ·P−1 with D the p×p diagonal matrix with

diagonal elements Ωs for s = 0, · · · , p− 1, and some unimportant invertible matrix P .

We deduceM = (1⊗P )·(
∑p−1

t=0 m(t)⊗Dt)·(1⊗P )−1 and det(M) = det(
∑p−1

t=0 m(t)⊗Dt),

which is the determinant of a block-diagonal matrix, hence

det(M) =

p−1∏
s=0

det

(
p−1∑
t=0

m(t)(Ωs)t

)
. (E.6)

Now

p−1∑
t=0

ma,b(t)(Ω
s)t = δa,b −

p−1∑
t=0

U
(i)
a,b ×

1

p

p−1∑
r=0

(
ΩtVa,b

)r
(Ωs)t

= δa,b − U
(i)
a,b

p−1∑
r=0

V r
a,b ×

1

p

p−1∑
t=0

Ω(r+s)t

=

{
δa,b − U

(i)
a,b if s = 0

δa,b − U
(i)
a,bV

p−s
a,b if s = 1, · · · p− 1

(E.7)
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and, upon reorganizing the terms, we end up with

det(M) =

p−1∏
s=0

det
1≤a,b≤N0

(
δa,b − U

(i)
a,bV

s
a,b

)
(E.8)

as wanted.
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