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Abstract

This is a summary of what we think we know, thought we knew and despair of ever knowing about
the Higgs boson mass mh. We also discuss in parallel the Cosmological Constant ⇤CC, but giving
fewer details. Understanding the values of these two parameters are two of the most fascinating
open problems in particle physics. They have kept many of us awake at night for the past 30
years.
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1 Introduction

Accidental cancellations between unrelated parameters often signal that our description of Nature
is incomplete. A well-known example is the rest energy of the electron in classical electrodynamics.
In natural units (} = c = 1) we have

me = me,0 +
e2

4⇡re
. (1.1)

The first term on the right-hand side is the bare electron mass in the Lagrangian. The second
accounts for the energy stored in the electric field generated by the electron.

Experimentally we know that me ⇡ 0.511 MeV. Cheating a little for illustrative purposes we
can use our modern knowledge of the electron radius re . (100 GeV)�1 to cut-o↵ the divergence
of the Coulomb self-energy. This corresponds to not having observed deviations from a point-like
behavior at LEP [1]. Putting together these two measurements we conclude that only an accidental
cancellation between the two terms on the right-hand side of (1.1) can explain the observed value
of the electron mass.

This apparent fine-tuning is hiding something deep. At the length scales in our calculation
classical electrodynamics breaks down and we need to include quantum e↵ects to obtain the correct
result. Restoring units, we can not ignore quantum mechanics below

c�t . }c
�E
⇡

}
mec

, (1.2)

or in natural units for re . 1/me. So the result of our classical calculation is not correct. If we
include the contribution of photons and positrons from vacuum fluctuations [2], the term that
diverges as 1/re is cancelled by virtue of a new symmetry. The chiral symmetry that emerges in
quantum electrodynamics as me goes to zero. Only a term logarithmic in 1/re and proportional
to me,0 survives, as dictated by the selection rules of this new symmetry,

me = me,0


1 +

3↵

4⇡
log

1

mere

�
. (1.3)

Now we have a correction of less than 10% even for an electron that stays point-like up to the
Planck scale. Incidentally, pushing classical electrodynamics beyond its limits of validity has other
surprising consequences, including the emergence of an acausal behavior for the electron on time
scales of O(e2/me) [3].

Setting violations of causality aside, we have just seen that what appeared as an accidental
cancellation was pointing to a more fundamental description of our physical system in terms of
quantum mechanics.

This is not the only case in which apparent coincidences are signaling the emergence of a new
paradigm. A second classic example that has a completely di↵erent resolution is that of planetary
orbits in the solar system. In 1596 Johannes Kepler published the Mysterium Cosmographicum,
where he showed that each of the five Platonic solids can be uniquely inscribed into and circum-
scribed by a sphere. If ordered in a specific pattern (octahedron, icosahedron, dodecahedron,
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tetrahedron, cube) the spheres reproduced, within the experimental accuracy of the time, the
orbits of the six known planets, from Mercury to Saturn. This seems a striking coincidence that
requires finely tuned values of unrelated parameters. Alternatively, as Kepler did, one could see
it as an example of God’s refined aesthetic sense.

Today we know that the explanation is di↵erent, but still paradigm-shifting. Not only we are
not unique in any way, but we are just a tiny speck of dust in an unimaginably vast universe. This
kind of approximate accidents become likely if we think about the staggering number of other
stars, planets and solar systems over which we have to integrate small probabilities.

I hope that these two examples convinced you that fine-tuning problems in physics are worthy
of attention, as they often lead to the emergence of a new understanding of the Universe. Today
we are facing two problems of this kind and they might have answers that are just as deep as the
historical examples given above.

The first and most dramatic of the two puzzles concerns the size of the cosmological constant:

⇤CC ⇡ (10�3 eV)4 . (1.4)

This number is much smaller than all the particle physics scales that we know (except neutrino
masses) and should naively contribute to it. In these lectures we will often talk about this problem
and its most concrete solutions, but we will not discuss it in depth. I refer the interested reader
to the reviews [4, 5, 6, 7] and their references for more details.

In the following I describe in great detail another fine-tuning problem in modern theoretical
physics, the one related to the Higgs boson mass, also known as the hierarchy problem [8, ?, 9,
10, 11]. To state it precisely we first have to make sense of the illusory divergences of field theory.
We have already encountered one example in the Coulomb self-energy of the electron as re ! 0.

To this end, in the next section I very briefly introduce E↵ective Field Theoris (EFTs). In
Section 3 we try to state the problem precisely. We first see in 3.1 why, within the SM, the value
of the Higgs mass is puzzling, but not at all problematic. We then move on to theories where the
Higgs mass is calculable and there is an actual problem 3.2. This leads to the so-called “little
Hierarchy Problem” discussed in Section 3.3.

2 E↵ective Field Theories and Symmetry

In this Section we give an elementary introduction to spurion fields and e↵ective field theories.
The expert reader can skip ahead to Section 3. The only unusual element in our exposition is the
infinite higher spin symmetry of the scalar Lagrangian discussed in Section 2.2.

2.1 Broken Symmetries and Spurion Fields

In QFT it is very useful to promote mass parameters and couplings to spurion fields (spurions for
short) to enforce the selection rules of broken symmetries. You are probably familiar with this
procedure from your first courses as an undergraduate, but let’s recall one example that will be
useful in the following.
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Take the QED Lagrangian with gauge coupling g. We have an interacting Dirac fermion,
described by the fields e, ec, and a gague boson, the photon Aµ. We can write their Lagrangian as

LQED = ie†�µ@µe+ iec†�µ@µe
c +me,tree(ee

c + h.c.) +
1

4
Fµ⌫F

µ⌫
� gAµ

�
e†�µe+ ec†�µec

�
(2.1)

The chiral symmetry of the fermions

e! ei↵ee , ec ! ei↵eec , (2.2)

is broken by the electron mass term. It is useful to promote the mass to a spurion by giving it
fictitious transformation properties that restore the symmetry

me,tree ! e�2i↵eme,tree . (2.3)

This shows immediately how to enforce the selection rules of the symmetry: observable quantities
must be invariant if we transform me,tree together with the fields.

It also immediately gives the following prediction for the renormalized electron mass

me,R = me,tree [...] . (2.4)

We don’t know what is in the parenthesis without doing a calculation, but we know from the
selection rules of the chiral symmetry that whatever is on the right-hand side of the equation
must transform as the left-hand side. The only spurion in the theory that transforms as me,tree !

e�2i↵eme,tree is the tree-level mass itself.
Eq. (2.4) is a very powerful result. If you have another mass scale appearing at much higher

energies (let’s call it M), for instance the proton mass, you know from this simple exercise that it
can a↵ect the electron mass at most logarithmically

me,R = me,tree [a logM + ...] , (2.5)

so it’s not surprising to find a very light fermion in a theory of Nature with much larger mass
scales. Note that the symmetry is broken, but it still allows us to draw very useful conclusions
from its selection rules.

2.2 E↵ective Field Theory and Dilations

Imagine to know that your theory is valid up to some energy scale M⇤. If you only need to make
a prediction for measured quantities at E ⌧M⇤, it is not necessary to include in your calculation
all the details of the dynamics at the high scale. For example, you can describe the energy levels
of the Hydrogen atom with excellent accuracy, without knowing anything about the mass of the
top quark. The error that you are making is of order ↵me/mt and if your experimental precision
is inferior, this is perfectly acceptable. Some of the low-energy parameters that you need for
the calculation are more sensitive to mt, for example the proton mass mp and the fine structure
constant ↵. However these are all quantities that you can measure at low energy, forgetting about
their ultraviolet (UV) origin.
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If we could not describe the low-energy dynamics only in terms of low-energy degrees of free-
dom, at least to some finite precision, we would not have been able to make predictions for any
physical system. So the fact that UV sensitive quantities can all be fixed through low-energy
measurements must be independent of our specific example.

However this does not mean that every trace of the UV dynamics disappears in the low-
energy theory. There are very non-trivial consequences of UV physics that survive at low energy.
One classic example is the spin-statistics theorem. In non-relativistic quantum mechanics it is
just a (measured) fact of life, but in quantum field theory it emerges from causality. Other
than symmetry constraints, the UV dynamics also leaves behind small corrections to low-energy
observables (the ↵me/mt error in the case of the Hydrogen atom). Therefore if we had a systematic
way of building a low-energy theory from a more complete theory we would have accomplished
two remarkable tasks. We would have considerably simplified our low-energy calculations and at
the same time we would have a way to reconstruct, at least to some extent, the UV dynamics
from low-energy measurements. E↵ective Field Theory is precisely the systematic construction
that we are looking for. In the rest of this section I often follow [12].

To see EFTs at work, take a scale M and split the degrees of freedom in the path integral into
two parts, the high-energy and the low-energy modes,

Z
D�eiS(�) =

Z
D�LD�He

iS(�L,�H) , (2.6)

E�H > M ,

E�L < M . (2.7)

If we know how to do the path integral over the high-energy modes we obtain a description of the
system in terms of the low-energy degrees of freedom

Z
D�LD�He

iS(�L,�H) =

Z
D�Le

iSM (�L) . (2.8)

This is all we need and we have not even restricted the validity of the theory. In principle we can
use SM(�L) to make predictions up to M . In practice this suggest that we have not really gained
anything and in fact most of the time the path integral can not be solved exactly. However we
can at least consider the previous equation as a definition of the low-energy action

eiSM (�L) ⌘

Z
D�He

iS(�L,�H) . (2.9)

In some cases this gives us a way to compute SM(�L) in a perturbative expansion. Even when
this is not possible, we can always write SM(�L) as an infinite sum of operators built from the
low-frequency fields and consistent with all the low-energy symmetries of the problem,

SM(�L) =

Z
ddx

X

i

ciOi(�L) . (2.10)

Note that some of these operators are non-local by a 1/M amount, since we have integrated out
fields with E�H > M . So this is also an expansion in derivatives. It might seem that this infinite
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sum requires the full knowledge of S(�L,�H) to be useful. However here the power of broken
symmetries comes to our rescue.

This is familiar from quantum and classical mechanics. Even in systems that are not rota-
tionally invariant, for example, selection rules of the rotational symmetry are extremely useful to
predict relations between matrix elements. If you prefer a quantum field theory equivalent you
can think about Isospin in QCD and its breaking by the quark masses or flavor symmetries in
the Standard Model (SM) and their breaking by the Yukawa matrices. In our case we need an
even simpler symmetry. We can just use dimensional analysis, which should more appropriately
be called the selection rules of the dilatation operator [13].

If we set } = c = 1, our operators have some dimension �i in units of energy [Oi] = E�i . Since
the action is dimensionless (} = 1) we must have [ci] = Ed��i .

The largest scale in our low-energy theory is M and we can always write

ci = �0M
d��i + �1M

d��i
1 + �2M

d��i
2 + ... = giM

d��i ,

gi ⌘ �0 + �1

✓
M1

M

◆d��i
+ ... (2.11)

where M1,M2, ... < M . This just means that even if the ci receive contributions from multiple
scales we can always parametrize them in terms of the largest scale in the theory times some
dimensionless coe�cient. From simple dimensional analysis we expect gi = O(1) unless some
extra symmetry is at work. The selection rules of the dilatation operator are what determined the
form of ci, i.e. all contributions must have dimensions Ed��i and the largest one can be at most
⇠Md��i .

Now we are in a position to estimate the contribution of each term in the sum (2.10) to
low-energy observables. Using again dimensional analysis we have

Z
ddxOi ⇡ E�i�d , (2.12)

so each term in the sum contributes to a low-energy measurement an amount

ci

Z
ddxOi ⇡ gi

✓
E

M

◆�i�d

. (2.13)

We see immediately that operators with �i > d are suppressed when E ⌧M , so if we are interested
in a finite level of precision we need only a finite number of operators for our calculation. Not
surprisingly operators with �i > d are called irrelevant, those with �i < d relevant and the ones
with �i = d marginal.

Here resides the power of E↵ective Field Theory. We have just seen that ignoring completely the
high energy dynamics, we can write a finite set of operators based on the fields and symmetries
that we observe at low energy and make predictions to an arbitrary level of accuracy. If our
experimental precision is su�cient we can even probe operators suppressed by powers of 1/M and
obtain information on the scale at which new phenomena should appear.

This is not all. The very simple construction that we have just seen can do something else
for us. Given low-energy observations it can tell us if they arise from a “reasonable” high-energy
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theory. In other words it tells us if we should be surprised or not. For example we can imagine
that at low energy we measure the theory of a free massless scalar1

L =
(@�)2

2
(2.14)

and we know from our experimental observations that it is valid at least up to E ⇡ M . Is this
surprising from an EFT perspective? The answer is no. We can easily imagine that the UV theory
possesses a shift symmetry, �! � + c, that prevents interactions from being generated when we
integrate out high-frequency modes. Of course we expect higher order terms consistent with the
symmetry, as for example (@2�)2/M2, but measuring them might be beyond our experimental
capabilities.

What about a free massive scalar with m⌧M?

L =
(@�)2

2
�

m2�2

2
. (2.15)

The answer is still no. There is nothing surprising in this Lagrangian and this can be seen in at
least two ways. I will discuss the most unusual one that I have learned from [13]. In momentum
space the Lagrangian

�(�k)
�
k2
�m2

�
�(k) (2.16)

has an infinite number of symmetries �(k) ! ei↵(k)�(k) with ↵(�k) = �↵(k). To better under-
stand it, we can expand ↵ in odd powers of k,

↵(k) = aµk
µ + aµ⌫⇢k

µk⌫k⇢ + ... (2.17)

and notice that the linear term corresponds to translations. Its generator in position space is just
i@µ and the corresponding conserved current is the stress-energy tensor T µ⌫ . The higher order
terms are generated by higher powers of derivatives and are associated with higher-spin currents.
The algebra is trivial (for example [@, @3] = 0) and obviously does not contain dilations or special
conformal transformations. This symmetry is broken by higher-point interactions and preserves
the form of the free Lagrangian.

Finally it is time to consider a surprising example:

L =
(@�)2

2
�
��4

4
. (2.18)

In this theory both the shift symmetry and the momentum-space symmetry of the free action are
broken by �. So we expect a mass term of order m2

⇠
�M2

16⇡2 . The linear dependence on � can be
deduced using the selection rules of the broken symmetries of the free action2, while that on M2

is as usual dictated by the dilation symmetry. We can also explicitly obtain m2 by integrating out
high-momentum modes of � at one-loop from the diagram obtained by contracting two of the �
legs in the �4 vertex.

1
Here and in the following when Lorentz contractions are obvious I suppress the corresponding indices.

2
As an exercise you can check how the higher-spin symmetry of the free action enforces m

2
/ �.
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Not observing this mass term is indeed surprising and as we will see in the following it is a
simple example of a fine-tuning problem. You might object that (2.18) is scale invariant and a
mass term should not be generated when integrating out high-momentum modes of �. However
the symmetry is broken by the scale M that limits the validity of (2.18). For example it could be
(or be proportional to) the physical mass of a new particle that interacts with � or be the scale at
which � hits a Landau pole. Even if the theory at M was transitioning smoothly to a UV fixed
point we would still expect contributions to m2 of O(�M2) [14].

Before concluding, it is worth to mention that the way I presented this simple EFT construction
rests on completely solid ground. Integrating out one small momentum shell at a time (M�dM <
E < M , then M � 2dM < E < M � dM , ...) we generate a flow in the space of possible actions

@SM

@M
= F(SM) . (2.19)

In this picture F is a smooth function of the couplings and there are no divergences anywhere (we
are always integrating between an IR and a UV cuto↵). If we expand this di↵erential equation
around a solution, irrelevant operators correspond to negative eigenvalues, meaning that the flow
is erasing information while going to low energy and converging towards zero. I refer to [12] for
more details.

Finally, you might wonder how to assign operator dimensions. For small deviations from a free
action (i.e. small couplings) we can assign operator dimensions starting from kinetic terms. For
example

S =

Z
ddx

(@�)2

2
, (2.20)

implies that [�] = E(d�2)/2. Then for operators built out of � and its derivatives we can deduce the
eigenvalues of the flow (d� �i) by our simple dimensional analysis arguments. At strong coupling
we have to take into account also the running of operator dimensions, but this does not invalidate
our categorization of operators, it only moves some of them from one category to another.

This suggests the modern interpretation of quantum field theory that is still absent from
many textbooks. We can think of any quantum field theory as an EFT valid up to some scale
M . Renormalization is just the flow of the action from M to the energy at which we make our
measurements. The flow is generated by integrating out high-momentum modes. There are no
divergences that need to be cancelled by counterterms. There are only matching calculations
between di↵erent e↵ective theories to be performed at physical scales. We can always consider
these scales one by one, first we have M than maybe new physics appears again at 10M and so
on. From a pragmatic point of view this is just the most e�cient way of describing our finite
experimental knowledge. However this also hints to the more radical possibility that there isn’t
any quantum field theory valid to arbitrarily high energies.

This concludes our brief introduction to EFTs. Through some of the examples in this Section
we have already seen the essence of the hierarchy problem. It is the absence of a term in the
action predicted by symmetry. However it is worth to be more precise and make some explicit
calculation in theories where there is no problem (the Standard Model) and where there is an
actual problem (the supersymmetric Standard Model).
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3 The Hierarchy Problem

3.1 The Higgs Mass in the Standard Model

There is no real problem associated to mh in the Standard Model (SM). However, the mere fact
of discovering what looks like a fundamental scalar at energies much smaller than MPl should give
us pause. In this Section we make these statements more precise, partially following the very nice
exposition in [13].

If we follow ’t Hooft naturalness criterion [11] mh is puzzling, because as mh ! 0 no new
symmetry appears in the SM Lagrangian, but we observe mh ⌧ MPl, at odds with the selection
rules of dilations. We can be more precise on this point by using the higher-spin symmetry
introduced in the previous Section. This symmetry is broken by interactions with more than two
legs

L =
X

n

�(n)(k1 + ...+ kn)�
(n)(k1, ..., kn)�̃(k1)...�̃(kn) . (3.1)

Under the phase shift below Eq. (2.16) we have

�(n)(k1, ..., kn)! �(n)(k1, ..., kn)e
i
P

j
↵(kj) (3.2)

if n = 2 momentum conservation gives k1 = �k2 and the vertex is invariant. All higher point
interactions break the symmetry. The Higgs boson in the SM has plenty of interactions that break
this symmetry. Its selection rules together with those of spacetime dilations

xµ
! sxµ ,

mh ! s�1mh , (3.3)

allow us to estimate the expected value of the Higgs mass in the SM. First we briefly recall the
SM Lagrangian.

3.1.1 The Standard Model Lagrangian

The SM is a gauge theory that describes strong and electroweak interactions via the symmetry
groups SU(3)⇥ SU(2)L ⇥ U(1)Y . The fermions representations can be summarized as follows

 =
�
Q(3, 2)1/6, L(1, 2)�1/2, u

c(3̄, 1)�2/3, d
c(3̄, 1)1/3, e

c(1, 1)1
�
, (3.4)

where the first number in parenthesis indicates the SU(3) representation, the second one the
SU(2)L one and the subscript the hypercharge. We have suppressed the flavor indexes that label
di↵erent fermion families for simplicity, but we will restore them below. In most of this work we
use the notation in Eq. (3.4) where the SM fermions are described by left-handed Weyl spinors.
We occasionally use also a Dirac notation related to the previous one by Q = (uL dL) and uc = ūR.

The three forces described by the Standard Model are included in the Lagrangian as gauge
interactions

LSMg = �
1

4
Bµ⌫B

µ⌫
�

1

4
W i

µ⌫W
µ⌫i
�

1

4
Ga

µ⌫G
µ⌫a + i �µDµ . (3.5)
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The first three operators are the kinetic terms of the gauge bosons that mediate these interactions

Bµ⌫ = @µB⌫ � @⌫Bµ ,

W i
µ⌫ = @µW

i
⌫ � @⌫W

i
µ � gW ✏

ijkW j
µW

k
⌫ ,

Ga
µ⌫ = @µG

a
⌫ � @⌫G

a
µ � gsf

abcGa
µG

b
⌫ , (3.6)

where Bµ,W i
µ, G

a
µ are the quantum fields describing the gauge bosons, gW and gs are the weak and

strong gauge couplings and ✏ and f are the structure constants of SU(2)L and SU(3), respectively.
The last operator in the Lagrangian contains the kinetic term of the fermions and their gauge
interactions

i �µDµ = i �µ
 
@µ + igs

8X

a=1

�aGa
µ + igW

3X

i=1

T iW i
µ + igY Y Bµ

!
 . (3.7)

In the previous expression �a are the generators of SU(3), T i those of SU(2)L and Y is the hy-
percharge. They act in block-diagonal form on  , which is a vector of irreducible representations.

To complete this picture we need to introduce mass terms for fermions and weak gauge bosons.
The di�culty resides in the fact that a mass term for the fermions clashes with SU(2)L invariance,
since it couples left-handed fields with right-handed ones

m  = m( L R +  R L) . (3.8)

The problem with a mass term forW i
µ is that it is not invariant under the gauge shiftW ! W+@↵

that preserves the right counting of degrees of freedom, i.e. a massive gauge boson has one extra
degree of freedom compared to the massless gauge boson described by LSMg. The introduction of
a single SU(2)L spin zero doublet

H(1, 2)1/2 (3.9)

solves both problems. In the following we will call this field the Higgs boson. H couples to gauge
bosons

LH � |DµH|
2 (3.10)

and can have the following Yukawa couplings with SM fermions

LY = �YuQHuc
� YdQH†dc � YeLH

†ec + h.c. (3.11)

Yu,d,e are 3⇥ 3 matrices in flavor space, Lorentz and gauge indexes are left implied. If we imagine
a non-trivial form for the Higgs potential

LH = |DµH|
2 +m2

h|H|
2
�
�

2
|H|

2 , (3.12)

where m2
h > 0, the ground state of the theory is at a non-zero value of the field

hHi =

✓
0
v

◆
, v =

mh
p
�
. (3.13)
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In the following we will often use hhi to denote the vacuum expectation value of the Higgs boson.
h is the spin-0 degree of freedom that remains in the H doublet in unitary gauge. Choosing new
field variables we can write H as

H = ei
�
i
⇡
i

2

✓
0
h

◆
. (3.14)

A SU(2)L gauge transformation allows us to get rid of the ⇡i’s, giving

Hunitary =

✓
0
h

◆
. (3.15)

This is the scalar that was produced at CMS and ATLAS and was observed to havemh ' 125 GeV.
The degrees of freedom described by ⇡i of course do not disappear from the theory, they make up
the extra degrees of freedom that allows three of the SU(2)L ⇥ U(1)Y gauge bosons to become
massive. If we expand the SM Lagrangian, including H,

LSM = LSMg + LY + LH , (3.16)

around its true ground state, we find a mass term for the gauge bosons

|DµH|
2 = m2

WW+
µ W µ� +m2

ZZµZ
µ + ... , (3.17)

where

W±
µ =

W 1
µ ± iW 2

µ
p
2

, mW =
gWv
p
2
, (3.18)

and

Zµ = cos ✓WW 3
µ � sin ✓WBµ , ✓W = arctan

gY
gW

,

mZ =

p
g2W + g2Y v
p
2

. (3.19)

The fermions get a mass through their Yukawa couplings to H. We can first write them using
singular value decomposition

Ya = Ua
L Y

D
a Ua†

R , (3.20)

then we can use the large flavor symmetry of the gauge Lagrangian SU(3)5⇥U(1)4 to rotate away
Ua†
R . We can do the same for Ua

L and be left with flavor-diagonal Yuakwas that give mass to the
fermions

LY = �Y D
u QHuc

� Y D
d QH†dc � Y D

e LH†ec + h.c.

= �Y D
u vQuc

� Y D
d vQdc � Y D

e vLec + ... (3.21)
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The largest of these masses, given by the largest coupling of the Higgs boson to a SM particle
(including gauge couplings) is that of the top quark. After diagonalization of Yu we have

LY � ytQHtc + h.c. = ytt(h+ v)tc + h.c. = mt

✓
h

mt
+ 1

◆
ttc + h.c. (3.22)

We will use this part of LY quite often in what follows. Note that a single unitary matrix, known
as the Cabbibo-Kobayashi-Maskawa (CKM) matrix [15, 16]

V ⌘ Uu
LU

d†
L , (3.23)

remains in the Lagrangian and mixes di↵erent mass eigenstates through weak interactions, after
we properly diagonalize the Yukawas,

LSMg � gWW+
µ (uLV �

µdL) + h.c. (3.24)

The reason being that weak interactions couple the quark doublet Q with itself, so they respect a
single SU(3) flavor symmetry in the left-handed quark sector. To fully rotate away the Ua

L,R we
need a separate SU(3) for each quark (i.e. uL, dL, uR and dR), but the Lagrangian is symmetric
only under SU(3)5 = SU(3)Q ⇥ SU(3)uR

⇥ SU(3)dR ⇥ SU(3)L ⇥ SU(3)eR .
The quark and lepton masses are strongly hierarchical. The heaviest particle is the top quark.

Its Yukawa coupling is yt = O(1). The lightest SM fermions (electron, u and d quarks) have
couplings to the Higgs of O(10�5). At scales comparable to mh the particles that are most strongly
coupled to the Higgs after the top quark are W and Z bosons, since their gauge couplings are
O(0.5).

To conclude this Section we note that there is an operator allowed by all the symmetries
introduced above that we have not yet discussed:

↵s✓

8⇡
Ga

µ⌫
eGµ⌫a , (3.25)

where eGµ⌫a = (1/2)✏µ⌫⇢�Ga
⇢� and ✏µ⌫⇢� is the completely antisymmetric symbol. This operator

is a total derivative and perturbatively it does not have a measurable e↵ect. However, at scales
where QCD confines, the interference between classical solutions for the gluon field that fall o↵
su�ciently slowly at infinity and quark masses induces observable e↵ects that depend on ✓. From
measurements of the neutron electric dipole moment we can conclude that ✓ . 10�10 [17]. In
what follows we will return to this operator for two reasons: 1) The smallness of ✓ is puzzling
from the point of view of dimensional analysis (this is the so-called strong CP problem) 2) This is
the only operator in the SM whose vacuum expectation value is sensitive to hhi and this will play
an important role in the explanations that we propose for the value of mh.

A last aspect of the SM Lagrangian that is worth mentioning, are neutrino masses. The
Lagrangian that we have written so far preserves a U(1)4 symmetry even after Yukawa couplings
are included. We have a U(1)B, i.e. a phase rotation of all the quarks that are therefore said to
carry baryon number and a U(1)Le

⇥U(1)Lµ
⇥U(1)L⌧

, i.e. the phase of each lepton family can be
chosen arbitrarily. This latter symmetry is not observed in Nature, only the total lepton number
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(i.e. the diagonal subgroup of U(1)Le
⇥ U(1)Lµ

⇥ U(1)L⌧
) is conserved in current experiments.

Observing the violation of individual lepton numbers has lead to experimentally establish the
existence of neutrino masses [18].

We have two possibilities to include them in the SM. We can add a neutral singlet N(1, 1)0. N ,
together with the neutral component of L, forms a Dirac fermion with mass given by the Yukawa
interaction

LY ⌫ = �yNLHN + h.c. (3.26)

Alternatively we can include a small Majorana mass for the neutral component of L that would
break also the total lepton number. The simplest SU(2)L invariant operator that can generate
this mass term is

LM⌫ =
(HL)2

⇤N
+ h.c. (3.27)

where ⇤N is an unknown scale such that m⌫ ⇠ v2/⇤N . These two options can be distinguished
experimentally, given that they preserve di↵erent symmetry groups, but we do not yet have the
required sensitivity [18].

3.1.2 All We Can Say About mh in the Standard Model

We now have all the ingrendients to estimate mh in the SM EFT based on symmetry. Spacetime
dilations x! sx tell us that

S =

Z
d4x

�
m2

h|H|
2 +mttt

c
�
!

Z
d4x

�
s2m2

h|H|
2 + smttt

c
�

(3.28)

m2
h ! s�2m2

h ,

mt ! s�1mt ,

where we have kept only the largest mass scale in the SM besides mh. So from dilations we can
conclude that

m2
h ⇠ m2

t + ... (3.29)

where the ellipses represent smaller mass scales in the theory. The selection rules of the higher-spin
symmetry that we discussed in Sections 2.2 and 3.1 can be enforced by the spurion transformation

yt ! e�i↵h(p)yt , (3.30)

since

h̃(p) ! ei↵h(p)h̃(p)

ythtt
c
! yte

i↵h(p)httc . (3.31)

As before, we are considering only the largest SM coupling of the Higgs boson, yt. We can then
conclude that

m2
h ⇠

|yt|2

16⇡2
m2

t + ... (3.32)
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The 16⇡2 derives from restoring units to }. Since [yt] = }�1/2 and [mh] = [mt] we need a loop
factor to get the right dimensions.

Purely within the SM there is no tension at all, given that mt ' 174 GeV. There is, however,
a much larger mass scale associated with gravity3, so naively we expect4

m2
h ⇠M2

Pl + ... (3.33)

Why is this expectation not realized in Nature? We give possible answers to this question in the
rest of these lectures. However, at this stage it is perhaps more pertinent to ask: what does this
estimate really mean? We have stated multiple times that there is neither a problem in the SM,
nor a way to compute mh. This estimate is actually telling us what happens in a higher energy
theory where mh can be computed. This type of theory is particularly relevant because string
theory, our current best shot at describing quantum gravity, falls in this category if it requires
supersymmetry. In the next two Sections we see explicitly what happens if we try to compute mh

in the SM and then in a supersymmetric theory, but first it’s useful to look at a second formulation
of the problem.

The symmetry estimate of mh that we have just performed can be rephrased following [19].
This formulation is completely equivalent to our symmetry arguments. Consider two widely
separated scales, ⇤UV � ⇤IR. For definiteness ⇤UV ' 1016 GeV could be the scale where a non-
supersymmetric Grand Unified Theory (GUT) is realized, while ⇤IR could be the Fermi scale.
If there are no other intermediate scales, the energy dependence of physical quantities at scales
⇤IR ⌧ E ⌧ ⇤UV is weak and we can approximate this intermediate regime with a CFT. This
approximate CFT is nothing but the free SM. From the CFT viewpoint, the stability of the
hierarchy between ⇤IR and ⇤UV depends on the dimensionality of the scalar operators describing
the perturbations of the CFT Lagrangian around the fixed point.

If the theory contains an operator O� with dimension � < 4, we expect, from the same
symmetry considerations in Section 3.1, that UV physics generates

Lp = c⇤4��
UV O� , (3.34)

with c = O(1). This gives the IR scale

⇤IR = c
1

4��⇤UV . (3.35)

If 4�� = ✏ ' 0, we can have an exponential hierarchy

⇤IR

⇤UV
= c

1
✏ , (3.36)

also for c = O(1). This is the case, for instance, for the QCD scale. The corresponding deforma-
tion, the glueball field Ga

µ⌫G
µ⌫a is marginally relevant. Its scaling dimension deviates from 4 only

from small loop corrections �g ' 4� ag2s and becomes 4 at the gaussian fixed point.

3
In the next lectures we comment on the use of MPl as a mass scale in our estimate.

4
Note that if we restore units to }, MPl, defined as S =

R
d
4
x
p
�g(M

2
Pl/)R has the dimensions of a vev

[M
2
Pl] = [x

�2
] = [m

2}] so in our estimate we are imagining a O(1) coupling in front. This definition also implies

MPl ⌘ 1/(8⇡GN ) and v
2
/M

2
Pl ' 10

32
.
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However, if the perturbation is relevant, as is the case for the Higgs mass, 4�� ' 2, then

⇤IR

⇤UV
'
p
c , (3.37)

and ⇤IR/⇤UV ⌧ 1, requires a tiny c, at odds with our expectations from dimensional analysis
stated in the previous Section. Let’s see this intuition at work in the SM. What happens if we try
to turn these estimates into an actual calculation?

3.1.3 In the Standard Model mh is not Calculable

In this Section I depart from the nice physical picture of EFTs that we followed in Section 2.2. I
introduce a much more opaque, but more practical way of computing quantities in a EFT. Instead
of starting in the UV, at the largest scale M where your theory is valid, and then integrate
out momentum shells one by one, I start in the IR and pretend that I can extend my theory to
arbitrarily high energies. Computationally this is much more convenient, but physically it is much
less clear and gives the impression that we have to get rid of infinities by adding to the theory
arbitrary counterterms.

The physical picture is the one discussed byWilson: you measure your parameters at some fixed
scale M and then by integrating out momentum shells you generate a flow (i.e. the parameters
in the low energy theory di↵er from those measured at M by a calculable amount). There are no
infinities and everything is smooth in the couplings.

However most quantum field theory books and courses insist in giving precedence to a di↵erent
way of computing in a EFT, over Wilson’s picture. To dispel the most common misconceptions
on the hierarchy problems I am forced to stick to this less physical (but more e�cient) way of
doing computations.

The Calculation that Everybody Likes Let’s see what happens if we try to compute mh in
a simplified version of the SM, where we set to zero all but the leading coupling of the Higgs

LSM,toy =
(@µh)2

2
�

m2
hh

2

2
+ it†�µt+ itc†�µtc + yt(h+ v)(ttc + h.c.) . (3.38)

We first follow the standard point of view on renormalization that consists in computing loops in
the low energy theory and regulating the theory with counterterms. Since we are interested in the
h two-point function we add to the theory two counterterms �� and �m, needed to make sense of
the calculation

LSM,toy �
(@µh)2

2
�

m2
hh

2

2
= (1 + ��)

(@µhR)2

2
� (1 + �m + ��)

m2
Rh

2
R

2
. (3.39)

If you are uneasy with adding these vertexes by hand, you’re not the only one, I am too, and
I think that the Wilsonian calculation in the previous Section provides a far superior physical
picture. Here we’re forced to add counterterms because we’re trying to do something unphysical:
extrapolate a theory valid to some finite energy all the way up to infinite energy.
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In the counterterm equation we introduced mR, the so-called renormalized mass. It is a finite
quantity, but it is not always a physical quantity. mR depends on the chosen renormalization
scheme and it might or might not coincide with the pole mass (i.e. what we can actually measure).

At one loop the Higgs two-point function is

i⌃2(p
2) = (iyt)

2

Z
d4k

(2⇡)4
Tr

⇥
(/p+ /k +mt)(/k +mt)

⇤

[(p+ k)2 �m2
t + i✏][k2 �m2

t + i✏]
. (3.40)

Using standard techniques to evaluate the Feynman integral in dimensional regularization (d =
4� 2✏) we get

i⌃2(p
2) = �

y2t
4⇡2

⇢
6m2

t

✏
�

p2

✏
+m2

t �
p2

6

+

Z 1

0

dx
⇥
3p2x(1� x)� 3m2

t

⇤
log

m2
t � p2x(1� x)

4⇡µ2e��E

�
. (3.41)

The scale µ was added to restore the right dimension of ⌃2 when we do the integral in d = 4� 2✏.
If we resum all 1PI diagrams the Higgs propagator at one-loop order becomes

iGh(p
2) =

i

p2 �m2
R + ⌃2(p2) + p2�� � (�m + ��)m2

R

. (3.42)

The most physical way to assign a value to the counterterms is to require the pole of the propagator
to be at the measured value of the mass (that we call m̂2

h) and the residue of the pole to be equal to
i. This is the so-called on-shell subtraction scheme and can be easily translated into the following
equations

m̂2
h = m2

R � ⌃2(m̂
2
h)� m̂2

h�� + (�m + ��)m
2
R Pole

1 =
1

1 + d⌃2(p2)
dp2

���
p2=m̂2

h

+ ��
Residue (3.43)

This is not yet enough to specify all free parameters. We have introduced two counterterms ��,m
and we have the two above conditions from our measurements, but we are left with the freedom of
choosing mR. In the on-shell subtraction scheme one takes m2

R = m̂2
h. This is true at leading order

(i.e. at tree-level), but it becomes an assumption at the order of our calculation. This arbitrary
choice does not a↵ect the physics and, as we see below, di↵erent choices give the same result. In
this renormalization scheme we have, from Eq. (3.43),

�m =
⌃2(m̂2

h)

m̂2
h

, �� = �
d⌃2(p2)

dp2

����
p2=m̂2

h

. (3.44)

Substituting into the propagator we get something finite

iGh(p
2) =

i

p2 � m̂2
h + ⌃(p

2)
, ⌃(p2) =

y2t
4⇡2


(p2 � m̂2

h)
2

20m2
t

+ O

✓
m̂6

h

m4
t

◆�
(3.45)
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but also kind of useless. We have one free parameter (m2
h or equivalently m2

R) and we can make
one measurement (m̂2

h) to fix it. We can’t predict m2
h in terms of parameters that we can measure

independently of the pole in the Higgs propagator. Even if you add back all other couplings in
the SM, the conclusion remains exactly the same and, of course, it doesn’t change if we take
mt � mh. In this case we would expect a problem from our dimensional analysis estimate
(m2

h ⇠ y2tm
2
t/(16⇡

2)), but since m2
h or equivalently m2

R are not calculable in the SM, neither is m̂2
h.

Measuring m̂2
h fixes m2

R. Once we make this measurement the limit mt ! 1 is smooth, nothing
happens to the propagator in Eq. (3.45). If we do not make this measurement we have a bunch
of free parameters left in the theory (m2

R, �m and ��) and we cannot make predictions.
Unfortunately there is no way of writing

m̂2
h = f(ê, m̂W , m̂t, ŷt, ....) , (3.46)

with only measured quantities on the right-hand side. When we say that the Higgs mass is not
calculable in the SM this is what we mean. Since it is not calculable there is no way to formulate a
sharp physical problem in terms of observables when a mass scale M coupled to H becomes large.
Dimensional analysis tells us that there is something wrong m2

h ⇠ M2, but an actual calculation
does not show any patology.

One could find some manifestations of this tension, in the fact that the EFT looks peculiar,
but there is no way to find an actual physical problem. One peculiarity is that the MS mass is
very di↵erent from the pole mass.

In the MS scheme one takes the counterterms equal to the infinite part of the loop integrals
plus an O(1) number that cancels annoying constants (i.e. log 4⇡ and �E). This choice is purely
conventional, it deserves a name because it enormously simplifies QCD calculations. It obviously
gives the same result for observables as the previously discussed on-shell scheme. In MS we have

�� = �
y2t
4⇡2

✓
1

✏
+ log 4⇡e��E

◆
, �m = �

y2t
4⇡2

1

✏

✓
6m2

t

m̂2
h

� 1

◆⇣
1 +

✏

2
log 4⇡e��E

⌘
(3.47)

In this scheme the renormalized mass m2
R is unphysical and depends on the arbitrary subtraction

scale µ. It is conventionally called the MS mass and, given the choice of counterterms above, it
reads

m2
h,MS(µ) ⌘ m2

R = m̂2
h + ⌃2(m̂

2
h)� �mm̂

2
h =

m̂2
h �

y2t
4⇡2


m2

t �
m̂2

h

6
+ 3

Z 1

0

dx
⇥
m̂2

hx(1� x)�m2
t

⇤
log

m2
t � m̂2

hx(1� x)

µ2

�

(3.48)

where we have used m2
R = m̂2

h at tree-level. If m̂t � m̂h there is a big di↵erence between m2
h,MS

(µ)

and the pole mass m̂2
h. What does this mean physically? Purely within this theory it means

nothing, since m2
h,MS

(µ) is not physical. It shows that the IR Lagrangian parameters are strongly

sensitive to UV physics, i.e. if you change mt by a small fractional amount, m2
h,MS

(µ), changes

a lot. This is telling us something about our theory, but not something physical, since m2
h,MS

(µ)
cannot be measured.
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Note that we have not technically completed our calculation, as we should have also computed
one-loop corrections to mt and traded mt and yt for their measured values m̂t and ŷt. This does
not qualitatively change our conclusions, since in this toy model mt = m̂t + O(y2t /16⇡

2) and the
same is true for yt, so the y2tm

2
t contribution in our result becomes a ŷ2t m̂

2
t plus loop corrections.

The Calculation that Everybody Likes Even More In the previous discussion we have
drawn some conclusions by taking the limit m̂t � m̂h. However, in this limit the calculation
breaks down due to the large logarithms log m̂2

t/m̂
2
h that appear in ⌃2(p2 = m2

h) when we try to
make measurements at low energies compared to m̂t. The same happens in the MS scheme.

Let us imagine that we live in a fictitious universe where the top quark is vector-like. It has a
large mass independent of ytv. Our starting point is still Eq. (3.38), valid at high energies, plus a
vector-like mass for the top Mtttc. To avoid the large logs we can compute low energy observables
from an e↵ective theory with the top quark integrated out

LEFT,toy =
(@µh)2

2
�

m2
Eh

2

2
�
�Eh4

4
+ ... (3.49)

We have omitted higher dimensional operators suppressed by the large top mass. �E is generated
at one-loop when one integrates out the top.

To get the right predictions at low energy we have to match this low energy theory to the
full theory in Eq. (3.38), i.e. we have to choose the parameters of the low energy theory to give
the same result on observables at some arbitrary matching scale µM . This insures that the low
energy theory gives the right predictions also at lower energies. At tree-level this is trivial and
independent of µM ,

m̂2
h = m2

E EFT , m̂2
h = m2

h Full Theory ! m2
E = m2

h . (3.50)

For �E the matching condition is simply �E = 0, but we won’t need it in what follows. At one-loop
we have to choose our renormalization scheme. Let’s take MS where we have already done the
calculation. In the full theory

m̂2
h = m2

h,MS(µ) +
y2t
4⇡2


M2

t �
m̂2

h

6
+ 3

Z 1

0

dx
⇥
m̂2

hx(1� x)�M2
t

⇤
log

M2
t � m̂2

hx(1� x)

µ2

�
Full Theory .

(3.51)

In the e↵ective theory at one loop we still have

m̂2
h = m2

E EFT (3.52)

because � is a one-loop quantity that gives a two-loops correction to the mass. Therefore we have

m2
E(µM) = m2

E = m2
h,MS(µM) +

y2t
4⇡2


M2

t �
m̂2

h

6
+ 3

Z 1

0

dx
⇥
m̂2

hx(1� x)�M2
t

⇤
log

M2
t � m̂2

hx(1� x)

µ2
M

�

(3.53)
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Again we don’t have any physical problem, but we observe the same peculiar feature as before.
The value of the MS mass in the low energy theory, that in this case is also the measurable pole
mass, is strongly sensitive to the values of high energy mass scales (i.e. mt). However we still
haven’t found a physical problem, because the numerical value of m2

E is fixed by a low energy
measurement and its prediction from the full theory depends on the unknown (and uncomputable)
parameter m2

h,MS
(µM). In principle we can calculate the value of m2

h,MS
(µM), but only a posteriori,

from the measurement of m2
E = m̂2

h. We would have a problem only if we could determine the
value of m2

h,MS
(µM) from some independent measurement and then find that m2

h,MS
(µM) and M̂2

t

finely cancel to give m̂2
h ⌧ M̂2

t . However in this theory no such measurement exists and as a
consequence there is also no hierarchy problem, even if M̂2

t � m̂2
h.

3.1.4 mW is Calculable

After what we just said, you might think that no mass is calculable, but this is far from true. Here
I give you one example from the SM that is useful to understand theories where the Higgs mass
is calculable. In this Section I follow [20], where you will find more details on the calculation.

Following Schwartz’s notation we call the measured parameters

ê, m̂Z , ŝW , ... (3.54)

as we did in the previous Section, while we call

e,mZ , sW , ... (3.55)

the Lagrangian MS parameters. We want to check if the measured W boson mass is consistent
with the SM prediction. In the case of m̂h we couldn’t do it, because there is no prediction. For
our calculation we need to make only three measurements: the fine structure constant, the Z-mass
and the muon lifetime. From these we determine the Lagrangian parameters e,mZ , sW that are
enough to compute m̂W .

W mass The W -boson propagator is given schematically by the diagrams in Fig. 2

�
igµ⌫

p2 �m2
W � ⇧WW (p2)

+ O(pµp⌫) . (3.56)

We ignore the gauge-dependent correction to the pµp⌫ term because measurements at LEP and
subsequent colliders were made with SM fermions in the external legs.

The measured W mass can be read from the pole, as we did for the Higgs mass

m̂2
W = m2

W + Re[⇧WW (m̂2
W )] . (3.57)

⇧WW is given by

i⇧WW (p2) = iM(W (p)! W (p)) , (3.58)

and M is the invariant matrix element of the bubble diagram. We use the same notation for other
electroweak bosons in what follows.
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Figure 1: e+e� ! µ+µ� cross section from photon exchange

We can then use the relation between Lagrangian parameters m2
W = c2Wm2

Z to express m̂2
W in

terms of other quantities in the SM Lagrangian

m̂2
W = c2Wm2

Z + ⇧WW (m̂2
W ) . (3.59)

If we can measure cW and mZ independently of mW we can compute mW in the SM and make a
prediction that we can compare with experiment. Let’s see how.

Gauge coupling To get cW we need first to measure the EW gauge coupling. The value of ê
can be extracted from the cross section for e+e� ! µ+µ� from photon exchange at center of mass
energy s. In terms of observable quantities (we leave the hat implied for the center of mass energy
that doesn’t have a corresponding non-physical parameter in the Lagrangian)

�(e+e� ! µ+µ�) =
ê4(s)

12⇡s
. (3.60)

At one-loop order this cross section is determined by the class of diagrams in Fig. 1, giving

�(e+e� ! µ+µ�) =
e4(s)

12⇡s

✓
s

s� ⇧��(s)

◆2

. (3.61)

We do not include vertex renormalization and electron wavefunction renormalization because at
zero momentum transfer they cancel (see for instance [?]). The measurement is most precise at
small external momentum. Then we will run the coupling with the SM renormalization group
equations to get it at m̂W (or m̂Z where most precision SM measurements took place at LEP).

Equating the two expressions we get (at one electromagnetic loop order)

e2(s) = ê2(s)


1�

⇧��(s)

s

�
+ O(↵2) . (3.62)

e2(m̂Z) can be evaluated from the ge � 2 measurement

↵̂(0) = (137.035999074 ± 0.000000044)�1 (3.63)

after running up to the electroweak scale. We will use the result of this running

ê2(m̂Z) = 4⇡↵̂(m̂Z) = 4⇡(127.944 ± 0.014)�1 . (3.64)
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Figure 2: Two-point function

Figure 3: Muon Decay

Z-boson mass By fitting the dilepton invariant mass lineshape, LEP measures the location of
the pole in the Z-boson two point function. The Z-boson propagator is given by the diagrams in
Fig. 2

�
igµ⌫

p2 �m2
Z � ⇧ZZ(p2)

+ O(pµp⌫) . (3.65)

The pole of the above propagator is at

m̂Z = m2
Z + Re[⇧ZZ(m̂

2
Z)] , (3.66)

where we have eliminated the contribution of ⇧ZZ(p2) to the decay width by taking its real part.
At this order we can easily invert the above relation

m2
Z = m̂2

Z

✓
1�

Re[⇧ZZ(m̂2
Z)]

m̂2
Z

◆
, (3.67)

and use the LEP measurement

m̂Z = (91.1876 ± 0.0021) GeV . (3.68)

Weak Mixing Angle We extract the weak mixing angle from the muon lifetime. Its precise
measurement allows us to determine the Fermi constant.
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The muon decay width at one electroweak loop can be computed from the diagrams in Fig. 3
giving

ĜF
p
2
= �

e2

8s2W

1

p2 �m2
W � ⇧WW (p2)

����
p2'0

=
e2

8s2W c2Wm2
Z

✓
1�

Re[⇧WW (0)]

m2
W

◆
(3.69)

Inverting this equation requires the two previous results for e and mZ , and the relation

ŝ2W (1� ŝ2W ) =
⇡↵̂(mZ)
p
2ĜF m̂2

Z

! ŝ2W = 0.234289 . (3.70)

Putting all together, after some trigonometry we get

s2W = ŝ2W


1 +

ĉ2W
ĉ2W � ŝ2W

✓
Re[⇧ZZ(m̂2

Z)]

m̂2
Z

�
⇧��(m̂2

h)

m̂2
h

�
Re[⇧WW (0)]

m̂2
W

◆�
+ O(↵2) (3.71)

Prediction of the W mass We can now use the relations derived in the previous paragraphs
between the Lagrangian parameters in Eq. (3.59) and the observed ê, m̂Z and ĉW to express m̂2

W

in terms of measured quantities

m̂2
W = c2Wm2

Z + ⇧WW (m̂2
W ) = ĉ2W m̂2

Z

✓
1�

ŝ2W
ĉ2W � ŝ2W

⇧R +
Re[⇧ZZ(m̂2

Z)]

m̂2
Z

+
Re[⇧WW (ĉ2W m̂2

Z)]

ĉ2W m̂2
Z

◆

⇧R ⌘

✓
Re[⇧ZZ(m̂2

Z)]

m̂2
Z

�
⇧��(m̂2

h)

m̂2
h

�
Re[⇧WW (0)]

m̂2
W

◆
. (3.72)

Here lies the crucial di↵erence with respect to m̂h. We can write the measurable quantity m̂2
W in

terms of three other quantities that we have measured independently ŝ2W , ê and m̂Z . Finally we
can make a prediction

m̂SM
W ' 80.368 GeV , (3.73)

and compare it with experiment

m̂exp
W = (80.377 ± 0.012) GeV . (3.74)

3.1.5 What Have we Learned in the Standard Model?

We did much work to conclude that the selection rules of known symmetries predict

m2
h ⇠

|yt|2m2
t

16⇡2
, (3.75)

in the SM without gravity and instead predict

m2
h ⇠M2

Pl , (3.76)

in the SM with gravity. This second estimate is in great tension with the measured value of mh.
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We have done an even larger amount of work to show that in the SM these estimates cannot be
turned into an actual calculation and do not correspond to any physical problem. We can never
express m2

h as a function of other parameters that we can measure. Even if we include gravity
we reach the same conclusion of the toy model with only the top quark. Schematically, if we add
gravity, the Higgs measured mass becomes

m̂2
h = m2

R + ⌃t(ŷt, m̂t, m̂
2
h) + ⌃G(M̂

2
Pl, m̂

2
h) , (3.77)

both ⌃t and ⌃G can be computed in terms of observables (and we did it for ⌃t), but m2
R remains

a free parameter that can be fixed only by measuring the Higgs mass.
What have we learned from all this? The dimensional analysis estimates are telling us some-

thing important, but not something important about the SM. They are telling us that we have to
be careful when we extend the SM to high energies. The UV theory that extends the SM has to
somehow change the symmetries that led to Eq. (3.76) before hitting MPl.

This is a truly useful kind of observation: a low energy measurement (m̂2
h ' 125 GeV) of a

relevant operator is giving us important clues on how to extend the theory at high energies.
In the Introduction we have seen two issues similar to the one that we just encountered for the

Higgs mass. What we discussed for the electron mass is almost exactly the same problem. We
have a quantity that cannot be computed in the low energy theory (because me,0 is free and can
only be measured), but is sensitive to high energies (m̂e ⇠ 1/re). This is saying nothing about
the consistency of classical electrodynamics. Within that low energy theory you can measure me

and be done with it. The theory is perfectly consistent and allows you to make predictions that
you can compare with experiment.

This tension turned out to teach us something important about the high energy theory that
extends classical electrodynamics. At re ⇠ 1/m̂e a new symmetry emerges and in this case even
a new theory of Nature (quantum field theory).

As for the electron, we can associate also to the Higgs mass a scale where we expect something
new to happen. If we do not want accidental cancellations between di↵erent parts of the low
energy calculation (between m2

R and ⌃2(m̂2
h) for example) we need the calculation to be modified

at a scale

m2
h ⇠

y2tM
2
new

16⇡2
!Mnew ' TeV . (3.78)

This kind of rough intuition has paid o↵ several times in the past. Essentially, every time we had
a similar potential “fine-tuning” problem between parameters, it was resolved before it became a
problem, i.e. at M < Mnew. We have seen this briefly for the electron self-energy, but you might
wonder if the same is true also in quantum field theory. The answer is a resounding yes and it even
led to the prediction of a new particle and a Nobel prize. Let’s see two examples. Charged and
neutral pions have a mass di↵erence induced by the coupling of the charged pion to a photon. We
can estimate the size of this coupling in the chiral Lagrangian using Naive Dimensional Analysis
(NDA) [21]

⇤2
QCDf

2
⇡

⇡† !@ µ⇡

f 2
⇡⇤QCD

eAµ

⇤QCD
= eAµ⇡† !@ µ⇡ . (3.79)
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From this vertex we can estimate the mass di↵erence by cutting o↵ the loop diagram that corrects
the ⇡± two-point function with a one photon exchange

m2
⇡+ �m2

⇡0 ⇠ e2
Z

d4k

(2⇡)4
k2

(k2 �m2
⇡)

2
⇠

↵

4⇡
M2

new . (3.80)

We used a hard momentum cuto↵ at Mnew, the scale where we expect the calculation to be
modified. From the measured mass di↵erence we have

M�m⇡

new ' 850 MeV , (3.81)

and indeed we observe the ⇢ meson at m⇢ ' 770 MeV. This new particle modifies the calculation.
Slightly above this scale pions cease to be a good description of the dynamics which becomes that
of perturbative QCD. What protects the pion mass compared to larger scales in the theory is the
approximate scale invariance of QCD, as we discuss in the next Sections.

A second, more striking, example is that of the Kaons mass di↵erence that allowed to predict
the existence of the charm quark. Kaons are spin zero bound states of a strange and a down quark
K0
⇠ ds̄. For pedagogical purposes imagine to know the interactions of the three lightest quarks

with SU(2)L. Among other vertices you will find

LSM � �
g
p
2
W µ


ū�µ

(1� �5)

2
(d cos ✓c + s sin ✓c)

�
, (3.82)

From this Lagrangian you can easily write a box diagram (one loop with internal W ’s and u
quarks) that mixes ds̄ with d̄s, i.e. mixes the two mesons K0 with K̄0. If you integrate out the W
and you match this calculation to the e↵ective theory of mesons (the chiral Lagrangian of QCD
that becomes a good description of the SM at energies where the QCD coupling is large, i.e. below
⇠ GeV), you will find a mass mixing between the two Kaons

⇣
K

0
K0

⌘✓ m2
K �m2

K

�m2
K m2

K

◆✓
K

0

K0

◆
. (3.83)

The loop diagram that you just computed to get �m2
K is sensitive to high energies. Let’s cut it

o↵ again at Mnew. In this case we get

mK0
L

�mK0
S

mK0
L

=
G2

Ff
2
K

6⇡2
cos2 ✓c sin

2 ✓cM
2
new, fK ⇡ 114 MeV . (3.84)

Numerically

Mnew ' 2 GeV . (3.85)

At mc ' GeV a new particle appears, the charm quark, with interactions

LSM � �
g
p
2
W µ


c̄�µ

(1� �5)

2
(�d sin ✓c + s cos ✓c)

�
. (3.86)
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This new interaction enters the calculation ofmK0
L

�mK0
S

cancelling the sensitivity to high energies.
This is how the charm quark was predicted [] (modulo some abuse of our modern knowledge to
make the exposition more streamlined).

To summarize, we have seen two examples in QFT of quantities that are not calculable in a
low energy theory (the pions’ and Kaons’ mass di↵erences), because they are sensitive to high
energies. If we had done a proper calculation, as we did for mh we would have found

m̂2
⇡+ � m̂2

⇡0 = �m2
⇡ + ⌃⇡(m̂⇡, ê, f̂⇡) .

mK0
L

�mK0
S

= �m2
K + ⌃K(m̂K , Ĝf , ✓̂c, f̂K) , (3.87)

with�m2
⇡ and�m2

K unknown Lagrangian parameters and ⌃⇡,K calculable (at least on the lattice).
Instead we tried to deduce a scale Mnew by comparing the calculable part in the EFT with the
measured value of the observable. We asked that Mnew be small enough that the calculable part
be at most comparable to the measured quantity. We always found a modification of the EFT
calculation below Mnew. This is good news for the hierarchy problem. In the SM we expect
Mnew ' TeV as shown in Eq. (3.78).

3.2 Theories Where mh is Calculable and the Actual Hierarchy Prob-
lem

3.2.1 Supersymmetry

We can consider the Minimal Supersymmetric Standard Model (MSSM) which extends the SM
with the minimal field content needed to realize supersymmetry. The algebra of N = 1 supersym-
metry (i.e. the simplest version with two spinorial generators) is

{Q↵, Q
†
↵̇} = 2�µ

↵↵̇Pµ ,

{Q↵, Q�} = {Q†
↵̇, Q

†
�̇
} = 0 ,

[Q↵, P
µ] =

h
Q†
↵̇, P

µ
i
= 0

[Mµ⌫ , Q↵] =
(�µ⌫)�↵

2
Q� ,

h
Mµ⌫ , Q†

↵̇

i
=

(�µ⌫)�̇↵̇
2

Q†
�̇

(3.88)

with the addition of the usual Poincaré algebra that we left implicit. Supersymmetry (SUSY)
is not the main focus of this work and we refer the reader to [22, 23, 24] for the derivation and
significance of this result. For our purposes it is su�cient to notice two powerful consequences of
this symmetry algebra:

The Cosmological Constant is Calculable (and protected by SUSY) See Section 5.
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The Higgs Mass is Calculable (and protected by SUSY) The existence of two spinorial
generators implies that particles of di↵erent spin belong to the same supersymmetric multiplet.
Let me call |F i fermions and |Bi bosons, then

Q|F i = |Bi , Q†
|Bi = |F i , (3.89)

given the algebra, applying QQ† is a translation

QQ†
|B(x)i = |B(x+ a)i , (3.90)

additionally [Q,P 2] = 0 and [Q†, P 2] = 0, as again implied by the algebra. Putting all together
we have that there must be fermions and bosons with the same mass (that form a multiplet of
the algebra)

hB|P 2
|Bi = m2

BhB|Bi

hB|P 2
|Bi = hF |Q†P 2Q|F i = hF |P 2

|F i = m2
F hF |F i . (3.91)

In practice to make the SM supersymmetric we need a new s = 0 scalar for each fermion, and a
new s = 1/2 fermion for each complex scalar (note that the algebra implies also that Q and Q†

have spin 1/2). Stated more compactly, PµP µ is a Casimir of the algebra and the fermionic nature
of the generators forces particles with integer and half-integer spin in the same multiplet. This
relates mh to the mass of a fermion mh̃. As we have seen in the previous sections, fermion masses
break chiral symmetries. If the mass itself is the only source of breaking, the selection rules of
these symmetries tell us that the result of any calculation of the mass must be in the form

m̂h = m̂h̃ = mh̃, tree [...] . (3.92)

There cannot be power law sensitivity to high scales as in the SM. This is of course not the whole
story, because the sensitivity to high scales could still be logarithmic

m̂h = m̂h̃ = mh̃, tree [log⇤+ ...] . (3.93)

In addition to that, supersymmetry is broken. However the Higgs mass might still be calculable,
even taking these two extra subtleties into account. If supersymmetry is only softly broken, by a
dimensionful parameter MS, we must include also contributions of the type

m̂h = m̂h̃ +MS = MS +mh̃,tree [log⇤+ ...] . (3.94)

The supersymmetry breaking parameters that we paramterized with MS can in principle be mea-
sured independently of m̂h̃ and so can ⇤ and everything else in the ellipses, as we show below.
Stated in terms of our language of choice: MS is the largest scale allowed in the estimate of mh

by the selection rules of supersymmetry. Higher scales do not break SUSY and cannot enter the
calculation of the Higgs mass as a power-law correction. Note that this is true only if super-
symmetry is broken softly (i.e. by dimensionful parameters like MS). Imagine that we do not
supersymmetrize the top sector, then yt breaks supersymmetry and the estimate of the Higgs mass
is

m2
h ⇠ |yt|

2 M2

16⇡2
, (3.95)
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where M is any large scale coupled to the top sector and it doesn’t have to break SUSY. In
this case we are back in the SM case: m2

h is not calculable and sensitive to unknown large
scales. Summarizing, in a theory with softly broken supersymmetry the Higgs mass receives
contributions only up to a finite scale where SUSY is broken and we can compute it as a function
of supersymmetric and supersymmetry breaking parameters that we can measure independently
of mh. More explicitly the estimates based on selection rules in Section 3.1.2 become

m2
h ⇠ max[M2

S,m
2
h̃
] , (3.96)

where MS is a supersymmetry breaking mass. It could also become

m2
h ⇠ max


|yt|2

16⇡2
M2

S,m
2
h̃

�
, (3.97)

if SUSY breaking is communicated to the Higgs only through top loops. It is technically natural
for MS to be much smaller than the Planck scale, since MS is breaking supersymmetry (i.e. it
transforms di↵erently as a SUSY spurion compared to MPl).

In the SM there is always an unknown contribution from high energies. In the previous Section
we have parametrized our ignorance of high energies in terms of the 1/✏ pole, but we could have
done it with a dimensionful cuto↵ ⇤. There is no way to measure this unknown contribution,
we don’t even know at what energy it is saturated. We can only absorb this unknown quantity
into a low energy measurement, as we did in the previous Sections. The measurement of m̂h was
fixing the bare Lagrangian parameter mR plus the unknown 1/✏ terms. In supersymmetry the
calculation is saturated at the SUSY breaking scale5 ⇤S, where we can measure mh via its relation
to other Lagrangian parameters (as we did for the W mass). After this explanation we can turn
to the actual computation. To do it we need to introduce a few more ingredients.

Supersymmetry does not allow us to write both up-type and down-type Yukawa couplings
with a single Higgs boson. We have two introduce two new doublets Hu,d. The extra doublet is
also needed to cancel gauge anomalies induced by the supersymmetric partner of the Higgs, the
Higgsino.

Furthermore, we need to take into account supersymmetry breaking. We have not observed
this plethora of new particles realizing the symmetry, so in Nature the symmetry must be broken
at some scale. For this reason we will include also soft (i.e. dimensionful) supersymmetry breaking
in what follows.

In this theory the tree-level potential of the two Higgs doublets reads

LSH = �(m2
Hu

+ |µ|
2)|Hu|

2
� (m2

Hd
+ |µ|

2)|Hd|
2
� (BµHuHd + h.c.)

�
g2W + g2Y

8
(|Hu|

2
� |Hd|

2)2 �
g2W
2

|H†
dHu|

2 . (3.98)

In addition to the three degrees of freedom that make W and Z massive, these theory contains
four mass eigenstates: a charged scalar H+, a CP-odd scalar A and two CP-even scalars H, h.

5
The scale of SUSY breaking ⇤S does not need to coincide with the scale of the masses MS . In fact there is a

theorem that one can get a spectrum compatible with experiment only if SUSY breaking is mediated to our sector

via loop corrections [22].
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In this theory the weak scale can be computed in terms of measurable parameters only. At
tree-level we have

v̂2tree =
2

ĝ2W + ĝ2Y

 
|m̂2

Hu
� m̂2

Hd
|

p
1� 4(v̂uv̂d/v̂2)2

� m̂2
Hu
� m̂2

Hd
� 2|µ|

2

!
. (3.99)

where vu,d are the vacuum expectation values of the two neutral components of Hu,d that satisfy
v2u + v2d = v2. As you can see, we have only measured quantities on both sides. We can measure
m̂2

Hu,d
and µ̂ from the masses of other Higgs bosons and from the Higgsinos, the fermionic partners

of the Higgs bosons. If we found m2
Hu,d

, µ2
� v2, we would have to explain the cancellation needed

to get v ' 174 GeV.
To complete the calculation we can also include the most important loop contribution that is

generated by diagrams containing the supersymmetric partner of the top quark, the stop,

L
SUSY
t̃H = �|yt|

2
|Hu|

2(| eQt|
2 + |etc|2)�

h
µ⇤ytH

0⇤
d
eQ†
t
etc + h.c.

i
,

Lt̃H = �m2
eQt

| eQt|�m2
etc |
etc|2 +

h
ytAt

eQ†
tH

0
u
etc + h.c.

i
. (3.100)

In the second line we have also included SUSY breaking terms. The two EW eigenstates eQt,etc
combine into two mass eigenstates t̃1,2 that are mixtures of the partners of the left-handed and
right-handed top quarks. For simplicity we have ignored the possible mass mixing with other
generation of squarks.

The dominant loop correction to v2 from the previous Lagrangian is

�m2
Hu

= �
3ŷ2t
8⇡2

⇣
|m̂ eQt

|
2 + |m̂etc |

2 + |Ât|
2
⌘
log

⇤̂S

TeV
, (3.101)

As |m eQt
|
2, |metc |

2 or |At|
2 grow much beyond v2, we have to explain where the cancellation between

them is coming from. An intuitive measure of this fine-tuning is often taken to be [25, 26]

� ⌘ 2
�m2

h

m2
h,exp

, (3.102)

where m2
h,exp ' (125 GeV)2 and �m2

h is any individual contribution to the calculation.
A tuning exists in every theory where the Higgs mass can be calculated. If the new symmetry

that makes it calculable is realized only at scales much higher than mh we need a fine-tuning to
explain its value.

If we apply our EFT intuition, we expect the parameters entering the mh calculation to have a
roughly uniform (or power-law [27]) distribution in an O(1) interval around the typical supersym-
metry breaking mass. Observing a tuning is thus a real problem, in the sense that it is signalling
that we are making wrong assumptions in our description of Nature. The EFT intuition that has
been tremendously successful so far can be wrong in two ways: 1) either Nature accepts some
amount of tuning 2) or the “natural” values for supersymmetry breaking parameters have a very
di↵erent distribution compared to what we naively expect.
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Both options leave us with more open questions: in the first case, why do only mh and the
CC appear to be tuned while all other parameters of Nature follow our EFT intuition? In the
second one, how does a UV theory that tunes supersymmetry breaking parameters to the right
value look like? The answer to the first question is unknown, but we will answer the second one
in the next Sections.

Before going there, I find useful two more expressions for m2
h that you will encounter in

supersymmetry. From now on (and for the rest of these notes) we leave the hats over measured
quantities implied.

Given the results from the LHC that has observed an approximately SM-like Higgs boson, we
can consider a model where h (one of the two CP-even eigenstates) is approximately decoupled
from the rest of the Higgs sector and compute its mass. At tree-level we have

m2
h,tree =

1

2

 
m2

A +m2
Z �

r
(m2

A +m2
Z)

2 � 4m2
Am

2
Z

(v2u � v2d)
2

v4

!
, (3.103)

where mA is the mass of the CP-odd Higgs. At one loop we can add the leading top and stop
contribution

m2
h = m2

h,tree +
3GF
p
2⇡2


m4

t (Q1) log
M2

s

m2
t

+m4
t (Q2)

X2
t

M2
s

✓
1�

X2
t

12M2
s

◆�
+ ... (3.104)

where the ellipses represent subleading contributions. Here, M2
s = mt̃1mt̃2 , Q1 =

p
mtMs, Q2 =

Ms, Xt = At � µ(vd/vu) and mt(Q) is the running top mass. At is a supersymmetry-breaking
parameter that enters the stop mass matrix [22].

As before, all the parameters in the previous expression can be measured independently of mh

and we left the hats implied. If supersymmetry breaking occurs at scales much higher than mh the
parameters entering its calculation (mA, Xt and Ms) can give the observed result only if they are
precisely tuned to give an approximate cancellation in Eq. (3.104). The larger they are, the larger
is the cancellation. However, this is not immediately manifest from Eq.s (3.103) and (3.104), if
we take mA !1 or met1,2 !1, nothing bad happens.

It is because in those equations we have already tuned! We have expressed mh as a function of
mt andmZ which in turn are proportional to the weak scale v =

p
v2u + v2d. However, in the MSSM

we can compute the weak scale as a function of parameters that can be measured independently
of v, as we have seen in Eq.s (3.99) and (3.101). This is exactly what we did in the SM for mW .
We wrote it as a function of cW , e and mZ and we do not see any tuning in its expression. The
reason is that we have already implicitly tuned v by fixing mZ (or rather in the SM per se we
have just fixed v by measuring mZ , as we discussed before there is no tuning).

Another reason to consider Eq.s (3.103) and (3.104) is because they show another tension
typical of weakly coupled extensions of the SM. The tree level value for mh, given by Eq. (3.103)
is mh  mZ (or mh  gweakv in a di↵erent theory with a di↵erent weak coupling). If we want
mh ' 125 GeV we need to makemt̃1,2 large, to enhance the logarithmic contribution in Eq. (3.104).
This in turns requires a tuning in Eq. (3.101) that grows as m2

t̃1,2
.
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3.2.2 Scale Invariance and Composite Higgs

It is instructive to ask if there are any other symmetries besides supersymmetry that make the CC
and mh calculable and potentially make their small value natural. We already know the answer
to this question from our exercises with dimensional analysis: scale invariance can do the trick.
Both the CC and mh transform non-trivially under the symmetry if we promote them to spurions

x ! sx

⇤CC ! s�4⇤CC , m2
h ! s�2m2

h . (3.105)

Incidentally this is the reason why we do not worry about the stability of the value of the QCD
scale ⇤QCD ⇠ 100 MeV with respect to some larger UV scale ⇤UV. The reason is that the QCD
Lagrangian without quark masses is approximately scale invariant

SQCD =

Z
dx
✓
�
1

4
Ga

µ⌫G
µ⌫a + iq�µDµq �

↵s✓

8⇡
Ga

µ⌫
eGµ⌫a

◆
. (3.106)

It does not contain operators with scaling dimension much smaller than 4. Under a scale trans-
formation

xµ
! sxµ , (3.107)

at the classical level the operators in Eq. (A.32) all get a factor of s�4 which compensates the s4

factor in the integration measure d4x. Therefore a scale transformation leaves S invariant

S ! S . (3.108)

If we include quantum corrections, scale invariance is broken by e↵ects of O(↵s). If we imagine
that at ⇤UV we are close to a conformal fixed point, i.e. the theory is almost scale invariant also
at the quantum level: ↵s(⇤UV) ⌧ 1, then all physical quantities depend on the energy scale at
most logarithmically at high energy and it takes many decades of running before QCD confines
↵s(⇤QCD) ' 1,

log
⇤UV

⇤QCD
=

1

18

4⇡

↵s(⇤UV)
. (3.109)

The running is slow because there are no relevant deformations in the theory, i.e. no operators
with dimension much smaller than � ' 4. As a consequence there are no dimensionful coe�cients
of dimension �� 4 much bigger than zero that can a↵ect the running of physical quantities. The
scale ⇤QCD is generated through running, without any dimensionful couplings in the theory. This
phenomenon is known as “dimensional transmutation” in the QCD literature.

Quark masses do not change this picture. The selection rules of the chiral symmetries that
they break, enforce that their running is also logarithmic

dmq

d logE2
⇠ mq , (3.110)
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so even if the quark mass operators

Lq = mq q̄q , (3.111)

have dimension �q̄q = 3 they run as marginal operators of dimension � = 4.
This general idea can be applied also to explain the hierarchy mh ⌧ ⇤UV. Imagine that at

some scale m⇤ a new strongly interacting sector exists and the Higgs boson is a composite state of
this sector. Above m⇤ there is no Higgs boson and no �|H|2 = 2 operator associated to its mass,
so we expect m2

h ⇠ m2
⇤. Above this scale m2

h does not receive any quantum correction. The scale
m⇤ can be generated from ⇤UV from dimensional transmutation.

To make this picture compatible with current data we need a second “elementary” sector that
contains all other SM particles. The elementary sector is a weakly-coupled gauge theory, essentially
the SM minus the Higgs. In principle the right-handed top quark could also be composite. All
other fields can at most weakly mix with operators of the new strongly interacting sector (a
possibility that is referred to as partial compositness [28]).

To make this picture consistent, the composite sector must respect a symmetry group G that
contains the SM gauge group, or at least the subset of the SM gauge group under which the Higgs
is charged, i.e. G � SU(2)L ⇥ U(1)Y . In analogy with QCD, the global group G is generically
broken to a subgroup H at the confinement scale m⇤.

G is also explicitly broken by the gauging of SU(2)L⇥U(1)Y , since the elementary SM particles
do not respect G and interact with the composite ones through electroweak gauge bosons. This
is analogous to QCD, where G = SU(3)L ⇥ SU(3)R which is explicitly broken by gauging its
electromagnetic subgroup U(1)Q.

In principle extra explicit breaking terms, analogous to quark masses in QCD, are possible
also for our new composite sector. However, we note that the interaction between composite and
elementary sectors must not contain any strongly relevant deformation, otherwise the mechanism
that stabilizes the m⇤ ⌧ ⇤UV hierarchy would be invalidated.

At some scale. below m⇤ we have massless Nambu–Goldstone Bosons (NGB) in the G/H
coset. Some of them get a mass from the explicit breaking coming from the SM. At this point we
have to make a choice: the Higgs boson can either be a generic state of the composite sector or
one of the Goldstone bosons.

The first option was first presented in [10, 8, 29, 30] and is known under the name of technicolor.
The latest results from particle colliders show a strong tension with experiment. If m⇤ ' mh we
would have already observed some particles from the composite sector, the analogue of QCD
hadrons, but we have not observed any of them.

The second option [31, 32, 33, 34] is still alive if we accept some amount of tuning. The first
question that we should ask if we follow this route, is why the Higgs boson observed at the LHC is
consistent with the elementary H in the SM Lagrangian. If H is really part of a composite sector
we would expect significant deviations in its couplings compared to the SM expectations [35].

However in these models there is a free parameter that controls how “elementary” the Higgs
looks like. To see this we can split the generators of G, TA into unbroken generators T â that
form the algebra of H and broken generators Xa. The adjectives “broken” and “unbroken” are
not very physical, in reality the whole symmetry is realized and that is what keeps the Goldstone
bosons massless. However it is useful to separate the generators in these two categories because
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the T â’s are associated to a part of the symmetry that is realized in the usual linear way, with
conservation laws that are manifest. The vacuum ~F satisfies

T â ~F = 0 , Xa ~F 6= 0 . (3.112)

A priori we can choose any embedding of H in G. If we act with the elements of G on the
generators {T â, Xa

} reshu✏ing them between broken and unbroken, the theory that we obtain is
equivalent to the one that we started with, unless H can be embedded in multiple inequivalent
ways in G, namely when di↵erent choices of the H algebra generators are not all related by inner
automorphisms. In this case dynamics selects the right embedding. Barring this complication, we
can choose the T â to contain SU(2)L ⇥ U(1)Y .

If we introduce the Goldstone bosons of G/H in the usual way

~�(x) = ei✓
a(x)Xa ~F , (3.113)

it is the vev of ✓, h✓i, which controls the amount of breaking of the EW gauge group

v = |~F | sinh✓i ⌘ f sinh✓i . (3.114)

Geometrically this can be understood as follows: ~F is orthogonal to H (T a ~F = 0). The Goldstone
bosons are given by tilting ~F by an angle ✓aXa whose sine gives the projection to the orthogonal
plane where H lives.

Therefore we have a tunable parameter

⇠ ⌘
v2

f 2
, (3.115)

that allows us to decouple an approximately SM-like Higgs with vev v from the rest of the Gold-
stone bosons that live at f . This mechanism is known as vacuum misalignment [31, 32, 33, 34].
⇠ can be made small by tuning or through a clever use of symmetry as in little Higgs construc-
tions [36, 37, 38]. The latter, however, require a large Higgs quartic at odds with Higgs mass
measurements and complex model building.

Much more could be said on these models and for a more comprehensive overview we refer
the reader to [39]. Here we just give one of the simplest examples of how to construct the Higgs
sector of the model. Consider the global symmetry group SO(5). It contains as a subgroup SO(4)
that is locally isomorphic to SU(2)L ⇥ SU(2)R. We identify weak interactions with SU(2)L and
hypercharge with T3R, the diagonal generator of SU(2)R. We then consider a scalar � in the 5
representation of SO(5) with Lagrangian

L =
1

2
(Dµ�)

TDµ��
g2⇤
8

�
�T�� f 2

�2
, (3.116)

where we have gauge the subgroup of SO(5) corresponding to SM gauge interactions. One can see
immediately that the potential has a flat direction �T� = f 2, this means that there are massless

31



fields. There is a general way to find the massless states which is discussed in Section A.1. It
amounts to rewrite the field as

� = ei
p
2⇡

a(x)
f

Xa

0

BBBB@

0
0
0
0

f + �(x)

1

CCCCA
= (f + �(x)) sin

⇧

f

0

BBBBBB@

⇡1

f
⇡2

f
⇡3

f
⇡4

f

tan ⇧
f

1

CCCCCCA
, (3.117)

⇧ ⌘

sX

a

⇡a⇡a . (3.118)

When SO(5) acts on � it rotates the four fields in ~⇧ = {⇡1, ..., ⇡4
} as a 4-plet of the SO(4) where

the SM gauge group is embedded. One can see this from the form of the generators in Eq. (??).
It is therefore natural to identify the SM Higgs boson with

H =
1
p
2

✓
⇡1 + i⇡2

⇡3
� i⇡4

◆
, (3.119)

and SO(4) with the custodial symmetry of the SM. We can then write the Lagrangian as

L⇧ =
f 2

2|H|2
sin2

p
2|H|

f
(DµH)†DµH +

f 2

8|H|4

 
2
|H|

2

f 2
� sin2

p
2|H|

f

!
(@µ|H|

2)2 (3.120)

where we have integrated out � that gets a mass at g⇤f , while at this level the Higgs boson is still
massless. In this theory it is natural for the Higgs mass to be small, it is a Goldstone boson with
a shift symmetry in the form H ! H + c. The shift symmetry is just the non-linear realization of
the original SO(5) symmetry. When we apply a transformation in the “broken” sector to �, we
are just shifting the ⇧’s, as one can see from Eq. (3.118)

�0 = ei~↵·
~X�! ~⇧0 = ~⇧+ ~↵ , (3.121)

so the so-called “broken” part of the original symmetry (SO(5)/SO(4)) is keeping the Higgs mass
equal to zero at low energies (E . 4⇡f). Once we get to energies E ' m� and we reconstruct
Eq. (3.116) we have to ask what is stabilizing f from high-energy corrections. This can be realized
via an approximately scale-invariant sector as discussed previously. This sector could be strongly
coupled and, among other things, generate Eq. (3.116) below its confinement scale.

In practice the “broken” SO(5)/SO(4) symmetry is solving the little hierarchy problem, sep-
arating H from other resonances of the composite sector by making it a Goldstone boson, while
scale invariance is doing the heavy lifting (separating f from MPl). Gauging SU(2)L and giving
H Yukawa couplings, in general breaks this symmetry, generating a potential for H. We refer the
reader to [] for some explicit constructions.

This, of course, is not the end of the story. First of all, it is clear from the previous discussion
that these models are in tension with current experimental observations. We have already explored
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scales about a factor of ten above the Higgs mass, without finding the non-linear interactions and
possibly new particles expected at f . In this model the natural value for the Higgs vev is precisely
f . It is the only scale in the theory and you’ll get this result if you try to compute the Higgs
potential from the top Yukawa and gauge interactions. Where are all the non-linear e↵ects in
Eq. (3.120)? If we expand it and write the covariant derivative in terms of SM gauge bosons,
it’s easy to see that we predict deviations in Higgs couplings compared to the SM at the level
m2

W/g2f 2. To make this work experimentally we need an accidental cancellation in the Higgs
potential6 which translates in about a ⇠ ' 1% tuning.

Secondly, it is not hard to embed this construction in UV complete models [31, 32, 34] that
deliver a suitable Nambu-Goldstone Higgs, with the SM gauge groups contained in H. However,
not many attempts have been made to extend these constructions to the fermionic sector [40, 41,
42, 43, 44]. The best examples that we have, which successfully account for searches of flavor
violation beyond the SM, are are five-dimensional gauge theories on truncated AdS space [45, 46,
47]. Models with extra space dimensions have had a considerable impact on the field. By the
AdS-CFT correspondence they can be shown to be equivalent to the 4D constructions that we
just discussed. However it is instructive to spend some time discussing explicit 5D models.

3.2.3 Warped Extra Dimensions

Some of the most interesting explicit realizations of scale invariance protecting the Higgs mass have
been presented in the form of 5D theories, with the additional dimension described by truncated
AdS space. The first examples were presented in [48, 49].

Consider adding one extra dimension with metric,

ds2 = e�2kydxµdx
µ + dy2, (3.122)

confined to the interval y 2 [0, yIR]. This is a slice of AdS space. The fluctuations around this
classical solution are

yIR ! yIR + T (x) ⌘µ⌫ ! ⌘µ⌫ + hµ⌫(x) ⌘ ḡµ⌫(x) . (3.123)

O↵-diagonal fluctuations of the metric are massive and excluded from the low-energy e↵ective
theory. Gravity can propagate in the bulk, but the SM is on the brane at yIR

Z
d4xdy�(y � yIR)LSM . (3.124)

In the 4D e↵ective theory the Planck mass is

M3

Z
d4x

Z yIR

0

dye�2kyp
�ḡR4 !M2

Pl =
M3

2k

�
1� e�2kyIR

�
⇡

M3

2k
, (3.125)

where we have assumed a big hierarchy between yIR and 1/k. What stabilizes this hierarchy also
solves the hierarchy problem because on the SM brane we have

Z
d4x
p
�ḡe�4kyIR

h
e2kyIRgµ⌫ (DµH)† D⌫H +m2

h,0|H|
2 + ...

i
(3.126)

6
When we compute it, we will typically find V (h) � (a1 + a2 + ...)y

2
t
f

2
|H|

2
and we need

P
i
ai ⇠ 0.01amax
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After rescaling the kinetic term

m2
h = e�2kyIRm2

h,0 . (3.127)

We can describe the mechanism as having a large fundamental scale for gravity, which is redshifted
to ' TeV on the SM brane (the so-called IR brane). However a description equivalent to large
extra dimensions (ED), discussed in Section 4, is also possible. A covariant action satisfies

S(�,m) = S
⇣
�0,

m

w

⌘
, (3.128)

where �0 are all the fields after a Weyl rescaling, g ! w�2g, H ! wH,  ! w3/2 , ...
We can in fact see that this is the same as large ED by assuming that the fundamental mass

scale of gravity is at a TeV and by rescaling everything by e�kyIR and getting a blue-shifted Planck
mass. Here the volume of the ED is made large by the exponential factor. Note that this shows
that also this idea predicts new states close to the TeV scale, as supersymmetry and all other
ideas based on symmetry. We return to this point at the end of this Section.

First note that the idea works only if e�2kyIR is very small, and what is really stabilizing the
hierarchy (yIRk > 1) is also solving the hierarchy problem. If you try to expand the action to find
the potential for T (x) you will find that it is zero. The reason is that AdS space is scale invariant.
One can see it immediately by noticing that the exponential is just a convenient artifact, but we
might have chosen di↵erent coordinates

z =
e�2ky

k
, ds2 =

1

k2z2
�
dxµdx

µ + dz2
�
, (3.129)

in this frame it is clear that we need a large ED in some sense and also that scale invariance is
solving the hierarchy problem.

If we want to stabilize a large hierarchy of scale we have to break this symmetry as little as
possible. Let’s see how. If we consider the metric in the previous equation, the UV brane is at
zUV = 1/k = R and the IR brane, whose position is parametrized by the dilaton � of the associated
CFT, is at � = 1/zIR ⌧ k. For a more comprehensive discussion of the mapping between CFT
and AdS description we refer to [50].

To stabilize the dilaton (i.e. fix the position of the IR brane) we add a bulk scalar, as first
proposed in [51],

S =

Z
d4xdz

p
�g

�
gMN@M�@N�+ ⇤5

bulk �m2
b�

2
�
. (3.130)

� is often called a Goldberger-Wise (GW) scalar. This addition to the action is equivalent to
explicitly breaking conformal invariance in 4D, with an operator with dimension related to m2

b .
We imagine that some unspecified dynamics fixes the vev of � in the IR and in the UV and we
define the dimensionless ratios v1,0 by dividing the vevs by their natural value

v1 ⌘
h�(zIR)i

z3/2IR

, v0 ⌘
h�(zUV)i

z3/2UV

. (3.131)
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From Eq. (3.130) we can obtain the equations of motion for � in the bulk

3

z
@z�� @

2
z� = �m2

b

�

k2z2
, (3.132)

whose solution is

�(z) = C1z
2+

r
4+

m
2
b

k2 + C2z
2�

r
4+

m
2
b

k2 . (3.133)

Note that even if the scalar vev grows from the UV to the IR zIR � zUV, this warped ED can still
solve the hierarchy problem. If we have a Higgs on the UV brane, its measured vev in the IR is
suppressed by

p
gIR = 1/(kzIR)4 which overcomes the z2 growth.

C1,2 can be fixed using our boundary conditions Eq. (3.131). If we plug Eq. (3.133) back into
the action and integrate over z, we can obtain a 4D potential for the dilaton. In the region where
�⌧ k, where � parametrizes the position of the IR brane, while k that of the UV brane, we have

V = �✏v20k
4 +

⇥
(4 + 2✏)�4(v1 � v0(�/k)

✏)2 � ✏v21�
4
⇤
+ O(�8/k4) , (3.134)

where for simplicity we took m2
b = 4✏/z2UV. This shows explicitly that mb breaks scale invariance,

had we only included the kinetic term for �, we would have generated only scale-invariant �4

terms. The trick that allows to stabilize the hierarchy is to assume that scale invariance is broken
by a small amount ✏. The minimum of this potential is at � = k(v1/v0)1/✏. So even a mild
hierarchy between fundamental parameters: ✏ ' 1/20 and v1/v0 ' 1/10 can give �/k ' mW/MPl.

A small hierarchy of vevs can thus generate a big hierarchy of scales. This is equivalent to the
discussion of dimensional transmutation in QCD, where the logs from quantum corrections play
the role of �4+✏.

Now that we have discussed the core symmetry that stabilizes the hierarchy and explains
naturally the observed value of mh, we find useful to give some extra details about the zeroth-
order predictions of the model. Let us focus on the Kaluza-Klein excitations of the graviton (i.e.
the spin-2 massive modes). As we will see in more detail in Section 4, a 4D observer who does not
yet have enough energy to see the new extra dimension will first see a tower of modes that arise
from integrating the action over the fifth coordinate.

If we insert Eq. (3.129) into the action, treating ⌘µ⌫ ! gµ⌫ as a dynamical field, we get

S =
4M3

k3

Z zIR

1/k

dz

z3
p
g

⇢
R4(g) +

1

4

⇥
(@zgµ⌫)

2 + (gµ⌫@zg
µ⌫)2

⇤�
(3.135)

If we further split the metric into the flat space one plus fluctuations hµ⌫ the quadratic part of
the action for h reads

S =
4M3

k3

Z zIR

1/k

dz

z3
�
hµ⌫K

µ⌫⇢�h⇢� � hµ⌫@2zhµ⌫ + hµ
⌫@

2
zh

⌫
⌫

 
, (3.136)

where Kµ⌫⇢� is the operator in Eq. (??). If we work in the gauge @µhµ⌫ = hµ
µ = 0, the 4D equations

of motion are
�
⇤+m2

n

�
h(n)
µ⌫ = 0 (3.137)
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where m2
n are the eigenvalues of the operator

�z3@z

✓
1

z3
@z n(z)

◆
= m2

n n(z) , (3.138)

obtained from the second term in the action. If we impose the boundary conditions

@z n(z = 1/k) = @z n(z = zIR) = 0 , (3.139)

then the solution is

 n(z) = k2z2 [J2(mnz) + bnY2(zmn)] , (3.140)

and the eigenvalue equation becomes

J1(mn/k)Y1(mnzIR)� Y1(mn/k)J1(mnzIR) = 0 . (3.141)

If we are interested in the light modes, those that are visible even at energies ⌧ k, then we can
expand the above equation and simply obtain

J(mnzIR) ' 0 , (3.142)

so the typical mass of the new states is at ⇠ 1/zIR that numerically we can estimate from
Eq. (3.127)

1

kzIR
'

mh

MPl
, (3.143)

to be at best comparable to the weak scale.

3.3 The Little Hierarchy Problem

The discussion in this Chapter shows that the most natural expectation is for something (pre-
sumably a new symmetry) to appear well below MPl to explain the value of mh that we observe.
What is the scale where this symmetry should appear?

Let us call this scale MS. If the UV completion of the SM is perturbative, we have seen that
new particles give the leading contribution to the Higgs mass at one loop

�m2
h '

g2S
16⇡2

M2
S , (3.144)

where gS stands for a coupling in this theory. For an e↵ective symmetry solution to the problem,
SM particles must be part of the symmetric multiplets of the new theory, otherwise we would
still expect contributions of O(M2

Pl) from high scales. This means that the largest gS in our new
theory is at least of the size of yt = O(1). In principle we can further imagine that to preserve

color there are three partners of the top quark in the new theory, giving �m2
h ' 3

g2
S

16⇡2M2
S. In the

end we arrive at the same estimate as Eq. (3.33) with MS = ⇤NP.
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Similar estimates hold also for non-perturbative completions of the SM. In this case, however,
we lose the loop suppression in �m2

h and we are led to predict MS ' mh. An explicit discussion
of the corrections to mh for the SM flowing into a CFT can be found in [14].

At this point it is natural to ask a second question: What is the scale where this symmetry
can appear? We have probed particle physics well above scales of order ⇤NP ' 400 GeV.

The largest scales that we have access to are related to symmetries (or approximate symmetries)
of the SM Lagrangian, since these signatures make for zero background searches. If we violate
baryon number via the operators

L �
ucucdcec

M2
+

QQQL

M2
+ ... (3.145)

we can induce proton decay

� ⇠
m5

p

M4
. (3.146)

Current searches at SuperKamiokande [52] and SNO [53] give

⌧p
Br(p! e+⇡0)

& 2.4⇥ 1034 years ,
⌧p

Br(p! invisible)
& 2⇥ 1029 years , (3.147)

corresponding to

M & 3⇥ 1016 GeV , M & 1.5⇥ 1015 GeV . (3.148)

A di↵erent form of baryon number violation can induce neutron oscillations

L �
(ucdcdc)2

M5
, ⌧n!n̄ = �m ⇠

m6
n

M5
(3.149)

Also in this case we can probe scales well above 400 GeV [54],

⌧n!n̄ > 0.86⇥ 108 s M & 3⇥ 106 GeV . (3.150)

Similar considerations hold for tests of the approximate flavor symmetries of the SM. In the lepton
sector the largest scale that we can probe is in the decay µ! e� induced for instance by

L �
mµ

M2
µ̄L�µ⌫eRF

µ⌫ , � ⇠
m5

µ

M4
. (3.151)

Current bounds from MEG [55], give

Br(µ! e�) < 4⇥ 10�13 M & 3⇥ 106 GeV . (3.152)

In the quark sector the largest scales can be probed via tests of CP violation in K0
�K

0
mixing,

where we can get to scales of about M & 108 GeV [56].
Other tests along these lines include searches for CP violation in EDM searches and a host of

other flavor measurements in the lepton and quark sectors.
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These results are telling us that if we want to extend the SM at ⇤NP ' 400 GeV the new
theory better respect all the symmetries and approximate symmetries of the SM. This requires
quite a bit of model building, since in general these new theories have many more free parameters
with respect to the SM, which do not necessarily have to respect these symmetries. We will see
an explicit example in the Section devoted to supersymmetry in the next Chapter.

A sharper tension arises from direct searches for new particles at LEP, the Tevatron and the
LHC. By now we have explored a vast number of signatures that cover most options for new
particles with gauge couplings to the SM. The null results at these particle colliders point to
⇤NP & few TeV. The application of these results to the hierarchy problem is model dependent and
di↵erent theories might be a↵ected by slightly di↵erent bounds. However the general point that we
have not found new physics below a few TeV remains valid. Furthermore, the LHC has explored
many of the Higgs couplings to SM particles finding a good consistency with an elementary
Higgs as described by the Lagrangian in the previous Chapter, leaving room for deviations of
order [57, 58, 59]

�ghSM
ghSM

. 5% ÷ 20% (3.153)

This complicates embedding the Higgs in a larger symmetry structure. In light of all these null
experimental searches, even if we completely forget about MPl, there is still a tension between
direct and indirect searches for new physics and the simplest explanations for the value of the
Higgs mass. This has been known since the times of LEP’ [60] and today we call it the “little
hierarchy problem’.

4 Lowering the Scale of Gravity

In the previous Sections we have taken MPl to be the dimensionful scale associated to gravity, i.e.
the energy scale where we expect it to become important for particle interactions. However MPl

is a vev and it could be the combination of a small mass and a tiny coupling that combine to
give an apparently very large energy scale. If the true fundamental scale of gravity is much lower
than MPl the Higgs hierarchy problem might not exist. This possibility is qualitatively di↵erent
than having a new symmetry around the weak scale, but it also predicts new phenomena close
to mh, so sadly the experimental tensions discussed in the previous Section apply also to this set
of ideas, unless we accept some amount of tuning. Nonetheless it is interesting to see how this
option di↵ers from having a new symmetry and what are the similarities.

We can start by looking at the Einstein-Hilbert action

S =

Z
d4x
p
�g

✓
M2

Pl

2
R� ⇤CC + Lmatter

◆
. (4.1)

We can expand the metric in the regime of validity of this EFT (i.e. low energy and low curvature)

gµ⌫ = ⌘µ⌫ + hµ⌫ , |h|⌧ 1 . (4.2)

38



Then the action becomes schematically

S ⇠ M2
Pl

Z
d4x

⇥
@h@h+ h@h@h+ h2@h@h+ aTµ⌫h

µ⌫ + ...
⇤

(4.3)

Tµ⌫ =
�2
p
�g

�Lmatter
p
�g

�gµ⌫
, (4.4)

where we have suppressed the indexes of hµ⌫ for convenience. The terms odd in h come from
higher curvature corrections R ⇠ const + @2h. Canonically normalizing the kinetic term we have

S ⇠

Z
d4x


@h@h+

1

MPl
h@h@h+

1

M2
Pl

h2@h@h+
a

MPl
Tµ⌫h

µ⌫ + ...

�
. (4.5)

It’s hard to define a running coupling in the EFT of gravity for reasons that I’m not going to
discuss here. Heuristically you can just notice from the previous action that you are starting with
a dimension 6 operator. From loop diagrams you are going to get multiple dimension 8 operators
with di↵erent numerical coe�cients (and possibly signs) R2, Rµ⌫Rµ⌫ . Which one are you going to
pick? Ref. [61] contains an interesting discussion on this point.

For our purposes it is su�cient to notice that at tree-level the 2-to-2 scattering amplitude of
gravitons grows with energy

M
tree
2!2 ⇠

E2

M2
Pl

. (4.6)

At each loop order one gets and extra power of GNE2, but we are more interested in another fact.
The same scattering process at one loop scales as

�M1�loop
2!2 ⇠

NE4

16⇡2M4
Pl

, (4.7)

from the action in Eq. (4.5) (after gauge fixing) where N is the number of particles in the loop
(coming from Tµ⌫ in (4.5)). So it is natural to expect something to happen at

E ⇠
4⇡MPl
p
N

, (4.8)

where the one loop corrections becomes comparable to the tree level result. In some sense we are
lowering the fundamental scale of gravity, i.e. gravity becomes important for particle interactions
at MPl/

p
N . Therefore, the easiest way to solve the hierarchy problem is to imagine:

N ⇠
M2

Pl

v2
⇡ 1032 . (4.9)

The idea of lowering the fundamental scale of gravity by adding new degrees of freedom was first
discussed in relation to the hierarchy problem in [62, 63, 64, 65]. An explicit way of implementing
this idea is to introduce extra dimensions compactified at a scale near mh.
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Let us take R to be the typical size of the extra dimensions. If we consider D = 4 + n then
Newton’s law is modified to

F (r) ⇠

⇢
m1m2

Mn+2rn+2 , r ⌧ R
m1m2

Mn+2Rnr2 , r � R
(4.10)

where M is the fundamental scale of gravity in the theory with D > 4. This result is just an
application of Gauss’ theorem and it shows that

M2
Pl 'Mn+2Rn , R = 10

30
n
�17 cm

✓
TeV

M

◆1+ 2
n

. (4.11)

This means that gravity might appear weak in 4D, where it has a coupling GN ⇠ 1/M2
Pl, because

it is diluted by multiple extra dimensions where it can propagate. In reality the fundamental scale
of gravity might be M and much lower than MPl.

Particle interactions are known up to energy scales E ⇠ TeV, corresponding to R ⇠ 10�17 cm,
so if we want M ' TeV, the SM fields must be stuck on a 4D brane. On the contrary we don’t
know gravity that well below a millimiter and there is no problem if gravity propagates in the
extra dimension, realizing the “dilution” of MPl that we would like to invoke to explain the value
of mh.

IfM ⇠ TeV we have solved the hierarchy problem, but to do so we need R to be large compared
to M�1

Pl . Before seeing this in more detail let’s see where the connection with large N comes from.
It is already manifest that N in the previous theories is playing the role of the volume in this
case. Consider one extra dimension compactified on a circle (here I follow [66]). The metric can
be split to

gMN =

✓
⌘µ⌫ + hµ⌫ hµ5

hµ5 h55

◆
. (4.12)

The action of di↵eomorphisms is

hMN ! hMN + @M✏N + @N✏M . (4.13)

Since the extra dimension is compact p5 ⇠ n/R, so �h55 = 2@5✏5 /
P

n n✏
(n)
5 . We can eliminate

all n 6= 0 components of h55 and hµ5 using di↵. invariance. We are left with a scalar � ⌘ h(0)
55 , a

four-vector Aµ ⌘ h(0)
5µ and a tower of Kaluza-Klein (KK) gravitons h(n)

µ⌫ .
To see this explicitly we use the periodicity of the spatial coordinate in the extra dimension to

write

hµ⌫(x, x5) =
n=+1X

n=�1
h(n)
µ⌫ (x)e

inx5
R , (4.14)

then we integrate the Einstein-Hilbert action over x5 and we are left with

S = 2⇡RM3

Z
d4x

✓
hµ⌫⇤hµ⌫ � hµ

µ⇤h⌫⌫ + 2hµ⌫@
µ@⌫h⇢⇢ � 2hµ⌫@

µ@⇢h⌫⇢ +
n2

4R2

⇥
hµ
µh

⌫
⌫ � hµ⌫hµ⌫

⇤◆
+ ...

(4.15)
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From the above action we can conclude that

M2
Pl = 2⇡RM3 ,

✓
⇤+

n2

R2

◆
h(n)
µ⌫ = 0 . (4.16)

So how many gravitons do we have? When we hit the scale M we have to UV complete gravity
also in the extra dimension therefore we can have at most

N2

R2
⇠M2 N ⇠

✓
MPl

M

◆ 2
n

(4.17)

gravitons in our EFT. For n = 1 and M ⇠ TeV7, we recover our large N estimate from Eq. (4.9).
How about the new hierarchy problem R�M�1

Pl ? A potential for R arises from the (4 + n)D
cosmological constant ⇤n in the Einstein-Hilbert Lagrangian

Z
d4+nx

p
�g⇤n ⇠

Z
d4x
p
�ḡ⇤nR

n . (4.18)

In the presence of curvature  in the extra dimensions we have also

M2+n

Z
d4+nx

p
�gR ⇠ �

Z
d4x
p
�ḡM2+nRn�2 . (4.19)

Summing these two terms we can find a stable potential with a minimum R⇤ ⇠
p
M2+n/⇤n. This

means that the radius of curvature is roughly

L ⇠

s
Mn+2

⇤n
. (4.20)

If we don’t want our space to split in separate inflating patches of size L or collapse into black
holes we need

L & R! ⇤n . M4+n

✓
M

MPl

◆4/n

(4.21)

Smaller than its natural value M4+n. So we need to tune ⇤n and possibly keep it stable with
supersymmetry. Furthermore, to reproduce our observed 4D universe, we need the e↵ective (long
distance) 4D CC to approximately vanish

X

i

f 4
i +Rn⇤n ⇡ 0 , (4.22)

where f are brane tensions. They are nothing mysterious, just the equivalent of a CC on the 4D
brane. Their natural value is f 4

⇡M4. If there are Nw branes

⇤n . NwM
4+n

✓
M

MPl

◆4/n

, (4.23)

7
Phenomenologically excluded because of modifications of gravity on solar system scales.
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so the extra dimension can be large for the same reason that people are large (they carry large
baryon number).

We are still tuning, once to get R large (Eq. (4.21)) and a second time to get the observed 4D
CC (Eq. (4.22)). However, topologically conserved quantum numbers associated with higher-form
bulk gauge fields or a large number of 3-branes in the bulk of the extra dimension can naturally
stabilize R � M�1 [67]. This is another analogy between these large flat extra dimensions and
lowering the scale of gravity with a large number of particles N . The number N is radiatively
stable as a large U(1) charge is. See also [68, 69] for alternative ways to stabilize a large extra
dimension by incorporating a discrete number in its geometry.

The metric in the extra dimensions that we are considering here is flat. We have discussed
a dynamical way of stabilizing the radius at the desired value in the context of warped extra-
dimensions, where the metric is AdS-like. Not surprisingly this corresponds to introducing a
symmetry in our theory that stabilizes the hierarchy between R and M�1

Pl . The symmetry is scale
invariance.

Before concluding this Section, it is useful to point out what is currently the biggest problem
with these constructions. If we want to lower the scale of gravity down to a TeV, we are predicting
a plethora of new particles at that scale and we have not observed any. We can of course take
N . 1032 or M & TeV and accept some amount of accidental cancellation between di↵erent
contributions to mh.

5 The Cosmological Constant

What we have learned about the Higgs mass applies also to the cosmological constant. In the SM
Lagrangian the cosmological constant is the coe�cient in front of the identity

L = ⇤CC1 . (5.1)

Physically it is the energy density of our vacuum. Given that it is the coe�cient of the identity
operator, there is no symmetry protecting it. Therefore, any mass scale in the theory can enter
its estimate based on the selection rules of dilations. Its spurion transformation is given by

x ! sx

S =

Z
d4x⇤CC !

Z
d4xs4⇤CC

⇤CC ! s�4⇤CC . (5.2)

So, purely within the SM, we have

⇤CC ' a
m4

t

16⇡2
, (5.3)

with a a number expected to be O(1). Note that the dimensions of the cosmological constant are
those of a (vev)2 times a (mass)2, i.e. (mass)4/(coupling)2.

If we try to compute it in the SM, we encounter the exact same features that we discussed for
the Higgs mass. Consider for example matching a low energy theory where we integrated out the
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electron to QED where the electron is propagating. We have a huge matching correction to the
CC compared to its observed value

⇤obs
CC = ⇤0

CC(µM) + a0
m4

e

16⇡2
+ ... (5.4)

since m4
e/⇤

obs
CC ' 1039, but physically there is no problem, as ⇤0

CC(µM) contains a parameter that
can’t be calculated and must be fixed by measuring ⇤obs

CC. As you can see, in the case of the CC,
the “little hierarchy problem” is not so little, given that m4

t/⇤
obs
CC ' 1060. If we extend the SM to

a theory such as supersymmetry where the CC is calculable, this matching correction turns into
an actual tuning of parameters and a real problem.

The Cosmological Constant is Calculable (and protected by SUSY) We can write the
Hamiltonian as

H = P 0 =
1

4

⇣
Q1Q

†
1 +Q†

1Q1 +Q2Q
†
2 +Q†

2Q2

⌘
. (5.5)

Therefore its vacuum expectation value is given by

h0|H|0i = h0|V |0i / |Q1|0i|
2 + |Q2|0i|

2 . (5.6)

A non-zero value of the CC means that the SUSY generators act non-trivially on the vacuum.
This means that ⇤CC = 0 is a special point in supersymmetry and the supersymmetry selection
rules enforce that

⇤CC / ⇤
4
S , (5.7)

where ⇤4
S is not just any scale in the theory, but one that breaks supersymmetry.

To conclude this Section, note that the value of the CC becomes dramatically important when
we turn on gravity. The cosmological constant interacts with gravitons

S =

Z
d4x
p
�g⇤CC , (5.8)

and determines the maximal size of the observable universe. Experimentally we have a Universe
that starts very homogeneous and isotropic, but has the possibility to evolve in time to become
more anisotropic and accommodate Hubble expansion. This singles out the FRW metric:

ds2 = �dt2 + a(t)2


dr2

1� kr2
+ r2d⌦2

(2)

�
, d⌦2

(2) = d✓2 + sin2 ✓d�2 , (5.9)

with this metric Einstein’s equations become (H ⌘ ȧ/a)

H2 =
8⇡GN⇢

3
�

k

a2
+
⇤

3

Ḣ +H2 =
ä

a
= �

8⇡GN

6
(⇢+ 3p) +

⇤

3
, (5.10)
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where we have taken the energy density of the Universe to be dominated by a perfect fluid with
energy density ⇢ and pressure p (see [70] to know why). In the above equations ⇤ ⌘ 8⇡GN⇤CC is
what cosmologists like to call the cosmological constant. From these equations it is not hard to see
that any traditional form of energy (massive or massless particles) will make the Universe expand
ȧ > 0, that in turn makes the energy density decrease ⇢̇, ṗ < 0 (see [70] again for a derivation).
Therefore if we wait long enough the CC dominates

✓
ȧ

a

◆2

'
⇤

3
,

ä

a
'

⇤

3
. (5.11)

If we define a constant Hubble parameter as H⇤ ⌘ ⇤/3. It is easy to solve these equations

a(t) = C1e
H⇤t + C2e

�H⇤t . (5.12)

A positive CC picks the exponentially expanding solution proportional to C1. Very rapidly, an
observer remains in causal contact with a region of size r ⇠ 1/H⇤ and this becomes the size of
the observable Universe. This happens because spacetime expands faster than the speed of light.
This is a de Sitter (dS) universe. A negative CC picks the other solution, leading to a universe
that crunches to a size r ⇠ 1/H⇤. This is an Anti-de Sitter (AdS) universe.

In other words, asking why the CC is ⇠ 10�60m4
t , amounts to asking why isn’t the Universe

as small as a subatomic particle.

6 What We Learned about High Energies

At this point we have discussed in great detail what is puzzling about the Higgs boson mass and
the CC. In the SM we cannot point to a real problem, both because we cannot compute mh and
⇤CC and because it is not clear how to treat MPl, the only other scale of Nature that we know
about. If we extend the SM with new symmetries that make mh and ⇤CC calculable we encounter
a fine-tuning whenever these symmetries are realized at scales much higher than mh and ⇤CC.
This is what I call an actual hierarchy problem.

This short summary still leaves us to wonder what we learned from all the work done so far.
To answer this question we are forced to think about the UV and speculate about new regimes
that we do not have access to experimentally. This is the beauty and the curse of the hierarchy
problem, whether we want it or not, we have to set foot in uncharted territory. However, dven
without experimental guidance, we can still use logic alone to write down a comprehensive set of
possible explanations for mh and ⇤CC:

0. A large fine-tuning, spanning tens of orders of magnitude, is a fundamental aspect of Nature.
This option is obviously viable also for the cosmological constant.

1. A symmetry that makes mh calculable exists below MPl and some amount of fine-tuning is
a fundamental aspect of Nature.

44



2. The fundamental scale of quantum gravity is much smaller than MPl and close to mh. Also
in this case some amount of fine-tuning is a fundamental aspect of Nature.

3. A landscape of values of mh is realized in Nature. The value that we observe is selected by
an early Universe event that we can not yet observe directly. This option is viable also for
the cosmological constant.

4. The Higgs mass and the CC are never calculable. At every scale we have a theory similar
to the SM where mh and ⇤CC are just an input parameters. Although seemingly harmless,
this possibility puts strong constraints on the UV theory realizing it and we don’t know a
theory of quantum gravity that implements it.

5. There is no mass scale beyond the Standard Model su�ciently strongly coupled to the Higgs
to generate a fine-tuning problem. Quantum gravity either does not have a scale [71, 72, 73,
74, 75] or incorporates MPl non-trivially in the S matrix, leaving no power-law corrections
to dimensionful parameters [76].

6. The consistency of quantum gravity leaves non-trivial imprints at low energy either in the
form of UV/IR mixing or inconsistent low-energy Lagrangians that look acceptable to the
low-energy observer (i.e. large mh and/or ⇤CC are in the swampland [77]).

We can anticipate that we do not know any consistent theory of quantum gravity that realizes
options 4 or 5. At the time of writing the last option is mostly conjectural, while possibly
compatible with string theory, it is far from being implemented in a concrete model.

The only possibilities for which we can write a complete theory and propose experimental tests
are 1, 2 and 3 (and in some sense 0). These are also the simplest possibilities conceptually, in
the sense that they build upon our well-tested knowledge of quantum field theory. The last three
options require a radical modification of particle physics at the scale of quantum gravity.

Regardless of what is your favorite option, thinking about the Higgs mass inevitably leads to
learning something new (and in my opinion deep) about Nature. All the options listed above
require a decisive extension of our current description of physical phenomena. The two most
conservative options require adding either a new symmetry, realized by a host of new particles,
or accepting the existence of a vast landscape for mh. This landscape can be realized either by
changing the history of the Universe or accepting the existence of a Multiverse of which we occupy
a tiny spec.

The three most speculative possibilities require revising completely quantum field theory and
our EFT intuition when it comes to quantum gravity, in case 4 and 5 well beyond what is suggested
by string theory. In the next Sections we discuss all these options in greater detail, except for
option 1 that was already discussed before.

In the case of the CC there is no point in messing arount with the scale of quantum gravity,
even if MPl ' mh or gravity is scaleless (options 2 and 5) the CC is still enormously tuned.
Even option 1 doesn’t seem to sensible, as the tuning involved would be at least a part in 1060

(' ⇤CC/m4
t ). The only options that are open are: a) a landscape (option 3), b) UV/IR magic

(option 6), c) ⇤CC is never calculable (option 4) or d) there is a huge fine-tuning (option 0). As
for the Higgs, b) and c) are fun ideas to consider, but we’re still very far from attaching concrete
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models to them, the only concrete option still open for the CC is having a landscape, most likely
in the form of a Multiverse and this is what we discuss next.

7 Landscapes and Multiverses

In Section 1 we have seen that historical fine-tunings were resolved in two ways: 1) by the presence
of a new symmetry 2) by multiple realizations of the same observable, some of which could be
accidentally tuned. We have not yet encountered anything resembling the second option for the
Higgs boson mass. However proposals along these lines exist and we discuss them in this Section.
The main reasons to consider them are: 1) The most concrete (and essentially) only explanation
for ⇤CC falls in this category 2) It is rather likely that a Multiverse exists independently of the two
problems (if the fundamental theory of quantum gravity lives in more than 4 spacetime dimensions,
like string theory).

The basic idea is that the observable Universe is just one patch of a vast Multiverse. Each
patch has di↵erent values of fundamental parameters, in particular of ⇤CC andm2

h. In this context,
we have to explain why we live in a patch with a value of ⇤CC and m2

h that appears unnaturally
small. The traditional explanation is that only these tuned patches can support observers. These
are known as anthropic arguments. We review them for m2

h in Section 7.2. First, it is instructive
to see how a Multiverse can be populated, generating a landscape of values for ⇤CC.

We start with a special kind of Multiverse, first proposed by Brown and Teitelboim [78, 79],
that allows us to naturally build up to what is today considered the most concrete explanation at
our disposal for the value of ⇤CC.

It is important to stress that we are still far from formulating a complete theory of the Mul-
tiverse. Such a theory would allow us to compute exactly what is the underlying distribution
of metastable vacua in Nature and how they are populated. We would then be able to predict
how frequent a patch is in the Multiverse, given the observed values of fundamental parameters.
Nobody is currently able to do this. The most convincing examples of Multiverses come from
string theory. Compactifying its extra dimensions leaves us with a multitude of moduli with 10500

possible vacua (or more), most of them have lifetimes longer than that of the observable Universe.
If the Universe is eternally inflating all these vacua can be populated by tunneling and live a long
and healthy life before decaying to the true ground state.

Starting from this broad picture, concrete toy models of the landscape were proposed, showing
that a Multiverse explanation of ⇤CC and m2

h is possible. However we are not able to calculate
the distribution of ⇤CC and m2

h in the Multiverse and predict what is likely or unlikely for their
observed value. Anthropic arguments allow us to bypass this di�culty, since they identify a small
viable range for these parameters. If only a few values, compatible with current measurements
of ⇤CC and m2

h, allow to have observers, we do not really need to compute how likely di↵erent
patches are. We will not have a precise prediction for ⇤CC and m2

h, but at least we have a reason
to expect them to be much smaller than their natural value.

7.1 The Cosmological Constant in the Multiverse

Brown-Teitelboim We can now turn to constructing and populating a Multiverse. Imagine
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having a 3-form field Aµ⌫⇢, totally antisymmetric in its indexes. We can construct its kinetic term
starting from the 4-form

Fµ⌫⇢� = @µA⌫⇢� � @�Aµ⌫⇢ + @⇢A�µ⌫ � @⌫A⇢�µ . (7.1)

Its most general action, including also gravity, reads

S = �
1

48

Z
d4x
p
�gFµ⌫⇢�F

µ⌫⇢� + Sboundary + SG , (7.2)

where the boundary action

Sboundary =
1

3!

Z
d4x@µ

�p
�gF µ⌫⇢�A⌫⇢�

�
+M2

Pl

Z

⌃

d3x
p
�hK (7.3)

does not have any e↵ect on-shell, but is needed to make the theory consistent. The second term
must be included in spacetimes where the manifold is not closed (i.e. it has a boundary). ⌃ is
the boundary of the manifold, h is the induced metric and K the extrinsic curvature. This is the
Gibbons-Hawking-York boundary term [80].

The last term in S is the usual Einstein-Hilbert action with a cosmological constant

SG =

Z
d4x
p
�g

✓
M2

Pl

2
R� ⇤0

◆
. (7.4)

The equations of motion for A are

@µ
�p
�gF µ⌫⇢�

�
= 0 (7.5)

and the only solution

F µ⌫⇢� = c✏µ⌫⇢� , (7.6)

where c is a constant of dimension 2. This shows that A is non-dynamical. This is a consequence
of the large gauge symmetry of the action, which is invariant under

Aµ⌫⇢ ! Aµ⌫⇢ + @[µB⌫⇢] (7.7)

with Bµ⌫ any antisymmetric (Bµ⌫ = �B⌫µ) tensor.
Therefore in this theory the cosmological constant is not only ⇤0, but also has a contribution

from F 2 in the action

⇤CC = ⇤0 �
c2

2
. (7.8)

We do not yet have a landscape, but we are close. You might have noticed the analogy between our
3-form and the vector potential in electromagnetism (equivalently between F and the EM field).
The only missing ingredient in this analogy is some form of charged matter like the electron. If
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such an object existed its pair production could discharge the primordial electric field c and change
the cosmological constant.

To introduce this object in the theory it is useful to go deeper into the analogy with electro-
magnetism. Take a particle of unit charge moving along the worldline xµ

p(⌧). Its current density
is

Jµ = euµ�(3)(~x� ~xp(⌧)) , uµ =
dxp(⌧)µ

d⌧
, (7.9)

and we can write its coupling to electromagnetism as
Z

d4x
p
�gJµAµ = e

Z
d4x
p
�g�(3)(~x� ~xp(⌧))

dxµ
p(⌧)

d⌧
Aµ = e

Z
dxµ

pAµ , (7.10)

where the last integral is taken along the worldine of the particle. We can now scale this example
to one more dimension. A 2-form Aµ⌫ = �A⌫µ will couple to a one dimensional object (rather

than a point particle), spanning a worldsheet xµ(⌧, �) ⌘ xµ(~⇠). Instead of a single four-velocity
uµ in this case we have two possible derivatives @xµ/@⌧ , @x⌫/@�. Due to the antisymmetry of Aµ⌫

there is only one possible Lorentz-invariant coupling

Aµ⌫✏
ab@x

µ

@⇠a
@x⌫

@⇠b
. (7.11)

To complete the analogy with electromagnetism we can integrate over the worldsheet to obtain
the action

Sint =
e

2

Z
d2⇠Aµ⌫✏

ab@x
µ

@⇠a
@x⌫

@⇠b
. (7.12)

It is now straightforward to apply the same reasoning to our 3-form and obtain the action of the
brane coupling to it

Sbrane �
e

3!

Z
d3⇠Aµ⌫⇢✏

abc@x
µ

@⇠a
@x⌫

@⇠b
@x⇢

@⇠c
. (7.13)

To complete the action we need only to generalize the free Lagrangian of a point particle to a
brane

Sfree = �m

Z
d⌧ = �m

Z p
g(1)dt . (7.14)

In the last equality we have noted that �d⌧ = dt and introduced the one dimensional metric
induced on the worldline. It is now easy to generalize the previous expression to

Sbrane � �T

Z
d3⇠

p
g(3) , (7.15)

the only di↵erence to keep in mind is that T is now a tension of dimension mass/volume. Putting
together the two terms in Sbrane with the action in Eq. (7.2) we can obtain the new equations of
motion

@µc(y)✏
µ⌫⇢� = �e

Z
d3⇠�(4)(y � x(~⇠))✏abc

@xµ

@⇠a
@x⌫

@⇠b
@x⇢

@⇠c
. (7.16)
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On both sides of the brane c is constant and it jumps through it by a unit of brane charge e

�c = e . (7.17)

If we have initially a large electric field c2 > e2, membranes of opposite charge can be spontaneously
nucleated. The electric field inside the bubble formed by the brane and the ani-brane is now smaller
than that outside. This configuration has lower energy than the outside vacuum, so the bubble
walls will expand.

This is the same process as Schwinger pair production in QED. It is a tunneling process akin to
a phase transition, governed by the same equations as that of a scalar jumping from a metastable
minimum to a deeper minimum.

If we add to the mix eternal inflation we have created a Multiverse where each patch has a
di↵erent CC. The bubble walls will expand at most at the speed of light, but the volume of the
universe grows faster, so configurations with di↵erent values of c can coexist.

The smallest splitting between CCs in this Multiverse is

�⇤ = e2 . (7.18)

One can write down a model where pair production of branes continues until ⇤CC > 0. To nucleate
a “brane-bubble” we need its radius to be smaller than the radius of curvature of the AdS space
that will be born inside the bubble going from ⇤CC > 0 to ⇤CC < 0. If this is not the case a
bubble that can live long and expand never forms and this nucleation process stops dynamically
at ⇤CC ' e2. This is the beauty of Brown and Teitelboim’s idea.

Eternal inflation is useful for two reasons. Since it gives an exponentially expanding volume,
bubble walls, even if they move at the speed of light, never manage to meet, so instead of having
a single universe in the ground state, we have multiple bubbles constantly expanding under the
e↵ect of inflation. Secondly, but maybe less critically, eternal inflation provides a large volume
and a long time for the bubbles to form. The tunneling process is slow

tnucleation ' eSE ' e
M

4
Pl

e2 , (7.19)

even extremely slow if we want �⇤ ' ⇤CC ' (0.1 meV)4, so we need a long enough period of
inflation to populate all the values of the CC. This discussion can be straightforwardly generalized
to scanning the Higgs mass if we add a coupling to the 4-form, for instance

S �

Z
d4x
p
�g

Fµ⌫⇢�F µ⌫⇢�

48
|H|

2 . (7.20)

This gives at least a proof-of-principle that a Multiverse for ⇤CC and m2
h can exist in Nature.

However, if this was really the theory of our universe, we would live in a completely empty one!
The CC scans by small jumps of O(e2) while the universe is inflating. It takes an exponentially
long time to get from M4

Pl to (0.1 meV)4 and during this time the universe is inflating. Once we
arrive at ⇤CC ' (0.1 meV)4 the universe is empty and we have only this tiny amount of energy
density at our disposal to reheat it. This is the problem with Brown and Teitelboim original
work [78, 79] that we have just summarized.
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Bousso-Polchinski What makes Brown and Teitelboim’s construction interesting is that
string theory possess the ingredients that we have described in our toy model in some abundance
and having more than one 4-form, might lead to an acceptable (non-empty) universe. It is very
likely that if string theory is the right theory of quantum gravity a landscape actually exists, but
it is still debated if all values of ⇤CC can exist in this landscape [81, 82].

For instance in M-theory there is a 7-form F7 in 11D that upon compactification gives rise to
several lower-order forms, including two F4 of the type that we have described [83].

The only extra subtlety is that c in string theory is quantized [84], c = en with n 2 Z, because
both electric and magnetic sources are present for all gauge fields (see for instance [85] for a
pedagogical discussion of Dirac’s quantization condition and the quantization of magnetic fluxes).

In this picture, if we have J 4-forms from compactifying higher form fields, the cosmological
constant is

⇤CC = ⇤0 �
1

2

JX

i=1

e2in
2
i . (7.21)

If we now imagine that bubbles with di↵erent ci’s are nucleated and expand during eternal inflation
we can ask what it takes to get at least one patch where ⇤CC = ⇤obs ' (0.1 meV)4. If we had a
single 4-form we would need

e2 ' ⇤obs ⌧M4
Pl , (7.22)

to scan the CC finely enough, as in the previous example. This is technically natural, since if
we send e ! 0 the 3-form and the brane decouple and we have two free theories with extra
symmetries. However it is nice to notice that if we have J fields then we can get away with much
smaller couplings [84]

2⇡J/2

�(J/2)
⇤J/2

0

⇤obs

⇤0
&

JY

i=1

ei . (7.23)

For instance ⇤0 ' M4
Pl and J = 100 gives ei ' (0.01MPl)2 and indeed string theory predicts a

large number of such fields. This is quite remarkable as we can have a tiny CC, but still enough
energy density (ei ' 0.01MPl) to reheat the universe above the experimental bound coming from
BBN (T & MeV).

One can get Eq. (7.23) by noticing that the possible CCs given by the 4-forms are in a mul-
tidimensional grid. To find our universe in this grid, we have to cancel ⇤0 against the 4-forms
contributions with a precision ⇤obs, so we are asking if there is any point in this grid contained
within the surfaces of two spheres, one of radius ⇤0 � ⇤obs and another of radius ⇤0 + ⇤obs.
Calculating the volume of this region gives us Eq. (7.23). What we have just summarized is the
celebrated Bousso-Polchinski explanation [84] for the value of the CC. The only missing ingredient
is the argument that explains why we are in a patch with such a tiny CC. This argument is due
to Weinberg [86] and even if this work is mainly about the Higgs boson we find useful to review
it here.

Weinberg’s Argument If we reduce it to its most basic ingredients the argument runs as
follows [87]. If the energy density from the CC, ⇢⇤, dominates, the Universe can have one of two
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fates: 1) If the CC is negative it takes the Universe a time ⇠ ⇤1/2
CC/M

2
Pl to collapse into an object

of size ⇠ ⇤1/2
CC/M

2
Pl and comparable curvature radius 2) If ⇤CC is positive the Universe expands

exponentially with a scale factor e(⇤
1/2
CC/M2

Pl)t. All other forms of energy are diluted, leaving an
empty Universe.

Therefore if we want to form galaxies we need the matter energy density ⇢m to dominated
over ⇢⇤ for a long enough time. More precisely, density perturbations grow linearly with the scale
factor

�⇢

⇢
⇠ a (7.24)

if ⇢m > ⇢⇤, ⇢r, where ⇢r is the energy density in radiation. We can roughly call a galaxy a density
perturbation of order one, i.e �⇢/⇢ ' 1. Therefore, to form galaxies we need

⇢⇤ . ⇢MR

✓
�⇢MR

⇢MR

◆3

, (7.25)

where ⇢MR is the matter energy density at matter-radiation equality and
⇣
�⇢MR

⇢MR

⌘3

is the amount

that this energy density has redshifted before density perturbations growing linearly with a become
O(1). From CMB measurements we know that ⇢MR ' eV4, �⇢MR/⇢MR ' 10�5, so we get

⇢⇤ . (0.1meV)4 , (7.26)

remarkably close to the observed value. If we were more precise, we would find an upper bound
about 100 to 1000 times larger than the actual measurement, but it is remarkable how close this
simple argument gets to the actual value of the CC.

This idea is quite robust, in the sense that it doesn’t rely on a precise definition of observers,
we just don’t want the universe to be empty or tiny and with a large curvature. However, it must
be taken with a grain of salt. As stated above we don’t know what the Multiverse really looks like
and other parameters, including ⇢MR and �⇢MR can vary between patches. This is nonetheless a
pretty striking proof-of-principle that a Multiverse explanation for the CC might work.

7.2 Anthropic Selection of the Higgs Mass in the Multiverse

We have seen how to populate a vast landscape of values for the Higgs boson mass. However, we
still need to explain why we happen to be in a patch with such an improbably small value of mh.

Nature is full of interesting coincidences. There are a number of parameters that are just at
the edge of what is needed to make a certain phenomenon possible. It was argued [88] that the
Higgs boson mass might be one of these parameters. If it deviated more than a factor of a few
from its observed value, complex chemistry would not be possible. This is traditionally taken as
a sign that complex observers like us would not exist in most other patches of the Multiverse. In
this sense the selection of the Higgs boson mass might be “anthropic”, i.e. we don’t see a more
likely universe because there we don’t exist.
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The key observation is that nuclear parameters depend on m2
h. Let us first consider universes

with m2
h < 0. For the neutron-proton mass di↵erence we have

mn �mp = (md �mu) +�mem ⇡ 3 MeV
v

vus
+�mem (7.27)

For v . few hundred⇥vus, then md,u < ⇤QCD and we can leave �mem = �1.7 MeV fixed at the
value that it has in our universe. Also the QCD scale and the mass di↵erence between isospin 1/2
and an isospin 3/2 baryons depend on v,

⇤QCD ' ⇤QCD,us
v⇠

v⇠us
(7.28)

m3/2 �m1/2 ' 300 MeV
v⇠

v⇠us
, (7.29)

⇠ ' 0.3 for 10�2 <
v

vus
< 104 . (7.30)

There are main more hadronic properties that depend on v. The last one that we need to formulate
our anthropic arguments is that the long range nucleon potential is well approximated by single
pion exchange. The pion mass is also sensitive to v: m2

⇡ ⇠ f⇡(mu +md). m⇡ ⇠ m⇡,us

p
v/vus.

If v decreases, at some point Hydrogen becomes unstable, but other nuclei still exist since
mp�mn never gets above 1.7 MeV. So this kind of universes might support life. On the contrary
if v becomes too big, the nuclear binding energy decreases (from m⇡ increasing). Besides mn�mp

increases indefinitely. At some point (v/vus & 5) no complex elements, beyond hydrogen, form.
The reason is the following: in our universe the nuclear binding energy is negative, i.e. the mass of
a nucleus is less than the mass of its constituents by an amount given by the nuclear force minus
the EM repulsion, so it is energetically convient for baryons to form nuclei.

When mn � mp exceeds the binding energy, the nucleus decays rapidly (if it ever forms).
Consider the decay of a nucleus A

ZX of mass m(AZX),

A
ZX!

A
Z+1X+ e� + ⌫̄e , m(AZX) = mN(

A
ZX) + Zme �

ZX

i=1

Bi,e . (7.31)

The decay rate is given by

� ⇠ G2
FQ

5

Q ⇡ m(AZX)�m( A
Z+1X)�me ⇡ mN(

A
ZX)�mN(

A
Z+1X) = (mn �mp)� BN . (7.32)

The di↵erence in electron binding energy is very small for high Z atoms and we have neglected it.
BN is the di↵erence of the nuclear binding energies. Note that �BN is always negative because
replacing a neutron with a proton increases the electrostatic repulsion. When Q > 0 the decay is
allowed and the rate grows rapidly with Q. This sets an upper bound on the magnitude of m2

h in
universes where m2

h < 0, exactly what we need to explain the smallness of m2
h. How about m2

h > 0
universes?
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In m2
h > 0 universes baryons are washed-out through electroweak sphalerons that convert them

to neutrinos unless an asymmetry is produced after the EW phase transition. Molecules do not
form until much later times compared to our universe. We need the cosmic microwave background

to cool below ✏↵2me ⇠ ✏↵2ye
⇤3
QCD

m2
H

, ✏ ⇡ 10�3.

This “biochemical energy” characteristic of molecules, can be estimated from the quantum
mechanical model of the hydrogen atom

V (r) =
p2e
2me

�
↵

r
=

1

2mer2
�
↵

r
. (7.33)

The minimum of this potential is at

r =
1

↵me
, (7.34)

and the typical kinetic energy of the electron p2e/2me ⇠ ↵2me. We can roughly understand the ✏
suppression factor from the fact that molecules are bigger and more loosely bound than atoms.
These arguments more or less rule out also m2

h > 0 universes as hospitable hamlets for observers
relying on complex chemistry.

One aspect of this story that is not always appropriately emphasized, is that the arguments
on chemistry outlined above are very detailed. By “detailed” I mean that they rely on a very
specific definition of observers. If one starts searching, there are a lot of similar coincidences
without which either complex chemistry would not exist or observers similar to us would not
exist. The role of the Higgs is not that unique. Personally, I interpret this as a sign that maybe
we are not using a good definition of observers, in the sense that it is possible that a much larger
class of observers not based on complex chemistry might exist. This would make Higgs anthropic
arguments contentless. Of course, until we further progress in the study of life, this discussion will
remain at the philosophical level. It is nonetheless interesting to notice that Weinberg’s argument
for the CC, described at the beginning of this Section, is not at all detailed in this sense. It
essentially only requires some amount of entropy in a causally connected patch.

To substantiate my earlier point on Nature being riddled with these coincidences, let me give
two examples. I refer the reader to [89] for more fun coincidences.

When four nucleons make 4
2He, 0.7% of their mass is converted to energy. If this number was

smaller we would have only hydrogen otherwise there would be no hydrogen.
When a star runs out of Hydrogen it collapses until its core temperature reaches 10 keV. Then

4
2He +

4
2He!

8
4Be (7.35)

4
2He +

8
4Be!

12
6C + 2� (7.36)

4
2He +

12
6C!

16
8O+ � (7.37)

We need the excited state of Carbon on the right hand side to be between 7.3 and 7.9 MeV to
produce su�cient carbon for life to exist, and must be further “fine-tuned” to between 7.596 MeV
and 7.716 MeV to produce the amount observed in nature. There is an excited state of oxygen
which, if it were slightly higher, would provide a resonance and speed up the reaction. In that
case insu�cient carbon would exist in nature; it would almost all have converted to oxygen. Hoyle
used these facts to predict the existence of the 12

6C excited state. The ground state of Carbon is
at 7.3367 MeV, below the 4

2He +
8
4Be energy.

53



7.3 Friendly Landscapes

The anthropic arguments for ⇤CC and m2
h rely on the fact that dimensionless SM parameters, in

particular Yukawa couplings (for m2
h), do not vary appreciably between di↵erent patches of the

Multiverse. This is not an unlikely occurrence, as can be seen from the explicit construction in [90].
A perhaps less debated, but more important point to keep in mind is that m2

h = 0 or ⇤CC = 0
are not special points in theories without supersymmetry or scale invariance. Therefore a generic,
non-symmetric, landscape will scan m2

h and the cosmological constant around their natural value
(m2

h ' M2
⇤ or ⇤CC ' M4

⇤ if M⇤ is the fundamental high scale of our theory) with very few vacua
around zero, in general not enough to explain their value.

To illustrate this point, consider the QFT toy model of a landscape in [90]. We imagine a
theory with N scalars �i. Each scalar has a potential V�i with two minima at h�ii = �1,2 and
vacuum energies V1,2. We take V1 � V2. The full theory has 2N vacua described by the potential

V =
NX

i=1

V�i . (7.38)

We can label the vacua using a set of integers ⌘i = ±1. Every choice of {⌘} = {⌘1, ..., ⌘N}

corresponds to a di↵erent CC

⇤{⌘} = NV̄ +
NX

i=1

⌘i�V ,

V̄ =
V1 + V2

2
, �V =

V1 � V2

2
. (7.39)

For simplicity we have taken the same values of V1,2 for all the scalars, since it does not a↵ect our
conclusions.

The distribution of CCs in the landscape at large N is well approximated by a Gaussian (as
expected from the central limit theorem)

p(⇤)!
2N

p
2⇡N�V

e�
(⇤�NV̄ )2

N�V 2 . (7.40)

If we have enough minima to populate only the central region of the Gaussian, the CC is finely
scanned in a region ⇤ = ⇤̄ ± �⇤ = NV̄ ±

p
N�V . If V̄ ' �V , as we expect from dimensional

analysis, then

�⇤

⇤̄
'

1
p
N

. (7.41)

In particular we are not scanning around zero in the central region of the Gaussian. In this
landscape the number of vacua with nearly vanishing vacuum energy is ' 2Ne�NV̄ 2/�V 2

. To finely
scan the CC around zero we need both V̄ /�V . plog 2 and su�ciently large N . A generic
landscape is finely scanning the CC only around NV̄ .
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The situation is di↵erent in supersymmetry. Take for instance the odd superpotential

W = ��3
� µ2� . (7.42)

In this case at the two minima W1 = �W2 so that W̄ = 0. Then the landscape generated by N
of these superpotentials is scanning the CC in the range

�3
|
p
N�W |

2

M2
Pl

. ⇤ . 0 . (7.43)

In this case supersymmetry is keeping ⇤  0 and a Z4 R-symmetry that protects the odd struc-
ture of the superpotential is ensuring that the distribution of negative CCs has a central value
comparable to its standard deviation: |

p
N�W |

2/M2
Pl [90]. After SUSY breaking, this landscape

scans the CC e�ciently around zero, because of its symmetries. The situation is analogous for
m2

h.
In summary, even a landscape solution is probably relying on one of the symmetries that we

presented in the previous Sections. Maybe they are realized only at very high energies, but this is
still an interesting information about Nature. In the next Chapter we will see that the presence of
these symmetries (in disguise) is often true also for solutions that explain m2

h through some early
Universe event. However, this is just a simple toy example and we don’t know the actual measure
of ⇤CC and m2

h in the landscape, but it is generic enough that it is useful to keep it in mind.

7.4 Crunching

Anthropic arguments are not the only possible explanation for ⇤CC and m2
h in the landscape.

Those for m2
h are particularly fragile and it would be interesting to see if there are alternatives.

The answer is that there are many and here we give the first example. Thinking about a Mulitverse
can truly change completely the way we can solve fine-tuning problems.

Here we discuss an idea that solves the hierarchy problem and strong CP problem in one
shot [91]. Similar ideas for the CC or the hierarchy problem in isolation can be found in [92, 93, 94].

Consider the following simple Lagrangian

V± = V�± + V�H

V�± = ⌥
m2
�±

2
�2
± �

m2
�±

4M2
±
�4
±

V�H = �
↵s

8⇡

✓
�+

F+
+
��

F�
+ ✓

◆
eGG , (7.44)

where m2
�± > 0. In this Section for brevity we use ✓ to mean what we have called ✓̄ in the

previous Section. V� and V�H break the shift symmetry �± ! �± + c± by a small amount
m�± ,⇤QCD ⌧ F±,M±. V� is an EFT description valid at least for |�±| . M±. A concrete way to
generate Eq. (7.44) and UV complete it is described in [91, 94].

Imagine that this simple model is embedded in a Multiverse that scans the values of ✓, m2
h and

⇤CC. What happens in the di↵erent patches of this Multiverse? Their destiny is determined by
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the two scalars �±. If they ever reach the region |�±| & M±, they can roll down their potential
and eventually dominate ⇤CC. Sooner or later these universes acquire a large negative CC and
crunch, becoming tiny micro-universes with very large curvature. Only universes where �± are
both stabilized in the region |�±| . M± can live a long lifetime and expand, provided that their
CC has been tuned to a small value. If �± are not stabilized to this region, the universe crunches
even if all contributions to the ⇤CC, excluding �±, are tuned to be small.

To see what universes survive, let’s look at the �± potentials. V�� , taken in isolation, has a
minimum near the origin, while V�+ has a local maximum. If we ignore the coupling to QCD, �+

eventually rolls down its potential and crunches all universes in the Multiverse. Below the QCD
phase transition a new contribution to the �± potential is generated by V�H (as discussed in the
previous Section) that might save some universes. To understand the motion of �±we write their
equation of motion in a FRW universe

�̈± + 3H�̇± +
dV±

d�±
= 0 . (7.45)

If 3H�̇± �
dV±
d�±

the scalars are kept into place by Hubble friction �̇± ' 0. Therefore if we want

any universe to survive we need m�+ . H(⇤QCD), i.e. we need to leave a chance to QCD to
stabilize the �+ potential. Let’s assume that this is true and see what happens after the QCD
phase transition.

Let us focus on the region |�±| . M±, where �� has a safe minimum and �+ might have a
chance to get one. Furthermore, we make the technically natural choice M±/F± ⌧ 1 (M and F
break di↵erent symmetries). Then, as discussed in Appendix A, at temperatures below the QCD
phase transition we have

V�H '
⇤4(hhi)

2

✓
✓ +

��

F�
+
�+

F+

◆2

+ . . . . (7.46)

For simplicity we have also expanded for ✓ ⌧ 1, but our arguments hold also for ✓ = O(1). For
mu,d . 4⇡f⇡ the scale of the potential reads [95] (see also Appendix A)

⇤4(hhi) = m2
⇡f

2
⇡

mumd

(mu +md)2
. (7.47)

Note that ⇤4 is a monotonic function of the Higgs vev hhi (so also of m2
h). What does this new

contribution to the potential do? To understand it, we make a few simplifying assumptions (not
crucial for the mechanism to work, but extremely useful pedagogically): 1) We take 1/m�� ⌧

1/m�+ , so that �� starts rolling first. 2) We take M�/F� . ✓+M+/F+, so that the tadpole term
dominates the �� potential in Eq. (7.46) in the region |��| . M�). Hence, the cross-interactions
between �± generated by QCD are negligible and the minimization problem factorizes into two
separate ones for the two scalars.

With these simplifying assumptions we will see after a minimal amount of work that only
universes that have both the Higgs vacuum expectation value (vev) hhi and the QCD ✓-angle in
specific ranges

µS  hhi  µB , ✓  ✓max , (7.48)
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survive the crunch. Therefore today only universes with a small ✓ and small and negative m2
h can

exist (and potentially have expanded and grown to accomodate galaxies and observers). We are
using Weinberg’s argument for the CC to explain the observed values of m2

h and ✓!
Let’s see how this works in practice. V�� has a safe minimum that can prevent crunching, but

the tadpole generated by QCD

V�H �
⇤4(hhi)

2
✓
��

F�
(7.49)

can destroy it, if it is too large. This sets un upper bound on the QCD scale

⇤4(hhi) .
m2
��M�F�

(✓ +M+/F+)
. (7.50)

Since ⇤4(hhi) is a monotonic function of hhi we have set an upper bound on m2
h. The case of �+

is in some sense opposite. V�+ doesn’t have any safe minimum. To generate one in the region
|�+| . M+ we need: 1) The positive mass term generated by QCD

V�H �
⇤4(hhi)

2

�2
+

F 2
+

(7.51)

must be large enough to overcome the negative mass term in V�+ . Secondly, the potential generated
by QCD, must be “aligned” with the original �+ potential, i.e. the QCD mass must be important
near the origin of V�+ otherwise it won’t ever generate a minimum, if it turns on in the region
where V�+ is dominated by the quartic coupling. This can be achieved only if ✓ is small

M+

F+
& ✓ +

M�

F�
. (7.52)

In summary, universes where

µS  hhi  µB , ✓  ✓max , (7.53)

have local minima for �± in the region |�±| . M±. All other universe crunch (at the latest) after
the QCD phase transition. So having a small, but non-zero, Higgs vev and a small ✓ angle is a
necessary condition for a universe to survive. We have thus explained why today we observe tiny
values for m2

h and ✓ compared to their natural expectations. Note that a potential survivor can
still crunch if it starts its life in the region |�±| & M±, so we need a bigger Multiverse than usual
to get at least one surviving universe today. If you want more details on this idea I refer you
to [91]. As far as I know this is the only model that solves the hierarchy and strong CP problems
together. Even if you didn’t like the particular implementation, there’s an important lesson to
learn: m2

h and ✓ are fundamentally linked by an important property of the SM: eGG is the only
local operator in the SM whose vev depends on m2

h. It turns out that it’s also the only one whose
vev depends on ✓. The significance of this fact has been mentioned briefly in Section 7.7.1, but I
recommend reading [96] for more details.
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7.5 Landscapes that are not Multiverses

What we really need from a Multiverse is to realize an exponentially large number of values of m2
h

and/or ⇤CC, including exponentially tuned values. In the case of a Multiverse these values exist
in causally disconnected spacetime patches that live for cosmologically long times. This is not the
only way to scan over di↵erent values of the two parameters and in this Section we see how to do
it in di↵erent ways.

7.5.1 Abbott

Here we show how to dynamically relax the CC to its small observed value, following an idea
proposed by Abbott [97]. Spoiler: this idea predicts a completely empty Universe, very di↵erent
from our own. The idea is still instructive and, other than realizing a landscape di↵erent from a
Multiverse, it inspired a modern solution to the Higgs hierarchy problem.

Imagine having a scalar � with the following potential

V (�) = V0 + V1(�) + V2(�)

V1(�) = �
↵g

2⇡

�

f
Tr[F eF ] , (7.54)

V2(�) = ✏
�

f
+ h.c. , (7.55)

where V0 is a cosmological constant, F is the field strength of the gauge bosons of a non-Abelian
groupG with gauge coupling ↵g. G confines in the IR at a scale ⇤g. V1,2 break di↵erent symmetries.
V1 breaks the continuous shift symmetry �! � + c down to a discrete subgroup �! � + 2⇡nf .
V2 breaks the shift symmetry completely and it also breaks the discrete symmetry � ! ��. So
it’s technically natural to take ✏ ⌧ ⇤4

g, where ⇤
4
g is the typical size of V1 after G confines (see

Section ??).
Imagine that initially � sits high up in its potential, such that V (�I) � (⇤gMPl)2. If V (�I)

dominates the energy density of the Universe we are in a dS phase with Hubble parameter H2
'

V (�I)/M2
Pl and temperature T = H/2⇡. In this phase, the gauge group has not confined yet

(T � ⇤g) and the � potential comes entirely from the linear term V (�) = V0 + V2(�). We are in
an inflationary universe where � obeys the equation of motion

�̈+ 3H�̇+
dV2(�)

d�
= 0 , (7.56)

If we imagine that MPl
V (�)

dV2(�)
d� ⌧ 1, � is rolling slowly down its linear potential

�̇ '
1

3H

dV2(�)

d�
. (7.57)

Its kinetic energy remains small compared to the potential energy as long as the slow-roll condition
on V 0

2 is satisfied. At some point � gets to �c where

V (�c) ' (⇤gMPl)
2 , (7.58)
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when this happens a phase transition occurs in the confining sector and V1 starts to turn on. For
� > �c the potential looks like

V (�) ' V0 + ⇤
4
g cos

�

f
+

✓
✏
�

f
+ h.c.

◆
. (7.59)

Imagine that we are still in the slow roll regime, then as soon as V1 turns on, � will stop rolling if

V 0
1 '

⇤4
g

f
& V 0

2 '
✏

f
. (7.60)

Graphically, � gets stuck when it encounters one of the first wiggles of cos �f because it doesn’t
have enough kinetic energy to surpass it. So � has stopped when

V (�c) ' (⇤gMPl)
2 . (7.61)

If this model described Nature, measuring the CC today amounts to measuring ⇤g

⇤2
g '

⇤obs
CC

M2
Pl

. (7.62)

One can easily show that tunneling between neighboring local minima of � occurs on cosmologically
long timescales. This seems a wonderfully simple explanation of ⇤obs

CC. It is just too bad that it
required this Universe is completely empty. This is a consequence of the long periodo of inflation
required to get from �I all the way down to �c.

Barring dirty tricks that violate the null energy condition, you can’t extract enough energy
from the final CC (⇤obs

CC ' 0.1 meV) to explain the observable Universe. This is because we
know from measurements of light elements abundances that the Universe existed as a SM bath in
thermal equilibrium at least up to temperatures T ' few MeV.

7.5.2 The Relaxion

The original relaxion solution [98] can be summarized by this potential valid up to a cut-o↵ M

V =
�
�M2 + g�

�
|H|

2 + V�(g�) +
�

f
eGa
µ⌫G

µ⌫a , (7.63)

V�(g�) = g2�2 + gM2�+ ... , (7.64)

accompanied by an exponentially large number of e-folds of low scale inflation (HI ⇠ ⇤QCD, where
HI is the Hubble parameter during inflation). All terms in the potential proportional to g break
the shift symmetry �! �+ c, so it is technically natural to take g ⌧M , since in the limit g ! 0
this symmetry is restored.

If we imagine that the relaxion field � starts from � & M2/g, during inflation it is going to
slowly roll down its potential until it arrives at a field value where the Higgs mass crosses zero.
When � > M2/g, m2

h > 0, hhi = 0 and the potential is just a tadpole g�.
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If we are at T ⇠ HI . ⇤QCD this point is special from the relaxion point of view. It is where

the barriers of size f 2
⇡m

2
⇡ generated by �

f
eGa
µ⌫G

µ⌫a, start to appear, since they are proportional to
the Higgs vev, m⇡ / mu +md / v.

If inflation is still ongoing (i.e. the relaxion kinetic energy is negligible), the rolling of � is
going to stop when the slope of

�

f
eGa
µ⌫G

µ⌫a
⇠ f 2

⇡m
2
⇡ cos

�

f
(7.65)

equals the slope of the other part of the potential gM2�. This happens at

g ⇡
f 2
⇡m

2
⇡

fM2
⇡ 10�21 GeV

✓
109 GeV

f

◆✓
10 TeV

M

◆2

. (7.66)

The value of f is chosen to respect current bounds on axion interactions and we have taken a low
value of the cut-o↵ M . Following our EFT discussion, it is technically natural to take g so small,
since it is breaking the shift symmetry of �. However the value of g implies trans-Planckian field
excursions

�� & M2/g �MPl (7.67)

that in our EFT formulation are allowed, but are usually problematic when gravity is taken into
account [99, 100, 101, 77, 82, 81]. As mentioned above the solution also requires an exponentially
large number of e-folds

N =

Z
dtHI =

Z
d�

HI

�̇
⇡ ��

HI

�̇
⇡ ��

H2
I

V 0 ⇡
H2

I

g2
. (7.68)

The other conditions on the inflationary sector are

HI > M2/MPl , (7.69)

to inflate throughout the rolling of �, and

HI . ⇤QCD , (7.70)

to have wiggles when the Higgs mass crosses zero and finally

H3
I . V 0 , (7.71)

so that classical rolling �c ' V 0/HI dominates over quantum brownian motion �Q ' H2
I . Let

us try to attach some numbers to these requirements, we can take f & 108 GeV from cooling of
SN1987A [102] and M & 10 TeV from explaining at least the little hierarchy problem, this gives

g . f 2
⇡m

2
⇡

fM2
' 10�21 GeV ,

�� & 1010MPl ,

N & H2
I

g2
' 1036 . (7.72)
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These numbers are all technically natural, but pretty extreme. Subsequent e↵orts were able to
dispose of super-Planckian field excursions and loosen the requirements of the inflationary sector,
introducing additional fields in the model [103, 104, 105, 106, 107, 108, 109]. We should also
keep in mind that one has to add also an appropriate reheating sector that does not spoil the
mechanism.

Note also that we have not solved the strong CP problem. In this model ✓ ⇠ O(1). If we want
to solve it without new fields, g needs to be smaller by a factor of ✓ ⇠ 10�10 [98]. Alternatively we
can include in the theory a second strongly interacting gauge group, under which new vector-like
leptons getting an O(1) fraction of their mass from the Higgs are charged.

The mechanism at the core of the relaxion was proposed by Abbott to explain the value of
the cosmological constant [97]. The first relaxion paper has had the merit to creatively apply this
idea to mh, although it must be pointed out that many of the ideas that have later taken root in
the literature (for instance using Tr[G eG] as a trigger or looking for dynamics that can explain mh

in the multiverse) were already presents in Dvali’s first attempts in the early ’00s [110, 111, 112]
that we discuss in Section ??. Having said this, without the relaxion, many of us, including myself
would not have started thinking about the problem in these terms and I think that it deserves
its success. As is always the case in science, today much progress has been made and we know
how to use similar ideas without the extreme requirements (or complex model building) that the
relaxion demands.

7.5.3 Nnaturalness

We imagine that multiple copies of the SM exist and that they have di↵erent values of the Higgs
mass [113]. In this Section we distinguish between the Lagrangian parameter m2

H that multiplies
the |H|

2 operator and the physical Higgs mass m2
h. The di↵erence is at most a factor of

p
2, but

it is useful to keep in mind if you ever try to reproduce the results in [113].
The point m2

H = 0 is not special in any way, so we have both sectors with m2
H > 0 and sectors

with m2
H < 0. We take a uniform distribution for m2

H , so if the theory has N sectors and a cut-o↵
M , the lightest Higgs is at mH ⇡M/

p
N and each sector has a mass

m2
hi
= mmin

h2
i

(2i+ 1) , �
N

2
 i 

N

2
. (7.73)

We identify the sector with the smallest (in absolute value) m2
H < 0 with the SM that we observe

and imagine that all the other sectors are coupled to us only through gravity. Obviously in this
setup it is expected to have sectors with a Higgs mass that appears unnaturally small and arises
from a cancellation. We just need to have enough sectors, given a cut-o↵ M . However even a
relatively low cut-o↵ M ⇡ 10 TeV, requires a large number of new sectors N ⇡ 104 to get at least
one with the observed Higgs mass. If we are brave, and consider N ⇡ 1016 Nnaturalness can solve
the whole hierarchy problem, bringing the scale of gravity down to MPl/

p
N ' 1010 GeV and the

naturalness cuto↵ on mh all the way up to the same scale.
A simple physical picture for this setup is that the new sectors are localized to branes which are

displaced from one another in an extra dimension. A scalar that lives in the bulk and is coupled
to |H|

2 has a non-trivial profile in the extra dimension and is responsible for the variation of m2
h
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from brane to brane. In this scenario, the lack of direct coupling is due to locality in the extra
dimension, there is just a tiny coupling induced by gravity and potentially this new scalar.

It seems that we have already explained the size of the Higgs mass with this “brute force”
approach, however there is still one experimental fact that we have not taken into account. Why
is most of the energy density contained in the sector with the smallest negative m2

H? The observed
value of �Ne↵ (all the energy density gravitationally coupled to us normalized to that contained
in one SM neutrino) has an upper bound of approximately 0.5 at the epoch of recombination [114].

�Ne↵ =
⇢� ⇢SM

⇢⌫
. (7.74)

We can not simply give to our sector special couplings to the inflaton or to whatever reheats the
Universe, otherwise we would not have really solved the problem. We would still need to explain
why the smallest negative m2

H sector is also the one that couples to the inflaton. Nnaturalness
explains the smallness of the observed Higgs mass only if all the sectors are treated democratically.

To obtain the observed value of �Ne↵ we have to imagine that at some point the energy density
was dominated by a gauge-singlet field, the reheaton. For illustrative purposes I take it to be a
scalar �. Then we can couple � to all the Higgs bosons with the most relevant coupling that we
can write down

a
X

i

�|Hi|
2 (7.75)

and let � decays reheat the SM and all other sectors. If m� . mHi
, 8i we can compute the decays

in the EFT where we have integrated out all the Higgs bosons. The leading operators that we
need to consider are8

a

mhi

y � ̄ , if m2
Hi

< 0 (7.76)

a

m2
Hi

�F 2 , if m2
Hi

> 0 . (7.77)

Here F is the field strength of any SU(2)L ⇥ U(1)Y gauge boson and this operator is allowed
because only QCD is breaking the electroweak symmetry in sectors with m2

Hi
> 0, where the

Higgs boson does not have a vev. So mW ,mZ ⇠ ⇤QCD ⌧ mHi
. It is useful to distinguish between

mhi
the physical Higgs mass and the coe�cient of |Hi|

2 in the Lagrangian, mHi
. They coincide

only for sectors with m2
Hi

> 0.
From the operators above it is clear that even with equal couplings to all sectors the reaheaton

decays preferentially to the lightest one with m2
Hi

< 0 since

�m2
Hi

<0 ⇠
a2m�

m2
hi

(7.78)

�m2
Hi

>0 ⇠
a2m3

�

m4
Hi

. (7.79)

8
As an exercise check this explicitly. What other operators that can lead to � decays are present in the m

2
Hi

> 0

sectors up to dimension five?
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The energy density in each sector is then given by

⇢i = ⇢BR�!i = ⇢
�i

�
naively �Ne↵ ⇡

X

i

�i

�
⇠

X

i

1

i
⇠ logN . (7.80)

In reality the mass thresholds in the SM and the very hierarchical nature of Yukawa couplings
helps us a lot. Once vHi

is such that 2mbi > m� the decay rate drops significantly

�Ne↵ ⇡

X

i

�i

�
⇠

NbX

i=1

1

2 i+ 1
+

y2c
y2b

NcX

i=Nb+1

1

2 i+ 1
'

1

2

✓
log 2Nb +

y2c
y2b

log
Nc

Nb

◆
, (7.81)

Nb,c =

 
m2
�

8m2
b,c

�
1

2

!
(7.82)

This is not quite enough to show that Nnaturalness satisfies all experimental constraints, but
it does and the core of the reason is this parametric argument. For more details and potential
smoking-gun signals I refer to the original paper [113], and the works that (among other things)
explore its cosmological signatures [115, 116, 117, 118, 119].

It is nice to notice that Nnaturalness can work only because scalars can have relevant couplings
to other scalars �|H|

2
| and marginal couplings to fermions �  c, this is what permits decay widths

that scale as inverse powers ofmh, �i ⇠ 1/mn
hi
. Interestingly, these same couplings are what causes

a hierarchy problem.

7.6 Statistical Selection of the Higgs Mass in the Multiverse

The very first attempts at explaining the Higgs mass cosmologically were made, to the best of
my knowledge, in [110, 111, 112]. The idea was to create a Multiverse with an exponential
accumulation of vacua near m2

h = 0. The basic mechanism can be described as follows. We have
our usual 4-form

F4 = dA3 , (7.83)

introduced in Section 7, where we have used a shorthand for Eq. (7.2) employing the definition of
the exterior derivative. The theory contains the terms relevant for the mechanism

S �

Z
d4x
p
�g


�
F 2
4

48
+M2

Pl

✓
�1 +

F 2
4

M2
Pl

◆
h2

�
+ q(h)

Z
d3⇠Aµ⌫⇢

@xµ

@⇠a
@x⌫

@⇠b
@x⇢

@⇠c
✏abc . (7.84)

The nucleation of bubbles can proceed as in Section 7, following the Brown-Teitelboim idea. The
crucial di↵erence is that

q(h) =
hN

MN�2
Pl

, (7.85)

this can be enforced via a discrete symmetry [111, 112]. After every nucleation, the brane charge
decreases. If N > 2,

�hhi2

hhi2
/ hhiN�2 , (7.86)
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Table 1: default

the vast majority of vacua have hhi close to zero. We have illustrated the idea for a scalar,
but it can be generalized to an SU(2)L doublet. To populate these vacua, through nucleation
of branes (which is an exponentially slow semiclassical process) eternal inflation is needed. This
introduces the problem of measuring how likely a certain vacuum is. Even if we have a theory
with exponentially more vacua at hhi ' 0 compared to large values of the vev, we still can not
compute how likely these vacua are in the Multiverse, due to the well-known measure problem
of eternal inflation [120]. This is a common problem of models that aim to explain mh using
“statistical” arguments, i.e. by populating a special landscape where small m2

h is more likely.
Other interesting examples include [121, 122, 123]. They most rely on the fact that regions at the
top of the potential, i.e. with larger positive vacuum energy, inflate more, presumably becoming
more likely in the Multiverse. However, they run into the problem of measure just described.

7.7 What All Landscapes Have in Common

A number of innovative ideas that trace the origin of the weak scale to early times in the history of
the Universe are present in the literature [111, 112, 98, 113, 124, 121, 122, 125, 126, 93, 96, 123, 94]
and in the previous Sections we have briefly reviewed some of them. I want to stress that we
have described only the original ideas for each option, but often subsequent works have further
developed the models, surpassing some of the drawbacks of the original theories. One prime
example is the Relaxion [98] that has given rise to a series of model building works that (sometimes
strongly) relax the requirements of the original model, some selected examples include [107, 103,
108, 127, 128, 129]. However obstruction to fully UV-completing the model still exist [130].

Taken at face value the ideas that we have reviewed in the context of a landscape seem widely
di↵erent, selecting the weak scale by unrelated mechanisms and predicting di↵erent phenomenol-
ogy. However, very schematically, they all possess a symmetric sector, where a large hierarchy of
scales is natural, a SM landscape and a coupling between the two. This is shown in Fig. 4.

The coupling between the symmetric sector and the SM does not destabilize the hierarchy of
scales in the symmetric sector. At late times, a cosmological event triggered by the Higgs vev and
the coupling between SM and symmetric sector selects the observed value of the weak scale (right
panel of Fig. 4). To further illustrate this sketch, in Table 1 I show how the models discussed so
far, decompose into the three basic ingredients in Fig. 4.

It is useful, mostly as a bookkeeping device, to divide these ideas in three broad categories:
1) Anthropic Selection [131, 132, 88, 133]. Observers can arise only if hhi ' v. 2) Statistical
Selection [111, 112, 121, 122, 123]. Given some measure, the Multiverse is dominated by patches
where hhi ' v. 3) Dynamical Selection [124, 96, 98, 113, 125, 126, 93, 94]. Only non-empty9

9
The simplest definition of an empty a patch is given by a universe where a positive CC always dominates the

energy density. However for our purposes it is su�cient that, as explained below, observers can only exist for a
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Figure 4: Models of cosmological selection of the weak scale. A symmetric sector, where a large
hierarchy of scales is technically natural, is weakly coupled to a landscape of values of m2

h. The
SM landscape contains tuned values of m2

h including the observed one and is populated early in
the history of the Universe. At a later time a cosmological event selects the observed value of m2

h

through the coupling to the symmetric sector.

patches where hhi ' v live for cosmologically long times. This division is arbitrary and debatable,
I find it useful mainly because it groups together ideas with similar experimental consequences.

Anthropic and statistical selection do not require new observable physics coupled to the SM.
The mechanism that populates the landscape and generates its structure can take place at unob-
servably high energies or be due to non-dynamical fields with extremely feeble couplings to the
SM [111, 112, 125, 123].

Dynamical selection instead predicts observable signals through the coupling between us and
the symmetric sector. Conceptually there might be no di↵erence between some of the ideas that
I have grouped under the “dynamical selection” label and anthropic ones. For example, selection
via crunching is leveraging Weinberg’s anthropic argument for ⇤CC. However the di↵erence is
very clear and quantitatively sharp when it comes to experimental signatures, since dynamical
mechanisms can potentially be detected in the near future. Additionally, if compared to statistical
selection, this class of models does not su↵er from measure problems. A more elaborate discussion
on this categorization can be found in [91]. A one paragraph summary is that dynamical selection
mechanisms are 1) More robust that the others because they do not rely on a precise definition
of observers or on counting patches during eternal inflation 2) More interesting experimentally,
because there are potential avenues towards detection that can be explored within our professional
lifetimes. These experimental signatures arise from the two main ingredients of the selection
mechanism: 1) one or more new scalars or pseudo-scalars with masses inversely proportional to
the cuto↵ of the theory and 2) an operator whose vev changes at O(1) when Higgs vev changes
at O(1). These operators are coupled to the new scalar(s) and were first identified explicitly and
called triggers in [96]. When the Higgs vev (and thus the operator vev) crosses certain upper or
lower bounds, a cosmological event is triggered via the coupling to the new scalar(s).

su�ciently short time. We can consider empty also patches where the CC is positive and larger than a certain

threshold ⇤ > ⇤min. In these patches we can have a period of radiation and/or matter domination that lasts at

most ⇠ MPl/
p

⇤min. For an empty patch this time has to be much shorter compared to the age of our universe.

In most models this time is much shorter than typical particle physics scales (⌧ 1/v).
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For a discussion of the first ingredient (light scalars) we mostly refer to [91], but let me give
you also a very rough argument. In these models the weak scale is selected because two parts
of the potential of these scalars (or their derivatives) become comparable when hhi ' v. Let’s
consider a single scalar, since generalizations are simple. In most of these models we have

V = V� + VH� , (7.87)

where VH� is generated by a coupling to the SM Higgs sector. It can also be an indirect coupling,

as for example (�/f)G eG, but it generates a potential that depends monotonically on the Higgs
vev hhi. In general we can parametrize the two terms in V as

V� = m2
�M

2f

✓
�

M

◆
,

VH� = m2
hhhi

2h

✓
�

M
,
h

M

◆
. (7.88)

To run this rough argument we have chosen a single cuto↵ M for the Higgs sector and the new
scalar �. Of course, in general this does not need to be the case.

When V� ' VH� (in crunching mechanisms for instance) or dV�/d� ' @VH�/@� (in relaxion
models) some cosmological event is triggered, leading to the selection of the weak scale. If we
want hhi ' v ' 174 GeV to be selected, we need a naturally small mass for the new scalars

m2
� '

v4

M2
. (7.89)

We get this same condition from V� ' VH� and dV�/d� ' @VH�/@� (or higher derivatives). We
have been sloppy in the distinction between masses and vevs, taking m2

h ' v2. If we want to
solve the hierarchy problem up to high scales M ' MPl the new scalars can become very light.
This simple argument explains why we need a (approximately) symmetric sector that stabilizes
the hierarchy m� ⌧M .

The new scalars often have all the right properties to be dark matter and the coupling to
the SM predicts some distinct phenomenological features in these cases (see [96, 94] for general
considerations, and [129, 134, 135, 136] for relaxion models).

Note also that exceptions to our simple argument exist, either because the weak scale is not
selected by comparing two di↵erent terms in the potential of a new scalar, but rather directly its
mass to that of SM particles [113] or because it occurs via a non-dynamical field [125].

In the next Section we discuss the second ingredient of these models, the so-called trigger
operators. These objects are very interesting phenomenologically because they generate model-
independent and testable experimental consequences of m2

h cosmological selection. They are also
important conceptually because they are a generic feature of SM or BSM physics. They exist and
are related to m2

h even in absence of a Multiverse or a landscape.

66



7.7.1 Trigger Operators

The coupling in Fig. 4 between the symmetric sector and the SM, in dynamical models, is given
by a local operator OT whose vev depends strongly on the Higgs vev

d loghOT i

d loghhi
= O(1) . (7.90)

Interestingly only one such object exists in the SM and it is related to another fine-tuning problem
(the value of the neutron EDM). Let’s first see why the vast majority of local operators in the SM
do not have the above property. To compute their vev we add to the theory a probe scalar � with
a shift symmetry �! �+ c broken only by a weak coupling ⇠ to the operator OSM whose vev we
are interested in. Our Lagrangian then contains the terms

L � LSM + ⇠�OSM . (7.91)

If we integrate out all massive SM particles, we generate a potential for � in the form

V (⇠�) = ⇠�hOSMi+ ... (7.92)

The coe�cient of the linear term in � is the vev that we want to compute. Let us take for example
OSM = |H|

2. The above procedure gives at one loop

V (⇠�) = ⇠�

✓
v2 + c

⇤2
H

16⇡2

◆
+ ... (7.93)

Here ⇤H is a scale above which the SM becomes supersymmetric or scale invariant that we have
used to cuto↵ the loop, and c is a O(1) number. If there is a hierarchy problem at all (⇤H � 4⇡hhi),
the vev of |H|

2 is almost insensitive to the weak scale

d loghOT i

d loghhi
'

16⇡2
hhi2

⇤2
H

⌧ 1 . (7.94)

The same is true for any gauge-invariant local operator in the SM, because we can always close
the loop (or the loops) obtained from all the SM legs in OSM, if we use an insertion of OSM itself
coming from LSM in Eq. (7.91). Since OSM is a gauge-invariant local operator, it exists in the SM
Lagrangian. If you are not convinced, take for example OSM = QHuc. In this case we have at two
loops

V (⇠�) = ⇠�

✓
f 2
⇡⇤QCDv + c

⇤4
H

(16⇡2)2

◆
+ ... (7.95)

If you are still not convinced, you can try with any other operator in the SM or read the more
precise discussion in [113]. The reason why G eG escapes this logic is that it can be written as a
total derivative

�G eG = �@µK
µ . (7.96)
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If we integrate by parts, it’s clear that perturbatively G eG can never generate a potential for �.
The shift symmetry of � in the theory

L � LSM +
↵s

8⇡
(⇠�+ ✓)G eG , (7.97)

is broken only non-perturbatively at the QCD scale, as detailed in Appendix A. High-energy
contributions are correctly captured by ’t Hooft instanton calculation [] and are suppressed by
factors of e�1/g2s(MUV). They are typically negligible compared to the Higgs-dependent part of the
vev

hG eGi ' ✓m2
⇡f

2
⇡ . (7.98)

If we assume SM-like running up to the Planck scale, terms like M4
Ple

�1/g2s(MPl) are completely
negligible. The same is true in traditional supersymmetric grand unified models.

Beyond the SM, only two successful examples of trigger operators exist if we want to explain
an arbirtrarly large hierarchy M � mh. They are

H1H2 (7.99)

if the theory posses at least the Z2 symmetry H1H2 ! �H1H2, and

F eF (7.100)

for a new confining gauge group G, if new fermions that get an O(1) fraction of their mass from
hhi exist and are charged under G. The di�culty in finding other operators lies in the fact that we
can’t add new mass scales to the SM that are bigger than mh, otherwise

d loghOi
d loghhi ⇠ (mh/M)n ⌧ 1.

So the H1H2 trigger predicts a new Higgs doublet with components that have masses below a
few hundred GeV and one of them strictly lighter than mh [113]. Similarly F eF predicts new
vector-like leptons close to the weak scale [98]. Essentially these are the only two operators that
are still experimentally viable.

G eG is the most challenging trigger of all, because the operator already exist in the SM and we
can only detect the feeble axion-like interactions of the new scalars in the symmetric sector that
are coupled to it.

To conclude, note that if we want to explain just a “little” hierarchy mh ⌧ M ⌧ MPl, other
candidate triggers exist. A complete list is still missing, but the operators that can do the trick
are those whose vev is protected by an approximate SM symmetry, for example (Quc)(Qdc)/M2

that is protected by a subgroub of the SM flavor symmetry. This subgroup is only broken by the
small up and down Yukawas and, as a consequence, h(Quc)(Qdc)i ' f 4

⇡⇤
2
QCD + yuyd⇤6

H/(16⇡
2)3.

The tree-level part can dominate up to ⇤H large enough to solve the little hierarchy problem.
For some more details on trigger operators and their phenomenology you can read [96, 94].

8 Comments on Scaleless Gravity

What if gravity did not have a scale? In that case, our estimate m2
h ⇠ M2

Pl would not hold.
Consider the action

S =

Z
d4x
p
�g

"
R2

6f 2
0

+
1
3R

2
�R2

µ⌫

f 2
2

� ⇠S|S|
2R + Lmatter

#
, ⇠ShSi

2 =
M2

Pl

16⇡
. (8.1)
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Other terms of dimension greater than 4 are pure derivatives or can be redefined away. The second
term is the square of the Weyl (or conformal) tensor obtained by subtracting all traces from the
Riemann tensor. We have imagined that Lmatter contains a potential for the scalar S, giving it
the vev in the above equation.

Schematically this action gives an EOM for the graviton of the type

⇤h+
1

M2
⇤2h = 0!

1

M2p2 � p4
=

1

M2

✓
1

p2
�

1

p2 �M2

◆
. (8.2)

Therefore this theory contains a ghost. It is not yet clear that we can make sense of it [137, 138,
139, 140]. However, there is at least another way to make gravity scale-less from the point of
view of the Higgs boson. This second option does not pose problems of consistency of the theory,
but the only known example of this behavior is in 2D where gravity is non-dynamical and very
di↵erent than 4D.

In gravity local di↵eomorphisms are a gauge symmetry and correlation functions are not good
observables (but note that this is only a non-perturbative problem). We can only measure the S
matrix or correlation functions along a worldline xµ(⌧). Although the number xµ(⌧) is arbitrary,
it unambigously identifies a point on the spacetime manifold and we can measure

h0|O(xµ(⌧1))...O(xµ(⌧n))|0i . (8.3)

The S matrix is defined at infinity where gauge symmetries are not redundancies anymore,
they change states in the Hilbert space to di↵erent states, so the large gauge symmetry of gravity
does not pose problems in the definition of S. It only imposes honest (global) symmetry contraints
on its matrix elements.

How can we see the hierarchy problem in terms of these observables? Nobody really knows,
so it is possible that our estimate m2

h ⇠M2
Pl rooted in QFT intuition was too quick. There is one

example in 2D [76], where M2
Pl enters the S matrix only through a phase, not a↵ecting the pole

structure of S. The gravitational S matrix is obtained from the flat space one by multiplication
by the phase factor

Ŝn(pi) = e
i 1
M

2
Pl

P
i<j

✏↵�p↵i p
�

j . (8.4)

The most attractive feature of these very special theories is that they implement explicitly the
idea that in absence of local o↵-shell observables the hierarchy problem might not be a problem.
Its most unattractive feature is that gravity in 2D does not have a propagating massless spin-2
degree of freedom and this result looks very much like just eikonal scattering, i.e. scattering at
high energies and large impact parameter b = J/

p
s. Here J is the angular momentum in a partial

wave expansion of the amplitude and s the usual Mandelstam variable. By large we mean

b�
E

M2
Pl

, E > MPl . (8.5)

In this regime also in 4D the e↵ect of gravity is encoded in terms of a phase

e
�i s

4M2
Pl

log(b/RIR)
, (8.6)

69



where RIR is a IR cuto↵ that regulates infrared divergences. This type of scattering is indeed the
only remnant of gravity in 2D.

If we ignore the problems with the previous examples (i.e. the ghost and the di�culty of
extending the second idea to 4D), and power through, we still have two problems to solve. First
of all, these theories still have a large scale (larger than MPl) given by the Landau pole from
the running of hypercharge in the SM. To avoid it we need new particles charged under U(1)Y .
Secondly, all BSM questions raised in Section 3.1.1 have to be answered without introducing new
scales that are too strongly coupled to the Higgs. Rather than a problem, this is a feature of this
class of ideas, which in principle can be falsified by discovering new scales coupled to H. Some of
the phenomenological implications of this scenario were worked out in [141, 142, 143].

9 UV/IR Mixing

In addition to the attempts at formulating a scaleless theory of gravity, there are two more ways
in which gravity might behave di↵erently compared to what discussed in the previous Sections,
where it was simply providing a new dimensionful scale to deal with in QFT.

The first one is quite direct and violates our EFT intuition on the Higgs mass. The Higgs
boson mass squared is given by an integral over multiple energy scales

m2
h(⇤IR) = m2

h(⇤UV) +

Z ⇤UV

⇤IR

d⇤ �m2
h(⇤) . (9.1)

It is possible that high energy e↵ects are not independent of low energy ones and what appears
as an accidental cancellation between m2

h(⇤UV) and the integral in Eq. (9.1), is explained by the
full theory of quantum gravity.

This brief discussion might have appeared vague. This is not an accident. To the best of my
knowledge there is no concrete proposal to implement the previous idea. The closest we got are
examples in quantum field theory on non-commutative spacetimes [144]. In this proposal IR and
UV e↵ects are related in a precise way, but the explicit breaking of Lorentz symmetry, inherent in
the theory, obstructs incorporating the mechanism in the SM, given current experimental results.
Still we find interesting to review the basics of this idea here, since it could be a toy model for
something more subtle actually going on in Nature. Consider

[x̂µ, x̂⌫ ] = i✓µ⌫ , (9.2)

where ✓µ⌫ = �✓⌫µ. This is relating long-distance and short-distance e↵ects

�x̂µ�x̂⌫ �
|✓µ⌫ |

2
, (9.3)

but is also breaking Lorentz invariance. The tensor ✓µ⌫ is breaking Lorentz invariance as a uniform
magnetic field breaks rotational invariance, by defining a preferred direction in space(time).

It is possible to show that a quantum field theory on these spacetimes can be written in terms
of commuting coordinates, if we additionally introduce the product [145, 146]

f(x) ? g(x) = exp

✓
i

2
✓µ⌫@

µ
y @

⌫
z

◆
f(y)g(z)

����
y=z=x

. (9.4)
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Figure 5: Contributions to the two-point function of a scalar in a non-commutative �4 theory.
Figure taken from [144].

This trick allows to show that noncommutative quantization does not a↵ect the free part of the
tree-level action due to momentum conservation and the antisymmetry of ✓µ⌫ that make the new
exponential factor = 1 for the quadratic terms in the Lagrangian.

Interactions are modified to

L
NC
int =

�n
n!
�(x) ? �(x) ? ... ? �(x) . (9.5)

The corresponding action in momentum space looks like

SNC
int =

�n
n!

Z nY

i=1

d4ki�(k1)...�(kn)�
(4)(k1 + ...+ kn) exp

 
i

2

nX

j<i

✓µ⌫k
µ
i k

⌫
j

!
. (9.6)

If we expand for ✓ ⌧ 1 this looks a like a perfectly normal EFT with a set of irrelevant operators.
If instead we keep the full exponential, an interesting UV/IR duality emerges.

The antisymmetry of ✓µ⌫ together with the momentum-conserving �-function in each vertex,
allow to considerably simplify calculations in these theories. If the graph is planar, including any
tree-level graph, all exponential factors from loops can be eliminated. The only contributions to
the new phase factor containing ✓ come from external lines and their ordering. In non-planar
graphs, internal lines that cross can also contribute. A proof can be found in [147]. In practice at
tree-level these theories are identical to commutative QFTs. At loop level, it is easy to evaluate
integrands, but integrations can give surprising results.

Consider the scalar �4 theory studied in [148], in Euclidean signature10

S4 =

Z
d4x

✓
@µ�@µ�

2
+

m2

2
�2 +

g2

24
� ? � ? � ? �

◆
. (9.7)

At one loop the two-point function of a scalar with external momentum pµ receives two contri-

10
There are subtleties related to unitarity in non-commutative Lorentzian theories that do not a↵ect our main

point. We refer the reader to [144] for a more complete discussion with relevant references.
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butions

�(2)
p =

g2

3(2⇡)4

Z
d4k

k2 +m2
,

�(2)
np =

g2

6(2⇡)4

Z
d4k

k2 +m2
eik

µ✓µ⌫p⌫ , (9.8)

given by the diagrams in Fig. 5. The first integral can be evaluated by standard techniques using
a momentum cuto↵ to give

�(2)
p =

g2

48⇡2

✓
⇤2
�m2 log

⇤2

m2
+ O(1)

◆
. (9.9)

For the second integral we introduce the Schwinger parameter ↵

1

k2 +m2
=

Z 1

0

d↵e�↵(k
2+m2) , (9.10)

complete the square at the exponent, perform the d4k integral and then add the regulator e�1/(⇤2↵)

�(2)
np =

g2

96⇡2

Z
d↵

↵2
e�↵m

2� p
µ
✓µ⇢✓

⇢
⌫p

⌫

4↵ � 1
⇤2↵ . (9.11)

Evaluating the integral gives

�(2)
np =

g2

96⇡2

✓
⇤2

e↵ �m2 log
⇤2

e↵

m2
+ O(1)

◆
,

⇤2
e↵ =

1
1
⇤2 +

p�p
4

. (9.12)

Intriguingly �(2)
np is finite for ⇤!1. Have we really regulated UV divergences using the fuzziness

of spacetime? Not exactly, since the UV pole has not entirely disappeared. It just does not
commute with a new IR pole that did not exist in the tree-level theory. Let’s see this by introducing

a counter-term that regulates the usual UV divergence: M2 = m2+ g2

48⇡2

⇣
⇤2

e↵ �m2 log
⇤2
e↵

m2

⌘
. Then

we can write the 1PI e↵ective action at one-loop as

S1PI =

Z
d4p

(2⇡)4
�(�p)

"
p2 �M2 +

g2

96⇡2
�

1
⇤2 +

p�p
4

� � g2M2

96⇡2
log

⇤2
e↵

M2

#
�(p) (9.13)

where we have defined p � p ⌘ �pµ✓µ⇢✓⇢⌫p
⌫ . If we take ⇤!1 first, we have a new pole when

p � p = �
g2

24⇡2m2
, (9.14)

we seem to have generated a new particle of mass
g2⇤4

✓

24⇡2m2 from UV dynamics. Here we have
assumed that 1/⇤2

✓ is the only eigenvalue of ✓. Similarly, taking p � p ! 0 leaves us with a UV
divergence. This remains true in di↵erent regularization schemes [144].
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A Wilsonian e↵ective theorist would write a low energy Lagrangian that is finite in the ⇤!1
limit. This Lagrangian must contain a new field that accounts for the IR pole that appears in this
limit. This means adding to S4 the terms

�S4(⇤) =

Z
d4x

✓
1

2
@� � @�+

⇤2

8
(@ � @�)2 +

i
p
24⇡2

g��

◆
. (9.15)

It is not clear at all to me (or to anyone, as far as I know) that this is the right perspective. Sure,
this Lagrangian respects the Wilsonian tenet that the correlations functions computed from the
action converge smoothly to their ⇤!1 limits11. However, � does not look at all like a normal
low-energy field. For instance, we can’t simply write an e↵ective Lagrangian for � by integrating
out �, since its non-standard kinetic term prevents diagonalization of the quadratic terms in the
Lagrangian. Furthermore, the new pole breaks unitarity in this theory [149] and finally the only
interaction of � is linear mixing, which means that its action is not renormalized (any divergences
are absorbed by � counterterms).

The Wilsonian point of view might indeed by inadequate to understand these theories, since
it is based on a “UV first” logic, which is the right point of view is still source of debate [144].

We can content ourselves to note an intriguing fact. Given any finite UV scale ⇤ we have
generated a new stable IR scale in the form of an IR cuto↵ ⇠ ⇤2

✓/⇤. Even more intriguingly, for
⇤!1, the theory is finite but we have a new IR pole in a two-point function at p2 ⇠ g2⇤4

✓/m
2,

which can be naturally much smaller than m2.
This is exactly what we need to solve the hierarchy problem. However, to have a real solu-

tion we still have to deal with Lorentz violation (in the Wilsonian picture � propagates only in
non-commuting directions) and better understand unitarity in this theory. For a more complete
discussion we refer the reader to [144].

The second way in which gravity might surprise us, is possibly even more speculative, but not
completely unfamiliar from an EFT perspective. It is well-known that a UV theory might leave
non-trivial constraints at low energy, which the low energy physicists can only accept as facts of
life. The prime example is the Spin-Statics theorem in quantum mechanics that in QFT is seen
as a consequence of Lorentz invariance and causality.

String theory might o↵er a more dramatic realization of this idea. It is possible that many
perfectly sensible, local, Lorentz-invariant EFTs are in the so-called “swampland”, i.e. they are
incompatible with quantum gravity. A number of string theory examples make this intuition
precise. For example the same modulus usually controls the mass of multiple towers of new states.
A classic example are KK and winding modes in string theory, whose masses scale as

MKK ⇠ e↵� , Mwinding ⇠ e�↵� (9.16)

where � is a modulus. The two towers are related by T -duality. Given the pervasive nature of
dualities in string theory this has led to the so-called Swampland Distance Conjecture [77]

• Consider a theory, coupled to gravity, with a moduli space M which is parametrized by the
expectation values of some field �i which have no potential. Starting from any point P 2M
there exists another point Q 2M such that the geodesic distance between P and Q, denoted
d(P,Q), is infinite.

11
This can be verified by integrating out � at tree-level, since the action is quadratic in �.
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• There exists an infinite tower of states, with an associated mass scale m, such that

m(Q) ⇠ m(P )e�↵d(P,Q) , (9.17)

where ↵ is some positive constant.

This means that considering large field excursion might break our EFT, even if at low energy we
would not suspect that.

Another example is the Weak Gravity Conjecture. When we compactify string theory we
might obtain gauge fields at low energy that arise either from the high-dimensional components
of the gravitational field, or from higher form fields (for instance Bµ⌫). In both cases the low
dimensional gauge coupling is a function of the moduli that determine the size and geometry of
the compactified dimensions. There is therefore a relation between the mass of charged states
(KK and winding modes), coming from this compactification and their charge under the gauge
group. Explicit examples corroborate the following Weak Gravity Conjecture [150, 151]:

• Consider a theory, coupled to gravity, with a U(1) gauge symmetry with gauge coupling g

S =

Z
ddx
p
�g


Md�2R

d

2
�

1

4g2
F 2

�
. (9.18)

Then

• Electric: There exists a particle in the theory with mass m and charge q such that

m 

r
d� 2

d� 3
gqM

d�2
2 . (9.19)

• Magnetic: The cuto↵ of this EFT is bounded from above by

⇤ . gM
d�2
2 . (9.20)

A third interesting example is the Refined de Sitter Conjecture [81, 82]

• The scalar potential of a theory coupled to gravity must satisfy either

|rV | �
c

MPl
V , (9.21)

or

min (rirjV )  �
c0

M2
Pl

V (9.22)

For c, c0 = O(1). This conjecture comes from the calculation of the de Sitter entropy plus the
distance conjecture. If a scalar rolls too far down its potential, the tower of states that becomes
light changes the entropy, making it incompatible with what we know about de Sitter space [100,
81, 82].
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All these examples have a few features in common: 1) They describe highly non-trivial
constraints on the EFT that the low energy physicist could not have imagined 2) They are
(conjectures)2. They arise from string theory (which we do not know for sure to be the right
theory of quantum gravity), within string theory they come from a handful of examples that
correspond to limits where we have the theory under control. If we want to apply them to phe-
nomenology they become (conjectures)3 in the sense that we typically have to take an extra step.
For instance, by adding to the distance conjecture the statement that all low energy scalars are
moduli.

Having said this, the fact that m2
h = 0 is special from the point of view of quantum gravity

is not impossible, and we can keep it in mind as an intriguing possibility for future work and
speculation. For an idea in this direction see [152].

10 Generalized Symmetries

In this Section we discuss an example in 2d where the hierarchy problem is solved by a non-
invertible symmetry. The symmetry is not at all manifest at the Lagrangian level. This example
cannot be generalized to our world in 4d for reasons discussed in [], but it is still very instructive
if we take it as inspiration for what we might have missed while staring at the SM Lagrangian.

The symmetry that I am alluding two is well-known in statistical mechanics as the Kramers
Wannier duality of the Ising model. We first review the standard derivation of the duality, then
we show that the model admits a low energy limit described by a Higgs-like scalar and finally we
rephrase everything in terms of generalized symmetries.

10.1 Kramers Wannier Duality

Consider an array of spins �i = ±1 on a square lattice in two space dimensions with Hamiltonian

H = �J
X

hiji

�i�j . (10.1)

The sum over hiji extends on all pairs of nearest neighbors. The partition function of the system
is

Z =
X

{�}

e�
P

hiji �i�j , (10.2)

where it’s more convenient to define � as

� ⌘ J/kBT , (10.3)

rather than the usual inverse temperature, and {�} denotes a sum over all spin configurations.
Eq. (10.2) can be manipulated to obtain a mapping between the high- and low-temperature
regimes of the model. We can think of this as a duality between two di↵erent theories that
describe the same 2D Ising model or as a symmetry of the model that transforms non-trivially
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From the above equation we can easily write the usual covariant derivative in terms of Wilson
lines []. We can also write the usual kinetic term for the gauge bosons as a trace in the schematic
form Tr[U1U2U

†
3U

†
4 ], if the paths of each Wilson line are chosen so that the 4 paths form a closed

loop. We refer to [] for more details.
It is straightforward to adapt the previous discussion to a discrete lattice, now Uij connects two

sites i and j following a path l through the lattice links, as we did in Section 10.1. If si,j are scalar
lattice variables, living on the lattice sites, that transform in the fundamental representation of
the gauge symmetry, the object

s⇤iUijsj (B.4)

is gauge invariant. This is the simplest heuristic explanation of how to realize a discrete gauge
theory on the lattice. You might have noticed from the discussion in Section 10.1 that this
symmetry is doing nothing locally and it introduces no new propagating degrees of freedom.
However it can still have some physical e↵ects. to be completed
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