
THE
SE

DE
DO

CTO
RAT

NN
T:2

023
UPA

SP0
59

Fractional quantum Hall states in
graphene systems

États de Hall quantique fractionnaire des systèmes de
graphène

Thèse de doctorat de l’université Paris-Saclay

École doctorale n◦ 564, Physique en Île-de-France (PIF)
Spécialité de doctorat: Physique

Graduate School : Physique, Référent : Faculté des Sciences d’Orsay

Thèse préparée dans l’unité de recherche IPhT (Université Paris-Saclay,
CNRS, CEA), sous la direction de M. Thierry JOLICOEUR, Directeur de

recherche

Thèse soutenue à Paris-Saclay, le 28 juin 2023, par

Ngoc Duc LE

Composition du jury
Membres du jury avec voix délibérative
M. Sylvain CAPPONI Président
Professeur des Universités, Université de Toulouse
Mme. Karyn LE HUR Rapporteur & Examinatrice
Directrice de Recherche, Institut Polytechnique de Paris
M. Thierry MARTIN Rapporteur & Examinateur
Professeur des Universités, Université de Marseille
M. Grégoire MISGUICH Examinateur
Directeur de Recherche, Institut de Physique Théorique de
Saclay



Titre: États de Hall quantique fractionnaires des systèmes de graphène
Mots clés: effet Hall fractionnaire, graphène, cristal de Wigner

Résumé: Le graphène est un matériel bidimen-
sionel. Outre le degré de liberté du spin, les élec-
trons de basse énergie dans le graphène possèdent
un nouveau degré de liberté: la vallée, qui joue
le rôle du pseudospin, si bien que les électrons
dans graphène sont quatre fois dégénérés. Par
conséquent, le graphène est un nouveau système
physique pour étudier l’effect Hall quantique multi-
composante. Dans cette thèse, nous étudions les
états de Hall quantique fractionnaires dans deux
systèmes de graphène: le graphène monocouche et
le graphène bicouche dans l’empilement du Bernal.

Dans le graphène monocouche, nous étudions
l’ordre du spin et de la vallée causé par la brisure de
la symmétrie SU(4) due aux anisotropies à courte
portée dépendantes de la vallée. Nous avons fait
des diagonalisations exactes sur les états de Hall
quantique de facteur de remplissage n/3 et com-
paré les résultats avec ceux d’une méthode vari-
ationnelle. Les diagrammes de phase des états à
deux composantes (1,1/3), (2/3,2/3) et (1,2/3)
ont la même allure que celui du cas de la neutralité
des charges. La phase ferromagnétique des états
(1,1/3) et (1,2/3), dont les spins sont polarisés,
présentent une symétrie SU(2) de vallée, tandis
que le Hamiltonien ne possède pas cette symétrie.
En particulier, le diagramme de phase de l’état à
trois composantes (1,1/3,1/3) n’est pas décrit par
la méthode variationnelle: il contient une phase

singulet de spin et non-polarisée de vallée, qui n’est
pas prédite variationnellement.

Le spectre des niveaux de Landau du graphène
bicouche est unique parce que les deux niveaux
de Landau N=0 et N=1 sont approximativement
dégénérés. Son niveau de Landau central est huit
fois dégénéré. On peut contrôler l’état du graphène
bicouche en modifiant le champs électrique perpen-
diculaire à la bicouche. Sous la présence de l’effet
de Zeeman et du biais intercouche, les huit sous-
niveaux du niveau de Landau central sont séparés.
Cela permet d’observer de nouveaux phénomènes
lors du croisement entre les niveaux d’énergies d’une
seule particule.

Dans la seconde partie de cette thèse, nous
étudions la compétition entre l’état de Hall quan-
tique de fraction ν = 1/3 et le solide d’électron au
croisement de niveaux avec index orbital N=0 et
N=1, en supposant que les électrons aient le même
spin et la même vallée. Dans ce cas, la coïncidence
entre les deux niveaux de Landau rappelle le cas
d’un mélange extrême entre les niveaux de Lan-
dau et entraîne la formation du cristal de Wigner.
La transition de phase entre l’état de Laughlin et
le cristal d’électron est continue ou faiblement de
premier ordre. La possibilité de créer un cristal
de Wigner en variant le biais intercouche dans le
graphène bicouche promet une plateforme simple
et pratique pour étudier cet état de la matière.
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Abstract: Graphene is a member of the family of
two-dimensional materials. Apart from the famil-
iar spin degree of freedom, low-energy electrons
in graphene have an additional degree of freedom:
the valley, which plays the role of a pseudospin,
implying that electrons in graphene have a fourfold
degeneracy. Therefore, graphene is a new platform
for studying the multicomponent quantum Hall ef-
fect. In this thesis, we study the fractional quantum
Hall states in two graphene systems: the monolayer
graphene and the Bernal-stacked bilayer graphene.

In monolayer graphene, we study the order-
ing of spin and valley caused by the breaking of
the SU(4) symmetry due to short-range valley-
dependent anisotropies. We performed exact di-
agonalization studies on quantum Hall states of
filling factors n/3 (n=1,2,4,5) and compared the
results with those of a variational method. The
phase diagrams of the two-component states (1,
1/3), (2/3, 2/3), and (1, 2/3) have the same
shape as the one of the charge neutrality case. The
spin-polarized ferromagnetic phase of the states
(1,1/3) and (1,2/3) exhibits an emergent SU(2)
valley symmetry, while the Hamiltonian does not
have this symmetry. Significantly, the phase di-
agram of the three-component state (1,1/3,1/3)
cannot be captured by the variational method: it
has a spin-singlet and valley unpolarized phase that

is not predicted variationally.
The Landau level spectrum of Bernal-stacked

bilayer graphene is unique because the two Lan-
dau levels N=0 and N=1 are nearly degenerate. It
gives rise to the orbital degree of freedom, leading
to an almost eightfold degenerate central Landau
level. Interestingly, one can control the state of
Bernal bilayer graphene by tuning the electric field
across its two layers. Under the presence of the
interlayer bias and the Zeeman energy, the eight
degenerate sublevels of the central Landau level
are split, promising the observation of interesting
physics at the crossing between the single-particle
energy levels.

In the second part of this thesis, we study the
competition between the fractional quantum Hall
liquid of filling fraction 1/3 and the electron solid
at the crossing between the two orbitals, supposing
that the spin and valley degrees of freedom are
frozen. In this situation, the coincidence between
the two Landau levels is reminiscent of the case of
extreme Landau level mixing, giving rise to the for-
mation of the Wigner crystal. The phase transition
between the Laughlin state and the electron crystal
is continuous or weakly first-order. The possibil-
ity of electrically-induced Wigner crystal in Bernal
bilayer graphene promises a simple and practical
platform to study this phase of matter.
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Chapter1 - Introduction

The quantum Hall effect is one of the most striking discoveries of physics in the
20th century. In 1980, nearly one century after the discovery of the classical Hall effect,
von Klitzing, Dorda, and Pepper discovered its integral version [1]. Tsui, Stormer, and
Gossard observed the fractional quantum Hall effect two years later [2]. Since then, the
quantum Hall effect has opened perspectives to study the topological phases of matter
and exotic states of matter. The study of the integer quantum Hall effect is the precursor
to the expanding field of topological insulators [3–6]. The research on the fractional
quantum Hall effect gives rise to important concepts of composite fermion [7, 8] and
topological order [9, 10]. The fractionally quantized Hall effect is also an ideal platform
for studying electron interaction. Studying excited states of the fractional quantum Hall
liquid leads to the concepts of fractional charge [11–13]. The fractional quantum Hall
effect also plays a key role in studying fractional statistics and anyon [14–17]. After its
discovery in conventional semiconductors, experiments observed the quantum Hall effect
in other materials like graphene [18–21], bilayer graphene [22–25], and transition metal
dichalcogenides [26]. Forty years after its discovery, the research on the quantum Hall
effect is still an active subfield of condensed matter physics.

Graphene [27, 28] remained a hypothetical material during the 20th century until
Geim and Novoselov successfully isolated it in 2005 [29]. The discovery of graphene is
a breakthrough and triggers the research on two-dimensional materials. In physics, the
study of graphene opens many insights, like Dirac fermion and electron quantum optics.
The quantum Hall effect in graphene is remarkable due to its relativistic Landau levels
[18, 30]. Moreover, graphene is a richer platform to study the multicomponent quantum
Hall effect because electrons in this material have the valley degree of freedom apart from
their intrinsic spin degree of freedom. The presence of one more degree of freedom makes
each Landau level in graphene fourfold degenerate, so the multicomponent quantum Hall
effect in graphene is described by the SU(4) symmetry.

In graphene, the interaction between electrons in different valleys induces anisotropies,
which break the SU(4) symmetry of the Coulomb interaction. As a consequence, the
case of charge neutrality has a rich phase diagram, including ferromagnetic (F), canted
antiferromagnetic (CAF), Kékulé distortion (KD), charge-density wave (CDW) [31],
and especially an SO(5) symmetry that connects the CAF and the KD phases [32].
During the last decade, the problem of anisotropies-induced symmetry-breaking phases in
graphene has made significant progress in theory and experiments. In 2014, Sodemann
and MacDonald started studying the problem of valley anisotropies in graphene under
the fractional quantum Hall effect [33]. Nevertheless, there remain open questions about
the phase diagram of graphene in both the integer and fractional quantum Hall regimes,
and experimental works have not been able to confirm the theoretical results completely.

Bernal-stacked bilayer graphene consists of two monolayers stacked together with
a dimer site bonding perpendicular to the graphene plane. Similarly to its monolayer
partner, bilayer graphene also provides exciting physics. For example, researchers have
observed exciton condensate in double bilayer graphene [34]. Especially one can easily
control the state of bilayer graphene by varying the electric field perpendicular to the
sample. Interestingly, bilayer graphene has an exceptional eightfold quasi-degenerate
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zero-energy Landau level due to the degeneracy of the Landau levels N=0 and N=1.
That means the zero-energy Landau level in bilayer graphene has one more degree of
freedom in companion with the well-known spin and valley degrees of freedom. This is
the so-called orbital degree of freedom. By tuning the layer polarization electric field, the
eight levels with different spin, valley, and orbital orders cross each other. New exotic
phases of matter are predicted at the crossing between the levels, such as the helical
phase [35] and a transition between the Moore-Read state and the composite fermion
liquid [36].

In this thesis, we study the multicomponent quantum Hall effect in monolayer and
bilayer graphene. First, we investigate the broken-symmetry ground states of monolayer
graphene for quantum Hall states having filling factors n/3 (n = 1, 2, 4, 5). Second,
we study the competition between the Laughlin state and the electron crystal (Wigner
crystal) at the crossing of the two orbitals in the zero-energy Landau level of bilayer
graphene. For this purpose, we will employ the exact diagonalization numerical method
and the analytical variational method.

The structure of this Ph.D. thesis is as follows:
The present Chapter 1 Introduction gives an overview of the motivations and the

objectives of this work.
Chapter 2 provides a review of the quantum Hall effect. The chapter starts with a

brief presentation of the classical Hall effect. Then, I will show the main ideas of the
integer quantum Hall effect. Next, I will present the fractional quantum Hall effect. The
chapter is restricted to the quantum Hall effect in semiconductors.

The chapters 3, 4, and 5 contain the results of the first project of my Ph.D.: the
ordering of spin and valley in monolayer graphene under the quantum Hall effects with
filling factors n/3 (n = 1, 2, 4, 5).

Chapter 3 starts with a review of monolayer graphene, its lattice and band struc-
tures, its particular relativistic Landau level quantization, the concept of quantum Hall
ferromagnetism, and a summary of the experimental situation. Then, we will discuss the
Hamiltonian of a two-dimensional electron system under a magnetic field. This Hamilto-
nian contains the following contributions: the Coulomb interaction, the Zeeman energy,
the substrate-induced sublattice-splitting energy, and the short-range valley-dependent
interaction. We will focus on the short-range valley-dependent energy, which breaks the
SU(4) symmetry of the Coulomb interaction and gives a variety of symmetry-breaking
phases. The phases of monolayer graphene under the integer quantum Hall effect of
filling factor ν = 0 will be described in detail. Although this chapter does not contain
new results, it provides the concepts indispensable to understanding the discussions in
chapters 4 and 5.

In chapter 4 we develop a variational method to establish the phase diagram of
monolayer graphene under the fractional quantum Hall regime. We propose the trial
wavefunctions, which are SU(4) eigenstates of the Coulomb interaction. By assuming that
the valley-dependent interaction is not strong enough to break the electron correlation of
those wavefunctions, we will search for the spin and valley ordering that minimizes the
energy of each trial wavefunction. These spin and valley orders define the characteristics
of the corresponding phases. The chapter ends with the phase diagrams calculated
by using the variational method for the two component-state of flavor composition
(1, ν)(0 < ν < 1) and the three component-state (1, ν, ν) (0 < ν < 1).
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In chapter 5 we discuss the spin and valley ordering of all quantum Hall states
of filling factors n/3(n = 1, 2, 4, 5). For the filling factors ν̃ = 4/3 and ν̃ = 5/3, we
verify the prediction of the variational method by comparing its results with the ones
of exact diagonalizations. Exact diagonalization studies find evidence of a symmetry-
breaking order that is not captured by the variational method. Then, we discuss the spin
transition between states having different numbers of components. We end the chapter
by summarizing the project.

The chapters 6, 7 and 8 cover the second project of my Ph.D.: the competition
between the Laughlin state and the Wigner crystal in Bernal-stacked bilayer graphene.

Chapter 6 gives an introduction to Bernal-stacked bilayer graphene. We begin with
its lattice and electronic structures and derive its unique eightfold degenerate zero-energy
Landau level. We present the concept of the orbital degree of freedom in detail, showing
the single-electron wavefunctions and the single-electron energy diagram. That leads to
the definition of the weight γ and the orbital splitting energy ∆10, which plays the role of
the pseudo-Zeeman energy for the orbital degree of freedom. These two parameters play
an important role in our model, serving as parameters of the phase diagram of bilayer
graphene.

Chapter 7 briefly reviews the exotic phase of the Wigner crystal and the competition
between the Wigner crystal and the fractional quantum Hall liquid in conventional
semiconductors. The chapter points out the key role of Landau level mixing to the
formation of this phase of matter.

Chapter 8 presents the main result of this project: the phase diagram of bilayer
graphene in the vicinity of the crossing between the orbitals N=0 and N=1 for electrons
having the same valley and same spin. The coincidence of the two Landau levels is
reminiscent of an extreme Landau level mixing, which favors the localization of electrons
and leads to the formation of the Wigner crystal. Here the Wigner crystal competes with
the Laughlin state of filling factor ν = 1/3.

Chapter 9 Conclusion summarizes the results of this thesis and gives the conclusion,
perspectives, and future directions.
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Chapter2 - The physics of the Quantum Hall effect

2.1 . The classical Hall effect

In 1879, Edwin H. Hall placed a gold leaf under a magnetic field and turned on an
electromotive force to make an electric current traversing the gold leaf. He observed
a transverse electromotive force perpendicular to the initial one [37]. Nowadays, the
appearance of a transverse electromotive force perpendicular to the electric current under
a magnetic field is called the (classical) Hall effect. Fig.2.1 illustrates the Hall setup. A
voltage V is applied between the two ends of the sample, leading to a current I. Then,
a magnetic field B perpendicular to the sample is turned on. The voltage VH is the
so-called Hall voltage.

We can understand the physics of the classical Hall effect by simply using classical
electromagnetism. Here we follow the line of reasoning in Ref.[38]. Electrons moving
under a magnetic field are subjected to the Lorentz force. According to Newton’s second
law, we write their equation of motion as follows:

m
dv

dt
= −e

c
v ×B (2.1)

Here, m is the electron mass. For an electron moving in two dimensions, v =
(vx, vy, 0). The magnetic field perpendicular to the two-dimensional electron gas has the
formula B = (0, 0, B). The equation (2.1) becomes:

dvx
dt

=− eB

mc
vy

dvy
dt

=
eB

mc
vx

(2.2)

By taking a further derivative, we see that vx and vy are solutions for the second-order
differential equations:

d2vx
dt2

+ ω2
cvx =0

d2vy
dt2

+ ω2
cvy =0

(2.3)

The quantity ωc = eB/mc is called the cyclotron frequency . By solving this system
of differential equations, we see that electrons move in circular orbits with frequency ωc.
In the Hall experiment, there are two other contributions to the total force acting on
each electron: the electric force −eE and the friction force −mv/τ due to impurities,
which causes the resistance. Here, τ is the scattering time. According to Drude’s model,
the equation of motion of each electron reads:

m
dv

dt
= −eE− e

c
v ×B− m

τ
v (2.4)

In the steady state, dv/dt = 0 and this equation is written in the matrix form as:(
1 ωcτ

−ωcτ 1

)(
vx
vy

)
= −eτ

m

(
Ex

Ey

)
(2.5)
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Figure 2.1: Schematic of the Hall experiment.

The formula of the current density is j = −nev with n the (two-dimensional) electron
density. The Ohm’s law reads:

j = σE (2.6)
We define σDC = ne2τ/m as the conductivity without magnetic field. The tensor σ

is the conductivity tensor and has the formula:

σ =
σDC

1 + ω2
cτ

2

(
1 ωcτ

−ωcτ 1

)
(2.7)

The conductivity tensor has non-zero off-diagonal entries σxy. This off-diagonal
conductivity is responsible for the transverse electromotive force in the Hall experiment.
The resistivity tensor, which is the inverse of the conductivity tensor, has the formula:

ρ =
1

σDC

(
1 ωcτ

−ωc 1

)
(2.8)

The value of the transverse resistivity is:

ρxy =
ωcτ

σDC

=
B

ne
(2.9)

The transverse resistivity is a linear function of the applied magnetic field. By contrast,
the longitudinal resistivity is constant:

ρxx =
1

σDC

=
m

ne2τ
(2.10)

We assume that the current flows in the x direction j = jxx̂
1. We set Lx and Ly as

the sample size in the x and y directions, respectively. In the experiments, one measures
1In the following subsections, we consider an electric current flowing in the y direction instead.
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the transverse resistance instead of the resistivity. Let RH be the transverse resistance,
or Hall resistance. The value of the Hall resistance equals to:

RH =
VH
I

=
EyLy

jxLy

=
Ey

jx
= ρxy (2.11)

To summarize, in a conductor under magnetic field, the charge carriers are deflected
by the Lorentz force. They accumulate on the edges of the sample, resulting in the
transverse voltage VH . The classical Hall effect has many applications [39]. On the one
hand, the Hall effect is the principle of magnetic sensors. Hall effect sensors are usually
made of semiconductors. They convert the magnetic field into electrical signals. Knowing
the material properties and the device geometry, the Hall voltage VH gives information
about the direction and strength of the magnetic field B. On the other hand, the Hall
effect allows us to characterize the materials. One can fabricate a Hall device made of the
material of interest with a specific geometry. Then one can control the applied magnetic
field and longitudinal voltage and measure the Hall voltage. The latter gives information
about the material: the sign (positive/negative) and the density of the charge carriers.
The applications of Hall effect devices have become significant since the beginning of the
semiconductor technology.

2.2 . The integer quantum Hall effect

2.2.1 . The discovery of the integer quantum Hall effect
In 1980, von Klitzing, Dorda, and Pepper published a paper on their discovery of

the integer quantum Hall effect [1]. They placed a degenerate electron gas in the
inversion layer of a MOSFET under a magnetic field of 18T at a temperature of 1.5K; the
source-drain current is 1µA. By varying the gate voltage Vg, they observed the plateaus
in the graph of the Hall voltage VH . The values of the Hall resistance at the plateaus are
RH ≈ 25 812.807Ω/n = h/(e2n)(2 ≤ n ≤ 8). It corresponds to the quantization of the
Hall conductivity:

σxy = n
e2

h
(n ∈ N) (2.12)

The corresponding values of the longitudinal resistivity ρxx and the longitudinal
conductivity σxx get minima. The value of VH is independent of the sample geometry
and the direction of the magnetic field if σxx = 0. Their results are shown in Fig.2.2.

Surprisingly, at a high magnetic field, the Hall resistivity ρxy is not a linear function
of the magnetic field B as shown in (2.9), but is quantized. Nowadays, the value
RK = h/e2 =25 812.807Ω is called the von Klitzing constant. In 1985, von Klitzing was
awarded the Nobel Prize in Physics.

After the discovery of the integer quantum Hall effect, physicists rapidly understood
the physics behind this striking phenomenon. In their pioneering paper [1], von Klitzing et
al. explained the phenomenon using the quantization of the electron kinetic energy into
discrete Landau levels. The presence of disorder explains the existence of the plateaus.
Laughlin explained the quantized Hall effect using his pumping argument and his idea of
spectral flow [40]. The Landauer approach [41] provides a complete explanation of the
Hall conductance quantization and the edge states in the picture of electron transport
without backscattering [42–45]. Although the Laughlin’s argument is more abstract
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Figure 2.2: The recordings of the Hall voltage and longitudinal voltage by von Klitzing et al. [1]. In
their notations, UH is the Hall voltage, while UPP is the longitudinal voltage, and Vg is the gate voltage.
The inset is the schematic of the Hall bar device. The figure is taken from Ref.[1]. Reprinted figure with
permission from K. v. Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett., 45, 494 (1980). Copyright
(2023) by the American Physical Society.

while the Landauer-Büttiker approach is more concrete and closer to experiments, they
are closely related. A deeper explanation revealing the topological origin of the Hall
quantization was developed by Thouless, Kohmoto, Nightingale, and den Nijs (TKNN)
using the Kubo formalism [46]. The TKNN argument identifies the integer n in (2.12) as
the Chern number. For this reason, two-dimensional electron systems under the integer
quantum Hall effect is the first known topological insulator.

The following subsections review the basic knowledge of the integer quantum Hall
effect. First, we solve the problem of two-dimensional electrons under magnetic field.
Next, we prove the quantization of the Hall conductance. Then, we discuss the role of
disorder in the formation of the plateaus. Finally, we will show the general points about
edge states.

2.2.2 . Two-dimensional electrons under magnetic field: Landau level quanti-
zation

One explains the physics of the integer quantum Hall effect using the single-electron
picture [47]. We consider two-dimensional electrons moving in the x− y plane, under
the magnetic field B = Bẑ. In this subsection, we use the Landau gauge A = (0, Bx, 0).
The Hamiltonian of one electron under this magnetic field is given by:

H =
1

2m
Π2 =

1

2m

(
−iℏ∇+

e

c
A(r)

)2
=

1

2m

[
−ℏ2

∂2

∂x2
+

(
−iℏ ∂

∂y
+
eB

c
x

)2
] (2.13)
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We solve the corresponding Schrödinger equation by separating the variables. An
ansatz for the single-particle eigenfunction is:

ϕ(x, y) = e−ikyyχ(x) (2.14)
The function χ(x) satisfies the following ordinary differential equation:

− ℏ2

2m

d2χ(x)

dx2
+

1

2
mω2

c

(
x− ℏky

mωc

)2

χ(x) = Eχ(x) (2.15)
The cyclotron frequency ωc = eB/mc is the same as the one we defined in section 2.1.

We define the magnetic length l = (ℏc/eB)1/2. By defining X = ℏky/mωc = kyl
2,

the Schrödinger equation becomes the equation for one-dimensional harmonic oscillator
along the x-direction and centered at X:[

− ℏ2

2m

d2

dx2
+

1

2
mω2

c (x−X)2
]
χ(x) = Eχ(x) (2.16)

Therefore, the energy of one particle is quantized into discrete levels:

EN = ℏωc

(
N +

1

2

)
(N ∈ N) (2.17)

Those levels are called Landau levels [47]. They are labeled by the quantum number
N . The one-particle wavefunction is given by:

ϕN,ky(x, y) = e−ikyye−
(x−kyl2)2

2l2 HN

(
x− kyl

2

l

)
(2.18)

Here, HN is the Nth Hermite polynomial. The periodic boundary condition on the
y-direction leads to the quantization of the momentum ky into ky = 2πny/Ly (ny ∈ Z).
The condition 0 ≤ X < Lx implies that:

0 ≤ ny <
LxLy

2πl2
=
LxLyB

ϕ0

(2.19)
We define the magnetic flux quantum ϕ0 = hc/e. The condition (2.19) shows

that the number of allowed values of ny (corresponding ky) equals to the number Nϕ of
magnetic flux quanta passing through the sample. Indeed, Nϕ = LxLyB/ϕ0.

To sum up, in this subsection, we have shown that the kinetic energy of two-
dimensional electrons under magnetic field is quantized into Landau levels. The degeneracy
of each Landau level equals to the number of magnetic flux quanta passing through the
sample. In the next subsection, we prove the Hall conductance quantization.

2.2.3 . Quantization of the Hall conductance
In real samples, there is an external electric field due to the Hall voltage VH . Real

samples have edges at which there exist confinement potentials. We continue considering
a system which is translationally invariant along the y-direction and confined in the
x-direction. According to the treatment in subsection 2.2.2, electrons propagate along
the y-direction and are subjected to the Hall voltage across the x-direction. Therefore,
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we sum up the contributions from these potentials into the potential energy V (x), which
is y-independent. We modify the Hamiltonian (2.13) by adding a potential energy V (x)
into it:

H =
1

2m

(
p+

e

c
A
)2

+ V (x) (2.20)
The Hamiltonian (2.20) commutes with the momentum p̂y, so ky is still a good

quantum number to label the eigenstates. The eigenstate with quantum number ky is
localized at position x = y(ky). We consider a full Landau level, which contains the
electrons such that k− < ky < k+. The total electric current contributed by electrons in
one Landau level equals:

Iy =− e

∫ k+

k−

dky
2π

⟨vy⟩ = −e
∫ p+

p−

dpy
2πℏ

1

m
⟨py +

e

c
Ay⟩

=− e

∫ p+

p−

dpy
2πℏ

〈
∂H

∂py

〉
= −e

∫ p+

p−

dpy
2πℏ

dE

dpy
= − e

h

∫ +

−
dE

(2.21)

The energy E contains the kinetic and the potential energy. The integral is equal to:

Iy = − e

h
(µ+ − µ−) (2.22)

Here µ± are the chemical potentials at the Fermi level at the edges. Their difference
is exactly proportional to the Hall voltage:

µ+ − µ− = −eVH (2.23)
Therefore, we get:

Iy =
e2

h
VH (2.24)

The Hall conductance of one fully occupied Landau level is:

σxy =
Iy
VH

=
e2

h
(2.25)

For a system with n fully occupied Landau levels (n ∈ N), the Hall conductance
equals:

σxy = n
e2

h
(2.26)

The Hall resistance is given by:

ρxy =
h

ne2
(2.27)

We define the filling factor ν as the number of Landau levels occupied by electrons.
For the integer quantum Hall effect, ν = n integer. In the fractional quantum Hall effect,
ν takes rational values (see section 2.3). In general, we write the Hall conductance and
the Hall resistance as follows:

σxy =ν
e2

h

ρxy =
h

νe2

(2.28)
To summarize, we have proved the quantization of the Hall conductance. One obtain

the same result by using the Laughlin’s argument or the Kubo formalism [40, 46]. To
explain the existence of the plateaus, we need to consider the effect of disorder.
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Figure 2.3: (a) Equally spaced Landau levels in disorder-free samples. (b) Broadened Landau levels are
centered at the extended states, while the localized states have energy lying in the gap between Landau
levels.

2.2.4 . Effect of disorder
In the previous subsections, we explained the quantization of the Hall conductance by

using the picture of Landau levels. Landau level quantization explains why the plateaus
appear at the observed values of the Hall conductance/resistance. However, this picture
is insufficient to explain why there are plateaus there.

Real samples are not perfectly clean but have impurities. Those impurities induce
disorder in the system, causing the potential landscape V (r), with potential “hills” or
“valleys”. In the semiclassical picture, one can imagine that the electrons follow closed
trajectories around each hill or valley. Those states are localized and do not contribute
to the electric current. However, states corresponding to V = 0 are not trapped around
the potential hills or valleys. They have energy equal to the Landau level energies and
contribute to the transport.

Consequently, the Landau levels broaden into bands. Those Landau bands are centered
at the quantized values of the Landau levels. The states at the center of the Landau
bands are extended states. The localized states have energy lying inside the energy gap.
Such a spectrum is illustrated by Fig.2.3. The energy gap disappears. However, because
the localized states do not contribute to the transport, we call the gap the “mobility gap”.

Now we fill the states up to the Fermi energy. At the beginning, electrons fill the
localized states trapped at the valleys. The picture resembles when one fills the valley with
water to form lakes. When one electron fills the energy level of the extended state, this
state is delocalized and contributes to the transport. In the “water pouring” picture, this
situation is like an ocean surrounding the islands (hills). This is the so-called percolation
transition. After that, the incoming electrons will fill the hills.

In a perfect system without disorder, additional electrons do contribute to the electric
current and plateaus do not appear. In systems containing weak disorder, electrons
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Figure 2.4: Spectrum of the Landau levels along the transverse direction. The Landau levels are bent at
the edge. Due to the presence of the Hall voltage VH , the Landau levels are tilted.

occupying localized states do not contribute to the transport. As a result, the Hall
conductance remains unchanged with increasing filling factor. This explains the formation
of the plateaus. We note that the quantum Hall effect requires weak disorder. Strong
disorder can mix the states across the gap, or even modify the eigenstates. In this case,
one no longer observes the quantum Hall effect.

2.2.5 . Edge states
Due to the confinement potential at the edges, the Landau levels are not homogenously

flat across the whole sample. They are bent at the edges (Fig.2.4). Consequently, the

edge states have non-zero group velocity vg =
1

ℏ
dE

dky
. Those electrons propagate along

the edges from one end to the other end of the sample and travel in opposite directions
along opposite edges. The edges do not have an energy gap like the bulk and behave
like a metal whereas the bulk is an insulator.

In this section, we discussed the physics of the integer quantum Hall effect. We
showed that the energy of the two-dimensional electrons under magnetic field is quantized
into discrete Landau levels. In systems with fully occupied Landau levels, the Hall
conductance is quantized. Weak disorders lead to the formation of the localized states,
and broaden the Landau levels, resulting in plateaus at integer filling factors. Although
the bulk of the integer quantum Hall system is insulating, its edges conduct electricity like
a metal. Electrons in opposite edges move along opposite directions. The next section is
a review of the fractional quantum Hall effect.

2.3 . The fractional quantum Hall effect

2.3.1 . The discovery of the fractional quantum Hall effect
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After discovering the integer quantum Hall effect, physicists searched for the electron
solid, i.e., the Wigner crystal [48]. They believed the electron liquid would condense into
a crystalline phase at a high magnetic field. They increased the magnetic field to place all
the electrons into the lowest Landau level. Their objective was to create a system where
the electron kinetic energy is quenched, which favors electron crystallization. Surprisingly,
they observed a plateau, which corresponds to a quantum Hall effect with filling factor
ν = 1/3. The fractional quantum Hall effect was discovered by Tsui, Stormer, and
Gossard in 1982, two years after the discovery of its integer version [2].

After the discovery by Tsui, Stormer, and Gossard, physicists observed various
fractional quantum Hall effects with odd denominators [49–55]. Fractional quantum
Hall states with even denominators have not been observed in the lowest Landau level.
However, the fraction 5/2 was observed in the second Landau level [53, 56]. The
fractional quantum Hall effect needs weak disorder, and requires very clean samples with
high mobility.

Immediately after the discovery of the fractional quantum Hall effect, physicists tried
to explain the mystery of this phenomenon. In 1983, Laughlin proposed a wavefunction
for the filling fraction 1/m (m odd) [11]. This wavefunction is nowadays named the
Laughlin wavefunction. He also predicted that the excitations of the quantum Hall liquid
- the quasielectrons and quasiholes - are fractionally charged. Another explanation of the
fractional quantum Hall effect is the hierarchy scenario, which can explain all observed
odd-denominator fractions [57, 58].

The most successful approach to explain the fractional quantum Hall effect is the
composite fermion theory by Jain [7, 8]. In this picture, the fractional quantum Hall effect
is approximately equivalent to the integer quantum Hall effect of composite fermions-the
bound state of one electron with an even number of magnetic flux quanta. The composite
fermion theory also succeeds in explaining why there is no incompressible state for filling
fraction 1/2. For the fraction 5/2, many non-abelian wavefunctions were proposed to
explain this incompressible state [59, 60].

The following subsections review the basic knowledge of the fractional quantum Hall
effect. We begin with the Hamiltonian of interacting electron systems. After that, we
move on to the Laughlin wavefunction. Next, we present the key points of the composite
fermion theory. Then, we discuss the fractional quantum Hall effect with spin, whose
results are used in this thesis to discuss the more general multicomponent quantum Hall
effects in monolayer and bilayer graphene. The content of this section is restricted to the
fractional quantum Hall effect in semiconductors as a preparation for the analysis of the
multicomponent quantum Hall effects in graphene and bilayer graphene.

2.3.2 . Hamiltonian of two-dimensional electron systems under magnetic field
To explore the fractional quantum Hall effect, we need to consider the electron-

electron Coulomb interaction. The Hamiltonian of a system containing Ne electrons
under a magnetic field B is:

H =
Ne∑
i=1

1

2m

(
pi +

e

c
A(ri)

)2
+
∑
i<j

e2

ε|ri − rj|
− gµBB

Ne∑
i=1

σi (2.29)
Here, m is the electron (effective) mass, µB = eℏ/2m = 9.27 × 10−24J/T is the

Bohr magneton. ε is the dielectric constant of the material. The g-factor of electron is
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dependent on the materials. σi is the electron spin, which can be either +1/2 or -1/2.
The first term in (2.29) is the familiar electron kinetic energy, which is quantized

into Landau levels as shown in subsection 2.2.2. For fractional quantum Hall effects in
the lowest Landau level, this contribution equals a constant for all electrons, and we say
the kinetic energy is quenched. The third term is the Zeeman energy, which splits the
energy of the spin-up and spin-down electrons. The second term is the electron-electron
interaction, which plays a major role in the physics of the fractional quantum Hall effect.

For filling factors 0 < ν < 1 and when the spin degree of freedom of electrons is
frozen, the kinetic energy is quenched, and the Zeeman energy becomes a constant. In
this case, we only have to consider the electron-electron interaction, and the Hamiltonian
is reduced to:

H = PLLL

∑
i<j

e2

ε|ri − rj|
PLLL (2.30)

Here, PLLL is the lowest Landau level projection operator. For filling factors ν > 1,
the completely occupied Landau levels are considered inert, and we only need to take
into account electrons in partially occupied Landau levels. In higher Landau levels, the
interaction term should be modified to be an effective interaction.

2.3.3 . Laughlin wavefunction
In 1983, Laughlin proposed the following wavefunction to explain the fractional

quantum Hall effects with filling factors ν = 1/m (m odd) [11]:

Ψ1/m =
∏
i<j

(zi − zj)
mexp

(
−1

4

∑
i

|zi|2
)

(2.31)

Here he adopted the symmetric gauge A =
B

2
(−y, x, 0). The two-dimensional

coordinate (x, y) of a particle is written in complex form z = x − iy. By using this
wavefunction, he predicted that the quasihole and quasielectron excitations are fractionally
charged, with charge ±e/m. Exact diagonalization calculations agreed with the Laughlin
wavefunction for ν = 1/3 and ν = 1/5 [61, 62]. Nowadays, we call the fractional
quantum Hall effect states with filling factor ν = 1/m the Laughlin states.

2.3.4 . Composite fermion theory
Jain made a brilliant idea linking the two versions of the quantum Hall effect: he

introduced a new type of quasiparticle-the composite fermion [7, 8]. The composite
fermion is the bound state between an electron and an even number of magnetic flux
quanta. We denote a composite fermion formed by binding 2p magnetic flux quanta to
one electron as 2pCF. For this reason, composite fermions do not feel the total magnetic
field B with Nϕ magnetic flux quanta. Instead, they are subjected to an effective magnetic
field B∗ and an effective number of magnetic flux quanta N∗

ϕ. They are related by the
relations:

Nϕ =N∗
ϕ + 2pNe

B =B∗ + 2pρϕ0

(2.32)
We remark that N∗

ϕ can be negative and the effective magnetic field B∗ can have
opposite direction to the original magnetic field B. The picture of strongly interacting
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electrons under strong magnetic field can be approximated as the picture of weakly
interacting composite fermions under the effective magnetic field. The fractional quantum
Hall effect with Ne electrons and Nϕ magnetic flux quanta is approximatively equivalent
to the integer quantum Hall effect with Ne

2pCF occupying n Landau levels. The filling
factor ν = Ne/Nϕ equals:

ν =
n

2pn± 1
(2.33)

provided that Ne = n|N∗
ϕ|. The sign “plus” is taken for positive effective flux, while the

sign “minus” is taken for negative effective flux. To distinguish the composite fermion
Landau levels from the electron Landau levels, people often call the former Λ-levels. The
many-electron wavefunction Ψ n

2pn±1
is related to the wavefunction Φ±n of Ne particles

occupying n Landau levels as follows:

Ψ n
2pn±1

= PLLLΦ±n

∏
j<k

(zj − zk)
2p (2.34)

Usually, Φ±n is a Slater determinant of single-particle wavefunctions. With n = 1
and the “plus” sign, the wavefunction Ψ 1

2p+1
for ν = 1/(2p+ 1) is exactly the Laughlin

wavefunction (2.31) with m = 2p+ 1. One can derive the Laughlin wavefunction from
the composite fermion theory.

For ν = Ne/Nϕ = 1/2, (2.32) implies that p = 1 and N∗
ϕ = 0. The fraction ν = 1/2

corresponds to a system of free 2CFs without effective magnetic field. There is no
quantum Hall effect for such a system. This state is called the composite fermion Fermi
sea. The composite fermion theory successfully explains why there are no plateaus for
filling fraction ν = 1/2.

2.3.5 . Quantum Hall effect with spin
In the Hamiltonian (2.29), there is a contribution from the Zeeman energy, which

is spin-dependent. Under a large magnetic field, the spin degree of freedom is frozen:
the spins of all electrons are polarized in the same direction. Usually, the Zeeman
energy is some multiple of tens times weaker than the cyclotron energy and the Coulomb
energy. For example, in GaAs, the g-factor is g ≈ −0.4 [8], the electron effective
mass is me ≈ 0.063m0 (m0 is the electron bare mass) [63], the dielectric constant is
εGaAs = 12.35ε0 [64]. The ratio between the Coulomb energy and the Zeeman energy is
about:

e2/(εl)

|g|µBB
≈ 305/

√
B[T] (2.35)

If the magnetic field is B =15T, the Coulomb energy is about 79 times larger than
the Zeeman energy. If the Zeeman energy is weak, electrons can reverse their spins to
gain more interaction energy and form a spin-unpolarized configuration, which is more
stable than the polarized configuration. Let N↑, and N↓ are the numbers of electrons
having spin-up or spin-down, respectively; their sum equals the total number of electrons:

Ne = N↑ +N↓ (2.36)
The total filling factor equals the sum of the filling factors of electrons having each

kind of spin:
ν = ν↑ + ν↓ (2.37)
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In the composite fermion picture, we can have a situation where electrons with spin-up
occupying n↑ Λ levels and electrons with spin-down occupying n↓ Λ levels. In general,
n↑ and n↓ can be different, but they should satisfy:

ν =
n↑ + n↓

2p(n↑ + n↓)± 1
(2.38)

For a determined value of ν and p, we can have more than one combination (n↑, n↓)
satisfying this relation. From N↑/↓ = ν↑/↓Nϕ = n↑/↓|N∗

ϕ|, we get ν↑/↓ = n↑/↓|N∗
ϕ|/Nϕ.

The first equality in (2.32) implies that:

|N∗
ϕ|

Nϕ

=
1

2p(n↑ + n↓)± 1
(2.39)

Therefore, the filling factor of each component equals:

ν↑/↓ =
n↑/↓

2p(n↑ + n↓)± 1
(2.40)

We particularly focus on the state of filling factor ν = 2/3. At this filling factor,
there is competition between the fully polarized and the singlet states. Both cases can be
viewed as 2CF under a negative effective magnetic field. In the former case, all electrons
have the same spin. They are bound to magnetic flux quanta and occupy two composite
fermion Λ levels. Under a finite Zeeman field, the spin is polarized along the direction of
the magnetic field B to minimize the Zeeman energy. The total spin is Sz

tot = +Ne/2.
In the limit of zero Zeeman field (that means the Zeeman effect is very weak), the total
Hamiltonian equals the Coulomb interaction and has the SU(2) symmetry. The ground
state is therefore a fully SU(2) degenerate spin multiplet. In the case of the singlet state,
all 2CF occupy the lowest Λ level. Half of the composite fermions have spin-up and
the other half have spin-down, so that the total spin of the system vanishes Sz

tot = 0.
Numerical calculations showed that in the limit of vanishing Zeeman field, the singlet
state is more stable than the fully polarized state. The former is the ground state, while
the latter is the excited state [65]. When the Zeeman energy becomes strong enough,
the fully polarized state is the ground state, and the singlet state becomes the excited
state. Transport measurements observed the transition between spin-unpolarized state
and spin-polarized state of filling factors ν = 8/5 and ν = 4/3 (corresponding to filling
factors ν = 2/5 and ν = 2/3 of holes) when increasing the total magnetic field BT while
keeping the normal component B⊥ unchanged [66].

The spinful electron system is the simplest example of multicomponent quantum
Hall effects. In some materials like graphene, the valley degree of freedom plays the role
of pseudospin, and the electrons occupy more than two components. Multicomponent
quantum Hall effects in monolayer and bilayer graphene are the subject of this thesis.
In the next chapter, we start the discussion of the quantum Hall effect in monolayer
graphene, and the spin and valley ordering in this material at charge-neutrality ν = 0.
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Chapter3 - Spin and valley ordering of monolayer
graphene at charge neutrality

3.1 . Introduction to the chapter

In the last chapter, we presented the fundamental knowledge of the quantum Hall
liquid. Now, we begin the first project of this thesis: Spin and valley ordering of fractional
quantum Hall states in monolayer graphene. The results of the project are published in
Ref. [67]. The content of this work is presented in three chapters: the present chapter 3,
chapter 4, and chapter 5.

Monolayer graphene was isolated in 2005 [29] and rapidly became an attractive
research topic for both theory and experiments. The quantum Hall effect in graphene
was detected almost immediately after the isolation of the material [18, 19]. Unlike many
semiconductors, the graphene Landau levels are fourfold degenerate due to the valley
degree of freedom, which is twofold degenerate and behaves as a pseudospin.

The multicomponent quantum Hall effect in graphene has become an intensive
research topic in the last two decades. The appearance of intermediate plateaus at
filling factors ν = 0,±1 [68, 69] is explained in the framework of the quantum Hall
ferromagnetism [70]. Those plateaus result from the electron-electron interaction, which
breaks the SU(4) symmetry of the Coulomb interaction and gives rise to a variety of spin
and valley orders [31, 71, 72]. During the last decade, experiments on this topic have
made much progress [73, 74], especially the visualization of those symmetry-breaking
orders by scanning tunneling microscopy [75–77]. However, most research focuses on the
filling factor ν = 0 at the Charge neutrality point (CNP).

In this work, we study the spin and valley ordering of the quantum Hall states of filling
factors ν = n/3(n = 1, 2, 4, 5) in monolayer graphene. In the present chapter, we begin
by recalling the graphene band structure and defining the valley degree of freedom. Then,
we present the relativistic Landau level quantization in this material. We will focus on
the physics of the central Landau level, which has zero energy and is half-filled at charge
neutrality. We show the Hamiltonian of the two-dimensional electron gas projected to
the central Landau level and discuss the symmetry-breaking due to short-range valley
interaction. We present a variational method to calculate the phase diagram at charge
neutrality. After that, we will describe in detail the four symmetry-breaking phases of
the case ν = 0. Although this chapter does not contain any new results, it is crucial
to discuss the case ν = 0 in detail to prepare the discussions of the cases of fractional
quantum Hall states in chapters 4 and 5.

3.2 . Graphene

3.2.1 . Crystal structure
The two-dimensional crystalline structure of graphene is shown in Fig.3.1. Graphene

has a honeycomb lattice of carbon atoms with two sublattices, A (red) and B (blue). A
primitive cell of graphene contains two atoms: one belongs to the A-sublattice and the
other belongs to the B-sublattice. Each sublattice is a hexagonal lattice with primitive
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Figure 3.1: Crystal structure of monolayer graphene. The red atoms belong to the A-sublattice, and the
blue atoms belong to the B-sublattice. The vectors a1 and a2 are primitive vectors of the two-dimensional
lattice. The vectors δ1, δ2 and δ3 represent the relative positions of B-atoms with respect to A-atoms,
that means the relative positions between nearest-neighbors.

vectors:
a1 =(a, 0)

a2 =

(
a

2
,

√
3a

2

) (3.1)

The lattice parameter a = 2.46Å. The distance between neighboring carbon atoms is
1.42Å. The relative position from each atom A to the three nearest atoms B is given by
the vectors:

δ1 =

(
0,

a√
3

)
δ2 =

(
a

2
,− a

2
√
3

)
δ3 =

(
−a
2
,− a

2
√
3

) (3.2)

The first Brillouin zone of the graphene honeycomb lattice in the reciprocal space
is a hexagon (see Fig.3.2). Its six corners are classified into two classes, such that the
points belonging to the same class are related to each other by a rotation of angle 2π/3.

To sum up, there are two inequivalent points K
(
4π

3a
, 0

)
and K’

(
−4π

3a
, 0

)
. They are
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Figure 3.2: The first Brillouin zone of graphene is a hexagon. The vectors b1 and b2 are primitive
vectors of the graphene reciprocal lattice. The points K and K′ are the Dirac points.

the so-called Dirac points. The primitive vectors of the graphene reciprocal lattice are:

b1 =

(
2π

a
,− 2π√

3a

)
b2 =

(
0,

4π√
3a

) (3.3)

3.2.2 . Electronic structure of graphene
In this subsection, we present the band structure of graphene by doing the tight-

binding model to the nearest-neighbors. One can find pedagogical reviews of the
graphene electronic structure by Castro Neto, Goerbig [28, 30] or in the paper by Jung
and MacDonald [78].

Each carbon atom has four outermost electrons. They occupy the 2s orbital and the
2p orbitals. The three orbitals 2s, 2px, 2py hybridize, become three sp2 orbitals and form
the σ bonds between the carbon atoms. The remaining 2pz orbital is unhybridized and
perpendicular to the graphene plane. The remaining electron in this orbital participates
in the formation of the π bond, resulting in a conjugated π bond system delocalized
over the whole graphene sample. Therefore, only the π electrons are responsible for the
electronic properties of graphene at low energy. The other electrons occupy energy levels
far from the Fermi level and are not involved in the low-energy processes. In a π bond
approximation, we only consider those π electrons, and each atom has one available
electronic orbital. Because each primitive cell contains two carbon atoms (A-site and
B-site), we consider that there are two orbitals in one unit cell.

Let RiA/B be the position of the A(B)-atom in the primitive cell i. The Bloch
wavefunction of wavevector k is a linear combination of the Maximally Localized Wannier
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Functions (MLWF) [78]:

Φk,A/B(r) =
1√
N

N∑
i=1

eik·RiA/BϕA/B(r−RiA/B) (3.4)
We write this wavefunction in the bra-ket notation:

|Φk,A/B⟩ =
1√
N

N∑
i=1

eik·RiA/B |ϕA/B(RiA/B)⟩ (3.5)
The MLWFs are orthonormal, implying that |Φk,A/B⟩ form an orthonormal basis. The

wavefunction of wavevector k is expressed in the basis of the wavefunctions in the A-site
and B-site as:

|Ψk⟩ = ak|ΦkA⟩+ bk|ΦkB⟩ (3.6)
The Schrödinger equation reads:

H(k)|Ψk⟩ = Ek|Ψk⟩ (3.7)
Because the wavefunctions |ΦkA/B⟩ form an orthonormal set, we express the Schrödinger

equation in the matrix form as:(
HAA HAB

HBA HBB

)(
ak
bk

)
= Ek

(
ak
bk

)
(3.8)

The matrix elements HAA and HBB are just the energy of the electron at the sites A
and B: HAA = εA and HBB = εB. The matrix element HAB is given by:

HAB = ⟨ΦkA|H(k)|ΦkB⟩ = −γ0f(k) (3.9)
Here γ0 is the hopping integral between nearest neighbors (that means i and j are

nearest-neighbor primitive cells):

γ0 = −⟨ϕA(RiA)|H|ϕB(RjB)⟩ (3.10)
The value of γ0 is γ0 ≈ 2.992 eV [78]. f(k) is the structure factor, given by:

f(k) =
3∑

j=1

eik·δj = eikya/
√
3 + 2e−ikya/2

√
3 cos

kxa

2
(3.11)

The Hamiltonian in the matrix form is:

H(k) =

(
ϵA −γ0f(k)

−γ0f(k)∗ ϵB

)
(3.12)

In normal conditions, the energies of electron at site-A and site-B are equal. Therefore,
we can set ϵA = ϵB = 0. The energy eigenvalues are given by:

E±(k) = ±γ0|f(k)| = ±γ0

√
1 + 4 cos

kxa

2
cos

kya
√
3

2
+ 4 cos2

kxa

2
(3.13)
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(a) (b)

Figure 3.3: (a) The graphene band structure. Here we set γ0 =2.992 eV. The conduction band and
valence band touch at the points K and K’. (b) A zoom in the vicinity in the K-point, showing that the
band structure is a cone with linear dispersion (Dirac cone).

Fig.3.3a shows the band structure of graphene. The valence band and the conduction
band touch each other at the Dirac points K and K’. We denote the Dirac points Kξ

with ξ = + for K and ξ = − for K’. Hence Kξ =

(
ξ
4π

3a
, 0

)
.

The physics of graphene in the vicinity of the Dirac points attracts a particular
interest. Here, the band structure has a linear cone-like shape so that we call these
bands the Dirac cones (see Fig. 3.3b). Consequently, electrons have zero effective
mass and behave like relativistic massless particles. Indeed, we introduce the momentum
p = ℏ(k−Kξ) in the vicinity of the Dirac points, so that k = Kξ + q where q = p/ℏ.
In the limit qa≪ 1, we approximate the structure factor to first order in |q| as follows:

f(k) = −
√
3

2
a(ξqx − iqy) + o(|q|) (3.14)

Hence, the Hamiltonian has the Dirac form up to first order in |q|:

Hξ(q) = ξℏvF (σxqx + ξσyqy) (3.15)
with vF =

√
3aγ0/(2ℏ) ≈ 9.68× 105m/s the Fermi velocity . The matrices σx and σy

are the Pauli matrices:

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
(3.16)

The energy eigenvalues are linear functions of |q|:

E±(q) = ±ℏvF |q| (3.17)
It proves that in the vicinity of the Dirac points, electrons behave as massless

relativistic fermions. We denote λ the band index: λ = + for the conduction band and
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λ = − for the valence band. For a spinful system, because each of the two atoms in
the primitive cell contributes one electron, the two electrons fill the valence band up to
the Fermi energy EF = 0. At charge neutrality, the Fermi level lies at the intersection
between the two bands. The Fermi surface reduces to the set of Dirac points. Graphene
is a semimetal.

3.2.3 . Valley pseudospin
In the last subsection, we proved that the graphene Hamiltonian has two different

forms in the vicinity of the points K+ and K−. At those points, the minimum of the
conduction band touches the maximum of the valence band. We call those two points the
two valleys. Low-energy excitations (electrons and holes) have energy and momentum in
the vicinity of the two Dirac points. We introduce the valley pseudospin. The valley
pseudospin behaves like the intrinsic spin. It takes the value ξ = +1 in the vicinity of K
and the value ξ = −1 in the vicinity of K’. For this reason, we also use the Pauli matrices
to describe the valley pseudospin. To distinguish the valley Pauli matrices from the spin
Pauli matrices, we denote them τ instead of σ:

τx =

(
0 1
1 0

)
, τy =

(
0 −i
i 0

)
, τz =

(
1 0
0 −1

)
(3.18)

We define the angle φq(0 ≤ φq < 2π) such that qx + iqy = |q|eiφq . The eigenstates
for the eigenvalues Eλ(q) = λℏvF |q| (λ = +1 for conduction band and λ = −1 for
valence band) are given by the following spinors in the basis of the sublattice wavefunctions
A and B (ψKξA, ψKξB)

T :

- In the valley K (ξ = +1):

ψK+ =
1√
2

(
1
eiφq

)
, ψK− =

1√
2

(
1

−eiφq

)
(3.19)

- In the valley K’ (ξ = −1):

ψK′+ =
1√
2

(
1

−e−iφq

)
, ψK′− =

1√
2

(
1

e−iφq

)
(3.20)

Instead of writing the spinor in the valley K’ in the form (ψK′A, ψK′B)
T , we write

it in the form (ψK′B, ψK′A)
T . In this representation, the matrix σx remains unchanged

while we must replace the matrix σy by its opposite −σy. In the basis (ψK′B, ψK′A)
T ,

the Dirac Hamiltonian of the valley K’ has the same form as the one of the valley K:

Hξ=−1(q) = −ℏvF (σxqx + σyqy) (3.21)
We introduce the four-spinor representation:

ψq =
(
ψKA ψKB ψK′B ψK′A

)T (3.22)
In this representation, we write the effective Hamiltonian as follows:

H(q) = ℏvF τ z ⊗ σ · q (3.23)
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with

τ z ⊗ σ =

(
σ 0
0 −σ

)
(3.24)

and σ = (σx, σy).
Overall, electrons in graphene have a new degree of freedom - the valley, which plays

the role of a pseudospin. In general, the valley degree of freedom not only exists in
graphene, but also in semiconductors (Si [79, 80], AlAs [81, 82]), bismuth [83], and
transition-metal dichalcogenides [84, 85]. The idea of using the valley degree of freedom
to process, transmit and store information paves the way to a new information technology -
the valleytronics [86]. In the next subsection, we will discuss the Landau level quantization
in graphene.

3.3 . Quantum Hall effect in graphene

3.3.1 . Relativistic Landau levels
In the previous subsection, we derived the low-energy effective Hamiltonian of graphene

in the valley ξ as:
Hξ = ξℏvF (σxqx + σyqy) (3.25)

Here the Hamiltonian is written in the basis (ψKA, ψKB) in the valley K while it is
written in the basis (ψK′B, ψK′A) in the valley K’. Under magnetic field, we modify the
momentum by using the Peierls substitution:

q → Π = q+
e

c
A(r) (3.26)

The Hamiltonian is written as follows:

Hξ = ξℏvF (σxΠx + σyΠy) (3.27)
The operators Πx and Πy satisfy the algebra:

[Πx,Πy] = −iℏ
2

l2
(3.28)

This commutation relation allows us to define the ladder operators:

a =
l√
2
(Πx − iΠy)

a† =
l√
2
(Πx + iΠy)

(3.29)

These ladder operators satisfy the commutation relation:

[a, a†] = 1 (3.30)
The Hamiltonian is written in terms of these ladder operators as follows:

Hξ = ξℏ
√
2vF
l

(
0 a
a† 0

)
(3.31)
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Because the electron effective mass equals zero, we cannot define the cyclotron
frequency as ωc = eB/mc as in the case of the quantum Hall effect in conventional
semiconductors. Instead, in this case, the cyclotron frequency is defined as:

ωc =

√
2vF
l

(3.32)
so that the Hamiltonian becomes:

Hξ = ξℏωc

(
0 a
a† 0

)
(3.33)

We search for the energy eigenvalues and the corresponding eigenstates of this
Hamiltonian. We write the eigenstates under the form of the spinor ψ = (u, v)T . The
Schrödinger equation reads:

Hξψ = Eψ (3.34)
This implies that:

ξℏωcav =Eu

ξℏωca
†u =Ev

(3.35)
Consequently, we obtain the equation:

a†av =

(
E

ℏωc

)2

v (3.36)
This equation is solved when v takes the form of the single-harmonic oscillator

wavefunction v = ϕN(N ∈ N) and the corresponding energy eigenvalues are:

E±,N = ±ℏωc

√
N = ±ℏvF

l

√
2N (3.37)

Therefore, the energy spectrum is not the same as the one in the case of the quantum
Hall effect in semiconductors. Instead of being a linear function of the magnetic field B,
the energy of the Landau levels is proportional to B1/2, as shown in Fig. 3.4. For each
value of N(N ≥ 1) there are two Landau levels: one with positive energy (conduction
band) and one with negative energy (valence band). Especially, there is only one Landau
level with index N = 0. This Landau level has energy E0 = 0 and is usually called the
central Landau level or the zero-energy Landau level (ZLL) instead of the Lowest
Landau level (LLL).

Electrons in graphene have two twofold degrees of freedom: the (intrinsic) spin and
the valley pseudospin. Under weak Zeeman effect, each Landau level is approximately
fourfold degenerate and is divided into four sublevels (components). The electrons
belonging to each sublevel have the same state in the tensor product spin-valley Hilbert
space. With its fourfold degenerate Landau levels, the quantum Hall effect in graphene
is a more complicated example of multicomponent quantum Hall effects, compared to
the case of the quantum Hall effect with spin (see subsection 2.3.5).

At charge neutrality, almost all Landau levels (N ≥ 1) are completely filled by either
electrons or holes, except the central Landau level (N = 0), which is half-filled. This
is the origin of the unusual half-integer Landau level spectrum of graphene, as we will
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Figure 3.4: Relativistic Landau level spectrum.

discuss in subsection 3.3.2. When the degeneracy of the components (sublevels) is broken,
the valley can be a superposition of the valleys K and K’, and the spin can be canted
away from the direction of the magnetic field B. We will discuss these situations in
section 3.7.

For the Landau levels N ≥ 1, valley ξ, band index λ (λ = + for conduction band
and λ = − for valence band) the eigenstate is given by the spinor:

ψλ,ξ,N≥1 =
1√
2

(
ϕN−1

λξϕN

)
(3.38)

In the central Landau level (ZLL), the eigenstate is given by the following spinor (for
both valleys):

ψ0 =

(
0
ϕ0

)
(3.39)

Consequently, the central Landau level wavefunction is localized in the B-sublattice
for valley K and is localized in the A-sublattice for valley K’. In higher Landau levels,
the eigenstate wavefunction is a linear combination of harmonic oscillator wavefunctions
localized in different sublattices.

3.3.2 . Experimental observations
In 2004, Novoselov, Geim et al. isolated few layer graphene by using mechanical

exfoliation [87]. In one of the few-layer graphene samples, they observed a plateau-like
feature in the graph of the transverse resistivity ρxy as a function of the magnetic field B,
but it was not fully developed. In 2005, they successfully isolated monolayer graphene by
using mechanical cleavage [29]. This is the first example of two-dimensional materials.

In 2005, the groups of Novoselov-Geim at the University of Manchester [18] and
Philip Kim at Columbia University [19] finally observed the integer quantum Hall effect in
graphene [18, 19]. The experiments confirmed the fourfold degeneracy of graphene Landau
levels, which is due to the doubly degenerate spin and doubly degenerate valley. Especially,
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Figure 3.5: Integer quantum Hall effect in graphene (figure taken from Ref. [18]). Reproduced with
permission from Springer Nature.

the plateaus appear for transverse conductivity σxy = (4e2/h)(N + 1/2)(N ∈ Z) instead
of at the expected values σxy = (4e2/h)N like in the case of conventional semiconductors.

This half-integer quantum Hall effect is a consequence of the relativistic Landau
level quantization. As shown in Fig. 3.6, each Landau level, except the central Landau
level (N = 0), has two versions: one for electrons (λ = +) and one for holes (λ = −).
Consequently, at charge neutrality graphene, the Fermi level is not located inside the
energy gap between two adjacent Landau levels. By contrast, it is inside the central
Landau level (N = 0) so that the central Landau level is half-filled. Therefore, the N = 0
Landau level is completely empty at filling factor ν = −2 and is completely filled at
filling factor ν = 2. The integer quantum Hall effect in graphene occurs at filling factors
ν = ±(4N + 2)(N ∈ N). One can find detailed proofs of this unusual Hall conductivity
in Refs. [88, 89].

The plateaus corresponding to filling factors ν = ±1 were discovered in 2006 and
2007 [68, 69]. The corresponding samples were graphene on SiO2/Si substrates. Those
discoveries show that the central Landau level splits into four sublevels as the Fermi
level sweeps this Landau level. Plateaus at filling factors ν = ±4 also developed in the
samples of Zhang et al. [68]. These integer quantum Hall effects were suggested to
result from the electron-electron interaction, which lifts the spin and valley degeneracy
[90]. The quantum Hall plateaus were also observed at room temperature with filling
factors ν = ±2 [91]. This discovery promises potential applications of the quantum Hall
effect in daily life.

It took longer time to observe the fractional quantum Hall effect in graphene after the
discovery of its integer version, compared to the time separating the two discoveries of
the quantum Hall effects in conventional semiconductors. The fractions ν = ±1/3 were
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Figure 3.6: Graphene Landau levels. Here we represent the Landau levels N = 0,±1. They are equally
spaced by the energy ℏωc = ℏvF

√
2/l. Each Landau level is fourfold degenerate. Their energy levels are

split under the Zeeman effect and the substrate-induced sublattice splitting energy. At charge neutrality
(EF = 0), the central Landau level (N = 0) is half-filled (ν = 0). The other Landau levels are either
completely filled or completely empty.

observed in 2009 in suspended graphene [20, 21]. Later, an experiment on suspended
graphene also reported the fraction ν = 1/3 together with the broken symmetry integer
quantum Hall states [92]. Other fractions with denominators 5, 7 and 9 were also found
in suspended graphene by doing measurement with a single-electron transistor (SET) [93,
94].

The use of hexagonal boron nitride (hBN) substrate permits to fabricate clean and
high-quality devices [95]. The lattice parameters of hBN are close to the one of graphene.
hBN also has atomically smooth surface, which is free of dangling bonds. This reduces
the surface roughness, intrinsic doping, chemical reactivity, while increases the carrier
mobility. It allows to observe a variety of fractional quantum Hall states not only in the
central Landau level, but also in higher Landau levels [96]. Even denominator fractional
quantum Hall states were observed at filling fractions ν = ±1/2 in the central Landau
level [97], and in higher Landau levels [98].

3.4 . Hamiltonian of two-dimensional electrons in graphene Central Landau
Level

We focus on the central Landau level (N = 0) and neglect the mixing between
different Landau levels. Because the kinetic energy of electrons in this Landau level
is quenched, the physics of this Landau level is governed by the interaction between
electrons and between electrons with the external fields. The total Hamiltonian is given
by:

H = HC +HV +HZ +HAB (3.40)
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Coulomb electron-electron interaction
HC is the Coulomb electron-electron interaction. Because the wavefunction in the

central Landau level is the Lowest Landau level wavefunction in both valleys, the expression
of HC includes the Lowest Landau Level projection:

HC = PLLL

∑
i<j

e2

ε|ri − rj|
PLLL (3.41)

Here ε is the graphene dielectric constant, which is of the order of 5 times the vacuum
permittivity ε0 = 8.86× 10−12 F/m [71]. The Coulomb interaction is approximately spin
and valley (sublattice) independent. Therefore, it has the SU(4) symmetry: it is invariant
under any rotation inside the spin-valley Hilbert space. The typical scale of the Coulomb
energy for a magnetic field B of 1T is e2/εl ≈ 7meV [99].

We consider the single-electron wavefunction, which is a product state between an
orbital (spatial) wavefunction with quantum number m and a spinor |α⟩:

ψmα(r) = ϕm(r)|α⟩ (3.42)
The orbital part ϕm(r) is a wavefunction in the Lowest Landau Level. The quantum

number m can be either the linear momentum (torus geometry) or angular momentum
(spherical geometry). The vector |α⟩ is a ket vector in the spin-valley Hilbert space. In
the second quantization language, we write this wavefunction under the form:

|ψmα⟩ = c†mα|0⟩ (3.43)
Let M be the number of orbital wavefunctions. M = Nϕ in the torus geometry and

M = 2|Q|+1 = Nϕ+1 in the spherical geometry. The set of 4M wavefunctions ψmα(r)
forms a basis for the central Landau level wavefunctions. In this basis, the expression of
the Coulomb interaction is:

HC =
1

2

∑
p1p2p3p4

χχ′

Vp1p2p3p4c
†
p1χ
c†p2χ′cp3χ′cp4χ (3.44)

In this expression, χ and χ′ run over the four orthonormal spinors describing the four
components. The matrix elements Vp1p2p3p4 is evaluated as follows:

Vp1p2p3p4 =

∫
d2rd2r′ϕ∗

p1
(r)ϕ∗

p2
(r′)

e2

ε|r− r′|ϕp3(r
′)ϕp4(r) (3.45)

The SU(4) symmetry mixing spin and valley is, however, broken by the terms HV ,
HZ and HAB. These contributions are called anisotropies.

Zeeman energy
HZ is the Hamiltonian of the Zeeman energy. It splits the energies of spin-up and

spin-down electrons and breaks the SU(2)s symmetry of the spin Hilbert space. Its
formula is as follows:

HZ = −gµBB

Ne∑
i=1

Sz
i (3.46)
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(a) (b)

Figure 3.7: (a) Bloch sphere for spin: the North/South poles represent spin-up/spin-down. (b) Bloch
sphere for valley: the North/South poles represent valley K/valley K’.

as shown in (2.29). B is the total magnetic field, the z-direction of the spin is along the
direction of the magnetic field B, and Sz

i takes the values ±1/2. In graphene, the Landé
g-factor g = 2. The typical scale of the Zeeman energy in graphene is around 0.115meV
under a magnetic field B = 1T [99], which is around 60 times smaller than the Coulomb
energy. We represent the spin of the state in the spin Bloch sphere by using the unit
vector s (Fig. 3.7a). The vector s = ẑ corresponds to spin-up ↑, and the vector s = −ẑ
corresponds to spin-down ↓.

The expression of the Zeeman energy in the second quantization language is:

HZ = −h
∑
χχ′

∑
m

⟨χ|σz|χ′⟩c†mχcmχ′ (3.47)

The matrices σx,σy,σz are the Pauli matrices working in the spin Hilbert space, and
h = gµBB/2.

Substrate-induced sublattice splitting
HAB is the Hamiltonian of the substrate-induced sublattice splitting energy. It splits

the energies between the electrons residing in sublattices A and B. Because it plays a
similar role as the Zeeman energy for the spin, this contribution is also called valley
Zeeman field. In the central Landau level, electrons located in opposite valleys in the
momentum space are localized in opposite sublattices. Therefore, HAB separates the
energy of the two valleys and breaks the SU(2)v symmetry of the valley Hilbert space.
Its formula is:

HAB = ∆AB

Ne∑
i=1

T z
i (3.48)

In the case of the hBN substrate, the value of ∆AB is typically of the order 4meV for
B =1T and is field-independent [97, 99]. T z

i takes values T z
i = +1/2 for valley K and

T z
i = −1/2 for valley K’. Similarly to all twofold degenerate degrees of freedom like the

spin, the valley has its Bloch sphere (Fig. 3.7b). The sublattice splitting energy is strong
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compared to the Zeeman field but is still weak compared to the Coulomb energy. We
remark that the tz-direction of the valley is not identical to the sz-direction of spin and is
neither the spatial z-direction perpendicular to the two-dimensional electron system. In
the valley Bloch sphere, the North pole describes valley K, and the South pole represents
valley K’. All states lying on the surface of the Bloch sphere are superpositions of valleys
K and K’. In particular, the states lying on the equator have an equal probability of being
in valley K as in valley K’. We represent the valley of the state by using the unit vector
t in the valley Bloch sphere. The symbol t⊥ illustrates the valleys pointing along the
equator. For valleys K/K’, we still write K/K’ instead of t = ±ẑ.

In the second quantization language, the expression of the substrate-induced sublattice
splitting energy is:

HAB = ∆AB

∑
χχ′

∑
m

⟨χ|τ z|χ′⟩c†mχcmχ′ (3.49)
The matrix τx, τ y, τ z are the Pauli matrices working in the valley Hilbert space. Here

we merge the 1/2 factor of T z into ∆AB for convenience.

Short-range valley-dependent interaction
The last contribution HV is the short-range valley-dependent interaction. HV is a

two-body interaction similar to HC . Its formula was proposed in Refs. [71, 100]:

HV =
∑
i<j

[g⊥(τ
x
i τ

x
j + τ yi τ

y
j ) + gzτ

z
i τ

z
j ]δ

(2)(ri − rj) (3.50)

where τai (a = x, y, z) are the Pauli matrices operating in the valley Hilbert space. The
delta Dirac means that HV is a short-range point-contact interaction. Actually, physicists
have yet to be able to control the coupling constants g⊥ and gz in the experiments. We
consider the case where the anisotropy energy is weak compared to the Coulomb energy
and does not destroy the Coulomb correlations of a given trial wavefunction. It separates
the energies of the many-body quantum states having different total spin quantum number
Sz,total and total valley quantum number Tz,total. Depending on the values of g⊥ and gz,
the ground state has different quantum numbers Sz,total, Stotal, Tz,total, Ttotal. Therefore,
we can establish a phase diagram in the (g⊥, gz)-plane (Fig. 3.8). We parameterize g⊥
and gz with a parameter θ(0 ≤ θ < 2π):

g⊥ =g cos θ

gz =g sin θ
(3.51)

In other words, HV breaks the SU(4) symmetry of the Coulomb interaction HC . At
a point (g⊥, gz) ̸= (0, 0), the SU(4) symmetry is reduced down to SU(2)s × U(1)v. The
valley quantum number Tz is conserved, whereas the Hamiltonian HV is spin-rotationnally
invariant. However, for particular values of (g⊥, gz), the Hamiltonian HV still has the
following higher symmetries [32]:

1. On the line g⊥ = 0, HV has the symmetry SU(2)Ks × SU(2)K′
s × U(1)v. The

system is not only invariant under global spin rotations, but it is invariant under
separate spin rotations in different valleys. The generators of this symmetry group
are: Sa = 1

2

∑
i σ

a
i , N

a = 1
2

∑
i τ

z
i σ

a
i (a = x, y, z) and T z = 1

2

∑
i τ

z
i .
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2. On the line g⊥ = gz, HV has the symmetry SU(2)s × SU(2)v. The conservation
of the valley Tz is replaced by a full rotational symmetry in the valley space. The
generators of this symmetry group are: Sa and T a = 1

2

∑
i τ

a
i .

3. On the line g⊥ = −gz, HV has the symmetry SO(5). The generators of this
symmetry group are: Sa, T z, Πx

a = 1
2

∑
i τ

x
i σ

a
i , Πy

a = 1
2

∑
i τ

y
i σ

a
i . The five

remaining SU(4) generators form a five-dimensional order parameter (T x,y, Nx,y,z)
which characterizes the phases.

The expression of the short-range valley-dependent interaction energy is:

HV =
1

2

∑
µµ′ν′ν

p1p2p3p4

Aµµ′ν′ν
p1p2p3p4

c†p1µc
†
p2µ′cp3ν′cp4ν (3.52)

In this expression, the value of Aµµ′ν′ν
p1p2p3p4

is expressed as follows:

Aµµ′ν′ν
p1p2p3p4

=

∫
d2rid

2rjψ
†
p1µ

(ri)ψ
†
p2µ′(rj)[g⊥(τ

x
i τ

x
j + τxi τ

y
j ) + gzτ

z
i τ

z
j ]×

× δ(2)(ri − rj)ψp3ν′(rj)ψp4ν(ri)

=[g⊥(τ
x
µντ

x
µ′ν′ + τ yµντ

y
µ′ν′) + gzτ

z
µντ

z
µ′ν′ ]Dp1p2p3p4

(3.53)

The value Dp1p2p3p4 is the integral:

Dp1p2p3p4 =

∫
d2rϕ∗

p1
(r)ϕ∗

p2
(r)ϕp3(r)ϕp4(r) (3.54)

We can write the expression of HV in a more elegant form by defining the field
operator:

ψ̂µ(r) =
∑
p

ϕp(r)cpµ

ψ̂†
µ(r) =

∑
p

ϕ∗
p(r)c

†
pµ

(3.55)

By introducing gx = gy = g⊥, we have:

HV =
1

2

∑
µµ′ν′ν

p1p2p3p4

( ∑
a=x,y,z

gaτ
a
µντ

a
µ′ν′

)
Dp1p2p3p4c

†
p1µ
c†p2µ′cp3ν′cp4ν

=
1

2

∑
µµ′ν′ν

∫
d2rid

2rjψ̂
†
µ(ri)ψ̂

†
µ′(rj)

[∑
a

gaτ
a
i τ

a
j

]
δ(2)(ri − rj)ψ̂ν′(rj)ψ̂ν(ri)

=
1

2

∑
µµ′ν′ν

[∑
a

gaτ
a
µντ

a
µ′ν′

]∫
d2rψ̂†

µ(r)ψ̂
†
µ′(r)ψ̂ν′(r)ψ̂ν(r)

(3.56)
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Figure 3.8: The (g⊥, gz) plane of coupling constants. The high symmetry lines g⊥ = 0, g⊥ = gz and
g⊥ = −gz are green.

3.5 . Quantum Hall ferromagnetism

3.5.1 . The one-component state
We begin by considering the case of one Landau level with spinful electrons and neglect

all Landau level mixing. The spinor |α⟩ in the single-electron wavefunction (3.42) can

be either spin-up | ↑⟩ or spin-down | ↓⟩. The Coulomb interaction HC =
∑
i<j

e2

ε|ri − rj|
(projected to this Landau level) has the SU(2) symmetry: it is invariant under any spin
rotation. This SU(2) symmetry doubles the degeneracy of the Landau level.

In the state with filling factor ν = 1, this Landau level is half filled. Similar to a
ferromagnet, the ground state wavefunction should have an antisymmetric orbital part
with a symmetric spin part in order to minimize the Coulomb energy of the many-electron
system. The situation is similar to the one in a ferromagnet so we call this situation
quantum Hall ferromagnetism. This ferromagnetic multiplet maximizes the total
spin Sz and has the wavefunction with a Slater determinant orbital part:

|Ψν=1⟩ =
∏
i<j

(zi − zj)|++ · · ·+⟩ (3.57)

In the second quantization language, its wavefunction is given by:

|Ψν=1⟩ = c†1αc
†
2α · · · c†Nϕα

|0⟩ (3.58)
with some spin state |α⟩.
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The wavefunction |Ψν=1⟩ is an exact eigenstate of the Coulomb interaction (with no
Landau level mixing). We prove this statement by directly applying HC into |Ψν=1⟩:

HC |Ψν=1⟩ = E1|Ψν=1⟩ =
∑
i<j

(Vijji − Vijij)|Ψν=1⟩ (3.59)

The previous equality shows that |Ψν=1⟩ is an exact eigenstate of HC . The eigenvalue
energy has two contributions corresponding to the direct and exchange energies. The direct
energy is cancelled by the electron-background and background-background interaction
energies (in the thermodynamic limit). Hence, the energy eigenvalue of the state |Ψν=1⟩
has only one contribution from the exchange energy and equals1:

E1 = −
√
π

8

e2

εl
(3.60)

This reasoning can be generalized to the case of a SU(N) quantum Hall ferromagnet. In
this case, |α⟩ is a N -component vector. The quantum Hall effect in graphene is therefore
a kind of SU(4) quantum Hall ferromagnetism [70]. Quantum Hall ferromagnetism
explains the existence of the quantum Hall states in graphene at filling factors ν = 0,±1.

3.5.2 . The two-component state
We move on to the two-component state ν = 0 in the graphene central Landau level:

|Ψν=0⟩ = c†1αc
†
2α · · · c†Nϕα

c†1βc
†
2β · · · c†Nϕβ

|0⟩ (3.61)
where |α⟩ and |β⟩ are two vectors in the four-dimensional spin-valley Hilbert space. We
neglect all Landau level mixing. In the case of the SU(4) quantum Hall ferromagnetism in
graphene, the |Ψν=0⟩ state is an eigenstate of the SU(4)-symmetric Coulomb Hamiltonian
HC :

HC |Ψν=0⟩ =
[
2
∑
i<j

(Vijji − Vijij) +
∑
ij

Vijji

]
|Ψν=0⟩ (3.62)

In the cases of filling factors ν = ±1, the spin and the valley can be simultaneously
polarized, for example, if all the electrons (holes) have spin-up and occupy the valley K.
By contrast, for the two-component state |Ψν=0⟩, if the two components |α⟩ and |β⟩
have the same spin, they should have different valleys, due to the exclusion principle.
Similarly, if |α⟩ and |β⟩ have the same valley, they should have different spins. The spin
and the valley cannot be simultaneously polarized.

In the presence of anisotropies HV + HZ + HAB, anisotropies break the SU(4)
symmetry of the Coulomb interaction HC . The two-component state |Ψν=0⟩ is no
longer an exact eigenstate of the total Hamiltonian H. The total energy depends on
the components |α⟩ and |β⟩. The ground state is the one that minimizes the total
anisotropy energy HV +HZ +HAB. One use the two-component state |Ψν=0⟩ as a trial
wavefunction to determine the symmetry-broken orders.

1See Ref. [101], subsections 1.3.2 and 1.5.3. We obtain the value of E1 in (3.60) by directlyapplying the formula (10.78) of Ref. [101] with ν = 1 and the Laguerre polynomial L1
0(x) = 1.
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The competition between HZ , HAB and HV determines the ground state of the
system. The Zeeman effect encoded in HZ favors the spin-polarized states. On the
contrary, the substrate-induced sublattice splitting energy HAB polarizes the valley to
either K or K’. The short-range valley-dependent interaction HV has two contributions:
the XY-like contribution (with coupling constant g⊥) and the Ising-like contribution (with
coupling constant gz). The XY-like contribution prefers the polarization of the valley
along the equator of the Bloch sphere, described by the vector t⊥ (see Fig. 3.7b). The
Ising-like contribution, however, prefers a valley polarized to either the K or K’ states.
The competition between the XY-like and Ising-like contributions determines the valley
of the ground state. Consequently, it affects the electron density distribution in the two
sublattices.

3.6 . Variational method for the Charge neutrality case ν = 0

As previously discussed, we are working in a regime where the Zeeman energy,
sublattice splitting energy and short-range valley-dependent energy are weak compared
to the Coulomb interaction. Therefore, the eigenstate of the total Hamiltonian can be
well approximated by the eigenstate |Ψν=0⟩ of the SU(4) Coulomb interaction. The
symmetry-breaking terms HV , HZ and HAB select the components |α⟩ and |β⟩ so that
the flavors of the most stable phase minimize the total anisotropy energy. We solve for
the problem by using the variational method. First of all, we have:

⟨Ψν=0|c†mχcmχ′ |Ψν=0⟩ =
{
1 if χ = χ′ = α or χ = χ′ = β

0 otherwise
(3.63)

By using this relation, the Zeeman energy per flux quantum equals:

EZ =
⟨Ψν=0|HZ |Ψν=0⟩

Nϕ

= −h(⟨α|σz|α⟩+ ⟨β|σz|β⟩) = −hTr(Piσ
z) (3.64)

where Pi is the projection operator on the occupied components:

Pi = |α⟩⟨α|+ |β⟩⟨β| (3.65)
Similarly, the substrate-induced sublattice splitting energy per flux quantum equals:

EAB = ∆ABTr(Piτ
z) (3.66)

The expectation value of the product of four creation and annihilation operators
equals (see Ref. [101]):

⟨Ψν=0|c†p1µc
†
p2µ′cp3ν′cp4ν |Ψν=0⟩ = δp1p4δµνδp2p3δµ′ν′ − δp1p3δµν′δp2p4δµ′ν (3.67)

The formula of the valley-dependent interaction energy per flux quantum:

EV =
⟨Ψν=0|HV |Ψν=0⟩

Nϕ

=
1

2

∑
µ,ν=α,β
p1p2

(
Aµννµ

p1p2p2p1
−Aµνµν

p1p2p1p2

)

=
1

2

∑
µ,ν=α,β

∑
a=x,y,z

ga(τ
a
µµτ

a
νν − τaµντ

a
νµ)

(
1

Nϕ

∑
p1p2

Dp1p2p2p1

) (3.68)
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We evaluate the quantity

D =
∑
p1p2

Dp1p2p2p1 =

∫
d2r

(∑
p1

|ϕp1(r)|2
)(∑

p2

|ϕp2(r)|2
)

(3.69)
by recalling that the (normalized) basis wavefunctions ϕp(r)(0 ≤ p < Nϕ − 1) have the
following formula:

ϕp(r) =

(
1

Ly

√
πl

)1/2

e
−ip 2π

Ly
y
e−

(x−p 2π
Ly

l2)2

2l2 (3.70)
For all p′ ∈ {0, 1, 2, . . . , Nϕ − 1}, the following integral equals:∫ Lx

0

dx

∫ Ly

0

dy

Nϕ−1∑
p=0

|ϕp(x, y)|2|ϕp′(x, y)|2

=

(
1

Ly

√
πl

)2 ∫ Ly

0

dy

Nϕ−1∑
p=0

∫ Lx

0

dxexp

−
(
x− p 2π

Ly
l2
)2

l2
−

(
x− p′ 2π

Ly
l2
)2

l2


(3.71)

The integral over dy gives the size Ly of the sample in the y-direction. In the
thermodynamic limit, we can approximate the integral over dx as an integral from −∞
to +∞. Its value is given by the following formula:

l

√
π

2
exp

[
−1

2

(
(p− p′)

2πl

Ly

)2
]

(3.72)
This implies that for all p′ ∈ {0, 1, 2, . . . , Nϕ − 1}, we have:∫ Lx

0

dx

∫ Ly

0

dy

Nϕ−1∑
p=0

|ϕp(x, y)|2|ϕp′(x, y)|2

=

(
1

Ly

√
πl

)2

Lyl

√
π

2

Nϕ−1∑
p=0

exp

[
−1

2

(
(p− p′)

2πl

Ly

)2
] (3.73)

For a macroscopically large value of Nϕ, we can approximate the sum over p by

an integral of the variable u = (p − p′)
2πl

Ly

over the whole real axis2. Hence, for all

p′ ∈ {0, 1, 2, . . . , Nϕ − 1}:∫ Lx

0

dx

∫ Ly

0

dy

Nϕ−1∑
p=0

|ϕp(x, y)|2|ϕp′(x, y)|2

=

(
1

Ly

√
πl

)2

Lyl

√
π

2

Ly

2πl

∫ +∞

−∞
due−

u2

2 du

=
1

2πl2

(3.74)

2One can argue that the approximation of the integral ∫ dx and the sum∑p is not relevant for xapproaches x = 0 and x = Lx as well as when p′ = 0 or p′ = Nϕ. However, in the thermodynamiclimit, Lx ≫ l and Nϕ is macroscopically large, we can neglect those discrepancies at the edges.
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The value of the integral is the same for all p′. The integral D is therefore a sum of
Nϕ terms having the same value, so it equals:

D =
Nϕ

2πl2
(3.75)

It allows us to simplify the formula of the short-range valley-dependent interaction by
defining the parameters V⊥ and Vz:

V⊥ =
g⊥
2πl2

Vz =
gz
2πl2

(3.76)

The short-range valley-dependent interaction energy per flux quantum equals:

EV =
∑

a=x,y,z

Va[Tr(Pατ
a)Tr(Pβτ

a)− Tr(Pατ
aPβτ

a)] (3.77)
Here Pα = |α⟩⟨α| and Pβ = |β⟩⟨β|. The symmetry-broken phases are determined

by minimizing the anisotropy energy, which is the sum of EZ , EAB and EV . The total
anisotropy energy per flux quantum equals:

EA =EV + EZ + EAB

=
∑

a=x,y,z

Va [Tr(Pατ
a)Tr(Pβτ

a)− Tr(Pατ
aPβτ

a)]

− hTr(Piσ
z) + ∆ABTr(Piτ

z)

(3.78)

Instead of working on the (g⊥, gz)-plane, we will work on the (V⊥, Vz)-plane. In the
absence of the Zeeman effect, the broken-symmetry phases depend on the parameters V⊥
and Vz. In the presence of the Zeeman effect, the phases depend on the ratio between
V⊥/h and Vz/h.

3.7 . Phase diagram at Charge neutrality ν = 0

In this section, we establish the phase diagrams of charge neutrality graphene by using
the variational method. For the two-component state |Ψν=0⟩, we will select the fully
occupied components |α⟩ and |β⟩ from a set of four orthonormal basis wavefunctions
{|χ1⟩, |χ2⟩, |χ3⟩, |χ4⟩} of the spin-valley Hilbert space. We restrict our analysis to the
states which have no spin-valley entanglement. That means, we will consider spinors
|χi⟩(1 ≤ i ≤ 4) of the form |t, s⟩ = |t⟩ ⊗ |s⟩. Here t and s are the unit vectors
representing the valley and the spin in the corresponding Bloch sphere. The sets of four
orthonormal basis wavefunctions {|χ1⟩, |χ2⟩, |χ3⟩, |χ4⟩} fall into two classes:

1. Valley-ordered states: The set of four spinors is partitioned into two subsets
having opposite spins s and −s. The two spinors in each subset (having the
same spin) reside in opposite valleys. The valley polarization vectors t1 and t2
(corresponding to spins s and −s, respectively) are independent of each other.

|χ1⟩ =|t1, s⟩ |χ2⟩ =| − t1, s⟩
|χ3⟩ =|t2,−s⟩ |χ4⟩ =| − t2,−s⟩ (3.79)
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Figure 3.9: Phase diagram of graphene at charge neutrality point (ν = 0) when h = 0 and ∆AB = 0.
The symmetry-breaking orders are: ferromagnetism (F), antiferromagnetism (AF), Kékulé distortion
(KD), and Charge density wave (CDW).

2. Spin-ordered states: The set of four spinors is partitioned into two subsets
having opposite valleys t and −t. The two spinors in each subset (residing in
the same valley) have opposite spins. The spin polarization vectors s1 and s2
(corresponding to valleys t and −t, respectively) are independent of each other.

|χ1⟩ =|t, s1⟩ |χ2⟩ =|t,−s1⟩
|χ3⟩ =| − t, s2⟩ |χ4⟩ =| − t,−s2⟩

(3.80)

Not loosing the generality, we select the first fully occupied component |α⟩ = |χ1⟩.
We have two possibilities to select the spinor for the second component |β⟩: either
|β⟩ = |χ2⟩ or |β⟩ = |χ3⟩. If |β⟩ = |χ4⟩, by defining t′2 = −t2, we have |χ4⟩ = |t′2,−s⟩.
It is in fact the same thing as if |β⟩ = |χ3⟩. For each class of states, we have to consider
two cases.

The plan of the section is as follows: First, we examine the case where h = ∆AB = 0
and search for the minimum of EV . And then, we add the Zeeman energy EZ into the
total anisotropy energy.

3.7.1 . Phase diagram with no Zeeman and no valley-splitting energy
We begin by the case where h = 0 and ∆AB = 0. The total anisotropy energy is

given by:
EA = EV =

∑
a=x,y,z

Va[Tr(Pατ
a)Tr(Pβτ

a)− Tr(Pατ
aPβτ

a)] (3.81)
For the valley-ordered states, we have two cases:
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• |α⟩ = |χ1⟩, |β⟩ = |χ2⟩: We have the phase 1 with spinor composition {|t, s⟩, | −
t, s⟩}. Phase 1 is stable on the whole (V⊥, Vz) plane and has as energy:

E1 = −(2V⊥ + Vz) (3.82)
• |α⟩ = |χ1⟩, |β⟩ = |χ3⟩: We have phase 2 with spinor composition {|t1, s⟩, |t2,−s⟩}.

Phase 2 is stable on the whole (V⊥, Vz) plane and has as energy:

E2 = V⊥(t1xt2x + t1yt2y) + Vzt1zt2z (3.83)
The spin-ordered states involves two cases:

• |α⟩ = |χ1⟩, |β⟩ = |χ2⟩: We have phase 3 with spinor composition {|t, s⟩, |t,−s⟩}.
Phase 3 is stable on the whole (V⊥, Vz) plane and has as energy:

E3 = V⊥ + (Vz − V⊥)t
2
z (3.84)

• |α⟩ = |χ1⟩, |β⟩ = |χ3⟩: We have the fourth formula of the energy with spinor
composition {|t, s1⟩, | − t, s2⟩}. The energy of this phase is:

E4 = −
[
V⊥ +

1

2
(1 + s1 · s2)(V⊥ + Vz)

]
+

1

2
(1− s1 · s2)(V⊥ − Vz)t

2
z (3.85)

The phase diagram is shown in Fig.3.9. This phase diagram contains four phases:

1. The first phase is the Ferromagnetic (F) phase. The two occupied components
are |t, s⟩ and | − t, s⟩. The energy of the ferromagnetic phase is given by:

E = −(2V⊥ + Vz) (3.86)
The two completely occupied components have the same spin but opposite valleys.
Electrons locate in both sublattices. Electrons residing in opposite sublattices have
the same spin. Because all electrons residing in all the lattice sites have the same
spin, the phase is called Ferromagnetic.

2. The second phase is the Antiferromagnetic (AF) phase. The two fully occupied
components are |K, s⟩ and |K ′,−s⟩. The energy of the antiferromagnetic phase is
given by:

E = −Vz (3.87)
The two completely occupied components have opposite spins and opposite valleys.
Electrons reside equally in the two sublattices. Electrons locating in the two
sublattices have opposite spins. The situation is similar to an antiferromagnet.

3. The third phase is the Kékulé Distortion (KD) phase. The two fully occupied
components are |t⊥, s⟩ and |t⊥,−s⟩. The energy of the Kékulé Distortion phase is
given by:

E = V⊥ (3.88)
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Phase Occupied components EnergyF {|t, s⟩, | − t, s⟩} −(2V⊥ + Vz)AF {|K, s⟩, |K ′,−s⟩} −VzKD {|t⊥, s⟩, |t⊥,−s⟩} V⊥CDW {|K, s⟩, |K,−s⟩} Vz

Table 3.1: Phases of graphene at charge neutrality ν = 0, h = ∆AB = 0.

The valley part of the single-electron wavefunction is t⊥. That means each
electron has an equal probability of occupying the two sublattices (valleys). The
spin is, however, singlet. In this phase, the electron density distribution forms a
periodic pattern, with a lattice parameter

√
3 times greater than the graphene

lattice parameter. This allows to detect this phase by using Scanning Tunneling
Microscopy (STM).

4. The last phase is Charge Density Wave (CDW). The two fully occupied
components are |K, s⟩ and |K,−s⟩. The energy of the Charge Density Wave phase
is given by:

E = Vz (3.89)
In this phase, the valley is polarized, whereas the spin is singlet. All the electrons
are localized in the same sublattice.

All the phase transitions across phase boundaries are first order. We have reproduced
the phase diagram that Kharitonov established by using the mean-field theory [31]. The
results are summarized in Table. 3.1.

3.7.2 . Phase diagram with Zeeman energy
The total anisotropy energy in the presence of the Zeeman effect (h ̸= 0) is:

EA =EV + EZ

=
∑

a=x,y,z

Va[Tr(Pατ
a)Tr(Pβτ

a)− Tr(Pατ
aPβτ

a)]− hTr((Pα + Pβ)σ
z) (3.90)

For the valley-ordered phases, we consider two cases:

• |α⟩ = |χ1⟩, |β⟩ = |χ2⟩. We have phase 1 with flavor composition {|t, ↑⟩, | − t, ↑⟩}.
The energy of phase 1 is given by:

E1 = −(2V⊥ + Vz)− 2h (3.91)
• |α⟩ = |χ1⟩, |β⟩ = |χ3⟩. We have phase 2 with flavor composition {|t1, s⟩, |t2,−s⟩}.

The energy of this phase is given by:

E2 = V⊥(t1xt2x + t1yt2y) + Vzt1zt2z (3.92)
For the spin-ordered phases, we consider two cases:

49



−2 −1 1 2

−2

−1

1

2

V⊥/h

Vz/h

FCAF

KD

CDW

Figure 3.10: The phase diagram at charge neutrality ν = 0 with Zeeman effect. The phase boundaries
are shifted. There are also four phases: ferromagnetic (F), canted antiferromagnetic (CAF), Kékulé
distortion (KD), and charge density wave (CDW). The colinear antiferromagnetic (AF) phase is replaced
by the canted antiferromagnetic (CAF) phase.

• |α⟩ = |χ1⟩, |β⟩ = |χ2⟩. The flavor composition of the phase is {|t, s⟩, |t,−s⟩}.
The energy of the phase is given by:

E3 = V⊥ + (Vz − V⊥)t
2
z (3.93)

• |α⟩ = |χ1⟩, |β⟩ = |χ3⟩. The flavor composition of the phase is {|t, s1⟩, | − t, s2⟩}.
The energy of the phase is given by:

E4 =−
[
V⊥ +

1

2
(1 + s1 · s2)(V⊥ + Vz)

]
+

1

2
(1− s1 · s2)(V⊥ − Vz)t

2
z

− h(s1z + s2z)

(3.94)

The phase diagram at charge neutrality consists of 4 phases and is shown in Fig. 3.10
and summarized in Table. 3.2:

1. The Zeeman effect shifts the phase boundaries. The lines separating the phases
meet at the point (V⊥, Vz) =

(
−h

2
,−h

2

)
instead of the point (V⊥, Vz) = (0, 0).

2. The first phase is the Ferromagnetic (F) phase. The flavor content of the
ferromagnetic phase is {|t, ↑⟩, | − t, ↑⟩}. The energy of the phase is given by:

E = −(2V⊥ + Vz)− 2h (3.95)
Because of the Zeeman effect, the spin of electrons in both sublattices are polarized
to spin-up, and is no longer an arbitrary vector s as in the case where h = 0.
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Figure 3.11: Spin polarization of electrons residing in different sublattices in the phase CAF. The spin
are canted away from the spin-up direction.

3. The Antiferromagnetic (AF) phase is replaced by the Canted Antiferromag-
netic (CAF) phase. The flavour content is {|K, s1⟩, |K ′, s2⟩}. The energy of the
phase is given by:

E = −Vz +
h2

2V⊥
(3.96)

The two sublattices A and B have different spin polarizations (Fig. 3.11). The
vectors s1 (sublattice B) and s2 (sublattice A) are no longer spin-up and spin-down.
They are canted away from the spin-up direction. Their projections on the direction
of the magnetic field are equal s1z = s2z, while the projections on the plane
perpendicular to the magnetic field are antiparallel. The component along the
direction of the magnetic field is:

s1z = s2z = − h

2V⊥
(3.97)

The unit vectors representing spin s1 and s2 in the Bloch sphere are shown in
Fig. 3.12.

4. The transition between the Ferromagnetic phase and the Canted Antiferromagnetic
phase is not first order, but continuous, contrary to the case where h = 0. The spin
in both sublattices is spin-up at the boundary of the two phases. As the absolute
value of V⊥ increases, they are canted away from the initial direction. The value of
s1z = s2z decreases down to 0 with increasing |V⊥| (Fig. 3.13). For large values
of |V⊥| the phase tends to the (Colinear) AF phase (in the case h = 0). In this
Colinear AF phase, the spin polarizations in both sublattices are perpendicular to
the magnetic field B but are antiparallel.
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Figure 3.12: The vectors s1 and s2 representing the spin polarization in the two sublattices in the Bloch
sphere (CAF phase). They have the same projection in the sz direction, but opposite projections in the
(sx, sy) plane.

Figure 3.13: The value of the projection s∗z of the canted spin on the sz direction (Phase CAF).
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Phase Occupied components EnergyF {|t, ↑⟩, | − t, ↑⟩} −(2V⊥ + Vz)− 2h

CAF {|K, s1⟩, |K ′, s2⟩} −Vz + h2

2V⊥KD {|t⊥, s⟩, |t⊥,−s⟩} V⊥CDW {|K, s⟩, |K,−s⟩} Vz

Table 3.2: Phases of graphene at charge neutrality ν = 0, h ̸= 0, ∆AB = 0.

5. The third phase is Kékulé Distortion (KD). Its flavor composition is
{|t⊥, s⟩, |t⊥,−s⟩}. The energy of the phase is given by:

E = V⊥ (3.98)
The phase retains the characteristics it has in the case where h = 0.

6. The boundary between the CAF phase and the KD phase is no longer a straight
line as the boundary between the AF phase and the KD phase when h = 0. It is a
hyperbola starting from the point (V⊥, Vz) =

(
−h

2
,−h

2

)
and approaches the SO(5)

symmetry line V⊥ + Vz = 0 for large values of |V⊥|. Its equation is:

Vz = −V⊥ +
h2

2V⊥
(3.99)

7. The last phase is the Charge Density Wave (CDW) phase. Its flavor composition
is {|K, s⟩, |K,−s⟩}. The energy of the CDW phase is given by:

E = Vz (3.100)
Similarly to the KD phase, the CDW phase retains the characteristics it has in the
case where h = 0.

8. The boundary between the KD phase and the CDW phase keeps its position, but
it starts from the point (V⊥, Vz) =

(
−h

2
,−h

2

)
instead of the point V⊥ = Vz = 0.

9. The phase transitions CAF-KD, KD-CDW, and CDW-F are first order. Only the
phase transition F-CAF is second order.

3.8 . Experimental observations

In 2012, Young et al. performed tilted field experiment on graphene on hBN substrate
[73]. This early experiment showed that the ground state at ν = 0 is spin-unpolarized
(AF, CAF, KD, or CDW phases), rather than the spin-polarized F phase. Nevertheless,
they suggested that the spin-polarized F phase could still exist under high tilt angle under
(total) magnetic field BT < 45T. In 2014, they measured the edge state conductance
and observed the transition between the gapped edge states of the CAF phase and the
gapless edge states of the quantum spin Hall phase, which is identified as to be the
spin-polarized F phase (Fig. 3.14) [74]. As expected, the F phase appeared only under
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Figure 3.14: The phase transition from the CAF phase to the F phase in monolayer graphene at ν = 0
observed in the tilted field experiment. The main figure shows the results with fixed perpendicular
magnetic field B⊥ =1.4T and varying total magnetic field strength from BT = 1.4T to BT =34.5T.
As the total magnetic field BT increases, the Hall conductance increases from 0 to 1.8e2/h. This
corresponds to a continuous phase transition from the insulating CAF phase to the conducting quantum
spin Hall state, which is identified as the F phase. The inset shows the conductance at CNP with respect
to BT for different values of B⊥ = 0.75, 1.0, 1.4, 1.6, 2.0, 3.0 and 4.0T. The figure is taken from
Ref. [74]. Reproduced with permission from Springer Nature.
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Figure 3.15: The Scanning tuneling spectroscopy images of the phases Kékulé distortion (d), Charge
density wave (e), and Ferromagnetic/Canted antiferromagnetic (f). Each image includes the corre-
sponding lattice drawing of the phase. The arrow below the figures d, e, f indicates the strength of the
substrate screening. The figures a, b, c show the spin distribution of the four phases, predicted by the
theory. The figure is taken from Ref. [77]. Reproduced with permission from Springer Nature.

extremely tilted magnetic field. When the tilting angle decreases, the quantum spin Hall
state (F phase) continuously transits to CAF and becomes finally AF phase (when B is
perpendicular to the graphene plane).

Since the end of the 2010s decade, scanning tuneling spectroscopy (STS) gives a
clearer picture of the symmetry-broken phases in graphene. This type of experiments
is advantageous because it visualizes the atomic scale distribution of electron density.
Therefore, these experiments allow to determine the sublattice, i.e. valley, that electrons
occupy in the ZLL. One can easily distinguish the valley-polarized CDW phase from the
valley-unpolarized phases (F/AF-CAF) and the KD phase in the STS images. Although,
this technique does not permit to distinguish between the valley-unpolarized phases: F,
AF, and CAF.

In 2019, by using the STS technique, Li et al. observed an electron density pattern
whose unit cell area is three time larger than the one of graphene [75]. This characteristic
confirmed the existence of the KD phase. The KD phase was also observed in the
recent experiment by Liu et al. [76]. This work was done in 2021 and published in 2022.
Simultaneously, Coissard et al. successfully observed not only the KD phase, but also the
CDW phase and a valley-unpolarized phase, which is either the F phase or the AF-CAF
phase (Fig. 3.15) [77]. Hence, all the phases in the diagram of Kharitonov [31] are
experimentally confirmed. However, the work by Coissard et al. observed the coexistence
of the KD phase with a new phase that they call K-CDW. The new K-CDW phase has
a lattice parameter

√
3 times larger than the graphene lattice parameter, whereas the

familiar CDW phase has the same lattice parameter as the graphene honeycomb lattice.
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This new discovery requires new theoretical works beyond the present theory to explain
this new phase.

3.9 . Summary of the chapter

This chapter reviews the phase diagram of the quantum Hall effect in graphene
at charge neutrality ν = 0. The phase diagram contains four phases: (1) the spin-
polarized and valley unpolarized Ferromagnetic (F) phase; (2) the spin and valley singlet
Antiferromagnetic (AF) phase, which becomes canted (CAF) under a strong Zeeman field;
(3) the Kékulé distortion (KD) phase, which is spin-singlet and has a valley polarized
along the equator of the Bloch sphere; and (4) the Charge density wave (CDW) phase,
which is spin-singlet and valley-polarized. All phase transitions are first-order, except
the phase transition between the CAF and the F phases under a nonvanishing Zeeman
field. We also review an analytical variational method, which serves as deriving this phase
diagram. In the next chapter, we will develop the variational method for the fractional
quantum Hall effect and calculate the phase diagram of some two- and three-component
fractional quantum Hall states.
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Chapter4 - Spin and valley ordering of monolayer
graphene in some fractional quantum Hall
states: Variational method

4.1 . Introduction to the chapter

In the last chapter, we introduced the phase diagram of monolayer graphene at the
charge neutrality point, that means under the quantum Hall regime of filling factor ν = 0.
In this chapter, we move on to the phase diagrams of filling factors n/3(n = 1, 2, 4, 5).
Ref. [33] proposed an extension of the Hartree-Fock theory to solve the problem in
the case of the fractional quantum Hall effect. Here we propose a set of variational
wavefunctions for two- and three-component states and systematically derive the formula
of the short-range valley interaction of those variational wavefunctions. We found that in
the general case, the short-range valley interaction energy contains contributions that
do not appear in the formula of Ref. [33]. Then, we establish the phase diagrams of
the cases (1, ν) (0 < ν < 1) and (1, ν, ν) (0 < ν < 1) 1 by using this variational
method. The prediction of this variational method will be checked by the numerical exact
diagonalizations in Chapter 5.

4.2 . Experiments on fractional quantum Hall effect in graphene

We begin our discussions with the experiments which motivate our research. After
the discovery of the fractional quantum Hall effect in graphene [20, 21], the 2010 decade
witnessed the observations of various fractional quantum Hall states. The use of hBN
substrate allows us to fabricate high-quality samples and permits to observe various states
with filling factor of denominator 3 in both the central Landau level and the second
Landau level [96] (see Fig. 4.1). The Jain sequence with denominator up to 9 was also
observed near ν = 1/2 for 0 < ν < 1 [93]. In the work of Feldman et al. [93], only
even numerator fractions were observed for 1 < ν < 2. The lack of odd numerators
shows that composite fermions in those states have degeneracy 2. They proposed one
possible explanation: the spin degree of freedom is lifted by the Zeeman energy, while
the valley degree of freedom remains intact. At odd-numerator filling factors, the large
valley skyrmions form at a minimal energy cost, so there is no incompressible states at
odd-denominator filling factors. That means the SU(2)s symmetry is broken while the
SU(2)v symmetry is preserved. Fractional quantum Hall states were observed in not
only the ZLL, but also for Landau levels N = 1 and N = 2 [102]. Especially, the filling
fractions ν = ±1/4 and ν = ±1/2 were observed in a narrow range of magnetic field B
by Zibrov et al. in 2018 [97].

The inverse compressibility [94] and penetration field capacitance [97] measurements
revealed transitions between quantum Hall states with different spin and valley polar-
izations. Fig. 4.2 shows the experiment by Feldman et al. [94]. The figure shows that
when one keeps the same filling factor and varies the magnetic field, the incompressible

1The meaning of the symbols (1, ν) and (1, ν, ν) will be explained in section 4.3.
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Figure 4.1: Incompressible states detected in the experiments by Dean et al. [96]. Figure taken from
Ref. [96]. Reproduced with permission from Springer Nature.

Figure 4.2: Inverse compressibility diagram measured by Feldman et al. [94] in the filling factor range
−0.7 < ν < −0.3 (left) and −0.58 < ν < −0.56 (right). They observed that the incompressible peaks
were interrupted in narrow range of magnetic field B. The right figure shows the peak discontinuity
for filling factor ν = −4/7 at B = 10T. Reprinted figure with permission from Benjamin E. Feldman,
Andrei J. Levin, Benjamin Krauss, Dmitry A. Abanin, Bertrand I. Halperin, Jurgen H. Smet, and Amir
Yacoby, Phys. Rev. Lett., 111, 076802 (2013) [94]. Copyright (2023) by the American Physical Society.

state disappears in a narrow range of the magnetic field, resulting in discontinuities in
the incompressible peaks. One recalls that in the case of the two-component quantum
Hall effect, strengthening the magnetic field results in a spin transition from the singlet
state to the polarized state. Therefore, those interruptions in the incompressible peaks
can be associated to the transitions between the different symmetry-broken orders with
different spin and valley quantum numbers.

All these discoveries motivate the study of the broken-symmetry phases of the fractional
quantum Hall effect in graphene in this chapter. Similar to the case of charge neutrality
ν = 0, in the case of the fractional quantum Hall effect, spin and valley anisotropies
break the SU(4) symmetry of the Coulomb interaction, resulting in different phases with
different spin and valley ordering. We focus on the quantum Hall states of filling factors
n/3(n = 1, 2, 4, 5) and discuss the competition between the symmetry-breaking orders.
We will finally examine the transition between states having the same total filling factor
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but with different flavor occupation numbers - that means the transition exhibited by the
incompressible peak interruptions in Refs. [94] and [97]. This content will be presented
in the present chapter and the chapter 5.

4.3 . SU(4) representations

In this section, we discuss the way of using the irreducible representations of the
SU(4) group to characterize the eigenstates of the electron system in graphene. There are
six independent SU(2) subgroups of the group SU(4), three among them are convenient
to describe the eigenstates of an arbitrary SU(4)-symmetric Hamiltonian: the pure spin
subgroups generated by Sα = σα ⊗ 1(α = x, y, z), the pure pseudospin subgroups
generated by Tα = 1⊗ τα, and the subgroups generated by the operators Nα = σα ⊗ τ z

inspired by the Néel antiferromagnetic order. Because all SU(4)-symmetric Hamiltonians
commute with T z, Sz and N z, the quantum numbers (T z, Sz, N z) are good quantum
numbers to characterize the eigenstates of such Hamiltonians.

The energy levels of those SU(4)-symmetric Hamiltonians form irreducible represen-
tations. Each of these irreducible representations has a one-to-one correspondence to
one Young tableau [103]. The Young tableaux characterizing the SU(4) energy levels
consist three rows: the first row contains L1 boxes, the second row contains L2 boxes,
and the third row contains L3 boxes with L1 ≥ L2 ≥ L3. We define the integers
p1 = L1 − L2, p2 = L2 − L3, p3 = L3. The dimension of such irreducible representation
is given by:

D(p1, p2, p3) =
1

12
(p1 +1)(p2 +1)(p3 +1)(p1 + p2 +2)(p2 + p3 +2)(p1 + p2 + p3 +3) (4.1)

One can identify each irreducible representation by its highest weight. We recall the
case of the SU(2) group describing the spin. If one finds an energy eigenvalue belonging
to a sector of quantum number Sz =M , one cannot conclude that the total spin is M .
One needs to search for this energy eigenvalue in the sectors Sz =M + 1, Sz =M + 2
and so on, up to the value of Sz where the energy level disappears. This value is the
highest weight and gives us the total spin. We generalize this reasoning for the SU(4)
case. For a value of the highest weight (T z, Sz, N z) = (m1,m2,m3) the corresponding
SU(4) irreducible representation is characterized by integers p1 = m2−m3, p2 = m1−m2

and p3 = m2 +m3. Then we deduce the corresponding values L1, L2, L3 of the length
of the rows of its Young tableau.

The Coulomb Hamiltonian HC has the SU(4) symmetry. It preserves the number ni

of the electrons occupying the component i having definite spin and valley. Therefore, we
impose the set of occupation numbers (n1, n2, n3, n4) and perform exact diagonalizations.
The energy eigenstates have definite quantum numbers (T z, Sz, N z) and form irreducible
representations. One can find the highest weights and establish the Young tableaux
of those irreducible representations by using the procedure described in the previous
paragraph.

The state of occupation numbers (n1, n2, n3, n4) can also be characterized by the
set of filling factors (ν1, ν2, ν3, ν4) (νi = ni/Ne, 1 ≤ i ≤ 4). The total filling factor of
the state is ν̃ = ν1 + ν2 + ν3 + ν4. For example, for total filling factor ν̃ = 5/3, the
symbol (1, 2/3, 0, 0) denotes an SU(4) eigenstate with one fully-filled component and the
second component has filling factor ν2 = 2/3, while the symbol (1, 1/3, 1/3, 0) denotes
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an SU(4) eigenstate with one fully filled component and two components of filling factors
ν2 = ν3 = 1/3. The other components are completely empty. To avoid double counting
of the states, we denote the filling factors in decreasing order 1 ≥ ν1 ≥ ν2 ≥ ν3 ≥ ν4 ≥ 0.
And then, to simplify the notation, we write explicitely only the filling factors of non-empty
components. For instance, we write the flavor composition of the state as (1, 2/3) instead
of (1, 2/3, 0, 0).

In the presence of anisotropies (encoded in HV , HZ , HAB), anisotropies perturbatively
lift the energy eigenvalues of the eigenstates belonging to one irreducible representation.
This is valid as long as the anisotropies are small compared to the Coulomb energy scale.
This point of view is supported by current experiments. All the symmetry considerations
are valid in all geometries, including the spherical and the torus geometry. Because the
ground state is uniform in space, in the spherical geometry it has quantum number L = 0
while in the torus geometry, its magnetic many-body translations have zero many-body
momentum Kx = Ky = 0. In this work, we consider the effect of the short-range
valley-dependent anisotropies HV . This Hamiltonian admits the conservation of the
quantum numbers T z, Sz and the total spin quantum number S. For practical reasons,
in chapter 5 we will perform exact diagonalizations on sectors with definite (T z, Sz)
quantum numbers, that means we implement only the conservation of T z and Sz.

4.4 . Model wavefunctions

Now, we discuss the trial wavefunctions describing the four-component fractional
quantum Hall effects with spin and valley degrees of freedom in graphene. The SU(4)-
symmetric Coulomb interaction Hamiltonian is written in the second quantization language
as follows:

HC =
1

2

∑
p1p2p3p4

µν

Vp1p2p3p4c
†
p1µ
c†p2νcp3νcp4µ (4.2)

where the indices µ, ν run over the four flavors.
We remark that any SU(2) eigenstate is also a SU(4) eigenstate, only the degeneracy

changes. Indeed, we consider a SU(2) Coulomb eigenstate |Ψαβ⟩ = ψ̂†
αβ|0⟩ occupying

two components |α⟩ and |β⟩. The ket vectors |α⟩ and |β⟩ form an orthonormal basis
of the Hilbert space of the spin degree of freedom, for example |α⟩ = | ↑⟩ (spin-up)
and |β⟩ = | ↓⟩(spin-down). Let H′

C be the SU(2)-symmetric Coulomb interaction
Hamiltonian, the formula of H′

C is also given by Eq. (4.2), but the indices µ and ν run
on the set of two elements {α, β}. Because ψ̂†

αβ|0⟩ is an eigenstate of H′
C , let Eαβ be

its energy eigenvalue, we have:

H′
Cψ̂

†
αβ|0⟩ = Eαβψ̂

†
αβ|0⟩ (4.3)

We do an extension from the two-dimensional Hilbert space of the spin degree of
freedom to the four-dimensional Hilbert space that is the tensor product between the
latter and the Hilbert space of the valley degree of freedom. We assume that the spins |α⟩
and |β⟩ lie in the valley K, and still denote the generalized spinors in the four-dimensional
Hilbert space as |α⟩ and |β⟩ (here |α⟩ = |K⟩v⊗|α⟩s and |β⟩ = |K⟩v⊗|β⟩s, the symbols
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s and v means spin and valley, respectively)2. The Gram-Schmidt process allows us to
choose two ket-vectors |γ⟩ and |δ⟩ to form an orthonormal basis {|α⟩, |β⟩, |γ⟩, |δ⟩} of
the 4-dimensional spin-valley Hilbert space.

Now, we apply the SU(4)-symmetric Hamiltonian HC on ψ̂†
αβ|0⟩. In this case, the

indices µ and ν run over the set of four indices {α, β, γ, δ}. All the terms containing
c†p1µc

†
p2ν
cp3νcp4µ vanish unless (µ, ν) ∈ {(α, α), (α, β), (β, α), (β, β)}. Consequently, we

have:
HCψ̂

†
αβ|0⟩ = H′

Cψ̂
†
αβ|0⟩ = Eαβψ̂

†
αβ|0⟩ (4.4)

That means the SU(2) eigenstate ψ̂†
αβ|0⟩ is also an eigenstate of the SU(4) Coulomb

interaction. The degeneracy of the eigenstate changes because we have one more degree
of freedom when changing from the SU(2) case to the SU(4) case.

In the SU(4) case, we assume that the two-component state ψ̂†
αβ|0⟩ has total filling

factor ναβ. By gluing this state to a completely filled shell of flavor |γ⟩, we obtain a
three-component state:

|Ψαβγ⟩ =

 Nϕ∏
m=1

c†mγ

 ψ̂†
αβ|0⟩ (4.5)

which is an exact eigenstate of the Coulomb interaction Hamiltonian HC . Indeed, we
denote Hµν =

1
2

∑
p1p2p3p4

Vp1p2p3p4c
†
p1µ
c†p2νcp3νcp4µ, so that HC =

∑
µν Hµν . We apply

HC on |Ψαβγ⟩. The terms giving contribution to the eigenvalue energy EC are those
such that (µ, ν) ∈ {(α, α), (α, β), (α, γ), (β, α), (β, β), (β, γ), (γ, α), (γ, β), (γ, γ)}.

The sum of the contributions in which µ, ν run over α, β gives the eigenvalue energy
Eαβ of the two-component state ψ̂†

αβ|0⟩:∑
µ,ν∈{α,β}

Hµν |Ψαβγ⟩ = Eαβ|Ψαβγ⟩ (4.6)
The contribution in which µ = ν = γ gives the energy of the completely filled shell

|γ⟩:

Hγγ|Ψαβγ⟩ =

Hγγ

Nϕ∏
m=1

c†mγ

 ψ̂†
αβ|0⟩ = E1|Ψαβγ⟩ (4.7)

where E1 = −
√
π/8e2/(εl) as shown in (3.60). The remaining four contributions

(α, γ), (γ, α), (β, γ), (γ, β) contribute to the direct energy, so are cancelled by the back-
ground energy. We explicitely prove the case where µ = α, ν = γ as follows:

Hαγ|Ψαβγ⟩ =
1

2

∑
p1p2p3p4

Vp1p2p3p4c
†
p1α
c†p2γcp3γcp4α|Ψαβγ⟩ (4.8)

Because cp4α anticommutes with both c†p2γ and cp3γ, we transform the previous
equation into the form:

Hαγ|Ψαβγ⟩ =
1

2

∑
p1p2p3p4

Vp1p2p3p4c
†
p1α
cp4αc

†
p2γ
cp3γ

 Nϕ∏
m=1

c†mγ

 ψ̂†
αβ|0⟩ (4.9)

2We can also associate the spin |α⟩s to valleyK and spin |β⟩s to valleyK ′, or in general to anyvalley vector |t⟩.
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The terms vanish unless p2 = p3 so that c†p2γcp3γ becomes the number operator,
acting on the fully occupied shell, giving 1. Because the Coulomb interaction conserves
the momentum: p1 + p2 = p3 + p4, leading to p1 = p4. It shows that the final results
only contains terms of the form Vp1p2p3p4|Ψαβγ⟩ where p1 = p4 and p2 = p3. In other
words, |Ψαβγ⟩ is also an eigenstate of Hαγ . The eigenvalue energy contains the terms of
the form Vp1p2p2p1 and is therefore a part of the direct energy. We have similar results for
the three remaining terms. Those contributions to the direct energy are cancelled by the
neutralizing background. Overall, |Ψαβγ⟩ is an eigenstate of HC :

HC |Ψαβγ⟩ = (E1 + Eαβ)|Ψαβγ⟩ (4.10)
The Coulomb energy of the state (4.5) is given by:

EC = E1 + Eαβ (4.11)
If either α or β is an empty component, we have a state consisting of one full shell

glued to one partially filled component:

|Ψαγ⟩ =

 Nϕ∏
m=1

c†mγ

 ψ̂†
α|0⟩ (4.12)

where Eα is the energy of the partially filled eigenstate ψ†
α|0⟩ of the Coulomb Hamiltonian

HC with filling factor να(0 < να < 1). The Coulomb energy of this state is given by the
formula:

EC = E1 + Eα (4.13)
This gluing argument also works when we glue a three partially filled component state

ψ̂†
αβγ|0⟩ to a completely filled shell |δ⟩. Similarly, from a two-component state |ψαβ⟩ with

total filling factor 0 < ν̃ < 1, we can form a particle-hole transformation and obtain a
two-component state with total filling factor 2− ν̃. This transformed state has as energy:

E2−ν̃ = Eαβ + 2(1− ν̃)E1 (4.14)
SU(4) eigenstates having the same total filling factor but with different flavor partitions

can be either the two-component states |ψαβ⟩, |Ψαγ⟩, or the three-component state
|Ψαβγ⟩. They belong to different irreducible representations. We call the states |ψαβ⟩
and |ψα⟩ (which contain one or two partially filled components) the parent states. The
formulae (4.11) and (4.13) allow us to find the ground state among a set of competing
parent states having the same total filling factor. In the presence of anisotropies (HV ,
HZ and HAB), the latter are small compared to the Coulomb interaction so that they
do not destroy the electron correlation in the trial state (4.5). Therefore, we consider
the contributions HV , HZ and HAB as small perturbations to the SU(4) Coulomb
Hamiltonian HC by assuming that the ground state wavefunction keeps the form of the
trial wavefunctions (4.5) or (4.12). Anisotropies select the vectors |α⟩, |β⟩ and |γ⟩ so as
to minimize the total anisotropy energy. Minimizing the total anisotropy energy allows
us to determine the symmetry-broken phases issued from one parent state, as we did in
Chapter 3.
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4.5 . Variational method

4.5.1 . State (1, ν)

Trial wavefunction
We examine the two-component state with one fully occupied component |α⟩ and

one partially occupied component |β⟩. The component |β⟩ is occupied by N1 electrons
such that its filling factor is ν = N1/Nϕ. We choose the following trial wavefunction:

|Ψ⟩ =
∑
{mi}

F{mi}c
†
m1β

. . . c†mN1
βc

†
1α . . . c

†
Nϕα

|0⟩ (4.15)

The sum is over all possible subsets {mi} = {m1,m2, . . . ,mN1} of {1, 2, . . . , Nϕ},
arranged in increasing order 1 ≤ m1 < m2 < · · · < mN1 ≤ Nϕ. The sum contains
CN1

Nϕ
=

Nϕ!

N1!(Nϕ−N1)!
terms, and the state is normalized:∑

{mi}
|F{mi}|2 = 1 (4.16)

To simplify the notation, we denote the fully occupied component |α⟩ as:

|Ω⟩ = c†1α . . . c
†
Nϕα

|0⟩ (4.17)
so that

|Ψ⟩ =
∑
{mi}

F{mi}c
†
m1β

. . . c†mN1
β|Ω⟩ (4.18)

Zeeman energy
The expectation value of the Zeeman energy per flux quantum is written as:

EZ =
⟨Ψ|HZ |Ψ⟩

Nϕ

= − h

Nϕ

∑
χχ′

∑
m

⟨χ|σz|χ′⟩⟨Ψ|c†mχcmχ′ |Ψ⟩ (4.19)

The expectation value ⟨Ψ|c†mχcmχ′|Ψ⟩ is nonzero if either χ = χ′ = α or χ = χ′ = β
and vanishes otherwise. This implies that:

EZ = − h

Nϕ

(
⟨α|σz|α⟩

∑
m

⟨Ψ|c†mαcmα|Ψ⟩+ ⟨β|σz|β⟩
∑
m

⟨Ψ|c†mβcmβ|Ψ⟩
)

(4.20)
Obviously, ⟨Ψ|c†mαcmα|Ψ⟩ = 1 for all m ∈ {1, 2, . . . , Nϕ}, so:∑

m

⟨Ψ|c†mαcmα|Ψ⟩ = Nϕ (4.21)
Now, we evaluate the expectation value of component |β⟩:

⟨Ψ|c†mβcmβ|Ψ⟩
=

∑
{mi}{m′

i}
F ∗
{mi}F{m′

i}⟨Ω|cmN1
β . . . cm1βc

†
mβcmβc

†
m′

1β
. . . c†m′

N1
β|Ω⟩ (4.22)
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All terms where {m′
i} does not contain m vanish. For terms where m ∈ {m′

i}, they
vanish unless the two sets of orbital indices {mi} = {m′

i}. For this reason, we have:

⟨Ψ|c†mβcmβ|Ψ⟩ =
∑

{mi}:m∈{mi}
|F{mi}|2 (4.23)

That means the sum contains only the weight coefficients corresponding to the
occupation sets {mi} such that m ∈ {mi}. When we sum over all values of m:∑

m

⟨Ψ|c†mβcmβ|Ψ⟩ =
∑
m

∑
{mi}:m∈{mi}

|F{mi}|2 (4.24)

each term |F{mi}|2 appears exactly N1 times, for all sets {mi}. Therefore, we arrive to
the delicate identity: ∑

m

⟨Ψ|c†mβcmβ|Ψ⟩ = N1

∑
{mi}

|F{mi}|2 = N1 (4.25)

Overall, the Zeeman energy per flux quantum equals to:

EZ =− h (⟨α|σz|α⟩+ ν⟨β|σz|β⟩)
=− h [Tr(Pασ

z) + νTr(Pβσ
z)]

(4.26)
Substrate-induced sublattice splitting energy

The reasoning for EZ also holds for the other one-body Hamiltonians. In the case of
the substrate-induced sublattice splitting energy, we get a similar formula:

EAB =
⟨Ψ|HAB|Ψ⟩

Nϕ

=
∆AB

Nϕ

∑
χχ′

∑
m

⟨χ|τ z|χ⟩⟨Ψ|c†mχcmχ′ |Ψ⟩

=∆AB [Tr(Pατ
z) + νTr(Pβτ

z)]

(4.27)

Short-range valley-valley interaction energy
The last contribution to the total anisotropy energy is the short-range valley-valley

interaction energy EV . The expectation value of HV is given by:

⟨Ψ|HV |Ψ⟩ = 1

2

∑
µµ′ν′ν

( ∑
a=x,y,z

gaτ
a
µντ

a
µ′ν′

)
Gµµ′ν′ν (4.28)

where
Gµµ′ν′ν = ⟨Ψ|

∫
d2rψ̂†

µ(r)ψ̂
†
µ′(r)ψ̂ν′(r)ψ̂ν(r)|Ψ⟩ (4.29)

For the two-component state |Ψ⟩, all the terms Gµµ′ν′ν vanish, except Gαββα, Gαβαβ,
Gβααβ and Gβαβα. Obviously, Gαβαβ = −Gαββα, Gβαβα = −Gβααβ and Gβααβ = Gαββα.
To simplify the notation, we denote Gαβ = Gαββα. Hence, the expectation value of HV

has a simpler formula:

⟨Ψ|HV |Ψ⟩ =
∑

a=x,y,z

ga(τ
a
αατ

a
ββ − τaαβτ

a
βα)Gαβ (4.30)
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The value of Gαβ is given by:

Gαβ =

∫
d2r⟨Ψ|ψ̂†

α(r)ψ̂
†
β(r)ψ̂β(r)ψ̂α(r)|Ψ⟩

=
∑

p1p2p3p4

(∫
d2rϕ∗

p1
(r)ϕ∗

p2
(r)ϕp3(r)ϕp4(r)

)
⟨Ψ|c†p1αc

†
p2β
cp3βcp4α|Ψ⟩

(4.31)

We evaluate the expectation value:

⟨Ψ|c†p1αc
†
p2β
cp3βcp4α|Ψ⟩

=
∑

{mi,m′
i}
F ∗
{mi}F{m′

i}⟨Ω|cmN1
β · · · cm1β(c

†
p1α
c†p2βcp3βcp4α)c

†
m′

1β
· · · c†m′

N1
β|Ω⟩ (4.32)

The non-vanishing expectation values have p1 = p4 and gives the occupation number of
the state |p1α⟩ in |Ψ⟩, which is 1. Because the momentum is conserved, p1+p2 = p3+p4,
so p2 = p3. Therefore, we have:

⟨Ψ|c†p1αc
†
p2β
cp3βcp4α|Ψ⟩

=δp1p4δp2p3
∑

{mi,m′
i}
F ∗
{mi}F{m′

i}⟨Ω|cmN1
β · · · cm1β(c

†
p2β
cp2β)c

†
m′

1β
· · · c†m′

N1
β|Ω⟩ (4.33)

The expectation vanishes unless p3 = p2 belongs to the set {m′
i} and the two sets

{mi} = {m′
i}. Hence, we have:

⟨Ψ|c†p1αc
†
p2β
cp3βcp4α|Ψ⟩ = δp1p4δp2p3

∑
{mi}:p2∈{mi}

|F{mi}|2 (4.34)
We have the expression of Gαβ:

Gαβ =
∑
p1p2

(∫
d2r|ϕp1(r)|2|ϕp2(r)|2

) ∑
{mi}:p2∈{mi}

|F{mi}|2

=
∑
p2

[∫
d2r

(∑
p1

|ϕp1(r)|2
)
|ϕp2(r)|2

] ∑
{mi}:p2∈{mi}

|F{mi}|2
(4.35)

We recall that for all p2 ∈ {0, 1, 2, . . . , Nϕ − 1} (see (3.74), Section 3.6):∫
d2r

(∑
p1

|ϕp1(r)|2
)
|ϕp2(r)|2 =

1

2πl2
(4.36)

This implies that:

Gαβ =
1

2πl2

∑
p2

∑
{mi}:p2∈{mi}

|F{mi}|2 =
N1

2πl2
(4.37)

Again, by defining:
V⊥ =

g⊥
2πl2

Vz =
gz
2πl2

(4.38)

65



The parameters V⊥ and Vz are the same as the ones in the case of charge neutrality
ν = 0. The short-range valley-valley interaction energy per flux quantum equals:

EV =
⟨Ψ|HV |Ψ⟩

Nϕ

= ν
∑

a=x,y,z

Va[τ
a
αατ

a
ββ − τaαβτ

a
βα] (4.39)

We define:

Fαβ =
∑

a=x,y,z

Va[Tr(Pατ
a)Tr(Pβτ

a)− Tr(Pατ
aPβτ

a)] (4.40)
and write EV in a more compact form:

EV = gαβ(0)Fαβ (4.41)
where gαβ(R) is the pair-correlation function between the components |α⟩ and |β⟩ in
the state |Ψ⟩, defined as:

gαβ(R) =
LxLy

N2
ϕ

∫
d2rd2r′⟨Ψ|ψ̂†

α(r)ψ̂
†
β(r

′)δ(2)(r− r′ −R)ψ̂β(r
′)ψ̂α(r)|Ψ⟩ (4.42)

It is easy to see that:

Gαβ =
N2

ϕ

LxLy

gαβ(0) =
Nϕ

2πl2
gαβ(0) (4.43)

Therefore, we arrive to the elegant property:

gαβ(0) = ν (4.44)
Total anisotropy energy

Overall, the expression of the total anisotropy energy of the two-component state
(1, ν) is:

EA =EV + EZ + EAB

=ν
∑

a=x,y,z

Va[Tr(Pατ
a)Tr(Pβτ

a)− Tr(Pατ
aPβτ

a)]

− h[Tr(Pασ
z) + νTr(Pβσ

z)]

+ ∆AB[Tr(Pατ
z) + νTr(Pβτ

z)]

(4.45)

4.5.2 . State (1, ν, ν)

For the state (1, ν, ν), our trial wavefunction has three components |α⟩, |β⟩, |γ⟩. Each
component |α⟩ and |β⟩ is occupied by N1 electrons with filling fraction ν = N1/Nϕ.
Component |γ⟩ is fully filled. We choose the following trial wavefunction:

|Ψ⟩ =
∑

{mi,nj}
F{mi,nj}c

†
m1α

· · · c†mN1
αc

†
n1β

· · · c†nN1
βc

†
1γ · · · c†Nϕγ

|0⟩ (4.46)
where ∑

{mi,nj}
|F{mi,nj}|2 = 1 (4.47)
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Similar to the case of the (1, ν) state, we find the expression of the Zeeman energy:

EZ = −h[Tr(Pγs
z) + νTr(Pαs

z) + νTr(Pβs
z)] (4.48)

and the substrate-induced sublattice splitting energy:

EAB = ∆AB[Tr(Pγτ
z) + νTr(Pατ

z) + νTr(Pβτ
z)] (4.49)

The short-range valley-dependent interaction is given by:

EV = gαγ(0)Fαγ + gβγ(0)Fβγ + gαβ(0)Fαβ (4.50)
Because the component |γ⟩ is fully filled, we also have the following:

gαγ(0) = gβγ(0) = ν (4.51)
If ψ†

αβ is a singlet state of filling factor (ν, ν), the pair correlation function gαβ(0)
between the two partially filled components is, however, small gαβ(0) ≈ 10−3. Therefore,
the total anisotropy energy of the case (1, ν, ν) is approximated as follows:

EA =EV + EZ + EAB

=νFαγ + νFβγ

− h[Tr(Pγσ
z) + νTr(Pασ

z) + νTr(Pβσ
z)]

+ ∆AB[Tr(Pγτ
z) + νTr(Pατ

z) + νTr(Pβτ
z)]

(4.52)

4.6 . Phase diagrams: Variational method

In this section, we use the formulae derived in section 4.5 to establish the phase
diagrams of the following cases: (1, ν) and (1, ν, ν) (0 < ν < 1). We will compare these
theoretical results with those of the numerical Exact Diagonalization method in sections
5.3 and 5.4. We will only consider the case where h = ∆AB = 0.

Before considering each of these three cases, we recall the two classes of orthonormal
basis states of the four-dimensional spin-valley Hilbert space:

1. Valley-ordered states:

|χ1⟩ =|t1, s⟩ |χ2⟩ =| − t1, s⟩
|χ3⟩ =|t2,−s⟩ |χ4⟩ =| − t2,−s⟩ (4.53)

2. Spin-ordered states:

|χ1⟩ =|t, s1⟩ |χ2⟩ =|t,−s1⟩
|χ3⟩ =| − t, s2⟩ |χ4⟩ =| − t,−s2⟩

(4.54)
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Figure 4.3: Phase diagram of the (1, ν)(0 < ν < 1) state.

4.6.1 . State (1, ν)

We consider the state with one fully occupied component |α⟩ and one partially
occupied component |β⟩. The filling factor of the component |β⟩ is ν (0 < ν < 1). In
the absence of the Zeeman effect and the substrate-induced sublattice splitting energy
(h = ∆AB = 0), the total anisotropy energy has the formula:

EA = EV = ν
∑

a=x,y,z

Va[Tr(Pατ
a)Tr(Pβτ

a)− Tr(Pατ
aPβτ

a)] (4.55)
For the valley-ordered phases, we consider two cases:

• |α⟩ = |χ1⟩ and |β⟩ = |χ2⟩. The flavor composition of the phase is {|t, s⟩, |− t, s⟩}.
In this notation, the first spinor characterizes the fully occupied component, while
the second spinor characterizes the partially-occupied component. The energy of
the phase is given by:

E1 = −ν(2V⊥ + Vz) (4.56)
• |α⟩ = |χ1⟩ and |β⟩ = |χ3⟩. The spinor composition of the phase is
{|t1, s⟩, |t2,−s⟩}. The energy of the phase is given by:

E2 = ν[V⊥(t1xt2x + t1yt2y) + Vzt1zt2z] (4.57)
For the spin-ordered phases, we consider two cases:

• |α⟩ = |χ1⟩ and |β⟩ = |χ2⟩. The spinor composition of the phase is {|t, s⟩, |t,−s⟩}.
The energy of the phase is given by:

E3 = ν[V⊥ + (Vz − V⊥)t
2
z] (4.58)
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• |α⟩ = |χ1⟩ and |β⟩ = |χ3⟩. The spinor composition of the phase is {|t, s1⟩, | −
t, s2⟩}. The energy of the phase is given by:

E4 = −ν
[
V⊥ +

1

2
(1 + s1 · s2)(V⊥ + Vz)

]
+

1

2
ν(1− s1 · s2)(V⊥ − Vz)t

2
z (4.59)

The phase diagram of the state (1, ν) has similar form as the case of Charge Neutrality
Point (Fig. 4.3). It consists of 4 phases:

1. The Ferromagnetic (F) phase has flavor composition {|t, s⟩, | − t, s⟩}. The
energy of the Ferromagnetic phase is given by:

E = −ν(2V⊥ + Vz) (4.60)
In this phase, all electrons have the same spin polarization s, regardless of the
sublattice/valley they occupy. Because one component is completely occupied while
the other is partially occupied, the total valley polarization is partially polarized,
instead of being unpolarized as in the case of Charge Neutrality Point.

2. The Antiferromagnetic (AF) phase has flavor composition {|K, s⟩, |K ′,−s⟩}.
The energy of the phase is given by:

E = −νVz (4.61)
The two occupied components have opposite spins and opposite valleys. The
electrons occupying different sublattices have opposite spin polarizations. Due to
unequal occupations of the components, the total spin and total valley are partially
polarized, not unpolarized.

3. The Kékulé Distortion (KD) phase has flavor composition {|t⊥, s⟩, |t⊥,−s⟩}.
The energy of the phase is given by:

E = νV⊥ (4.62)
The flavor composition is similar to the Kékulé Distortion phase at Charge neutrality.
The valley is polarized on the XY-plane, but the spin is partially polarized, due to
unequal occupations of the components.

4. The Charge Density Wave (CDW) phase has flavor composition
{|K, s⟩, |K,−s⟩}. The energy of the phase is given by:

E = νVz (4.63)
All electrons occupy the same valley, so the same sublattice. Also, the spin is
partially polarized, because the filling factors of the two components are not equal.

All the phase transitions are first order. We summarize the four phases in Table. 4.1.
The total anisotropy energy has the same formula as in the case of charge neutrality,
up to a factor ν. This explains why the phase diagram of (1, ν) has the same form as
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Phase Occupied components EnergyF {|t, s⟩, | − t, s⟩} −ν(2V⊥ + Vz)AF {|K, s⟩, |K ′,−s⟩} −νVzKD {|t⊥, s⟩, |t⊥,−s⟩} νV⊥CDW {|K, s⟩, |K,−s⟩} νVz

Table 4.1: Phases of the state (1, ν)(0 < ν < 1).

the phase diagram of the Charge Neutrality Point case, and the corresponding energies
equal the ones of the Charge Neutrality Point case multiplied by ν. Because the filling
factors of the two components are not equal, the total spin and valley can be partially
polarized instead of being singlet. This is the difference between the case (1, ν) compared
to the case of Charge Neutrality Point. This result applies for two-component states like
(1,1/3), (1,2/3), (1,1/5) and (1,2/5).

4.6.2 . State (1, ν, ν)

We consider the state with one fully occupied component |α⟩ glued to a singlet state
(ν, ν) of total filling factor 2ν (0 < ν < 1/2) occupying two components |β⟩ and |γ⟩.
As previously discussed in subsection 4.5.2, the term gβγ(0)Fβγ is negligible. In the case
where h = ∆AB = 0, the total anisotropy energy equals:

EA =νFαβ + νFαγ

=ν
∑

a=x,y,z

Va[Tr(Pατ
a)Tr(Pβτ

a)− Tr(Pατ
aPβτ

a)]

+ ν
∑

a=x,y,z

Va[Tr(Pατ
a)Tr(Pγτ

a)− Tr(Pατ
aPγτ

a)]

(4.64)

For valley-ordered phases, we consider two cases:

• Case 1: |α⟩ = |χ1⟩, |β⟩ = |χ2⟩,|γ⟩ = |χ3⟩. The energy of the phase is given by:

E1 = −ν(2V⊥ + Vz) + ν[V⊥(t1xt2x + t1yt2y) + Vzt1zt2z] (4.65)
• Case 2: |α⟩ = |χ1⟩, |β⟩ = |χ3⟩, |γ⟩ = |χ4⟩. The energy of the phase is given by:

E2 = 0 (4.66)
The remaining case |α⟩ = |χ1⟩, |β⟩ = |χ2⟩, |γ⟩ = |χ4⟩ becomes case 1 if we change

the variable t′2 = −t2. Hence, we do not consider this case.
For spin-ordered phases, we consider two cases:

• Case 1: |α⟩ = |χ1⟩, |β⟩ = |χ2⟩, |γ⟩ = |χ3⟩. The energy of the phase is given by:

E3 = −1

2
ν(1 + s1 · s2)[(V⊥ + Vz) + (V⊥ − Vz)t

2
z] (4.67)

If s1 = −s2, this phase is a particular case of the case 2 of valley-ordered phases.
Therefore, we only need to consider the case where s1 ̸= −s2.
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Figure 4.4: Phase diagram of the state (1, ν, ν) (0 < ν < 1).

• Case 2: |α⟩ = |χ1⟩, |β⟩ = |χ3⟩, |γ⟩ = |χ4⟩. The energy of the phase is given by:

E4 = −ν(2V⊥ + Vz)− ν[V⊥ + (Vz − V⊥t
2
z)] (4.68)

The phase diagram of the (1, ν, ν) state is shown in Fig. 4.4. It contains 4 phases:

1. Phase A has spinor composition {|K, s1⟩, |K ′, s2⟩, |K ′,−s2⟩}. In this notation,
the first component is completely occupied, and the two remaining components
forming the singlet state of total filling factor 2ν. Its energy is given by:

E = −2ν(V⊥ + Vz) (4.69)
The two partially occupied components have the same valley and form a spin
singlet. The two spin vectors s1 and s2 are independent of each other. The total
valley of the three components is partially polarized.

2. Phase B has spinor composition {|t⊥, s1⟩, | − t⊥, s2⟩, | − t⊥,−s2⟩}. Its energy is
given by:

E = −ν(3V⊥ + Vz) (4.70)
Similar to Phase A, the valley of the two partially occupied components is opposite
to the valley of the completely occupied component. The former components also
form a spin singlet. However, the valley polarization of Phase B is XY-like because
in its region |V⊥| > |Vz|. In contrast, the valley polarization of Phase A is Ising-like.
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Phase Spinor composition EnergyA {|K, s1⟩, |K ′, s2⟩, |K ′,−s2⟩} −2ν(V⊥ + Vz)B {|t⊥, s1⟩, | − t⊥, s2⟩, | − t⊥,−s2⟩} −ν(3V⊥ + Vz)E {|t1, s⟩, |t2,−s⟩, | − t2,−s⟩} 0F {|K, s⟩, |K ′, s⟩, |K,−s⟩} −2νV⊥

Table 4.2: Phases of the state (1, ν, ν) (0 < ν < 1).

3. Phase E has spinor composition {|t1, s⟩, |t2,−s⟩, | − t2,−s⟩}. The energy of
phase E is given by:

E = 0 (4.71)
Contrary to Phase A, the two partially occupied components of Phase B have the
same spin, and form a valley singlet. The two vectors t1 and t2 are independent of
each other. The total spin of the three components is partially polarized.

4. Phase F has spinor composition {|K, s⟩, |K ′, s⟩, |K,−s⟩}. The energy of Phase
F is given by:

E = −2νV⊥ (4.72)
Phase F has an Ising-like valley polarization, consistent with its domain where
|Vz| > |V⊥|. The two partially occupied components form a singlet for both spin
and valley.

All the phase transitions are first order. The result is summarized in Table. 4.2.

4.7 . Summary of the chapter

In this chapter, we established the phase diagrams for the quantum Hall states of
flavor compositions (1, ν) (0 < ν < 1) and (1, ν, ν) (0 < ν < 1). We proposed a set
of variational wavefunctions for the two-component and three-component states and
calculated the short-range valley-dependent interaction energy of those trial wavefunctions.
Then, we searched for the most stable phases by varying the polarization of the spin-valley
isospins of the components and minimizing the anisotropy energy. The phase diagram of
the state (1, ν) has the same shape as the one of the Charge Neutrality Point case. For
the case (1, ν, ν), the formula of the short-range valley-dependent interaction includes
a term involving the correlation between electrons occupying the two partially-filled
components. For the particular case where (ν, ν) is the singlet state of total filling
factor 0 < 2ν < 2 glued to a completely filled shell, this contribution is safely negligible,
allowing us to establish a phase diagram having four phases as shown in Fig. 4.4. For
other values of ν, this contribution can be significant and cannot be ignored. In the next
chapter, we will consider the particular cases of the filling factors ν = 4/3 and ν = 5/3
and compare the results of the two methods.

72



Chapter5 - Spin and valley ordering of monolayer
graphene in some fractional quantum Hall
states: Exact diagonalizations

5.1 . Introduction to the chapter

In Chapter 4, we developed a variational method and analytically established the
phase diagrams of the states (1, ν)(0 < ν < 1) and (1, ν, ν)(0 < ν < 1). This chapter
discusses the spin and valley ordering of the filling factors ν = −2 + n/3(n = 1, 2, 4, 5).
We begin by discussing the spin and valley ordering of the filling factors ν = −2 + 1/3
and ν = −2+2/3. And then, we will discuss the cases ν = −2+4/3 and ν = −2+5/3.
In those cases, the total filling factor is greater than 1, meaning that more than one
component are occupied. The short-range valley-dependent anisotropies play a crucial
role in determining the spin and valley ordering of the ground states. For these two
cases, we compare the results predicted by the variational method developed in Chapter
5 with the numerical results of exact diagonalizations. We will finally discuss the phase
transitions between states having different flavor compositions. The chapter ends with
the conclusion of the whole project. In this chapter, we use two different conventions to
denote the total filling factor of the state: ν(−2 < ν < +2) means the filling factor with
respect to the charge neutrality point, and ν̃ = 2+ ν means the total filling factor of the
ZLL.

5.2 . The fractions ν̃ < 1

5.2.1 . The fraction ν̃ = 1/3

For filling factor ν̃ = 1/3(ν = −2 + 1/3), the one-component state is an eigenstate
of the SU(4) Coulomb interaction (in the limit of no Landau level mixing). It is a member
of the irreducible representation with the highest weight (Ne, 0, 0, 0). That means all
electrons have the same spin and valley. We can explicitely express this wavefunction as
the product of the Laughlin state as spatial part by a symmetric spinor part:

Ψ1/3(z1, . . . , zNe) =
∏
i<j

(zi − zj)
3|αα . . . α⟩ (5.1)

where the ket state |α⟩ represents the single-electron state in the spin-valley Hilbert
space.

The effect of anisotropies is as follows. The Zeeman energy EZ = ⟨HZ⟩ orients the
spin along the direction of the total magnetic field. The pseudo-Zeeman field selects the
valley which minimizes the substrate-induced sublattice splitting energy EAB = ⟨HAB⟩.
In the absence of the pseudo-Zeeman field, the short-range valley-dependent interaction
HV does not affect the valley part of the state because it is a point contact interaction
and vanishes for any antisymmetric spatial wavefunction. In other words, HV is only
nonzero when two electrons coincide in space, but in this situation, the wavefunction
vanishes due to the Pauli exclusion principle. Therefore, the spinor |α⟩ = |t⟩v ⊗ | ↑⟩s
with the valley vector t freely rotating on the Bloch sphere.
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5.2.2 . The fraction ν̃ = 2/3

For filling factor ν̃ = 2/3(ν = −2 + 2/3), there are several known competing states.
They differ in the number of components the electrons occupy. On the torus geometry,
those states directly compete, whereas they have different shifts on the spherical geometry.
We start by discussing the one-component and two-component states of filling factor
ν̃ = 2/3 for electrons with spin degree of freedom.

The first state is the ν̃ = 2/3 polarized state in which all electrons have the same spin.
It is the particle-hole symmetric of the Laughlin state with filling factor ν̃ = 1/3. Here
we can use the composite fermion theory to establish the relation between the number of
electrons Ne and the number of magnetic flux quanta Nϕ. This state corresponds to a
picture of 2CF in negative flux where the 2CFs occupy the lowest and the second Λ-levels.
Let N∗

ϕ < 0 be the number of effective magnetic flux quanta, on the spherical geometry,
the total number of electrons (or 2CF) equals Ne = (|N∗

ϕ|+ 1) + (|N∗
ϕ|+ 3) = 4− 2N∗

ϕ,

so N∗
ϕ = 2− Ne

2
. By substituting into the relation Nϕ = N∗

ϕ + 2p(Ne − 1) with 2p = 2,

we get Nϕ =
3

2
Ne. The spin of the electrons in this state is selected by the Zeeman

effect. In the absence of the valley pseudoZeeman field, this state exhibits a SU(2) valley
symmetry because the point-contact interaction HV has no effect on this valley polarized
state.

The second state is the SU(2) singlet state in which each of the two components
has the filling factor 1/3. We can view this state in the composite fermion picture as
one Λ level occupied by a singlet pair of 2CF. Therefore, on the spherical geometry,

Ne = 2(|N∗
ϕ|+ 1) = 2(−N∗

ϕ + 1), so N∗
ϕ = 1− Ne

2
. This implies the relation between

Ne and Nϕ: Nϕ =
3

2
Ne − 1. That means the ν̃ = 2/3 singlet and polarized states have

different shifts on the spherical geometry. Previous studies show that the SU(2) singlet
state has lower energy than the polarized state [65]:

E(1/3,1/3) < E(2/3,0) (5.2)
The previous reasoning is still valid when we generalize from the two-dimensional

Hilbert space to the four-dimensional spin-valley Hilbert space. The singlet state of flavor
composition (1/3, 1/3, 0, 0) has lower Coulomb energy than the polarized state of flavor
composition (2/3, 0, 0, 0). Similarly to the Laughlin state ν̃ = 1/3, the one-component
state (2/3, 0, 0, 0) does not feel the point-contact interaction HV and exhibits a SU(2)
valley symmetry. By contrast, the two-component singlet state (1/3, 1/3, 0, 0) has a
nonvanishing probability for two electrons to be present at the same location in space.
Consequently, its energy levels are split by anisotropies, giving rise to broken-symmetry
phases. Similarly to the two-component state at charge neutrality ν = 0, which has two
components totally occupied by electrons, we can see this two-component singlet state
as a two sub-Λ levels fully occupied by 2CF under negative flux. The phase diagram of
the state (1/3,1/3,0,0) is therefore similar to the phase diagram of the charge neutrality
point case (section 3.7).

Apart from the previous two cases, there are the SU(3) and SU(4) singlet states with
total filling factor ν̃ = 2/3 in which electrons equally occupy three and four components

equally. They both have the shift Nϕ =
3

2
Ne − 2 and have lower Coulomb energy than
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their one- and two-component counterparts [104]. These states cannot be described by
the composite fermion picture. Unfortunately, one cannot establish their phase diagrams
by using the variational method. The nature of the broken-symmetry phases of those
states is still unknown.

5.3 . The fraction ν̃ = 4/3

For fraction ν̃ = 4/3, there are two candidate ground states, both of them are
exact SU(4) eigenstates. The first one is the (1, 1/3) state obtained by gluing the
ν̃ = 1/3 polarized state to the ν̃ = 1 shell. We can obtain this state by considering a
ν̃ = 2/3 polarized state and making the particle-hole transformation on both components.
The second one is the (2/3, 2/3) state. We obtain this state by applying particle-hole
transformation on both components of a ν̃ = 2/3 SU(2) singlet. We refer to the ν̃ = 2/3
polarized state and SU(2) singlet state as the seed states.

Let Eν̃ be the energy per flux quantum of the seed state of filling fraction ν̃ (0 <
ν̃ < 1), and E1 = −

√
π/8e2/(εl) the energy per flux quantum of the state having one

completely occupied component. The energy of the two-component state obtained by
taking particle-hole transformation on this seed state is given by (section 4.4):

E2−ν̃ = Eν̃ + (1− ν̃)2E1 (5.3)
Let E2/3 be the energy per flux quantum of the ν̃ = 2/3 polarized state, the energy

of the two-component state (1, 1/3) is given by:

E(1,1/3) = E2−2/3 = E2/3 +
2

3
E1 (5.4)

Let E(1/3,1/3) be the energy per flux quantum of the ν̃ = 2/3 singlet state, the energy
of the two-component state (2/3, 2/3) is given by:

E(2/3,2/3) = E2−(1/3,1/3) = E(1/3,1/3) +
2

3
E1 (5.5)

It is well known that the singlet ν̃ = 2/3 state has lower Coulomb energy than
the polarized ν̃ = 2/3 state: E(1/3,1/3) < E2/3 in the thermodynamic limit [65]. This
implies that the state (2/3, 2/3) has lower Coulomb energy than the state (1, 1/3) in
the thermodynamic limit.

On the torus geometry, there is no shift, so these two states directly compete when
we fix the number of electrons Ne and the number of flux quanta Nϕ. The (1, 1/3)
state is the excited state, so it is computationally demanding to study it. Therefore, we
numerically study the problem on the spherical geometry instead.

5.3.1 . The (1, 1/3) state
Let N1 and N2 be the number of electrons in the fully occupied and in the partially

occupied components, respectively. The total number of electrons is Ne = N1 +N2. In
the spherical geometry, they are related to Nϕ as follows:

Nϕ =N1 − 1

Nϕ =3(N2 − 1)
(5.6)
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Figure 5.1: Energy levels of the (1, 1/3) state on the sphere with Ne = 10, Nϕ = 6 as a function of
anisotropy. The unperturbed parent state belongs to the SU(4) irreducible representation (7,3,0,0). In
the SU(4) limit, this irreducible representation is the fourth excited state (fifth lowest-lying state). The
energy of the SU(4) parent state is E = −6.3347e2/εl (dashed blue horizontal line). The vertical lines
mark the high symmetry lines of the anisotropy model we use.

This implies the relation between Ne and Nϕ:

Ne =
4

3
Nϕ + 2 (5.7)

We perform exact diagonalizations on the system with Ne = 10 and Nϕ = 6. The
corresponding SU(4) irreducible representation is (7, 3, 0, 0). In the SU(4) limit, the
energy of the ground state of the system is −6.33470e2/(εl) (Fig. 5.1). In the presence
of anisotropies, the flavor occupation numbers are no longer good quantum numbers
of the system. Instead, the valley and spin quantum numbers T z, S, Sz are good
quantum numbers of the many-electron wavefunction. A sector with well-defined Sz

and T z quantum numbers comprises different states belonging to different irreducible
representations. The SU(4) irreducible representation (7,3,0,0) of the state (1,1/3) is
the fourth excited state (fifth lowest-lying state) for Ne = 10, Nϕ = 6.

We show the energy levels of the ν̃ = 4/3 state with Ne = 10, Nϕ = 6 in Fig. 5.1.
We have used a small value g = 10−4 to avoid mixing between nearby irreducible
reprensentations. Valley anisotropies split the energy levels having different quantum
numbers. The flavor of the ground state changes with the anisotropy angle θ. The phase
diagram (Fig. 5.2) consists of 4 phases with the same range of existence as in the case
of ν = 0. Nevertheless, they do not have the same quantum numbers as predicted by
the variational method.
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(a) Variational method
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(b) Exact diagonalization

Figure 5.2: Phase diagrams of the state (1, 1/3) calculated by using (a) the variational method and (b)
the exact diagonalization method. The two phase diagrams have the same shape.

Phase Variational method Exact diagonalizationF {|t, s⟩, | − t, s⟩} −2 ≤ T z ≤ 2, S = 5AF {|K, s⟩, |K ′,−s⟩} T z = 0, S = 0KD {|t⊥, s⟩, |t⊥,−s⟩} T z = 0, S = 2CDW {|K, s⟩, |K,−s⟩} T z = 5, S = 2

Table 5.1: The flavor composition (variational method) and quantum number (exact diagonalization) of
the 4 phases of the (1, 1/3) state.

1. The first phase with quantum numbers −2 ≤ T z ≤ +2, S = 5 spans the region
−π/4 < θ < +π/2. It corresponds to the Ferromagnetic (F) phase calculated
by using the variational method. According to the variational method, the spin
is fully polarized, consistently to the maximum possible spin S = 5 done using
exact diagonalizations. Because N1 = 7, N2 = 3, we can obtain the maximal
valley polarization T z = 2 if t = K, while the valley quantum number T z = 0
corresponds to t = t⊥.

One remarks that the degeneracy of the states with −2 ≤ T z ≤ 2 occurs although
the Hamiltonian HV does not have the SU(2) symmetry in the whole region, except
when θ = π/4. We explain this valley multiplet as follows: The particle-hole
conjugate of the two-component (1, 1/3) state is the ν̃ = 2/3 polarized state of
holes. In this state, the holes occupy the same valley. Because holes obey the Pauli
exclusion principle, the wavefunction vanishes when two holes coincide in space.
Therefore, the point-contact interaction HV has no effect on this valley polarized
state. Consequently, anisotropies do not split states with different valley quantum
numbers, resulting in a valley multiplet. We already showed this argument for the
ν̃ = 1/3 state, and it still holds for all one-component states and their particle-hole
symmetry images.

2. The second phase with quantum numbers T z = S = 0 spans the region +π/2 <
θ < +3π/4. This phase is naturally antiferromagnetic (AF). However, the
variational method gives the quantum number S = 2 and T z = 2. This phase is
not captured by the variational method.
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Phase Variational method Exact diagonalizationF {|t, s⟩, | − t, s⟩} T z = 0, S = 4AF {|K, s⟩, |K ′,−s⟩} T z = 0, Sz = 0KD {|t⊥, s⟩, |t⊥,−s⟩} T z = 0, Sz = 0CDW {|K, s⟩, |K,−s⟩} T z = 4, Sz = 0

Table 5.2: The flavor composition (variational method) and quantum number (exact diagonalization) of
the 4 phases of the (2/3, 2/3) state.

3. The third phase with quantum numbers T z = 0, S = 2 spans the region +3π/4 <
θ < +5π/4. This phase is consistent with the flavor composition predicted by the
variational method. We call this phase Kékulé Distortion (KD).

4. The fourth phase with quantum numbers T z = 5, S = 2 spans the region +5π/4 <
θ < +7π/4. The spin is correctly predicted by the variational method, while the
maximal valley polarization means that all electrons reside in the same valley. This
is the property of the Charge Density Wave (CDW) phase.

All the phase transitions are first-order. The total spin and valley polarizations led us
to name the four phases F, AF, KD, and CDW. The phase diagram of the (1, 1/3) state
has the same shape as that of the charge neutrality ν = 0 case (Fig. 5.2). We cannot
describe the AF phase by using the trial wavefunction with spinors |α⟩ and |β⟩ in the
case of ν = 0.

5.3.2 . The (2/3, 2/3) state

The relation between Ne and Nϕ for the SU(2) singlet state ν̃ = 2/3 is Nϕ =
3

2
Ne−1

with N1 = N2 =
Ne

2
the occupation numbers of the two components. By making a

particle-hole transformation N1,2 → Nϕ + 1 − N1,2, we obtain the (2/3, 2/3) state in
which

Nϕ =
3

2
(2(Nϕ + 1)−Ne)− 1 = 3Nϕ −

3

2
Ne + 2 (5.8)

so that

Nϕ =
3

4
Ne − 1 (5.9)

The two-component state has the highest weight (Ne/2, Ne/2, 0, 0). We perform
exact diagonalizations on the sphere with Ne = 8, Nϕ = 5. The irreducible representations
(4,4,0,0) is the ground state (lowest-lying state) for Ne = 8, Nϕ = 5 for each sector
of defined quantum numbers (Tz, Sz) with energy −5.20768e2/(εl) in the SU(4) limit
(Fig. 5.3).

The energy level spectrum of the state is shown in Fig. 5.3. For each value of the
anisotropy angle θ, the ground state quantum numbers are the same as those of the
charge neutrality case ν = 0 (Table. 5.2). We also have 4 phases F, AF, KD, and CDW.
The phase diagram is consistent with the results of the variational method. There is no
ground-state level crossing at the AF/KD phase transition boundary. The results of the
variational method and that of exact diagonalizations are consistent.
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Figure 5.3: Energy levels of the (2/3, 2/3) state on the sphere with Ne = 8, Nϕ = 5 as a function of
anisotropy. The unperturbed parent state belongs to the SU(4) irreducible representation (4,4,0,0). In
the SU(4) limit, this irreducible representation is the ground sate (lowest-lying state). The energy of the
SU(4) parent state is E = −5.20768e2/εl (dashed blue horizontal line). The vertical lines mark the
high symmetry lines of the anisotropy model we use.
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Phase Variational method Exact diagonalizationF {|t, s⟩, | − t, s⟩} 1/2 ≤ T z ≤ 3/2, S = 11/2AF {|K, s⟩, |K ′,−s⟩} T z = 3/2, 1/2 ≤ Sz ≤ 3/2KD {|t⊥, s⟩, |t⊥,−s⟩} T z = 1/2, Sz = 3/2CDW {|K, s⟩, |K,−s⟩} T z = 11/2, 1/2 ≤ Sz ≤ 3/2

Table 5.3: The flavor composition (variational method) and quantum number (exact diagonalization) of
the 4 phases of the (1, 2/3) state.

5.4 . The fraction ν̃ = 5/3

For fraction ν̃ = 5/3, there are two candidates for the ground state which are exact
SU(4) eigenstates. The two-component state (1, 2/3) is obtained by gluing the ν̃ = 2/3
polarized state to a fully filled ν̃ = 1 shell. The three-component state (1, 1/3, 1/3) is
obtained by gluing the ν̃ = 2/3 singlet state to a fully occupied component.

According to (4.11) and (4.13), the Coulomb energy per flux quantum of a multicom-
ponent state formed by adding a seed state of filling factor ν̃ to a fully occupied shell is
given by:

E1+ν̃ = Eν̃ + E1 (5.10)
Therefore, the Coulomb energies of the two fraction ν̃ = 5/3 states are given by:

E(1,2/3) =E2/3 + E1

E(1,1/3,1/3) =E(1/3,1/3) + E1

(5.11)
Because E(1/3,1/3) < E2/3 [65], we have E(1,1/3,1/3) < E(1,2/3). The three-component

state (1, 1/3, 1/3) has lower Coulomb energy than the two-component state (1, 2/3).

5.4.1 . The two-component state (1, 2/3)

Let N1 and N2 be the numbers of electrons occupying the fully filled shell and the
polarized ν̃ = 2/3 component of the state (1, 2/3), respectively. The total number of

electrons in the system is Ne = N1 + N2. We have Nϕ = N1 − 1, Nϕ =
3

2
N2. This

implies that:

Nϕ =
3

5
(Ne − 1) (5.12)

We perform exact diagonalization with Ne = 11, Nϕ = 6 on the sphere. In the
SU(4) limit, the energy of the ground state of the irreducible representation (7,4,0,0) is
−7.02375e2/(εl). By taking into account the anisotropies, this state is the sixth excited
state (seventh lowest-lying cluster) for Ne = 7, Nϕ = 4.

We show the energy level spectrum in Fig. 5.4 and the quantum numbers of the
ground states in Table. 5.3. The phase diagram of the (1, 2/3) state has 4 phases,
similarly to the phase diagram of the (1, 1/3) state:

1. The first phase spans on the range −π/4 < θ < +π/2 and has quantum numbers
1/2 ≤ T z ≤ 3/2, S = 11/2. The fully spin polarization allows us to call it the
Ferromagnetic (F) phase. Similarly to the case (1, 1/3), there is an exact SU(2)
valley degeneracy in the whole F phase. The spin and valley quantum numbers are
consistent with the spinors obtained by using the variational method.
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Figure 5.4: Energy levels of the (1, 2/3) state on the sphere with Ne = 11, Nϕ = 6 as the function of
the anisotropy. The unperturbed parent SU(4) irreducible representation is (7,4,0,0). In the SU(4) limit,
this representation is the sixth excited state (seventh lowest-lying state). The energy of the SU(4) parent
state is E = −7.02375e2/εl (dashed blue horizontal line). The vertical lines mark the high symmetry
lines of the model we use.
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2. The second phase spans the range +π/2 < θ < +3π/4 and has quantum numbers
T z = 3/2, 1/2 ≤ Sz ≤ 3/2. This phase has an antiferromagnetic (AF)
behavior.

3. The third phase spans the region +3π/4 < θ < +5π/4 and has quantum numbers
T z = 1/2, Sz = 3/2. The valley quantum number T z = 1/2 is consistent to a
XY-valley polarization t = t⊥ in the context of the variational method (because
the total number of electrons is odd, we do not have T z = 0). However, the spin
quantum number Sz = 3/2 corresponds to a spin polarization s =↑ or s =↓ instead
of an arbitrary spin polarization s as predicted by the variational method. This
phase is a Kékulé Distortion (KD) phase.

4. The fourth phase spans the region +5π/4 < θ < +7π/4 and has as quantum
number T z = 11/2, 1/2 ≤ Sz ≤ 3/2. The fully valley polarization indicates that
this is a Charge density wave (CDW) phase. This is consistent with the spinors
obtained by using the variational method.

The phase diagram of the (1, 2/3) state has the same shape when it is calculated
by both methods. Due to the difference in quantum numbers between the AF and KD
phases, there is a level-crossing phase transition at the SO(5) phase boundary.

5.4.2 . The three-component state (1, 1/3, 1/3)

In the three-component state (1, 1/3, 1/3), we replace the ν̃ = 2/3 polarized state
by the ν̃ = 2/3 singlet state. Let N1 be the number of electrons in the fully filled
component, N2 = N3 be the number of electrons in the two flavors of the singlet state.
For the fully filled component, we have Nϕ = N1 − 1. For the singlet state, we have:

Nϕ =
3

2
(N2 +N3)− 1 = 3N2 − 1 (5.13)

Because Ne = N1 +N2 +N3, we obtain the relation between Ne and Nϕ:

Nϕ =
3

5
Ne − 1 (5.14)

We study the case Ne = 10, Nϕ = 5 on the sphere. In the SU(4) limit, the parent
irreducible representation is (6,2,2,0) with energy −6.60948e2/(εl). By taking into
account anisotropies, the (6,2,2,0) irreducible representation is the lowest-lying energy
irreducible representation for Ne = 10, Nϕ = 5. Its energy level spectrum is shown in
Fig. 5.5.

There are differences between the phase diagrams calculated by using the variational
method (Fig. 5.6a) and the exact diagonalization method (Fig. 5.6b). The former is
obtained from the results of subsection 4.6.2 by substituting ν = 1/3 and consists of 4
phases: A, B, F, and E. The later is obtained by extracting the quantum numbers of
the ground states from exact diagonalization results and contains 5 phases: A, B, C,
E1 and E2. The corresponding spinor composition and quantum numbers are shown in
Table. 5.4.

1. Phase A spans the region π/4 < θ < 3π/4. It can be described by the spinor
composition {|K, s1⟩, |K ′, s2⟩, |K ′,−s2⟩} and the quantum numbers T z = 1, S =
3. Phase A has Ising valley order.
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Figure 5.5: Energy levels of the filling factor ν = 5/3 with Ne = 10, Nϕ = 5 as a function of the
anisotropy angle θ. The unperturbed parent state belongs to the irreducible representation (6,2,2,0).
This irreducible representation is the lowest-lying state for Ne = 10, Nϕ = 5. The energy of the SU(4)
parent state is E = −6.60948e2/εl (dashed blue horizontal line). The vertical lines mark the high
symmetry lines of the model we use.
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Figure 5.6: Phase diagrams of the (1, 1/3, 1/3) state calculated by using (a) the variational method and
(b) exact diagonalization.
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Variational method Exact diagonalizationPhase Spinor composition Phase Quantum numbersA {|K, s1⟩, |K ′, s2⟩, |K ′,−s2⟩} A T z = 1, S = 3B {|t⊥, s1⟩, | − t⊥, s2⟩, | − t⊥,−s2⟩} B T z = 0, S = 3F {|K, s⟩, |K ′, s⟩, |K,−s⟩} C T z = 0, S = 0E {|t1, s⟩, |t2,−s⟩, | − t2,−s⟩} E1 T z = 3, S = 1E2 Tz = 0, S = 1

Table 5.4: Spinor composition (variational method) and quantum numbers (exact diagonalization) of
the phases of the (1, 1/3, 1/3) state.

2. Phase B spans the region −π/4 < θ < +π/4. It has the same spin polarization
as phas A, but has a XY valley order instead. We can describe phase B by the
spinor composition {|t⊥, s1⟩, | − t⊥, s2⟩, | − t⊥,−s2⟩} with the quantum numbers
T z = 0, S = 3.

3. The transition between Phase A and Phase B is first-order and associated to the
change of the Ising valley order of Phase A to the XY valley order of Phase B.

4. In the region 3π/4 < θ < 3π/2, the variational method predicts a phase E with
flavor composition {|t1, s⟩, |t2,−s⟩, | − t2,−s⟩}. Exact diagonalization finds two
different phases E1 and E2, separated by the transition line θ = 5π/4. Both E1

and E2 have spin S = 1, but they have different valley orders:

(a) Phase E1 lies in range 3π/4 < θ < 5π/4 and has Ising valley order. Its
spinor composition is {|K, ↑⟩, |K, ↓⟩, |K ′, ↓⟩}, corresponding to t1 = t2 = K,
s =↑.

(b) Phase E2 lies in range 5π/4 < θ < 7π/4 and has XY valley order. Its spinor
composition is {|t⊥, ↑⟩, |t⊥, ↓⟩, | − t⊥, ↓⟩}, corresponding to t1 = t⊥, t2 =
±t⊥.

(c) The phase transition between E1 and E2 changes the valley order between Ising-
like order and XY-like order. The variational approach does not distinguish
between the Ising and XY valley orders and shows that the two phases are
energetically degenerate.

5. In the region 3π/2 < θ < 7π/4, there is the fifth phase that we call Phase C.
Phase C is spin singlet S = 0 and valley unpolarized T z = 0. This phase is not
predicted by the variational method according to which in this region there is a
phase F with Ising valley order. Finding a wavefunction with the correct quantum
number for phase C remains an open question.

To explore the nature of the phase C, we calculated the pair correlations between
electrons with different flavors. Here we denote the ground state as |ΨGS⟩ and calculated
the pair correlation functions for the ground state at θ = 3π/2 + π/8 (phase C). The
formula of the pair-correlation function between one electron in flavor |α⟩ and one electron
in flavor |β⟩, separated by a distance r is given by:

gαβ(r) = ⟨ΨGS|
∫
d2r1d

2r2ψ̂
†
α(r1)ψ̂

†
β(r2)δ(r1 − r2 − r)ψ̂β(r2)ψ̂α(r1)|ΨGS⟩ (5.15)
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Figure 5.7: The pair correlation functions gαβ(r) calculated for phase C (anisotropy angle θ = 3π/2+π/8).
The results are calculated on the sphere for Ne = 10, Nϕ = 5.

In this formula, the coordinate on the sphere are r1,2 =
R(sin θ1,2 cosϕ1,2, sin θ1,2 sinϕ1,2, cos θ1,2) where the radius of the sphere is re-
lated by the monopole strength by R =

√
|Q| (see Appendix A). The chord distance is

defined as r = 2R sin
θ

2
. In phase C, Sz = 0 and T z = 0, so there are four independent

combinations of spin and valley as shown in Fig. 5.7. At short distance, the leading
correlation is gK↑K↓(0) = gK′↑K′↓(0) and has a maximum value at r = 0. All the other
three correlations have minimum at r = 0. This shows that the phase C forms spin
singlet S = 0 pairs in each valley.

5.5 . Spin transitions

We consider the polarized and SU(2) singlet states of filling factor ν̃ = 2/3. In the
absence of the Zeeman field, the singlet state has the lower Coulomb energy, so it is
the ground state and the polarized state is the excited state. When the Zeeman energy
gets stronger, the energy of the polarized state gets lower while the energy of the singlet
state remains unchanged. At a critical magnetic field Bcrit, the polarized state has lower
energy than the singlet state and becomes the ground state. The crossing between the
two levels happens when the Zeeman energy is strong enough to balance the difference
∆E in the Coulomb energy between the two states:

∆E = ϵZBcrit (5.16)
The situation in graphene is more complicated. The energy per particle of the state i
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is given by:
εi = ECi + aiB + εZm (5.17)

where ECi is the Coulomb energy of the state i, which is proportional to
√
B. aiB is

the anisotropy energy that is proportional to the magnetic field B. The third term εZm
is the Zeeman energy, which depends on the magnetization per particles m and is also
proportional to B because εZ is proportional to B.

We consider two states i = 0 and i = 1. Their energies are given by:

ε0 =EC0 + a0B + εZm0

ε1 =EC1 + a1B + εZm1

(5.18)
A spin transition happens between the two states 0 and 1 when the Coulomb energy

difference ∆ε01 = EC1 − EC0 equals to the contribution from anisotropies and Zeeman
energy. It happens at a critical magnetic field Bcrit such that:

∆ε01(Bcrit) = (a0 − a1 + z)Bcrit (5.19)
The Zeeman factor z depends on the magnetization of the two competing states. In

graphene, z takes different values at different places of the anisotropy phase diagram.
In the previous sections, we studied the competition between numerous fractional

quantum Hall states having the same filling factor but with different flavor partitions. In
this section, we studied the spin transition between them. We restrict our examination
to the case where the magnetic field is perpendicular to the graphene plane and ignore
the effect of spin canting.

5.5.1 . Fraction ν̃ = 2/3

At filling factor ν̃ = 2/3, the polarized state is nonsenstive to short-range valley-
dependent anisotropies (encoded in the Hamiltonian HV ) while the singlet state has the
phase diagram of 4 phases: F, AF, CDW, and KD. The KD and CDW phases are spin
singlet and insensitive to the Zeeman effect. Hence, there is no spin transition between
the singlet state in KD and CDW phase to the one-component polarized state. Therefore,
we expect a spin transition towards the fully polarized state (F). When the magnetic
field gets stronger, the AF phase turns into the CAF phase and becomes finally the fully
polarized F phase beyond some field value. This fully polarized F state lowers in energy
at the same rate as the one-component ν̃ = 2/3 state, and consequently there is no
crossing. In conclusion, there is no spin transition for the ν̃ = 2/3 state.

5.5.2 . Fraction ν̃ = 4/3

For fraction ν̃ = 4/3, there are two competing states (1, 1/3) and (2/3, 2/3). The
phase diagrams of these two states have the same shape: they have the same number
of phases and the phases lie on the same domains. However, they have different total
magnetizations. The phase F in both cases have the same total spin value, so there
is no crossing and no transition between the two states as we increase the magnetic
field: both stay in their ferromagnetic state and the occupation of electrons in the
components remains unchanged. For the phases KD and CDW, the state (2/3, 2/3) has
no net magnetization, while the state (1, 1/3) has a net magnetization due to unequal
occupation between the two components. For this reason, we expect a spin transition
between the two states (2/3, 2/3) and (1, 1/3) when they are in those two phases.
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5.5.3 . Fraction ν̃ = 5/3

For fraction ν̃ = 5/3, there are two competing states (1, 2/3) and (1, 1/3, 1/3).
Their phase diagrams have different shapes and do not overlap in the (V⊥, Vz) plane,
leading to a more complicated situation. We use the phase diagram of the (1, 2/3)
state as reference to examine the spin transition. In the region −π/4 < θ < +π/2, the
higher energy (1, 2/3) state stays in the ferromagnetic phase and is fully spin polarized
M =Msat. In this region, the lower energy (1, 1/3, 1/3) state stays in phase A or phase
B, and is partially spin polarized M = Msat/ν̃ = 3Msat/5. Consequently, we expect a
spin transition between the two states. In the region +π/2 < θ < +3π/4, the (1, 2/3)
state stays in the AF phase with magnetization M = Msat/3 while the (1, 1/3, 1/3)
state stays in the phase A with magnetization M = Msat/ν̃. We also expect a spin
transition between the AF phase with flavor occupation fractions (1, 2/3) and the A
phase with flavor occupation fractions (1, 1/3, 1/3). In the region +3π/4 < θ < +7π/4,
the (1, 2/3) state stays in the KD and CDW phases and has magnetization M =Msat/5.
In this region, the (1, 1/3, 1/3) state stays in phase C with M = 0 and phases E1, E2

with magnetization M =Msat/5. It shows that there is no spin transition in the domains
of the phases E1 and E2, whereas there is spin transition in the other regions of the
phase diagram. The critical magnetic field Bcrit is phase-dependent because there are
the contributions ai from anisotropies to the value of the critical field, and they are still
unknown.

We summarize the general picture of spin transitions. Under small Zeeman energy,
the states with maximal spread-out of electrons in various spin-valley components such
as (2/3, 2/3) and (1, 1/3, 1/3) are preferred. At high Zeeman energy, spin transitions
occur, leading to the transition to fewer-component states like (1, 1/3) and (1, 2/3).

5.6 . Conclusion

In this chapter, we have studied the effect of short-range valley-dependent anisotropies
on graphene in the fractional quantum Hall regime. In the case of the two-component
states (1/3,1/3), (2/3,2/3) and (1,2/3), the phase diagram is similar to that of the
charge neutrality case ν = 0. The phase diagram consists of four phases: F, AF, KD,
and CDW. This phase diagram is given by exact diagonalizations in agreement with
a variational approach involving Coulomb eigenstates. The quantum numbers of the
phases are the same as in the case of charge neutrality for states (1/3,1/3) and (2/3,2/3)
because they have equal occupation numbers in both components.

For state (1,2/3), due to the unequal occupation numbers between the two compo-
nents, the phases AF, KD and CDW are partially spin polarized. In this case, the first-order
phase transition between the AF and the CDW phases involves level crossing, because
those phases do not have the same quantum numbers. This aspect is different to the
cases where the two occupied components have the same filling factor. We also recognize
an emergent SU(2) valley symmetry for the phase F, even though the Hamiltonian does
not have this symmetry. This is because the (1,2/3) state is the particle-hole symmetric
of the one-component Laughlin state, which does not feel point-contact short-range
valley interaction, and consequently the later cannot lift its energy levels.

In the case of the (1,1/3) state, there are also four phases and the shape of the phase
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diagram is similar to that of the previous cases. However, the quantum numbers are not
those predicted by the variational method. The fully spin-polarized F phase also escapes
the effect of the short-range valley-dependent anisotropies and exhibits the emergent
SU(2) valley symmetry, similar to the case of the (1,2/3) state. The quantum numbers
of the KD-like and the CDW-like phases are correctly predicted. However, the AF phase
is spin singlet and has no net valley polarization.

The most interesting case is the state (1,1/3,1/3). There are five phases, two of
them are predicted variationally. They lie in the region where V⊥ + Vz > 0. There are
also two phases which differ in the Ising and XY-valley polarization, but according to the
variational approach, they are degenerate. Notably, the last phase is spin singlet and has
no net valley polarization while the variational approach predicts that it has Ising-like
valley. This phase occurs in the region of negative Ising-like anisotropies. Actually, there
is no wavefunction which were able to describe its behavior. The nature of this phase
remains an open question. Experimentally realizing this phase requires low Zeeman energy
to prevent phase transition to the more polarized (1,2/3) state.

Present experiments are likely to observe the two-component states (1,1/3) and
(1,2/3). In samples with hBN substrate, the sublattice-splitting energy is of the order
of meV to tens of meV, and is comparable to the Coulomb energy scale, so the valley
degree of freedom is likely to be polarized, preferring two-component states. At charge
neutrality ν = 0, the effect of the sublattice-splitting energy is to shift the phase diagram
so that the region of stability of the valley-polarized CDW phase smears out over the
other phases for weak V⊥ and Vz. The critical value of the magnetic field of the transition
between singlet state and polarized state should be small and we are still uncertain about
this critical value.

Actual experiments mainly focus on identifying the phase at charge neutrality ν = 0.
Though, isospin transition was observed for fractional quantum Hall states for various
filling factors [97], suggesting a plethora of phase transitions whose nature needs to be
investigated. By the way, recent scanning tunelling microscopy experiments have given
evidence of a more complicated picture at charge neutrality ν = 0, beyond the scope of
the standard theory [31, 71]. Finally, experimentally controlling the parameters V⊥ and
Vz is still an open question.

88



Chapter6 - Quantum Hall effect in Bernal-stacked
Bilayer graphene

6.1 . Introduction to the chapter

We move on to the second project of my thesis: Competition between Laughlin state
and Wigner crystal in Bernal-stacked bilayer graphene. The results of this project are
published in Ref. [105]. The content of this project spans over three chapters: In this
chapter we review bilayer graphene and the quantum Hall effect in this material. Chapter
7 is a short review about the Wigner crystal phase - the solid of electrons - which is a
competing phase to the quantum Hall liquid. And finally chapter 8 will present the result
of our work: the competition between the quantum Hall liquid and the Wigner crystal in
Bernal-stacked bilayer graphene at filling factor ν = 1/3.

Bernal-stacked bilayer graphene (BLG) contains two monolayer graphene layers,
stacked together so that one atom of the upper layer is above one atom of the lower layer,
while the other two atoms do not have counterpart in the opposite layer. The two Landau
levels N = 0 and N = 1 of BLG are nearly degenerate. They allow us to define the orbital
degree of freedom, acting like a pseudospin with two values N = 0 (pseudospin-up) and
N = 1 (pseudospin-down). This degree of freedom offers an easy way to control the
many-body physics in BLG, due to its tunability. The eight single-electron states inside the
central Landau level are characterized by three quantum numbers: spin, valley and orbital.
One can control the energy splitting between any two of those eight single-electron levels
by either changing the Zeeman and the pseudo-Zeeman energies. Hence, there are a
plenty of single-electron level crossings inside the central Landau level. It promises to
discover special properties of the quantum Hall physics in the vicinity of those level
crossings.

In this chapter, we will begin by reviewing the experimental situation of the quantum
Hall effect in BLG. And then, we will show the BLG crystalline and electronic structures.
We will discuss the effective four-band model and derive a simpler low-energy two-band
model. After that, we derive the Landau level spectrum using the two-band model. We
will focus on the central Landau level and define the two parameters γ and ∆10 controlling
the physics of this eightfold nearly degenerate Landau level. We will finish the chapter
by discussing the Coulomb interaction and screening. The chapter prepares the necessary
knowledge to discuss the competition between quantum Hall liquid and Wigner crystal in
chapter 8.

6.2 . Experiments on the quantum Hall effect in Bernal-stacked Bilayer
graphene

The quantum Hall effect was discovered in BLG in 2006 [22]. At that time, physicists
knew two types of quantum Hall effects. The first one is the quantum Hall effect in
conventional semiconductors (see Fig. 6.1a). It corresponds to the integral quantization
of the Hall conductivity σxy = Nge2/h(N ∈ N) where g is the degeneracy due to the
presence of the spin and valley degrees of freedom. The Landau levels in this quantum Hall
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(a)

(b)

(c)

Figure 6.1: 3 types of quantum Hall effects: (a) The quantum Hall effect in conventional semiconductors.
The Hall conductivity is quantized at integer values of ge2/h. (b) The quantum Hall effect in monolayer
graphene. The values of the Hall conductivity is shifted by 1/2 step compared to the Hall conductivity
in conventional semiconductors. (c) The quantum Hall effect in BLG. The step of the Hall plateau at
density n = 0 has twice the height as the other steps. In both cases (b) and (c) the central Landau level
is half-filled at charge neutrality n = 0, represented by two maxima in density of states for electrons and
holes at both sides of the vertical axis.
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effect have spectrum EN = ℏωc(N + 1/2)(N ∈ N). The second kind of quantum Hall
effect is the relativistic quantum Hall effect in monolayer graphene, which is associated
to the half-integer quantization of the Hall conductivity σxy = (N + 1/2)ge2/h(N ∈ N)
(Fig. 6.1b). Here g = 4 due to the presence of the spin and valley degrees of freedom.
The Landau levels in this quantum Hall effect have spectrum EN = ±ℏωc

√
N(N ∈ N).

Its central Landau level has zero energy and is half-filled at charge neutrality. We discussed
these kinds of quantum Hall effects in Chapters 2 and 3, respectively.

The quantum Hall effect in BLG is the third type of quantum Hall effect (Fig. 6.1c).
It shows an integer quantization of the Hall conductivity σxy = Nge2/h(N ∈ N, N ≥ 1).
The degeneracy is g = 4 because low-energy electrons in BLG have the spin and valley
degrees of freedom. However, experiments do not observe the plateau σxy = 0 (Fig. 6.2).
Nevertheless, the step at which σxy passes through the value 0 has twice the height
as all the other steps. This transition happens when the electron density is n = 0, at
which the longitudinal resistance ρxx has a high and broad peak. It suggests that the
transition from the lowest hole level to the lowest electron level requires twice the number
of carriers needed for the transitions between the other Landau levels. This implies that
the central Landau level in BLG has a double degeneracy compared to all the other
Landau levels. This experimental result is consistent with the theory, according to which
the two Landau levels N = 0 and N = 1 are approximately energetically degenerate [106].
The approximate degeneracy of these two Landau levels allows for defining the orbital
degree of freedom. Here the orbital N = 0 plays the role of the pseudospin-up while
the orbital N = 1 plays the role of the pseudospin-down. These two nearly degenerate
orbitals, with the spin and valley degrees of freedom form an eightfold nearly degenerate
central Landau level. This central Landau level octet provides a richer example of the
quantum Hall ferromagnetism [107].

The quantum Hall effects with all integer filling factor −4 ≤ ν ≤ 4 were observed in
BLG [109, 110]. They show evidence for the splitting of the central Landau level octet.
Similarly to monolayer graphene, this phenomenon is explained by the breaking of the
SU(4) symmetry of the Coulomb energy. Unlike monolayer graphene, it was difficult
to observe the fractional quantum Hall effect in BLG. In 2010, Bao et al. observed a
plateau-like feature near the filling factor ν = 1/3, but this plateau is not fully developed
to be considered as an incompressible state [23]. The first accepted evidence of the
fractional quantum Hall effect in BLG was published in 2014. Kou et al. performed
local compressibility measurement on high-quality BLG on hBN substrate and observed
the sequences ν = 2p + 2/3 and ν = 2p + 3/5 with p = −2,−1, 0,+1 [25]. The
even-denominator incompressible states were observed the same year by Ki et al. [24] and
then in later experiments [108, 111]. These results pave the way to study non-abelian
quantum Hall effects in the BLG platform and promise potential applications of topological
quantum computing.

The approximate degeneracy of the two orbitals N = 0 and N = 1 can be lifted
by applying an external electric field perpendicular to the BLG plane. Indeed, BLG is
a zero-gap material, but one can open a band gap when the sample is subjected to a
perpendicular electric field, such as in a gated system [112]. Moreover, this band gap is
tunable, promising the creation of graphene-based field-effect devices. This property still
occurs under a strong magnetic field. Here the two orbitals are separated by the splitting
energy, which is tunable by controlling the applied electric field [113].
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Figure 6.2: (a) Hall resistivity ρxy and longitudinal resistivity ρxx of BLG as a function of the magnetic
field at fixed electron density n = 2.5× 1012 cm−2. Here we observe three plateaus corresponding to
the filling factors ν = 4, 8, 12. (b) The Hall conductivity σxy and longitudinal resistivity ρxx of BLG
under magnetic field. Hall plateaus were observed for σxy = N4e2/h(|N | ≥ 1). There is no Hall plateau
corresponding to σxy = 0 and n = 0. (c) The longitudinal resistance ρxx has a high and broad peak at
n = 0. This suggests that the central Landau level in BLG has twice the degeneracy than the other
Landau levels. The figure is taken from Ref. [22]. Reuse with permission from Springer Nature.
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Figure 6.3: The false color map Rxx of BLG as a function of the filling factor ν and the electric
displacement D between the two BLG layers for filling factors (a) 4/3 < ν < 5/3 and (b) 1/3 < ν < 2/3.
The red circles indicate the valley isospin transition at filling factors ν = 4/3, 7/5, 10/7, 13/9. There is
no isospin transtion for filling factor 1/3 < ν < 2/3, showing that the 2CFs in this range of filling factor
are valley polarized. In this figure D̃ = D+12.5mVnm−1. The figure is taken from Ke Huang, Hailong
Fu, Danielle Reifsnyder Hickey, Nasim Alem, Xi Lin, Kenji Watanabe, Takashi Taniguchi, and Jun Zhu,
Phys. Rev. X 12, 031019 (2022) [108].
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The appearance of intermediate integer filling factors in the central Landau level
shows that the SU(4) symmetry of the spin and valley degrees of freedom is broken,
giving rise to symmetry-breaking orders. We studied this phenomenon in monolayer
graphene in Chapters 3 and 4. Various experimental works observed various symmetry-
breaking phases and signature of phase transitions in integer [114–118] and fractional
[108, 117, 119] quantum Hall regimes. Experiments on dual-gated BLG by Kim et al.
shows a phase transition between a spin-polarized phase to a valley polarized-phase at
charge-neutrality [120]. In 2014, Maher et al. observed the phase transition from the
canted antiferromagnetic phase to a ferromagnetic phase [121]. Recently, Huang et al.
observed the valley isospin transitions for Jain sequences ν = 4/3, 7/5, 10/7, 13/9 while
the states in the range of filling factor 1/3 < ν < 2/3 are valley polarized (Fig. 6.3)
[108]. Several theoretical works also studied this phenomenon [122–124].

In those experiments, the interlayer potential bias, which induces the perpendicular
electric field, plays a crucial role in controlling the phase transition. Especially in the
orbital N = 0, single-electron wavefunctions with a defined valley quantum number are
localized in one of the two layers, so that the valley and the layer degrees of freedom
coincide. In this case, a large external electric field is able to create a layer polarized state,
or in other words, a valley polarized state. By contrast, controlling the valley polarization
in monolayer graphene is more difficult, and one should visualize the electron distribution
using Scanning Tunneling Spectroscopy to make a conclusion on the valley polarization
of the state.

Because the central Landau level octet can be split due to symmetry breaking, a key
question is: in what order the eight components with different valley, spin and orbitals
are filled as the electrons are added to the system? In 2017, Hunt et al. developed a
layer polarization technique to determine the valley and orbital quantum numbers of the
incompressible states [125]. They also established a theoretical model of spin, valley
and orbital in the central Landau level. This model permits to determine the order the
sub-Landau levels are filled knowing the values of the external magnetic and electric fields.
According to this model, the phase transitions occur at the crossing points between the
single-particle levels having different spin, valley, and orbital quantum numbers.

6.3 . Crystal structure of Bernal-stacked Bilayer graphene

The crystal structure of Bernal-stacked bilayer graphene (BLG) is shown in Fig. 6.4.
The structure consists of two parallel graphene sheets, each has lattice parameter
a =2.46Å and two sublattices A and B. They are separated by a distance c =1.42Å.
By denoting the top layer by the index 1 and the bottom layer by the index 2, we
denote the corresponding lattice sites (sublattices) by A1, B1, A2, and B2. Those

four atoms are located at the positions: A1
(
a

2
,− a

2
√
3
, c

)
, B1(0, 0, c), A2(0, 0, 0), and

B2
(
a

2
,
a

2
√
3
, 0

)
. The bond joining the two sites A2 and B1 is perpendicular to the

graphene plane, so these two sites are called the dimer sites. They are directly coupled
by a relatively strong interlayer coupling. The two remaining sites A1 and B2 are called
non-dimer sites. Therefore, a primitive cell of BLG contains four atoms. The primitive
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Figure 6.4: Crystal structure of Bernal-stacked Bilayer graphene. The structure consists of two layers
(top layer-1 and bottom layer-2). Each layer is a graphene sheet having two sites A and B. Therefore,
there are in total four sites: A1, B1, A2 and B2. The lattice parameter of each graphene layer is
a = 2.46Å. The distance separating the two layers is c = 1.42Å. The bond joining the sites A2 and B1
is perpendicular to the graphene plane. Those sites are called the dimer sites. Here the atoms A are red
and the atoms B are blue.

lattice vectors are the same as those of monolayer graphene:

a1 =(a, 0)

a2 =

(
a

2
,

√
3

2
a

) (6.1)

This implies that the first Brillouin zone is a hexagonal and the primitive vectors of
the reciprocal lattice are:

b1 =

(
2π

a
,
2π√
3a

)
b2 =

(
2π

a
,− 2π√

3a

) (6.2)

The two K-points are also located at K
(
4π

3a
, 0

)
and K ′

(
−4π

3a
, 0

)
as in monolayer

graphene.

6.4 . Electronic structure of Bernal-stacked Bilayer graphene

6.4.1 . Band structure: tight-binding model
In this section, we calculate the band structure of BLG by using the tight-binding

method. Early tight-binding models of BLG were based on the model developed by

95



Slonczewski-Weiss-McClure (SWM) for graphite [126, 127]. One can find a detailed proof
of the tight-binding model in the review by McCann and Koshino [128]. An accurate
tight-binding model taking into account up to 17 nearest-neighbors was proposed by
Jung and MacDonald [129]. Here we employ the tight-binding approximation to the
nearest-neighbors.

As previously mentioned, a unit cell of BLG contains 4 atoms: A1, B1, A2, and B2.
Each atom in the unit cell contributes one electron from its pz orbital. In the tight-binding
model, we denote each atom as well as its pz orbital by the index m = 1, . . . , 4. Let N
be the total number of unit cells in the sample, we denote the unit cells by the index
i = 1, 2, . . . , N . The position Ri of the unit cell is coincident with the position of
the B1 atom. The position of the atom m (m =A1, B1, A2, B2) in the unit cell i is

determined by the vector Rmi = Ri + τm where: τ 1 = 0 for A2, τ 2 =

(
a

2
,
a

2
√
3
, 0

)
for B2, τ 3 = (0, 0, c) for B1, and τ 4 =

(
a

2
,− a

2
√
3
, c

)
for A1.

We denote ϕm(r) the atomic wavefunction of the pz orbital of atom m (1 ≤ m ≤ 4).
Here we express the atomic wavefunction under the form of Maximally Localized Wannier
Functions (MLWF) as in Ref. [129]. The expression for the Bloch wavefunction of
momentum k for the orbital m is:

Φk,m(r) =
1√
N

N∑
i=1

eik·Rmiϕm(r−Rmi) (6.3)
or in bra-ket form:

|Φkm⟩ =
1√
N

N∑
i=1

eik·Rmi |ϕm(Rmi)⟩ (6.4)
The Hamiltonian of the tight-binding model up to nearest-neighbor is given by:

H =


εA1 −γ0f(k) γ4f(k) γ3f(k)

∗

−γ0f(k)∗ εB1 γ1 γ4f(k)
γ4f(k)

∗ γ1 εA2 −γ0f(k)
γ3f(k) γ4f(k)

∗ −γ0f(k)∗ εB2

 (6.5)

The matrix is written in the basis (ϕA1, ϕB1, ϕA2, ϕB2). The structure factor has the
same expression as in the case of monolayer graphene:

f(k) = e
iky

a√
3 + 2e

−iky
a

2
√
3 cos

kxa

2
(6.6)

The hopping parameters are defined as follows:

• γ0 is the intralayer hopping parameter and has the formula:

γ0 = −⟨ϕA1(Ri)|H|ϕB1(Rj)⟩ (6.7)
where the two atoms A1 and B1 are nearest-neighbors locating on the top layer.
γ0 is also the hopping parameter between the two sites A2 and B2.
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Figure 6.5: Definition of the hopping parameters between different atomic sites of the BLG lattice.

• γ1 is the hopping parameter between dimer sites:

γ1 = ⟨ϕB1(Ri)|H|ϕA2(Ri)⟩ (6.8)
• γ3 is the hopping parameter between non-dimer sites:

γ3 = ⟨ϕA1(Ri)|H|ϕB2(Rj)⟩ (6.9)
• γ4 is the interlayer hopping parameter between dimer site and non-dimer site:

γ4 = ⟨ϕA1(Ri)|H|ϕA2(Rj)⟩ (6.10)
We visualize the hopping parameters between nearest neighbors in Fig.6.5. The matrix

elements εA1, εB1, εA2 and εB2 are the on-site energies of the orbitals. We impose the
energy reference to be the average of the energy of the two non-dimer sites A1 and B2:

0 =
εA1 + εB2

2
. We define the following parameters:

• The interlayer asymmetry or the interlayer bias:

u =
1

2
[(εA1 + εB1)− (εA2 + εB2)] (6.11)

The interlayer bias is due to a voltage difference between the two layers 1 and 2. It
is associated to an external electric field E perpendicular to the BLG plane. The
interlayer bias and the electric field strength are related by |u| = eEc.
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• The energy difference between dimer and non-dimer sites:

∆′ =
1

2
[(εB1 + εA2)− (εA1 + εB2)] (6.12)

• The energy difference between A’s sites and B’s sites:

δAB =
1

2
[(εA1 + εA2)− (εB1 + εB2)] (6.13)

This energy difference is dependent on the substrate, which induces strain between
sublattices, giving rise to substrate-induced sublattice splitting energy similar to
the case of monolayer graphene.

We can express the on-site energies as follows:

εA1 =
1

2
(u+ δAB)

εB1 =
1

2
(u+ 2∆′ − δAB)

εA2 =
1

2
(−u+ 2∆′ + δAB)

εB2 =
1

2
(−u− δAB)

(6.14)

Numerical calculations of Ref. [129] give the values of the hopping parameters:
γ0 = 3.010eV, γ1 = 0.3310eV, γ3 = 0.13912eV and γ4 = 0.09244eV. Infrared
spectroscopy experiments give: γ0 = 3.16eV, γ1 = 0.381eV, γ3 = 0.38eV, γ4 = 0.14eV,
∆′ = 0.022eV, δAB = 0 [130]. The interlayer bias u can be controlled by tuning an
electric field E perpendicular to the BLG plane.

If we neglect the hopping parameters γ3 and γ4, the Hamiltonian (6.5) gives four
bands with energy:

E±(k) = ±

√
γ20 |f(k)|2 +

γ21
2

± γ1

√
γ20 |f(k)|2 +

γ21
4

(6.15)
Fig. 6.6a gives the band structure of BLG, plotted in the 2-dimensional reciprocal

space. The Hamiltonian (6.5) gives four bands: two conduction bands and two valence
bands. The two bands in each pair of conduction bands or valence bands are split by
an energy of the order γ1 in most of the Brillouin zone. In the vicinity of the K-points,
one valence band (the second lowest band) and one conduction band (the third lowest
band) touch each other, while the other valence band and the other conduction band
are split away. The two touching bands arise from the coupling between the orbitals of
the non-dimer sites A1 and B2. They are also called low-energy bands. Whereas, the
two split bands arise from the coupling between the atomic orbitals of the atoms B1 and
A2 at the dimer sites, resulting in their strong energy splitting. In undoped BLG, the
Fermi level also lies at the touching point of the two low-energy bands. Therefore, as in
monolayer graphene, the momenta in the vicinity of the two K-points are of interest for
the studies of the low-energy physics. Unlike monolayer graphene, the low-energy bands
in BLG have parabolic dispersion instead of a linear relativistic-like dispersion (Fig. 6.6b).
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Figure 6.6: (a) Band structure of BLG in the first Brillouin zone. The plot was calculated from the
approximate solution (6.15). There are 4 bands: the second lowest band and the third lowest band
touch each other at the K-points. (b) In the vicinity of the point K, the dispersion is parabolic.

6.4.2 . Effective four-band model
The two inequivalent points K and K’ define the valley degree of freedom. As in

monolayer graphene, the valley degree of freedom is twofold degenerate and plays the
role of a pseudospin. For this reason, low-energy electrons in BLG are fourfold degenerate
because they have two degrees of freedom: spin and valley. Similar to the case of
monolayer graphene, we denote the two K-points by the index ξ: ξ = +1 for K and
ξ = −1 for K’. We introduce the momentum p = ℏk−Kξ in the vicinity of the K-point
Kξ(ξ = ±1). Therefore k = Kξ + q with q = p/ℏ. Then we define the operators:

π =ξpx + ipy

π† =ξpx − ipy
(6.16)

In the vicinity of the K-points (|q|a≪ 1), the structure factor is approximated by the
following expression:

f(k) =−
√
3a

2ℏ
π† +

a2

8ℏ2
π2 + o(p2)

f(k)∗ =−
√
3a

2ℏ
π +

a2

8ℏ2
(π†)2 + o(p2)

(6.17)

The formula of the Hamiltonian to first degree in |p| is:

H =


εA1 vπ† −v4π† −v3π
vπ εB1 γ1 −v4π†

−v4π γ1 εA2 vπ†

−v3π† −v4π vπ εB2

 (6.18)

where v =

√
3a

2ℏ
γ0 is the band velocity, and v3 =

√
3a

2ℏ
γ3, v4 =

√
3a

2ℏ
γ4 are the

effective velocity. The values of the velocities corresponding to the values of the hopping
parameters γ0, γ1, γ3, γ4 in Ref. [129] are: v = 9.74× 105ms−1, v1 = 1.07× 105ms−1,
v3 = 4.50× 104ms−1, v4 = 2.99× 104ms−1. This is the effective four-band model
near the K-points.
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6.4.3 . Low-energy two-band model
We rewrite the Hamiltonian (6.18) in the basis (ϕA1, ϕB2, ϕA2, ϕB1):

H =


εA1 −v3π −v4π† vπ†

−v3π† εB2 vπ −v4π
−v4π vπ† εA2 γ1
vπ −v4π† γ1 εB1

 (6.19)

We define the low-energy spinor θ and the dimer spinor χ:

θ =

[
ϕA1

ϕB2

]
, χ =

[
ϕA2

ϕB1

]
(6.20)

and decompose the Hamiltonian into the blocks:

hθ =

[
εA1 −v3π

−v3π† εB2

]
, hχ =

[
εA2 γ1
γ1 εB1

]
u =

[
−v4π† vπ†

vπ −v4π

]
, u† =

[
−v4π vπ†

vπ −v4π†

] (6.21)

The Schrödinger’s equation is written as follows:[
hθ u
u† hχ

] [
θ
χ

]
= E

[
θ
χ

]
(6.22)

We expand this block Hamiltonian as follows:

hθθ + uχ =Eθ

u†θ + hχχ =Eχ
(6.23)

The second equation of (6.23) allows us to write the relation between the dimer
spinor χ and the low-energy spinor θ:

χ = (E − hχ)
−1u†θ (6.24)

By substituting this relation into the first equation of (6.23), we obtain the eigenvalue
equation of the low-energy spinor θ:

[hθ + u(E − hχ)
−1u†]θ = Eθ (6.25)

In the low energy limit, the inverse matrix (E − hχ)
−1 can be approximated to first

order in E as:

(E−hχ)−1 = [hχ(Eh
−1
χ −I)]−1 = −(I−Eh−1

χ )−1h−1
χ = −(h−1

χ +Eh−2
χ )+o(E) (6.26)

Therefore, we approximate the eigenvalue equation in the low-energy limit as follows:

(hθ − uh−1
χ u†)θ = E(I+ uh−2

χ u†)θ (6.27)
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We introduce the matrix S = I + uh−2
χ u†. The hermicity of hχ implies that S is

hermitian. We introduce the spinor Φ = S1/2θ and get the eigenvalue equation:

S−1/2(hθ − uh−1
χ u†)S−1/2Φ = EΦ (6.28)

This is the low-energy two-band eigenvalue equation with the effective two-band
Hamiltonian:

H2 = S1/2(hθ − uh−1
χ u†)S−1/2 (6.29)

In the low-energy limit χ = (E − hχ)
−1u†θ ≈ −h−1

χ u†θ. This confirms that the
normalization of the spinor Φ is consistent with the normalization of the original state
(θT , χT )T .

From now, we expand the effective two-band Hamiltonian in the regime where the
intralayer coupling γ0 and the interlayer coupling at the dimer site γ1 are larger than the
other energies γ0, γ1 ≫ |E|, vp, |γ3|, |γ4|, |u|, |∆′|, |δAB|. The inverse of the matrix hχ is:

h−1
χ =

1

εA2εB1 − γ21

[
εB1 −γ1
−γ1 εA2

]
(6.30)

By doing some lengthy calculations, we obtain uh−1
χ u† under the form:

uh−1
χ u† =

[
A11π

†π A12(π
†)2

A21π
2 A22ππ

†

]
(6.31)

with

A11 =
εA2v

2 + 2γ1vv4 + εB1v
2
4

εA2εB1 − γ21

A12 =A21 = −(εA2 + εB1)vv4 + γ1(v
2 + v24)

εA2εB1 − γ21
= −2∆′vv4 + γ1(v

2 + v24)

εA2εB1 − γ21

A22 =
εB1v

2 + 2γ1vv4 + εA2v
2
4

εA2εB1 − γ21

(6.32)

Because γ1 ≫ |u|, |δAB|, we approximate:

1

εA2εB1 − γ21
≈ − 1

γ21
(6.33)

This approximation allows to write the coefficients A11, A12, A21 and A22 as follows:

A11 ≈
1

2γ21
(u− δAB)(v

2 − v24)−
∆′

γ21
(v2 + v24)−

2vv4
γ1

A12 =A21 ≈
2∆′vv4
γ21

+
v2 + v24
γ1

A22 ≈− 1

2γ21
(u− δAB)(v

2 − v24)−
∆′

γ21
(v2 + v24)−

2vv4
γ1

(6.34)
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We simplify the notation by writting:

L =
1

2γ21
(u− δAB)(v

2 − v24)

M =
2∆′vv4
γ21

+
v2 + v24
γ1

N =
∆′

γ21
(v2 + v24) +

2vv4
γ1

(6.35)

so that the expression of uh−1
χ u† becomes:

uh−1
χ u† = L

[
π†π 0
0 −ππ†

]
+M

[
0 (π†)2

π2 0

]
−N

[
π†π 0
0 ππ†

]
(6.36)

The matrix hθ is expressed as follows:

hθ =
1

2
(u+ δAB)

[
1 0
0 1

]
− v3

[
0 π
π† 0

]
(6.37)

In the approximation where γ0, γ1 ≫ |E|, vp, |γ3|, |γ4|, |u|, |∆′|, |δAB|, we approximate
the two-band Hamiltonian as:

H2 = − 1

2m

[
0 (π†)2

π2 0

]
(6.38)

where m = γ1/(2v
2) is the electron effective mass. In the next section, we will

quantize this two-band Hamiltonian in the presence of the magnetic field to obtain the
Landau level spectrum of BLG.

6.5 . Landau level quantization

We start by considering the two-band model Hamiltonian:

H2 = − 1

2m

[
0 (π†)2

π2 0

]
(6.39)

with the momentum operator p = (px, py) = (−iℏ∂x,−iℏ∂y) and the momentum ladder
operators π and π† are defined in the valley ξ(ξ = ±1) as:

π =ξpx + ipy

π† =ξpx − ipy
(6.40)

We discuss the scheme of the experimental setup (Fig. 6.7). The applied magnetic
field B is perpendicular to the BLG plane and points from the top layer (1) to the bottom
layer (2). That means B is given by the formula: B = −Bẑ. In tilted field experiments,
B can have components parallel to the BLG plane, but its z-component Bz keeps its
direction from layer 1 to layer 2. Such magnetic field can be induced by a gauge A such
that B = ∇×A. We apply a voltage u between layer 1 and layer 2. This corresponds
to the interlayer bias u and results in an electric field E perpendicular to the BLG plane,
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Figure 6.7: BLG under a perpendicular magnetic field B and a perpendicular electric field E. We adopt
the convention that the magnetic field B points from the top layer (1) to the bottom layer (2). The
electric field E corresponds to an interlayer bias u between the two layers, such that |u| = eEc.

such that |u| = eEc. When u > 0, E points from layer 1 to layer 2 and is parallel to B.
Inversely, when u < 0, E points from layer 2 to layer 1 and is antiparallel to B.

The momentum operators in the presence of the magnetic field are written as follows,
according to the Peierls’ substitution p → p+

e

c
A:

Π =ξ
(
px +

e

c
Ax

)
+ i
(
py +

e

c
Ay

)
Π† =ξ

(
px +

e

c
Ax

)
− i
(
py +

e

c
Ay

) (6.41)

The commutator of the operators Π and Π† is:

[Π,Π†] = −2ξℏ
eBz

c
= 2ξℏ

eB

c
(6.42)

The two-band Hamiltonian in the presence of the magnetic field reads:

H2 = − 1

2m

[
0 (Π†)2

Π2 0

]
(6.43)

We define the ladder operators:

a =
il√
2ℏ

Π

a† =− il√
2ℏ

Π†
(6.44)
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We check that (a†)† = a. The eigenstates of those ladder operators are the eigenstates
ϕN(r) of the harmonic oscillator (N ∈ N). The two-band Hamiltonian is written as
follows:

H2 = ℏωc

[
0 (a†)2

a2 0

]
(6.45)

where ωc = eB/(mc) is the cyclotron frequency. The commutator of the ladder operators
equals:

[a, a†] = ξ (6.46)
This commutation relation means that the roles of a and a† are interchanged when

we change from valley K to valley K’:

• In valley K (ξ = +1): a is the lowering operator and a† is the raising operator:

aϕN =
√
NϕN−1

a†ϕN =
√
N + 1ϕN+1

(6.47)
for all N ∈ N and aϕ0 = 0. For all N ∈ N, the function ϕN is also an eigenstate
of the number operator a†a:

a†aϕN = NϕN (6.48)
• In valley K’ (ξ = −1): a† is the lowering operator while a is the raising operator:

a†ϕN =
√
NϕN−1

aϕN =
√
N + 1ϕN+1

(6.49)
for all N ∈ N and a†ϕ0 = 0. For all N ∈ N, the operator aa† is the number
operator:

aa†ϕN = NϕN (6.50)
We denote the eigenstate of the two-band Hamiltonian H2 by the spinor:

ΦN =

[
uN
vN

]
(6.51)

and the corresponding energy eigenvalue EN . The Schrödinger equation reads:

ℏωc

[
0 (a†)2

a2 0

] [
uN
vN

]
= EN

[
uN
vN

]
(6.52)

This equation is equivalent to:

(a†)2vN =

(
EN

ℏωc

)
uN

a2uN =

(
EN

ℏωc

)
vN

(6.53)

We solve for the Schrödinger’s equation in each of the two valleys.
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In the valley K (ξ = +1):
We apply the number operator â†â on uN :

â†âuN = â†[â, â†]âuN = â†(ââ† − â†â)âuN = (â†â)2uN − (â†)2â2uN (6.54)
This implies that:

((â†â)2 − â†â)uN = (â†)2â2uN = (â†)2
(
EN

ℏωc

)
vN =

(
EN

ℏωc

)2

uN (6.55)
One possible solution is to choose uN = ϕN , so vN = ϕN−2. The energy eigenvalue

is EN = ±ℏωc

√
N(N − 1)(N ∈ N). We consider 3 cases:

1. If N = 0 then the energy eigenvalue is E0 = 0. The corresponding eigenstate is:

ΦK
0 =

[
ϕ0

0

]
(6.56)

2. If N = 1 then the energy eigenvalue is E1 = 0. The corresponding eigenstate is:

ΦK
1 =

[
ϕ1

0

]
(6.57)

3. If N ≥ 2 then the energy eigenvalue is EλN = λℏωc

√
N(N − 1) (λ = +1 for

conduction band and λ = −1 for valence band). The eigenstate is described by
the spinor:

ΦK
N =

1√
2

[
ϕN

λϕN−2

]
(6.58)

In the valley K’ (ξ = −1):
We get the similar results, the energy eigenvalue is EN = ±ℏωc

√
N(N − 1)(N ∈ N).

The eigenstates are the same eigenstates as in the case of the valley K, providing that
we interchange the two sublattices:

1. If N = 0 then the energy eigenvalue is E0 = 0. The corresponding eigenstate is:

ΦK′

0 =

[
0
ϕ0

]
(6.59)

2. If N = 1 then the energy eigenvalue is E1 = 0. The corresponding eigenstate is:

ΦK′

1 =

[
0
ϕ1

]
(6.60)

3. If N ≥ 2 then the energy eigenvalue is EN = λℏωc

√
N(N − 1) (λ = +1 for

conduction band and λ = −1 for valence band). The corresponding eigenstate is:

ΦK′

N =
1√
2

[
λϕn−2

ϕN

]
(6.61)
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Overall, according to the low-energy two-band model, the two Landau levels N = 0
and N = 1 are degenerate in both valleys K and K’. More accurate calculations from
the effective four-band model show that they are approximately degenerate [131]. By
considering the spin degree of freedom, we consider that they form a nearly eightfold
degenerate Zero-energy Landau level (ZLL). This is a particular property of the quantum
Hall effect in BLG, compared to the quantum Hall effects in monolayer graphene and in
conventional semiconductors. The other Landau levels are fourfold degnerate, similar
to those of monolayer graphene. For the reason of convenience, we denote the Landau
levels in the valence band (λ = −1) by the negative index, starting by Landau level
N = −2, N = −3, down to minus infinity. The energy of the Landau level −N(N ≥ 2)
is E−N = −ℏωc

√
|N |(|N | − 1). To avoid double counting with the Landau level N = 1,

we admit that there is no Landau level N = −1. In general, for all integer N ̸= −1, the
energy of the Landau level N is given by:

EN ≈ sign(N)ℏωc

√
|N |(|N | − 1) (6.62)

6.6 . Orbital degree of freedom

Definition of the orbital degree of freedom
In section 6.5, we have demonstrated that the two Landau levels N = 0 and N = 1

in BLG are nearly degenerate. This allows us to define a new twofold degree of freedom,
which plays the role of a pseudospin. We call these two Landau levels orbitals and call
the new degree of freedom the orbital degree of freedom. The orbital N = 0 is the
pseudospin-up, and the orbital N = 1 is the pseudospin-down. Therefore, electrons
occupying the ZLL octet in BLG have three degrees of freedom: spin, valley and orbital.
We describe the single-particle state by the spinor |ξNσ⟩ where the quantum numbers
are: valley ξ = ± (or K/K’), orbital N = 0/1 and spin σ =↑ / ↓.

The weight γ
The four-band tight-binding model gives the formula of the single-electron wavefunc-

tions in the valleys K and K’ for orbitals N = 0 and N = 1 as follows [36]:

ΨK
0 =


ϕ0

0
0
0

 ,ΨK
1 =


√
1− γϕ1

0√
γϕ0

0

 ,ΨK′

0 =


0
ϕ0

0
0

 ,ΨK′

1 =


0√

1− γϕ1

0√
γϕ0

 (6.63)

Here the spinors are expressed in the basis (A1, B2, A2, B1). The parameter
γ(0 ≤ γ ≤ 1) is a function of the interlayer bias u and the magnetic field B. It is
almost independent of u for 0 ≤ u ≤ 100meV and is an increasing function of B in the
experimentally accessible region (Fig. 6.8). Here ϕ0 and ϕ1 are the eigenstates of the
harmonic oscillator. The orbital N = 0 has the wavefunction ϕ0 of the Lowest Gallilean
Landau level and is localized at the non-dimer sites. The wavefunction in the orbital
N = 1 is a linear combination of the wavefunctions ϕ0 and ϕ1, such that ϕ1 resides at
non-dimer sites and ϕ0 resides at the dimer-sites (Fig. 6.9). The parameter γ is the
weight of Ψ1 at the dimer site. The valleys K and K’ are interchanged if we replace A1
by B2, A2 by B1, and vice versa.
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Figure 6.8: The parameter γ as a function of the magnetic field B for u =80meV, calculated from the
tight-binding model. The graph of γ(u,B) is approximately the same as this graph for the other values
of u such that 0 meV ≤ u ≤ 100meV.

Single-particle energy
Overall, the single-particle energy of an electron residing in the ZLL contains three

contributions: (1) the energy due to the presence of the interlayer bias u, which is a
linear function of u and depends on the valley and the orbital; (2) the intrinsic energy
splitting ∆

(0)
10 between the two orbitals; and (3) the Zeeman energy, which depends on

the spin σ of the electron.
We summarize the single particle energy of an electron of valley ξ(ξ = ±1), orbital

N(N = 0, 1) and spin σ(σ =↑ / ↓) in the following formula:

E
(1)
ξNσ = −ξαN

u

2
+N∆

(0)
10 − EZσ (6.64)

At B = 31T, α1 ≈ 0.63 while α0 = 1 [125]. The slopes α0 and α1 are different,
leading to the crossings between the two orbitals when the spin and valley degrees of

freedom are fixed. The value of ∆(0)
10 ≈ ℏωc

(
∆′

γ1
+ 2

γ4
γ0

)
and has as value ∆

(0)
10 ≈

9.7meV at B =31T [125]. The Zeeman splitting energy EZ = gµBB ≈3.58meV. The
bare Landé g-factor for BLG is g = 2. Here σ = +1/2 for spin-up and σ = −1/2 for
spin-down. We illustrate the single-electron energy Eq. (6.64) in Fig. 6.10.

Orbital splitting energy ∆10

The diagram (Fig. 6.10) shows a variety of crossings between the two orbitals N = 0
and N = 1. We focus on the two levels |K0 ↑⟩ and |K1 ↑⟩. The splitting between these
two orbitals can be modeled by a parameter:

∆10(u,B) = E
(1)
K0↑(u)− E

(1)
K1↑(u) = −∆

(0)
10 (B) + (α1 − α0)

u

2
(6.65)

That means the energy difference of the two orbitals can be tuned by varying the
interlayer bias u and the magnetic field B, similarly to the Zeeman field in the case of
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Figure 6.9: The wavefunctions of the four orbitals |ξNσ⟩ of the ZLL on the (ϕA1, ϕB2, ϕA2, ϕB1) sites.

the intrinsic spin. Here ∆10 plays the role of a pseudo-Zeeman energy for the orbital
pseudospin. For a fixed value of the magnetic field B, ∆10 is a linear function of u and
vanishes when u = u∗ = 2∆

(0)
10 (B)/(α1 − α0). This is the situation where the two levels

|K0 ↑⟩ and |K1 ↑⟩ cross each other.

6.7 . Coulomb interaction and screening

In this work, we focus on the case of spin and valley polarized quantum Hall states
residing in the two orbitals N = 0 and N = 1. Therefore, we need to project the
Coulomb interaction into these two orbitals, and assume that there is no mixing between
these two Landau levels with higher Landau levels. This approximation allows to reduce
the dimension of the Fock space and makes numerical exact diagonalizations accessible.
Although such kind of approximation is accurate only in a small region of the parameter
space, it permits to study the unique situation of orbital degeneracy in BLG.

The Coulomb interaction of the 2D electron systems in BLG is decomposed into the
following three contributions:

H(2) = HC +Hc0 +HV (6.66)
The first contribution HC is the long-range Coulomb interaction, which is SU(4)-

symmetric in the Hilbert space of spin and valley. However, there is no SU(2) symmetry for
the twofold nearly degerenate orbital degrees of freedom, because the effective interaction
in the two orbitals has different form factors, resulting in different matrix elements. The
Coulomb Hamiltonian HC , projected to the ZLL, is given by [125]:
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Figure 6.10: Diagram of the single-electron energy in the ZLL of BLG for B =31T. Here we plot the
equation (6.64) with parameters ∆

(0)
10 = 9.7meV, EZ =3.58meV, α0 = 1, α1 = 0.67 (data taken from

Ref. [125]).

HC =
1

2

∫
d2q

(2π)2
ρZLL(q)Ṽ (q)ρZLL(−q) (6.67)

In this formula ρZLL(q) =
∑

ξNσ ρξNσ(q) is the Fourier transform of the total density
in the ZLL. The Fourier transform of the Coulomb potential is Ṽ (q) = 2πe2/(ε|q|). The
bare Coulomb interaction is screened by three following effects: (1) the surrounding hBN
dielectric, (2) the proximal metallic gates, and (3) the interaction between the electrons
in the ZLL and the fully filled Landau levels below it.

In the presence of the surrounding hBN dielectric (for example the setup in Refs. [111,
125]), this dielectric environment modifies the dielectric constant in the Coulomb interac-
tion. Here ε = ε

//
hBN where ε//hBN ≈ 6.6ε0 is the in-plane dielectric constant of hexagonal

boron nitride [132, 133]. The metallic gates are situated at distance D apart from the
BLG plane. The typical value of this distance is D ≈ 20 nm [125]. The screening due to
metallic gates results in modyfying the Coulomb interaction. In this work, we use the
modification proposed in Ref. [134]:

V eff (q) =
Ṽ (q)

1 + a
ql
tanh

(
q2l2

2

) (6.68)
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Here the parameter a is the screening strength and is treated as a parameter of the
model. The interaction between the electrons in the ZLL and the electrons occupying
the Landau levels below the ZLL is similar to the Lamb shift in hydrogen atom [131].
The Lamb shift per particle is given by the formula [125]:

∆Lamb ≈ −0.2e2/(ε
//
hBN l)

1 + 2.73a
= −8.58meV

√
B[T]

1 + 2.73a
(6.69)

The finite thickness c = 1.42Å of the BLG lattice results in a capacitive charging energy.
Its effect is to modify the Coulomb interaction V (q) → V (q)−qc = V (q)−qcV (q)+o(cq)
and gives rise to a small correction Hc0 . Because c is small to the magnetic length l so
that c/l ≪ 1, we neglect the small correction Hc0 in this work.

The contribution HV is the short-range valley dependent interaction. We have
considered the effect of this interaction in monolayer graphene in Chapters 3 and 4. This
short-range interaction breaks the SU(4) symmetry of HC and gives rise to a variety of
symmetry-breaking orders such as the canted antiferromagnetic phase [124]. Because we
are concentrating on the crossing between levels having the same valley, this point-contact
interaction gives a vanishing energy, so we do not have to take it into account in this
work.

6.8 . Summary

In this chapter, we have discussed the quantum Hall effect in BLG using the tight-
binding model. We have used the low-energy two-band and the effective four-band
models to demonstrate the Landau level spectrum of BLG. The main properties of BLG
under the quantum Hall effect are as follows:

1. In BLG, the Landau levels N = 0 and N = 1 are nearly degenerate. They form a
new degree of freedom, the so-called orbital degree of freedom, which acts like a
pseudospin.

2. The zero-energy Landau level (ZLL) of BLG is approximately eightfold degenerate.
The single-particle energy levels in this octet are characterized by three quantum
numbers: spin, valley, and orbital.

3. The single-electron wavefunctions in orbital N = 0 are localized at the non-dimer
sites of the BLG lattice. By contrast, the single-electron wavefunctions in orbital
N = 1 are the superpositions of the Lowest Landau Level wavefunction localized
at the dimer site of one layer and the Second Landau level wavefunction localized
at the non-dimer site of the other layer. The weight of the dimer site wavefunction
is given by a parameter γ(0 < γ < 1).

4. The energy ∆10 separating the two orbitals N = 0 and N = 1 is controllable by
tuning the interlayer potential bias u between the two layers. We have established
the single-particle diagram of the states in the ZLL octet. Those single-particle
levels cross each other at numerous crossing points. These level-crossing points
promise interesting physics to explore.
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In the next chapter, we will discuss the Wigner crystal. After that, we will show the
results of this work: the competition between Laughlin state and Wigner crystal in BLG
in Chapter 8.

111





Chapter7 - Wigner crystal

7.1 . Wigner crystal

The physics of an electron system is governed by the competition between its kinetic
energy and the electron-electron Coulomb interaction energy. Kinetic energy prefers
the ground state to be an electron gas or liquid, whereas electron-electron interaction
favors the formation of the electron crystal phase. In the latter case, electrons form a
periodic lattice, similar to the crystals formed by periodic lattices of atoms or ions we
see every day. For a crystal to stabilize, the electrons must be localized to a size smaller
than the lattice parameter. The uncertainty principle implies that this situation increases
the uncertainty in electron momentum, resulting in a kinetic energy cost, which in turn
destabilizes the electron crystal.

In 1934, Wigner predicted that when the kinetic energy vanishes, the ground state
is a lattice of electrons, corresponding to the minimum of the interaction energy [48].
Let r0 = (3/(4πn))1/3 be the radius of the sphere containing one electron in three
dimensions, here n is the electron density and a0 = 0.529Å is the Bohr radius, we define
the dimensionless interelectron distance rs = r0/a0. In the high-density limit (rs → 0),
the energy per particle of the electron system is given in the unit of Rydberg energy by
[8, 48]:

E

Ne

=
2.21

r2s
− 0.916

rs
+ . . . (7.1)

In this formula, the first term is the kinetic energy, and the second term is the
Coulomb electron-electron interaction energy. The formula implies that the kinetic energy
dominates over the interaction energy in the high-density limit (rs is small). The ground
state is therefore an electron liquid. In the low-density limit (rs is large), the energy per
particle of the electron system equals [135]:

E

Ne

= −1.792

rs
+

2.66

r
3/2
s

+
b

r2s
+ . . . (7.2)

The first term is the potential energy and the second term is the kinetic energy. In
this situation, the interaction energy dominates over the kinetic energy. The ground
state is an electron crystal. These results show a transition from the liquid phase at
high-density to the solid phase at low-density. Because the electron solid phase was
proposed by Wigner, this phase is later called Wigner crystal . This state of matter
should appear at low temperature where these calculations are valid.

It took a long time to realize the Wigner crystal in the laboratory experimentally.
Cole and Cohen proved that the electrostatic image force in liquid helium leads the
electrons to be bound to shallow surface states localized at the helium surface and
form a 2-dimensional electron system [138]. Following this idea, Crandall and Williams
proposed to search for a 2-dimensional Wigner crystal on the surface of liquid He [139].
Bonsall and Maradudin calculated the ground-state static energy and phonon dispersion
of the five Bravais lattices of two-dimensional Wigner crystals [140]. They found that
the hexagonal lattice is the most stable lattice. In 1979, Grimes and Adams observed
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Figure 7.1: The experimental evidence of Wigner crystal in liquid He surface. The experiment was
performed by Grimes and Adames [136]. They measured the coupled plasmon-ripplon mode and obtain 4
resonances: W, X, Y and Z. The resonances Y and Z agree with the n = 3 and n = 4 modes theoretical
calculated by Fisher, Halperin and MacDonald [137]. The resonances W and X are attributed to the
lowest mode n = 1. Reprinted figure with permission from C.C.Grimes and G.Adams, Phys. Rev. Lett.
42, 795 (1979) [136]. Copyright (2023) from American Physical Society.

the first evidence of the Wigner crystal in liquid He surface [136]. They measured the
coupled resonance between the longitudinal phonon mode of the Wigner crystal and
the excitations of standing capillary waves (ripplon) on the He surface. The resonance
frequencies (Fig. 7.1) agree with the theoretical calculations of the phonon-ripplon mode
of a triangular Wigner crystal [137]. The Wigner crystal forms at temperature lower
than 0.457± 0.005K. This confirmed that the Wigner crystal has hexagonal lattice, in
agreement with the predictions by Crandall-Williams and Bonsall-Maradudin.

In general, the term Wigner crystal is not only used for electron crystals, but also for
crystals of holes, and crystals of composite fermions.

7.2 . Competition between Wigner crystal and quantum Hall liquid

7.2.1 . Trial wavefunctions
The discovery of a 2-dimensional Wigner crystal in electron gas on the liquid helium

surface opens new perspectives to realize the Wigner crystal in other 2-dimensional
systems. One candidate is the 2-dimensional electron gas under a high magnetic field.
In this system, the kinetic energy of electrons is quantized into flat Landau levels. The
kinetic energy is quenched, and the interaction energy governs the physics. This possibility
was shown theoretically in the work of Fukuyama, Platzmann, and Anderson [141]. After
discovering the integer quantum Hall effect, this expectation motivated physicists to
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observe the systems with lower density and under higher magnetic fields [1]. However,
they observed the fractional quantum Hall effect [2]. Nevertheless, researchers believed
the Wigner crystal would appear at lower filling fractions.

Apart from building the theory of the fractional quantum Hall effect, many authors
proposed the trial wavefunctions for the Wigner crystal. Maki and Zotos proposed the
uncorrelated Wigner crystal wavefunction, which is the Slater determinant of the Lowest
Landau level single-electron wavefunctions localized at the lattice sites of a triangular
lattice [142]. Let ϕR(r) the Lowest Landau level wavefunction localized around the lattice
site R = (X, Y ):

ϕR(r) =
1

(2πl2)1/2
exp
{
− 1

4l2
[
(r−R)2 − 2i(xY − yX)

]} (7.3)
The Maki-Zotos wavefunction for the Wigner crystal with triangular lattice Rj =(

na0 +
m

2
a0,

√
3

2
ma0

)
of lattice parameter a0 (m,n ∈ Z) for a system of Ne electrons

of coordinates r1, r2, . . . , rNe is given by:

ΨMZ({ri}) = (Ne!)
−1/2det{ϕRj

(ri)} (7.4)
Lam and Girvin proposed a trial wavefunction for the correlated Wigner crystal with

particle position zi = xi + iyi [143]:

ΨLG({zi}) = exp

(
1

4

∑
ij

(zi −Ri)Bij(zj −Rj)

)
det(ϕRi

(zj)) (7.5)
This wavefunction is the so-called Lam-Girvin wavefunction. The complex variational

parameter Bij = B(Ri −Rj) determine the correlations.
Apart from the trial wavefunctions for the electron solid, several works introduced

the Wigner crystal of composite fermions. Yi and Fertig proposed a trial wavefunction in
which vortices are bound to the Maki-Zotos wavefunction of a triangular lattice [144]:

Ψ =
∏
j<k

(zj − zk)
qΨMZ (7.6)

and showed that this wavefunction has lower energy than the Lam-Girvin wavefunction
for filling factor 0.10 < ν < 0.20. Chang, Yeon and Jain continued developing the idea
of binding vortices to electron crystals. They first project the Maki-Zotos wavefunction
into a section of definite angular momentum L following the procedure of Yannouleas
and Landman [145] to obtain the wavefunction ΨEC

L . Then, they bind 2p magnetic flux
quanta to each electron in the crystal. The wavefunction for crystal of 2pCF of angular
L is given by the formula [146]:

Ψ2p−CFC
L =

∏
j<k

(zj − zk)
2pΨEC

L∗ (7.7)
where L∗ = L − pNe(Ne − 1). The filling factor of the finite system containing Ne

electrons is given by ν = Ne(Ne − 1)/(2L).
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7.2.2 . Critical filling factor for the Wigner crystal
Knowing that the Wigner crystal would solidify at low electron density, a question

arises: what is the critical filling factor for the transition between the Wigner crystal and
the fractional quantum Hall liquid? At the beginning, physicists believed that there exists
a critical filling factor νc separating the quantum Hall liquid and the Wigner crystal: for
ν > νc, the ground state of the 2D electron system is the quantum Hall liquid, and for
ν < νc, the ground state of the 2D electron system is the Wigner crystal. Levesque,
Weis, and MacDonald compared the ground state energy of the Laughlin state and the
uncorrelated Wigner crystal and concluded that the transition took place for filling factor
1/10 < νc < 1/9 [147]. However, the calculations of the Lam-Girvin wavefunction give a
higher critical value of the filling factor νc ≈ 1/6.5 [143].

Numerical studies also obtained the same critical filling factor. Yang, Rezayi, and
Haldane performed exact diagonalization studies for Ne = 6 electrons with filling factors
ν = 1/6, ν = 1/7, and ν = 1/8 on the torus [148]. The torus geometry is advantageous
to study the Wigner crystal because its translational symmetry allows to define the
many-body momentum, which serves as labeling the many-body state (for details about
the torus geometry, see Appendix ! B). Another reason is that one can adjust the aspect
ratio Lx/Ly to an appropriate value of the electron solid lattice. The critical value of
the filling factor is ν = 1/7, in agreement with analytical calculations on the correlated
Lam-Girvin wavefunction. They also found that the phase transition between Wigner
crystal and quantum Hall liquid is second-order or weakly first-order rather than a strong
discontinuous phase transition.

7.2.3 . Re-entrant Wigner crystal
In parallel with theoretical works, a variety of experiments also made progress in

detecting the Wigner crystal. The direct observation of Wigner crystal is difficult.
Magnetotransport [149–154] and magneto-optical [155–157] measurements gave indirect
observations of this phase of matter.

The first evidence of Wigner crystal was reported in 1988 by Andrei et al. [155]. In
1990, Goldman [150] and Jiang [149] observed the exponentially diverging longitudinal
resistances Rxx in the filling factor regions 1/5 < ν < 2/9 and ν < 1/5. These two
regions surround an incompressible state at filling factor ν = 1/5 (see Fig. 7.2). This
behavior is called the re-entrant Wigner crystal and appears in later experiments. These
discoveries suggest a sequence of three alternative phase transitions between the Wigner
crystal and the quantum Hall liquid as a function of the decreasing filling factor rather
than a single phase transition.

Soon after the discovery of the re-entrant Wigner crystal around filling factor ν = 1/5,
Santos et al. [153] observed the re-entrant Wigner crystal around filling factor ν = 1/3
in a 2D hole system. They proposed an explanation for this behavior: holes have a larger
effective mass than electrons, resulting in a higher Landau level mixing and favoring the
Wigner crystallization at a higher filling factor. This observation enriches the physical
picture behind the liquid-solid phase transition by pointing out the role of Landau level
mixing in the formation of Wigner crystals.

The story does not end at this stage. One may believe that νc = 1/5 would be
the critical value of the filling factor (of a 2D electron system) below which the ground
state was a Wigner crystal, not a quantum Hall liquid. However, experiments found
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Figure 7.2: The re-entrant Wigner crystal behavior around the fractional quantum Hall liquid at filling
factor ν = 1/5. The transport measurement shows that the longitudinal resistance Rxx diverges for
filling factors 2/9 > ν > 1/5 and on a small region ν < 1/5. Those diverging behaviors are associated
to the presence of the Wigner crystal phase. The inset shows the energy of the Wigner crystal and the
quantum Hall liquid (substracting a classical energy Eclass = −0.782133ν−1/2 for clarity). There is
a cusp in the total energy, shown by the dashed lines that intersect the line representing the solid at
ν = 0.19 and ν = 0.21. This behavior suggests that there are two phase transitions before and after
the quantum Hall liquid at ν = 1/5. Reprinted figure with permission from H.W.Jiang, R.L.Willett,
H.L.Stormer, D.C.Tsui, L.N.Pfeiffer, and K.W.West Phys. Rev. Lett. 65, 633 (1988) [149]. Copyright
(2023) by the American Physical Society.
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Figure 7.3: Thermal melting phase diagram of 2D hole system in low-disorder GaAs quantum well. The
Wigner solid appears at low temperature in the yellow region. The re-entrant Wigner crystal is observed
before and after the filling factor ν = 1/3. The stars illustrate the experimental data points. Reprinted
figure with permission from Meng K. Ma , K. A. Villegas Rosales, H. Deng, Y. J. Chung, L. N. Pfeiffer ,
K. W. West, K. W. Baldwin, R. Winkler, and M. Shayegan, Phys. Rev. Lett., 125, 036601 (2020) [159].
Copyright (2023) by the American Physical Society.

signature of quantum Hall effect at filling factor ν = 1/7 [54], weak signal at ν = 2/11
[158] and quantum Hall effect down to ν = 1/9 [156]. In 2002, Pan et al. found
a sequence of local minima in Rxx in GaAs/AlGaAs quantum well for filling factors
ν = 2/11, 3/17, 3/19, 2/13, 1/7, 2/15, 2/17 and 1/9 [154]. That means there should be
a sequence of alternating phase transitions between Wigner crystal and quantum Hall
liquid at low filling factors. The sequence of minima disappears at a temperature below
T ≤ 80mK. It confirms the role of another factor underlying the physics of Wigner
crystal-quantum Hall liquid phase transition: temperature.

7.2.4 . Thermal melting of Wigner crystal
This subsection discusses the first factor governing the Wigner crystal-quantum Hall

liquid transition: temperature. Usually, we know that a solid (of atoms or ions) melts
into a liquid when the temperature increases. It is true for a Wigner crystal. Experiments
show that the minima in Rxx, which are associated to the quantum Hall liquid, disappear
when the temperature decreases down to T = 0K, and are replaced by the divergence in
Rxx. In the experiments by Pan et al. [154], the sequence of minima in Rxx disappears,
and Rxx diverges for ν < 2/11 when T decreases below T =80meV. It corresponds
to the freezing of the quantum Hall liquid into Wigner crystal when the temperature
decreases. The thermal melting of Wigner crystal was also predicted theoretically by
comparing the free energy of the two phases [160, 161].

Fig. 7.3 shows the thermal melting phase diagram of Wigner crystal in 2D hole
system [159]. Due to the high Landau level mixing of holes, the re-entrant Wigner crystal
appears around the filling factor ν = 1/3 instead of around ν = 1/5. The phase diagram
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Figure 7.4: The quantum melting phase diagram of 2D hole system in low-disorder GaAs quantum well.
The white and yellow regions are the region of stability of the quantum Hall liquid and the Wigner
crystal, respectively. The filled and empty dots represent the experimental data for Wigner crystal and
quantum Hall liquid, respectively. The half-filled dots show a competition between Wigner crystal and
quantum Hall liquid. The grey boundary are theoretical results from Ref. [162]. Reprinted figure with
permission from Meng K. Ma , K. A. Villegas Rosales, H. Deng, Y. J. Chung, L. N. Pfeiffer , K. W.
West, K. W. Baldwin, R. Winkler, and M. Shayegan, Phys. Rev. Lett., 125, 036601 (2020) [159].
Copyright (2023) by the American Physical Society.

shows that the electron liquid crystallizes at low temperature, but the Wigner crystal is
interrupted by the well-developed quantum Hall liquids at ν = 1/3 and ν = 2/5.

7.2.5 . Landau level mixing and quantum melting of Wigner crystal
In this subsection, we discuss the second factor governing the Wigner crystal-quantum

Hall liquid phase transition: Landau level mixing. The re-entrant Wigner crystal around
filling factor ν = 1/3 in 2D hole system [153] is the first suggestion of the role of Landau
level mixing in the formation of Wigner crystal. Wigner crystal appears at a low filling
factor in a system having a stronger Landau level mixing.

Landau level mixing is characterized by the ratio between the Coulomb energy and
the cyclotron energy:

κ =
e2/(εl)

ℏωc

(7.8)
Because ωc is inversely proportional to the charge carrier effective mass m, the Landau

level mixing κ is proportional to m. Indeed, in GaAs the hole effective mass is 5 times
larger than electron effective mass, leading to a stronger Landau level mixing than that of
2D electron systems. Landau level quantization is the quantization of the kinetic energy
of a single particle of the system, so the cyclotron energy is the scale characterizing the
kinetic energy. Therefore, even if the filling factor ν is high, if a system has a strong
Landau level mixing, that means in this system the interaction energy dominates over
the kinetic energy. This situation favors the formation of Wigner crystal rather than a
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quantum Hall liquid. The stronger is the Landau level mixing, the higher the probability
of forming a Wigner crystal, even though the charge carrier density is high. The melting
of Wigner crystal due to the weakening of Landau level mixing is called the quantum
melting of Wigner crystal.

The quantum melting phase diagram of 2D hole system is shown in Fig. 7.4. Experi-
mental data clearly confirm that the Wigner crystal forms at high Landau level mixing κ,
and the quantum Hall liquid forms at low Landau level mixing. We remark that theory
does not predict the formation of Wigner solid at filling factor ν = 1/3 for Landau level
mixing up to κ = 16 [162]. The upper limit for κ at which the Wigner crystal forms
at ν = 1/3 is still an open question for future study. For ν = 2/5, the experiments
suggest that the Wigner crystal forms and competes with the quantum Hall liquid (see
the half-filled dots in Fig. 7.4). This contradicts the prediction by the theory. The authors
of Ref. [159] explain this discrepancy between experiments and theory by the presence of
disorder, which favors the crystallization, but is neglected in theoretical calculations.
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Chapter8 - Competition between Laughlin state and
Wigner crystal in Bernal-bilayer graphene

8.1 . Introduction to the chapter

Chapters 6 and 7 reviewed the fundamental knowledge about the quantum Hall effect
in Bernal-stacked bilayer graphene and the Wigner crystal. In this chapter, we discuss
the results of this work: the competition between the Laughlin state and the Wigner
crystal in Bernal-stacked bilayer graphene. The results of this work are published in
Ref. [105]. The chapter begins with the Hamiltonian of the two-dimensional electron
system in BLG. Here we focus on the regime in the vicinity of the crossing between the
two levels |K0 ↑⟩ and |K1 ↑⟩. In this regime, the Hamiltonian has two parameters γ and
∆10 that we previously discussed in section 6.6. These two parameters determine the
phase of the two-dimensional electron system under magnetic field. For the filling factor
ν = 1/3, by examining the polarization of the two orbitals, the quantum fidelity and
ground state manifold, we show that the Wigner crystal appears when the two orbitals
coincide. We also visualize the Wigner crystal state in real space, and the determine the
phase boundary of the Wigner crystal phase. The chapter ends with the discussion on
the fate of the state of filling factor ν = 2/3.

8.2 . Hamiltonian of a two-dimensional electron system in Bernal-stacked
Bilayer graphene at the crossing of two orbitals having the same spin
and valley

We consider a system of Ne electrons under magnetic field B = −Bẑ (Fig. 6.7). The
number of magnetic flux quanta passing through the BLG plane is Nϕ. This magnetic
field corresponds to the vector potential A = (0,−Bx, 0). Let the system be a rectangle
of size Lx × Ly, we apply the periodic boundary conditions:

ψ(x+ Lx, y) =e
−iLxy/l2ψ(x, y)

ψ(x, y + Ly) =ψ(x, y)
(8.1)

and transform the finite-size system into a periodic lattice of rectangular unit cell of area
LxLy = 2πNϕl

2. The system is like residing on the surface of a torus with the magnetic
field perpendicular to the torus surface. We say that we study the system in the Torus
geometry (see Appendix B for an introduction to the torus geometry). The electrons in
the system not only interact with each other, but also interact with their images.

We choose to study the problem in the torus geometry because: (1) This geometry is
a closed geometry so the degeneracy of each Landau level is finite, so the torus geometry
is suitable to study finite systems. (2) By applying the periodic boundary conditions,
the system naturally has the translational symmetry (rigorously, this is the symmetry via
magnetic translations). This allows us to define the many-body momentum and represent
the periodic lattice of the Wigner crystal without defects. The spherical geometry does
not have the intrinsic translational symmetry and cannot avoid defects if the ground
state is a crystal.
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The basis wavefunctions for the single-electron Hilbert space in this lattice are given
by:

ϕnj(x, y) =

(
1

Ly

√
πl

)1/2 +∞∑
k=−∞

1√
2nn!

exp
[
i

(
j
2π

Ly

+ k
Lx

l2

)
y

]
×

× exp

[
−1

2

(
x

l
− j

2πl

Ly

− k
Lx

l

)2
]
Hn

(
x

l
− j

2πl

Ly

− k
Lx

l

) (8.2)

Here the index j runs from 1 ≤ j ≤ Nϕ. In this work, we study the crossing between
the two levels |K0 ↑⟩ and |K1 ↑⟩. We focus on the two Landau levels N = 0 and
N = 1 of BLG, and neglect the interaction with higher Landau levels. The single-particle
wavefunctions of these two levels are given by (according to (6.63)):

ψK
0j(r) =ϕ0jA1(r)

ψK
1j(r) =

√
1− γϕ1jA1(r) +

√
γϕ0jA2(r)

(8.3)
Here ϕnjA1(r) and ϕnjA2(r) are the basis wavefunctions localized at sublattices A1

and A2, respectively. The single-particle energy between the two levels is given by
∆10 = EK0↑ − EK1↑. The total Hamiltonian of the system is given by:

H =
1

2

∑
N1N2N3N4
j1j2j3j4

AN1N2N3N4
j1j2j3j4

c†N1j1
c†N2j2

cN3j3cN4j4 +∆10N̂0 (8.4)

Here the indices N1, N2, N3, N4 indicate the orbital quantum number and can be
either 0 or 1. The operator N̂0 counts the number of particles occupying the orbital
N = 0. The matrix element AN1N2N3N4

j1j2j3j4
is evaluated as follows:

AN1N2N3N4
j1j2j3j4

=

∫
d2r1d

2r2Ψ
∗
N1j1

(r1)Ψ
∗
N2j2

(r2)V (r1 − r2)ΨN3j3(r2)ΨN4j4(r1) (8.5)
We follow the same procedure as in Appendix B. We recall that the formula of the

Fourier transform of the Coulomb interaction is:

V (r) =
1

LxLy

∑
st

(s,t)̸=(0,0)

2πe2

εq
eiq·(r1−r2) (8.6)

where q =

(
s
2π

Lx

, t
2π

Ly

)
(s, t ∈ Z). The momentum q = 0(s = t = 0) is excluded

because it corresponds to the direct interaction and is cancelled by the energy of the
neutralizing background. The Coulomb matrix elements are given by the formula:

AN1N2N3N4
j1j2j3j4

=
1

LxLy

∑
st

(s,t) ̸=(0,0)

2πe2

εq

(∫
d2r1ψ

∗
N1j1

(r1)ψN4j4(r)e
iq·r1

)
×

×
(∫

d2r2ψ
∗
N2j2

(r2)ψN3j3(r2)e
−iq·r2

) (8.7)
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We evaluate the integral over d2r1. It gives:∫
d2r1ψ

∗
N1j1

(r1)ψN4j4(r1)e
iq·r1 = e−q2l2/4eiqxqyl

2/2eiqxj42πl
2/LyFN1N4(qx, qy)δ

′
t,j1−j4

(8.8)
The symbol δ′t,j1−j4

means t = j1 − j4(modNϕ). The integral over d2r2 is evaluated
in the same way and gives:∫

d2r2ψ
∗
N2j2

(r2)ψN3j2(r2)e
−iq·r2

=e−q2l2/4e−iqxqyl2/2e−iqxj32πl2/LyFN2N3(−qx,−qy)δ′t,j3−j2

(8.9)

The form factors FN1N4(qx, qy) and FN2N3(qx, qy) are defined as follows:

F00(qx, qy) =1

F01(qx, qy) =
√
1− γ

(iqx + qy)l√
2

F10(qx, qy) =
√
1− γ

(iqx − qy)l√
2

F11(qx, qy) =γL0 + (1− γ)

(
1− q2l2

2

)
(8.10)

The form factors F00 and F11 are the form factors of the orbitals N = 0 and N = 1,
respectively. F00 is exactly the form factor of the Lowest Landau Level, while F11

continuously interpolates between the form factors of the Lowest Landau Level (γ = 1)
and the second Landau level (γ = 0). The form factors F01 and F10 lead to the mixing
between the two orbitals. Overall, we evaluate the Coulomb matrix elements by using
the formula:

AN1N2N3N4
j1j2j3j4

=
1

LxLy

∑
st

(s,t)̸=(0,0)

δqx,s 2π
Lx
δqy ,t 2π

Ly

2πe2

εq
e−q2l2/2×

× ei2π(j1−j3)s/NϕFN1N4(qx, qy)FN2N3(−qx,−qy)δ′t,j1−j4
δ′j1+j2,j3+j4

(8.11)

When we take into account the screening effect due to the metallic gates, the Coulomb
interaction is modified so the Coulomb matrix elements become:

AN1N2N3N4
j1j2j3j4

=
1

LxLy

∑
st

(s,t)̸=(0,0)

δqx,s 2π
Lx
δqy ,t 2π

Ly

2πe2/εq

1 +
a

ql
tanh

(
q2l2

2

)e−q2l2/2×

× ei2π(j1−j3)s/NϕFN1N4(qx, qy)FN2N3(−qx,−qy)δ′t,j1−j4
δ′j1+j2,j3+j4

(8.12)

In the previous discussions, we presented the single-particle momentum ky to label
the single-electron wavefunction. However, we are examining a system of Ne electrons.
Therefore, we need to define the quantum number of the many-body wavefunction. This
kind of quantum number is defined using the relative translation operator (see Appendix
B.5). The relative translation operators allow us to define the many-body momentum K
as follows:

K =
2π

Lx

(s− s0)x̂+
2π

Ly

(t− t0)ŷ(s, t ∈ Z) (8.13)
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Figure 8.1: The (γ,∆10) plane. We show the typical values of γ and ∆10 accessible during the
experiments between the curves corresponding to −80meV ≤ u ≤ 80meV and 10T ≤ B ≤ 45T.

Let N be the greatest common divisor of Ne and Nϕ, we have Ne = pN and
Nϕ = qN . The filling factor equals:

ν =
Ne

Nϕ

=
p

q
(8.14)

The Brillouin zone of the many-body wavefunctions is a rectangular and contains
N2 many-body momenta K. The area of the Brillouin zone is ABZ = (2π)2N2/(LxLy).
The center of the Brillouin zone K = 0, however, does not correspond to s = t = 0, but
corresponds to the quantum numbers s0 and t0 instead, and is determined as follows:

• If pq(Ne − 1) is even, then s0 = t0 = 0

• If pq(Ne − 1) is odd, then s0 = t0 = N/2

Overall, we study the ground state of the BLG system by varying two parameters: the
weight γ which takes values 0 ≤ γ ≤ 1, and the orbital splitting energy ∆10. The third
parameter is the screening a. We set a = 0. The systems with nonzero screening a ̸= 0
have the same phase diagram as in the case where a = 0, only the phase boundaries are
displaced.

8.3 . The Laughlin state ν = 1/3

We study the fate of the quantum Hall state of filling factor ν = 1/3 on the ∆10 − γ
plane (Fig. 8.1). Along the γ = 1 line, the single-particle wavefunctions on both orbitals
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N = 0 and N = 1 are the Lowest Gallilean Landau Level wavefunction, but localized on
the two different sublattices A1 and A2, respectively. The two orbitals have the same
form factor F00 = F11 = 1, and there is no mixing between them: F01 = F10 = 0. Hence,
the physics is like in the one of a spinful quantum Hall system in the Lowest Landau level.
The many-body wavefunction of the incompressible state is well approximated by the
following wavefunction:

Ψ1/3({zi}) =
∏
i<j

(zi − zj)
3|symmetric spinor part⟩ (8.15)

in which the spatial part is the Laughlin wavefunction, and the spinor part is a symmetric
ferromagnetic multiplet. Here we have an example of quantum Hall ferromagnetism. The
Coulomb interaction has the SU(2) symmetry between the two components. The orbital
splitting energy ∆10 plays the same role as the Zeeman energy in spinful systems and
breaks the SU(2) symmetry of the Coulomb interaction. When ∆10 = 0, the pseudo-
Zeeman field vanishes, and the SU(2) symmetry of the total Hamiltonian is unbroken,
so the spinor part of the groundstate is a multiplet with total pseudospin Ptot = Ne/2.
A nonzero pseudo-Zeeman field ∆10 lifts this degeneracy. For ∆10 < 0, the state with
pseudospin P z = +Ne/2 is favored, where the electrons tend to occupy the N = 0 orbital.
By contrast, when ∆10 > 0, the state with pseudospin P z = −Ne/2 is the preferred one.
In this case, the electrons favor to occupy the orbital N = 1. In other words, we can also
say that for γ = 1 and large |∆10| the system is layer-polarized, because for γ = 1 the
orbital degree of freedom coincides with the layer degree of freedom.

Now, we move on to the case where |∆10| is very large and discuss the ground state
as a function of the parameter γ. For ∆10 large and negative, the system is fully polarized
to the N = 0 orbital, so the ground state is one-component and independent of γ.
The physics is that of the Laughlin state in the Lowest Landau Level. The many-body
wavefunction can be approximately given by:

Ψ1/3({zi}) =
∏
i<j

(zi − zj)
3|00 . . . 0⟩ (8.16)

For ∆10 large and positive, the system is fully polarized to the N = 1 orbital. The
physics of the system is described by the form factor F11, which is dependent on γ. For
γ = 1, this is the physics of the layer-polarized Lowest Landau level wavefunction we
previously discussed for the γ = 1 line. For γ = 0, the single-particle wavefunction
becomes the second Landau level wavefunction. The form factor corresponds to the
interaction in this Landau level. The ground state is therefore the Laughlin-like state of
filling factor ν = 1/3 in the second Landau level. In this Landau level, finite size effect is
important and the Laughlin state needs to be stabilized by a finite width of the electron
gas. For γ = 1/2, the form factor is the same like the form factor of the Landau level
N = 1 of monolayer graphene.

For γ = 0, the single particle wavefunctions become localized to the same sublattice
(sublattice A1 on the top layer). By varying the orbital splitting energy ∆10, we
continuously go from the physics of the Lowest Galilean Landau level n = 0 to the
physics of the second Galilean Landau level n = 1. The two limiting cases for |∆10|
very large have been discussed in the previous paragraphs. When ∆10 = 0, we have the
maximal mixing between the n = 0 and n = 1 Galilean Landau levels. In conventional
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Figure 8.2: The polarization of the ground state of ν = 1/3 at K = 0 for γ = 0 as a function of ∆10.
The sizes of the system are Ne = 6, 7, 8 electrons. The corresponding aspect ratios of the torus are
Lx/Ly = 0.44, 0.35, 0.70. The figure clearly shows a polarization transition at which electrons transfer
from the orbital N = 0 to the orbital N = 1 as ∆10 increases from -1 to +1. The value of ∆10 at
which the polarization transition happens is almost independent of the size of the system.

quantum Hall systems in semiconductors, if the cyclotron energy is small compared to
the Coulomb energy, there are virtual transitions towards the empty higher Landau levels.
Therefore, Landau level mixing modifies the interaction between electrons in the LLL, and
destabilizes the quantum Hall liquid in favor of a Wigner crystal. In BLG, by neglecting
the higher Landau levels, here the physics is reminiscent of an extreme mixing between
the lowest and the second Landau levels. This situation is unique for bilayer graphene.

On the line ∆10 = 0, we have the maximal mixing between the two orbitals N = 0
and N = 1. By varying γ, we continuously interpolate from the limit of extreme Landau
level mixing - like (γ = 0) to the limit of an SU(2)-symmetric spinful system (γ = 1). In
the next sections, we will study the physics for small γ and small ∆10 values. We expect
than the polarization of the ground state varies as we vary the orbital splitting energy
∆10. For this reason, we use the polarization of the ground state and the quantum fidelity
as the indicators to locate the phase boundaries.

8.4 . Transition between the two orbitals

8.4.1 . Polarization transition
Let |Ψ⟩ be a quantum state of the 2D electron system, we define the polarization of

|Ψ⟩ as the proportion of the number of electrons occupying the orbital N = 0 over the
total number Ne of all the electrons:

P = ⟨Ψ|N̂0|Ψ⟩/Ne = 1− ⟨Ψ|N̂1|Ψ⟩/Ne (8.17)
The value of P varies from 0 ≤ P ≤ 1. When P = 1, all particles occupy the orbital

N = 0. Inversely, when P = 0, all particles occupy the orbital N = 1. The states whose
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P = 0.5 have a balanced occupation of electrons over the two orbitals. That means in
those states, there are Ne/2 electrons occupying each orbital.

We consider the state of filling factor ν = 1/3 and study the variation of the
polarization on the line γ = 0 by varying ∆10 from ∆10 = −1 to ∆10 = +1. For large
values of ∆10, we know that the ground state is a quantum Hall liquid, so its many-body
momentum is at K = 0. The ground state manifold of the Wigner crystal, that is
suspicious to compete with the quantum Hall liquid in the vicinity of ∆10 = 0, also
contains a state with many-body momentum K = 0. Because we are interested in
the polarization of the ground state, we fix the many-body momentum at K = 0 and
calculate the polarizaton P of the many-body ground state.

The polarization of the ground state of Ne = 6, 7, 8 is shown in Fig. 8.2. For ∆10 < 0
and large, P ≈ 1, meaning that almost all particles occupy the orbital N = 0. As ∆10

increases, the polarization slowly decreases and remains P > 0.9 until ∆10 ≈ −0.02.
Since then, the polarization sharply goes down. The inflection point at which P = 0.5 is
not at ∆10 = 0, but at ∆10 ≈ 0.06 instead. At this value of ∆10, there is a balanced
occupation of the electrons over the two orbitals. It shows that there is a transition at
which electrons move from the orbital N = 0 to the orbital N = 1. The value of ∆10

at the transition is almost independent of the size of system. For ∆10 ≥ 0.15, P < 0.1
and slowly decreases to P = 0 with increasing ∆10. For ∆10 > 0 and large, almost all
particles occupy the orbital N = 1.

Fig. 8.3 shows the polarization of the ground state at K = 0 for Ne = 6 electrons as
a function of the two parameters γ and ∆10. For γ < 1, the transition from the orbital
N = 0 to the orbital N = 1 happens at positive values of ∆10. The reason is as follows:
the exchange energy is stronger in the Lowest Landau Level than in the Second Landau
Level. Therefore, even when ∆10 = 0, electrons favorably occupy the orbital N = 0
instead of the orbital N = 1. Indeed, the former has a whole weight on the Lowest
Landau level, while the latter has a finite weight on the Second Landau level. To balance
the exchange energy, one needs a finite cost by adding a positive offset energy ∆10. As
γ increases, this finite offset decreases down to ∆10 = 0, forming a boundary separating
the red region (where electrons prefer to occupy the orbital N = 0) from the blue region
(where electrons favor to occupy the orbital N = 1). When γ = 1, the two orbitals
have the same form factor of the Lowest Landau level, the exchange interaction is as
strong in orbital N = 0 as in orbital N = 1. The offset energy for a transition from
orbital N = 0 to orbital N = 1 is ∆10 = 0. In this case, we recover the physics of a fully
SU(2)-symmetric system.

8.4.2 . Quantum fidelity
To confirm the existence of a phase transition, we use another indicator: the quantum

fidelity. The idea is as follows: we fix the parameter γ and slightly change the parameter
∆10 by an infinitesimal increment ϵ. And then we calculate the overlap between the new
ground state |Ψ(∆10 + ϵ)⟩ and the old ground state |Ψ(∆10)⟩. The quantum fidelity is
given by the formula:

F(∆10) = |⟨Ψ(∆10 + ϵ)|Ψ(∆10)⟩|2 (8.18)
If we are in the same phase, the quantum fidelity is close to unity. A phase transition

happens when there is a strong dip in F away from the unity. Fig. 8.4 shows the quantum
fidelity F(∆10) of the ground state at K = 0 with filling factor ν = 1/3 at γ = 0. The
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Figure 8.3: The polarization of the ground state at K = 0 for Ne = 6, electrons, Nϕ = 18 magnetic
flux quanta on a torus with aspect ration Lx/Ly = 0.44. The color bar illustrates the polarization
P = ⟨N0⟩/Ne. The lower half of the γ −∆10 has red color (P > 0.5), showing that electrons of the
corresponding states tend to occupy the orbital N = 0. By contrast, the upper half of the γ−∆10 plane
has blue color (P < 0.5), and electrons of the corresponding quantum states favor to occupy the N = 1
orbital. The two regions are separated by a green transition line (P ≈ 0.5) where electrons transfer
between the two orbitals. The critical value ∆10 of the transition is positive because the exchange
energy is stronger in orbital N = 0 than in orbital N = 1, so it requires a nonzero offset energy to
balance the total energies of the two orbitals.
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Figure 8.4: The quantum fidelity of the ground state |Ψ(∆10)⟩ with filling factor ν = 1/3 at K = 0 for
γ = 0. The increment step is δ = 0.01. Here we show the quantum fidelity for Ne = 6 and Ne = 8.
There is a strong dip in F at ∆10 = 0.06, showing that a phase transition happens. It is consistent to
the polarization transition we discussed in subsection 8.4.1.

step increment is δ = 0.01. There is a strong dip at ∆10 ≈ 0.06, indicating a phase
transition, consistent with the polarization transition we previously showed in subsection
8.4.1. The dip in the quantum fidelity grows with the size of the system. We conclude
that the polarization and the quantum fidelity indicate the boundary at which there
is a polarization transition. We find two phases: (i) the first phase with an electron
occupation polarized to the N = 0 orbital (P > 0.5) appears at low values of ∆10,
and (ii) the second phase with an electron occupation polarized to the N = 1 orbital
(P < 0.5) appears at high values of ∆10.

8.5 . The Wigner crystal

We start by studying the state with Ne = 6, Nϕ = 18 at γ = 0 and ∆10 = 0. We
perform exact diagonalizations on the torus by varying the aspect ratio 0.2 ≤ Lx/Ly ≤ 1.0
while keeping the area unchanged LxLy = 2πNϕl

2. We observe a clear ground state
quasidegeneracy for aspect ratio around AR= 0.44 (Fig. 8.5). The quasidegenerate
ground states have an energy splitting of the order 10−4e2/(εl) and are well separated
from the excited states by a gap of order 10−2e2/(εl). We call the set of quasidegenerate
ground states the ground state manifold. The system is no longer isotropic in space and
manifests a broken translational symmetry. This phenomenon was observed at low filling
factors or in higher Landau levels and is associated to the formation of charge density
waves, stripe and bubble phases, Wigner crystals [148, 163–165]. In BLG, a broken
translational symmetry phase called the helical phase was also predicted for filling factor
ν = 1 [35].

Fig. 8.6a shows the energy spectrum of Ne = 6 electrons, Nϕ = 18 magnetic flux
quanta on the torus with aspect ratio Lx/Ly = 0.44. Here we set γ = 0 and ∆10 = 0.

129



Figure 8.5: The spectrum of Ne = 6 electrons, Nϕ = 18 magnetic flux quanta (filling factor ν = 1/3).
The greatest common divisor of Ne and Nϕ is N = 6. The parameters are γ = 0, ∆10 = 0. Here we
perform exact diagonalizations on the torus and vary the aspect ratio Lx/Ly such that 0.2 ≤ Lx/Ly ≤ 1.0
so as to keep the area of the torus constant LxLy = 2πNϕl

2. The Brillouin zone of a torus with defined
aspect ratio contains N2 = 36 momenta K. At each momentum K, we calculate the 5 lowest energy
eigenvalues. Each vertical line at fixed Lx/Ly contains the quantum states of the corresponding torus
with all momenta K. At aspect ratio Lx/Ly = 0.44, there is a crossing between levels (see the red
arrow), meaning that the ground states are quasidegenerate. The spectrum of the case Lx/Ly = 0.44
is shown in Fig. 8.6a.
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(a)

(b)

Figure 8.6: (a) The energy spectrum of Ne = 6 electrons, Nϕ = 18 magnetic flux quanta on the torus
with aspect ratio Lx/Ly = 0.44. The parameters are γ = 0 and ∆10 = 0. The colorbar shows the
polarization P of the states. The states inside the red rectangle form the ground state manifold. (b)
The many-body Brillouin zone of the corresponding torus. The dots (small cyan dots and big magenta
dots) represent the allowed many-body momenta. The quasidegenerate ground states are represented by
big magenta dots. The dashed rectangle contains N2 = 36 non-equivalent momenta. The momenta
outside the rectangle can be brought into equivalent counterparts inside the rectangle via translations
along the edges of the Brillouin zone.
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The spectrum clearly shows the quasidegenerate ground states, separated by a gap of
size 0.01e2/(εl) from the excited states. The polarization is about P ≈ 0.85 for the
ground states, showing that in the ground state the electrons tend to occupy the orbital
N = 0. Although, in the ground states there is a finite but small number of electrons
occupying the orbital N = 1. Excited states have lower polarizations P, meaning that
they have more electrons occupying the orbital N = 1 than in ground states.

In Fig. 8.6b, we plot the ground state manifold inside the Brillouin zone. The area of
the many-body Brillouin zone is (2π)2N2/(LxLy). Let N be the greatest common divisor
of Ne and Nϕ, we have N = 6 1. Due to the breaking of the translational symmetry, the
number of degenerate ground states is ND = 6. This implies that the Brillouin zone of the
symmetry-breaking phase is reduced by ND times, and has an area of (2π)2N2/(LxLyND).
In the real space, electrons form bubbles, which are periodically arranged in real space. Let
Nb be the number of bubbles in a cell, each bubble becomes a unit cell with area LxLy/Nb.
The area of the Brillouin zone of the symmetry-breaking phase is (2π)2/(LxLy/Nb). The
equality (2π)2N2/(LxLyND) = (2π)2/(LxLy/Nb) implies that NDNb = N2. Therefore,
the number of bubbles is Nb = N2/ND = 6 [165]. The number of electrons per bubble
is Ne/Nb = 1, showing that the ground state is a Wigner crystal .

One needs to fine tune the aspect ratio of the unit cell to observe the degeneracy
because the Wigner crystal is sensitive to the aspect ratio. The optimal value of the aspect
ratio at which the Wigner crystal appears is Lx/Ly = 0.44 for Ne = 6, Lx/Ly = 0.37 for
Ne = 7, Lx/Ly = 0.7 for Ne = 8, and Lx/Ly = 0.3 for Ne = 9. To prove the periodic
distribution of the electron in real space, we calculate the pair correlation function.
The pair correlation function is the measure of the probability of finding two electrons
separated by a distance R. It is given by the formula:

gαβ(R) =
1

ρNe

∑
i<j

δ(ri − rj −R)(|α⟩⟨α|)i(|β⟩⟨β|)j (8.19)

In this formula, α, β = 0, 1 are the orbital indices. The electrons are labeled by the
indices i, j, and their positions are described by the vectors ri and rj. The quantity
ρ = Ne/(LxLy) is the electron density. In second quantization language, we write the
pair-correlation function between two electrons occupying orbitals α, β and separated
further apart by a distance R as follows:

gαβ(R) =
LxLy

N2
e

∫
d2rd2r′⟨Ψ|ψ̂†

α(r)ψ̂
†
β(r

′)δ(2)(r− r′ −R)ψ̂β(r
′)ψ̂α(r)|Ψ⟩ (8.20)

Because we apply the periodic boundary conditions on the finite-size system, the pair
correlation function is periodic: gαβ(x+Lx, y) = gαβ(x, y+Ly) = gαβ(x+Lx, y+Ly) =
gαβ(x, y). It allows us to recover the value of the pair correlation function on the whole
plane by replicating the calculated values on one single cell. Because the Wigner crystal
is polarized to the orbital N = 0, we examine the spatial distribution of electrons by
calculating the pair correlation function g00. We show the pair correlation function g00
for Ne = 6, 7, 8 in Fig. 8.7. Due to periodicity, we only show g00 in a rectangular cell

1Hereweuse the symbolN for the greatest commondivisor ofNe andNϕ because this notationis familiar in the literature. We recommend the reader to distinguish this notation from the symbol
N of the orbital, depending on the context.
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Figure 8.7: The pair correlation function g00(Rx, Ry) for Ne = 6, 7, 8 electrons at filling factor ν = 1/3
for γ = 0 and ∆10 = 0. We calculated the pair correlation function on a rectangular cell of size Lx×Ly.
The aspect ratio favoring the Wigner crystal is size-dependent. The pair correlation function is zero at
the center g00(0, 0) = 0 due to the Pauli exclusion principle.

of size Lx × Ly. In all cases, at the center Rx = Ry = 0 the pair correlation function
vanishes g00(0, 0) = 0 because the fermionic nature of electrons forbids two electrons
having the same quantum numbers to coincide in space (Pauli exclusion principle). Apart
from the center, there exist overdensity regions, which are represented by the red bubbles.
Here we observe the periodic modulation of the electron density in space. This is the
characteristic of a Wigner crystal. The pair correlation function of a quantum Hall liquid,
however, exhibits a crater-like feature around the position of the reference particle and a
smooth background outside the first ring of overdensity (Fig. 8.9). The pair correlation
function visualizes the real space distribution of the electron density and confirms that
electrons form a crystalline lattice in real space. For Ne = 6 and Ne = 7, the electrons
form triangular lattice, while for Ne = 8 the electrons form square lattice. We cannot
conclude on the precise nature of the crystal,there is a competition between the triangular
and the square lattices.

We explain the formation of this Wigner crystal as follows. In the vicinity of the
crossing between the levels |K0 ↑⟩ and |K1 ↑⟩, the spin and valley degrees of freedom
are frozen. The situation is like in the case where there are two Landau levels N = 0
and N = 1 (supposing that we neglect all mixing with higher Landau levels). Here the
energy ∆10 plays the role of the cyclotron energy. By tuning the interlayer bias u, the
value of ∆10 varies. When ∆10 = 0, the two orbitals coincide and we arrive to a situation
reminiscent to an extreme Landau level mixing. As we already know from chapter 7,
strong Landau level mixing prefers the ground state to be a Wigner crystal rather than
a quantum Hall liquid. That explains the formation of this electrically-induced Wigner
crystal.

By examining the ground state manifold in the Brillouin zone, we see that the quaside-
generate ground states characterizing the Wigner crystal disappear at the polarization
transition from the orbital N = 0 to the orbital N = 1. This is consistent because we
previously found that the Wigner crystal is almost polarized to the N = 0 orbital. This
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Figure 8.8: The method of determining the crytal strength. Here we show the pair correlation function
of the ground state at K = 0 for Ne = 6, Nϕ = 18, γ = 0, ∆10 = 0, Lx/Ly = 0.44. The first ring of
overdensity contains the six nearest maxima surrounding the central minimum (Rx = Ry = 0). gmax is
the value of the pair correlation function at the maxima, while gmin is the minimum value of the pair
correlation function in the middle of two consecutive maxima. The crystal strength is defined as the
ratio (gmax − gmin)/gmin.

Figure 8.9: The crater-like feature of the pair correlation function g00 of the Laughlin state. Here we
show the pair correlation function of Ne = 6, Nϕ = 18, γ = 0, ∆10 = −0.8. The graph of the pair
correlation function g00 on a unit cell has a minimum at the center Rx = Ry = 0, corresponding to the
position of the reference particle. The ring of overdensity exists around the reference particle. Those
overdensities indicate the “seed” positions at which the crystal forms when ∆10 approaches 0. In this
case, the contrast (gmax − gmin)/gmin is too weak to form a Wigner crystal.
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Figure 8.10: The phase diagram of the filling factor ν = 1/3 in the γ −∆10 plane. The Wigner crystal
phase is shown inside the red region.

allows to define the upper boundary of the Wigner crystal phase on the phase diagram.
To define the lower boundary of the Wigner crystal phase, we look at the crystal strength.
We define the contrast of the first ring of overdensity in the pair correlation function to
be (gmax − gmin)/gmin. For a sake of simplicity, we illustrate the way of determining
gmax and gmin for a system of size Ne = 6, Nϕ = 18 in Fig. 8.8. In the crystal phase the
contrast is 0.44 for γ = 0, ∆10 = 0, Ne = 9, Lx/Ly = 0.3. The Coulomb ground state
of filling factor ν = 1/3 in a single polarized Landau level has a contrast of about 0.04.
Arbitrarily, we decide the ground state to be a liquid if the contrast is less than 0.1, and
is a liquid otherwise. It allows to define the lower boundary of the crystal phase.

Finally, we show the phase diagram of the filling factor ν = 1/3 in Fig. 8.10. The
Wigner crystal phase occurs in the red region in the vicinity of ∆10 = 0. As γ increase,
the Wigner crystal state appears for γ up to 0.7. The dashed lines indicate that the
Wigner crystal is experimentally accessible when we tune the interlayer bias to around
u =−80meV and the magnetic field strength B is between 10T and 45T. The prediction
of this electrically-induced Wigner crystal is the main result of our work [105].

8.6 . The fraction ν = 2/3

Last but not least, we discuss the fate of the state with filling factor ν = 2/3. This
state can be considered as composite fermion having 2 magnetic flux quanta under
negative magnetic field. We begin with the case γ = 1. Here the Coulomb Hamiltonian
is fully SU(2) symmetric, and this symmetry is broken by a nonzero pseudo-Zeeman field
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Figure 8.11: The polarization of the state ν = 2/3 for γ = 1. The aspect ratio is Lx/Ly = 0.85. There
are two abrupt changes in the polarization at ∆10 = ±0.016, corresponding to two phase transitions
between the pseudospin singlet state and the fully polarized states.

∆10. The two layers play the role of the pseudospin. There is the competition between
the fully polarized state and the singlet state. For strong ∆10, the ground state is fully
polarized to one of the two layers. When ∆10 approaches 0, the ground state is the
pseudospin-singlet state.

We show the polarization P = ⟨N0⟩/Ne in Fig. 8.11 to confirm the above arguments.
The aspect ratio is Lx/Ly = 0.85. The graph of the polarization is a staircase with
three steps. For −0.016 < ∆10 < +0.016, the polarization is P = 0.5. That means
the two orbitals are equally occupied, and the singlet state is the ground state. For
∆10 < −0.016, P = 1 means that the ground state is fully polarized to the N = 0
orbital. For ∆10 > +0.016, P = 0 is consitent to a ground state that is fully polarized
to the N = 1 orbital. There are two phase transitions at ∆10 = ±0.016 between the
singlet state and the two fully polarized states. Now we consider the case where γ < 1,
the Coulomb interaction has no longer the pseudospin-SU(2) symmetry. The steps are
rounded and there is no transition in the interior of the phase diagram. In conclusion,
there is no Wigner crystal state at ν = 2/3.

8.7 . Conclusion

In this chapter, we study the states ν = 1/3 and ν = 2/3 in Bernal bilayer graphene
by using the exact diagonalization method on the torus geometry. Our interest focuses
on the case of level crossing between the orbitals N = 0 and N = 1 when the spin and
valley degrees of freedom are frozen. The energy ∆10 splitting the two orbitals is tuned
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by varying the magnetic field B and the interlayer bias u across the two graphene layers.
When the two orbitals almost coincide ∆10 ≈ 0, the Laughlin state is destabilized and
replaced by the Wigner crystal state. In the reciprocal space of the many-body state, we
recognize the Wigner crystal by the set of quasidegenerate ground states, showing that
the translational symmetry is broken. The presence of the Wigner crystal is visualized in
the real space by the map of pair correlation function, which shows that the overdensity
bubbles form a periodic pattern.

We explain the formation of Wigner crystal as resulting from the coincidence between
the two Landau levels N = 0 and N = 1, a situation reminiscent to an extreme Landau
level mixing, which destablizes the Laughlin state and prefers the crystalline phase instead.
This extreme Landau level mixing allows the crystallization of the electron system, even
at a high filling factor. The phenomenon of re-entrant Wigner crystal at high filling factor
was experimentally observed in 2D hole system [153]. This work shows that there is a
re-entrant Wigner crystal around the filling factor ν = 1/3, similarly to the re-entrant
Wigner crystal behavior around the filling factor ν = 1/5 and lower filling factors. The
formation of Wigner crystal at high filling factors is due to the high effective mass of
holes, which enhances the Landau level mixing.

Here we fix the filling factor at ν = 1/3 and predict the formation of a Wigner crystal
induced by the external electric field. One can experimentally detect this Wigner crystal
by observing the variation of the longitudinal resistance Rxx as a function of the interlayer
bias u at fixed filling factor. The formation of the electrically-induced Wigner crystal is
recognized by a sharp peak in Rxx when the two levels are coincident. The Wigner crystal
phase is observable for actually accessible magnetic field B ≤ 45T and |u| ≈80meV,
while the interlayer bias should be large enough so that the two orbitals coincide. The
phase transition between Laughlin state and Wigner crystal is second order or weakly
first-order. Our exact diagonalization studies find no signal of the Wigner crystal for the
state of filling factor ν = 2/3.
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Chapter9 - Conclusion, perspectives and future di-
rections

In this thesis, I studied the multicomponent quantum Hall effects in monolayer
graphene and bilayer graphene. The thesis contains the results of two works in Refs. [67]
and [105].

In the first project, I worked on the spin and valley ordering of monolayer graphene
for the quantum Hall effects of filling factors n/3(n = 1, 2, 4, 5). These symmetry-
breaking orders arise from breaking the SU(4) symmetry of the Coulomb interaction due
to short-range valley-dependent interaction. We first formulated a variational method
and used this variational method to establish the phase diagram of the quantum Hall
states in monolayer graphene. Then we performed numerical calculations by using
the exact diagonalization method to identify the symmetry-broken phases. Our exact
diagonalization studies found that for the state (1,1/3,1/3) there is a spin-singlet and
valley-unpolarized phase that is not predicted by the variational calculations, which we
call it phase C. For filling factors ν̃ = 4/3 and ν̃ = 5/3, present experiments are likely
to observe the two-component (1,1/3) and (1,2/3) states. In tilted field experiments,
one can change the direction of the total magnetic field to realize spin transition to
the states (2/3,2/3) and (1,1/3,1/3). For ν̃ = 4/3, we expect that spin transitions
between (2/3,2/3) and (1,1/3) happen for the KD and CDW phases. For filling factor
ν̃ = 5/3, spin transitions are expected to occur between flavor compositions (1,2/3) and
(1,1/3,1/3) for all values of the anisotropy angle θ.

There remain open questions for the problem of valley-dependent interaction in
monolayer graphene. The first open question concerns finding a wavefunction which
captures the phase C that we discovered for the state (1,1/3,1/3). Here I propose one
direction to solve this problem in the future works. The wavefunction (4.46) is a general
wavefunction of a three-component state formed by gluing an arbitrary two-component
state to a fully-filled shell. One needs to find the relations between the coefficients
F{mi,nj} such that this two-component state is a singlet eigenstate of the Coulomb
interaction Hamiltonian. It may be a complicated problem to solve analytically due to the
large number of F{mi,nj}. This kind of wavefunction leads to new terms in the formula
of the anisotropy energy EV and allows to capture the singlet behavior of the phase C.
The same reasoning can also apply to restrict the wavefunction (4.15) to a form that
captures the antiferromagnetic phase of the state (1,1/3).

The variational phase diagram of the case (1, 1/3, 1/3) was easily established, knowing
that the pair correlation function between the two partially occupied components is
negligible. This property is no longer valid for the four-component states and states
where the partially filled components have unequal filling factors. We need to consider
the terms in EV containing the pair correlation functions between any two partially
filled components to establish the variational phase diagram of such states. By the way,
numerically establishing the phase diagram of such states is challenging due to the large
size of the Hilbert spaces.

Previous research studied the edge states at filling factor ν = 0 and found phases
that are not present in the bulk [166]. The edge states under the fractional quantum
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Hall regime could have an even more complicated spin and valley ordering than their
counterpart in the integer quantum Hall regime. Understanding those edge states is
crucial to design devices with potential applications in valleytronics, such as the quantum
Hall valley splitter and the Mach-Zehnder interferometer [167]. Apart from that, there is
another question about determining the properties of the excited states of the symmetry-
breaking phases in both the integer and fractional quantum Hall regime. Both theoretical
and numerical methods can examine this problem.

The authors of Ref. [104] studied the three-component and four-component singlet
states of filling factor ν = 2/3. Their numerical work shows that neither the composite
fermion picture nor the multicomponent Halperin state wavefunction can explain the
SU(3) and SU(4) singlet states. The nature of these singlet states at low filling factor
remains an open question.

Most researches have focused on the symmetry-breaking phases in the zero Landau
level. Some authors have recently expanded their interest in the Landau level N = 1 of
graphene by studying the quantum Hall states at integer fillings [168]. In this Landau
level, the valley and lattice degrees of freedom are decoupled, and the valley-dependent
two-body interaction has another formula than (3.50). The nature of the symmetry-
breaking phases for the fractional quantum Hall effect in this Landau level needs to be
explored.

Simultaneously with our work, there is progress in both experiments and theory on
the symmetry-breaking phases in charge-neutral graphene. The most striking discovery
is the observation of a K-CDW phase, which coexists with the KD phase [77]. This
K-CDW has a lattice parameter

√
3 times greater than the graphene lattice parameter

and is a different phase than the CDW in the phase diagram of Kharitonov, which has the
same lattice parameter as graphene. Explaining this new phase beyond the four known
phases F, AF, KD, and CDW requires further theoretical investigations. The authors of
Refs. [169] and [170] proposed relaxing the short-range valley-dependent interaction to
a non-short-range interaction. With this assumption, they found three cases of phase
coexistence at ν = 0. However, we need further theoretical investigations to confirm if
this argument is able to explain the K-CDW phase. The nature of the phase K-CDW is
still an open question. By the way, determining and controlling the coupling parameters
g⊥ and gz is still challenging in experiments.

In the second project, I worked on the states of filling factors ν = 1/3 and ν = 2/3
at the crossing between the two levels |K0 ↑⟩ and |K1 ↑⟩ in Bernal-stacked Bilayer
graphene. In this material, the energy splitting these two orbitals can be easily controlled
by tuning the interlayer bias across its layers. This property allows us to realize a situation
reminiscent of an extreme Landau level mixing, provided that we neglect interaction with
higher Landau levels. For the filling factor ν = 1/3, there is competition between the
Laughlin state and the Wigner crystal. When the pseudo-Zeeman field vanishes, the
situation reminiscent of Landau level mixing leads to the formation of the Wigner crystal.
Under strong pseudo-Zeeman field, electrons are polarized to either the N = 0 orbital or
the N = 1 orbital, stabilizing the quantum Hall liquid. The phase transition between the
electron solid and the quantum Hall liquid is continuous or weakly first-order. For the
filling factor ν = 2/3, there is no Wigner crystal.

Our prediction of this electrically-induced Wigner crystal shows that Bernal-stacked
bilayer graphene is potentially a platform to study this phase of matter. This Wigner
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crystal can be detected by observing the diverging peak in the longitudinal resistance
of the sample during transport measurements. For Ne = 6, 7, 9 electrons, the lattice is
closed to the triangular lattice, while for Ne = 8, the crystal lattice is approximately a
square lattice. Due to the finite size of the accessible systems in exact diagonalization
studies, we do not have a conclusive answer about the shape of the Wigner crystal lattice
in the thermodynamic limit. We let it as an open question for future research. One way
to definitely observe the Wigner crystal lattice structure is to use scanning tunneling
microscopy as in Ref. [171]. However, the voltage bias between the tip and the sample
may perturb the system and destabilize the electron crystal phase, possibly preventing
this technique to visualize this state of matter.

The eight single-electron levels in the zero-energy Landau level of Bernal-bilayer
graphene cross each other at a variety of level-crossing points. The rich phase diagram
in the vicinity of the crossing between |K0 ↑⟩ and |K1 ↑⟩ was explored for the filling
factors ν = 1, 1/2, 1/3 in Refs. [35, 36] and in our work [105]. The other crossing points
promise interesting physics to explore for both theory and experiments.
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AppendixA - Spherical geometry

The spherical geometry was first introduced by Haldane in 1983 [57]. In 1986, Fano,
Ortolani, and Colombo applied this geometry to calculate the ground state energy and the
energy of the quasielectron and quasihole of the Laughlin states ν = 1/3 and ν = 1/5 [62].
Since then, the spherical geometry is used to calculate the energy spectrum, transport
gap, magnetoroton dispersion, and correlation functions. This geometry plays a major
role in studying the physics of the quantum Hall effect because of its advantages: First,
it does not have edges and is suitable for studying the properties of the bulk. Second,
because the area of the sphere is finite, the Landau levels have finite degeneracy. In the
spherical geometry, the system is rotationally invariant and the angular momenta L and
Lz of the electrons are the quantum number. One can find pedagogical introductions to
the spherical geometry in either the paper of Fano, Ortolani, Colombo [62], in the books
of Jain [8] or in the book of Chakraborty and Pietiläinen [172].

A.1 . Angular momentum of electrons on a sphere under radial magnetic field

In the spherical geometry, the two-dimensional plane containing the electrons is
wrapped into a sphere (Fig. A.1). The magnetic field B is perpendicular to the surface
of this sphere, and points along the radial direction. A magnetic monopole of charge
2Q = ±Nϕ is placed at the center of the sphere so that the total magnetic flux passing
through the surface equals 2Qϕ0 = 4πR2B. In the thermodynamic limit, the ratio
Ne/|2Q| tends to the filling factor ν:

ν = lim
Ne→∞

Ne

2|Q| (A.1)
Consequently, the radius R of the sphere is related to the magnetic monopole according

to the formula:
R =

√
|Q|l (A.2)

In this section, we use the spherical coordinate (r, θ, ϕ) with 0 ≤ θ ≤ π and
0 ≤ ϕ < 2π with the following unit vectors:

r̂ =sin θ cosϕx̂+ sin θ sinϕŷ + cos θẑ

θ̂ =cos θ cosϕx̂+ cos θ sinϕŷ − sin θẑ

ϕ̂ =− sinϕx̂+ cosϕŷ

(A.3)

The position of the electron on the surface of the sphere is determined by the vector:

Ω =
R

R
= r̂ = sin θ cosϕx̂+ sin θ sinϕŷ + cos θẑ (A.4)

The magnetic field pointing along the radial direction equals:

B =
2Qϕ0

4πR2
r̂ (A.5)

143



Figure A.1: Spherical geometry. The plane containing the two-dimensional system is wrapped into the
green sphere. The magnetic field is represented by the red arrows. They point along the radial direction.

We can deduce this magnetic field from the gauge:

A = −ℏcQ
eR

cot θϕ̂ (A.6)
The one-particle Hamiltonian of an electron on the sphere is:

H =
ℏ2

2mR2
Λ2 (A.7)

where
Λ = R×

(
−i∇+

e

ℏc
A(Ω)

) (A.8)
We express the one-particle Hamiltonian in the spherical coordinate as follows:

H =
ℏ2

2mR2

[
− 1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

(
Q cot θ +

i

sin θ

∂

∂ϕ

)2
]

(A.9)
We evaluate the commutator between the components of Λ:

[Λi,Λj] =
[
εiklRk

(
−i∂l +

e

ℏc
Al

)
, εjmnRm

(
−i∂n +

e

ℏc
An

)]
=− εiklεjmn[Rk∂l, Rm∂n]−

ie

ℏc
εiklεjmn([Rk∂l, RmAn]

+ [RkAl, Rm∂n])

=Ri∂j −Rj∂i −
ie

ℏc
(RjAi −RiAj + εjkiRpRkBp)

=Ri∂j −Rj∂i +
ie

ℏc
(RiAj −RjAi)−

ie

ℏc
εijkRk(R ·B)

=iεijk(Λk −QΩk)

(A.10)

Similarly, we obtain the commutator between the components of Λ and Ω:

[Λi,Ωj] = iεijkΩk (A.11)
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We define the operator L = Λ+QΩ. The components of L satisfy the algebra:

[Li, Lj] = iεijkLk (A.12)
The corresponding raising and lowering operators L± = Lx ± iLy satisfy the relation:

[Lz, L±] = ±Lz (A.13)
Therefore, the operator L has the properties of an angular momentum operator. The

formulae of the operators Lz,L± in the spherical coordinate are:

Lz =− i
∂

∂ϕ

L± =e±iϕ

(
± ∂

∂θ
+ i cot θ

∂

∂ϕ
+

Q

sin θ

) (A.14)

Because the vector Λ has no component perpendicular to the surface of the sphere,
Λ ·Ω = Ω ·Λ = 0. Consequently, we have:

Λ2 = L2 −Q2 (A.15)
A.2 . Monopole harmonics

The angular momentum operator L allows us to label the eigenstates of the Hamilto-
nian (A.7) by the corresponding quantum numbers l and m, as well as with the magnetic
monopole Q. The corresponding eigenfunctions are the monopole harmonics YQlm, which
are the generalizations of the familiar spherical harmonics. One can find the systematic
proof of the properties of the monopole harmonics in the papers of Wu and Yang [173,
174]. They satisfy the eigenvalue equations:

L2YQlm =l(l + 1)ℏ2YQlm

LzYQlm =mℏYQlm

(A.16)
The energy of the spherical harmonics YQlm is equal to:

E =
l(l + 1)−Q2

2|Q| ℏωc (A.17)
The different angular momentum shells, which contain wavefunctions having the same

energy eigenvalue, are the different Landau levels. The wavefunctions in the nth Landau
level have the angular momentum l = |Q|+ n and energy:

En =

(
n+

1

2

)
ℏωc +

n(n+ 1)

2|Q| ℏωc (A.18)
In the thermodynamic limit, |Q| becomes very large and the energies of the Landau

levels approach the familiar values:

En ≈
(
n+

1

2

)
ℏωc (A.19)
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Because 2Q is an integer, the value of Q can be either integer or half integer.
Consequently, the allowed values of l are l = 0, 1

2
, 1, 3

2
, . . . . For each value of l, the

corresponding values of m are m = −l,−l + 1, . . . , l − 1, l. The second equation in(A.16) implies that the eigenfunctions YQlm have the form:

YQlm(θ, ϕ) = eimϕPQlm(θ) (A.20)
Explicit calculations give the formula of the spherical harmonics:

YQlm =NQlm(−1)l−muQ+mvQ−m×

×
l−m∑
s=0

(−1)s
(
l −Q
s

)(
l +Q

l −m− s

)
(v∗v)l−Q−s(u∗u)s

(A.21)

The value of the normalization factor NQlm is:

NQlm =

[
2l + 1

4π

(l −m)!(l +m)!

(l −Q)!(l +Q)!

]1/2 (A.22)
The above analysis implies that different Landau levels have different degeneracies.

The lowest Landau level has degeneracy 2|Q|+1, the second Landau level has degeneracy
2|Q| + 3,... In general, the degeneracy of the nth Landau level equals to 2l + 1 =
2(|Q|+ n) + 1. If the system has n completely filled Landau levels, we have:

|Q| = Ne − n2

2n
(A.23)

A.3 . Coulomb matrix elements

We write the Coulomb electron-electron interaction in the second quantization form
as follows:∑

i<j

V (|ri − rj|) =
1

2

∑
l1l2l3l4

m1m2m3m4

⟨Ql1m1, Ql2m2|V (r1 − r2)|Ql3m3, Ql4m4⟩×

× a†Ql1m1
a†Ql2m2

aQl3m3aQl4m4

(A.24)

where V (r1 − r2) = e2/(|r1 − r2|) is the Coulomb potential.
The matrix element equals to:

⟨Ql1m1, Ql2m2|V (r1 − r2)|Ql3m3, Ql4m4⟩

=

∫
dΩ1dΩ2Y

∗
Ql1m1

(r1)Y
∗
Ql2m2

(r2)
e2

|r1 − r2|
YQl3m3(r2)YQl4m4(r1)

=
2S∑
J=0

+J∑
M=−J

⟨Ql1m1, Ql2m2|JM⟩⟨JM |Ql3m3, Ql4m4⟩V (Q)
J

1

R

(A.25)

The pseudopotential V (Q)
J expresses the interaction energy between two electrons

with relative angular momentum J . Its formula is:

V
(Q)
J = 2

(
4Q− 2J
2Q− J

)(
4Q+ 2J + 2
2Q+ J + 1

)
(
4Q+ 2
2Q+ 1

)2 (A.26)
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The factors ⟨Q1l1m1, Ql2m2|JM⟩ are the Clebsch-Gordan coefficients.
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AppendixB - Torus geometry

Despite the advantages of the spherical geometry, it has some inconveniences. First,
due to the nonzero curvature of the sphere, the filling factor ν is not equal to Ne/Nϕ, but
one must correct the formula by considering the Wen-Zee shift [175]. Consequently, one
cannot compare the energies of two states having different shifts. Second, the spherical
geometry lacks translational invariance. This results in defects when studying the crystal
state. The torus geometry, however, has zero Wen-Zee shift and employs the periodic
boundary condition. It naturally has the translational symmetry and is suitable to study
the electron crystal phase.

In 1983, Yoshika et al. applied the periodic boundary condition to study the quantum
Hall state with filling fraction ν = 1/3 and found that the ground state is threefold
degenerate [176]. In 1985, Haldane formulated the modern formalism of the torus
geometry on the rectangular cell [177]. He showed that the ground state degeneracy is
the center-of-mass degeneracy and has no physical significance. The periodic boundary
condition was generated to the case of oblique cell or twisted torus by Haldane and Rezayi
by using the elliptic theta function [178] and, recently, by using the “modified Weierstrass
sigma functions” [179, 180]. The torus geometry is useful for studying fractional Chern
insulators [181, 182].

We can find pedagogical introductions to the torus geometry in the book by
Chakraborty and Pietiläinen [172] and in the paper by Bernevig and Regnault [183]. This
section derives the formalism of the torus geometry on the rectangular cell.

B.1 . One-particle wavefunction

The Hamiltonian of one electron under magnetic field B = Bẑ is given by:

H =
1

2m
Π2 =

1

2m

(
−iℏ∇+

e

c
A(r)

)2 (B.1)
In the present section, we consider the problem in the Landau gauge A = (0, Bx, 0).

According to subsection 2.2.2, the one-particle wavefunction is given by:

ϕn,ky(x, y) = e−ikyye−
(x−kyl2)2

2l2 Hn

(
x− kyl

2

l

)
(B.2)

Figure B.1: The periodic boundary condition brings the rectangular cell into a torus.
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Here, Hn is the nth Hermite polynomial. The condition 0 ≤ X ≤ Lx implies that
the degeneracy of each Landau level equals the number Nϕ of magnetic flux quanta
passing through the sample. If the sample has Ne electrons, the filling factor is equal to
ν = Ne/Nϕ.

B.2 . Magnetic translation

Usually, we define the translation along the vector L = Lxx̂+ Lyŷ by the operator:

T (L) = exp
(
i

ℏ
L · p

)
(B.3)

whose action on a wavefunction Ψ(x, y) gives 1:

T (L)Ψ(x, y) = Ψ(x+ Lx, y + Ly) (B.4)
In the next section, we will apply the periodic boundary to our system. The periodic

boundary condition makes the system translationnally invariant under the set of lattice
vectors. In general, the gauge A is not periodic, so the translation operator T (L) does
not commute with the single-electron Hamiltonian. That means we cannot use T (L) to
classify the single-electron states under magnetic field. Therefore, we need to define a
new operator that combines the translation and the gauge transformation. This operator
is called the magnetic translation operator.

The generator for the magnetic translation is defined as:

K̂ = Π− ℏ
l2
ẑ× r (B.5)

Explicitely, its x and y components are:

K̂x =− iℏ
∂

∂x
+
e

c
Ax +

ℏ
l2
y

K̂y =− iℏ
∂

∂y
+
e

c
Ay −

ℏ
l2
x

(B.6)

Therefore, the expression for the magnetic translation operator along the vector L is:

T (L) = exp
(
i

ℏ
L · K̂

)
(B.7)

Unlike ordinary translation operators, magnetic translation operators do not commute
in general. For any two arbitrary vectors a and b, we have:

T (b)T (a) = T (a)T (b)exp
(
i

l2
(a× b) · ẑ

)
(B.8)

In the Landau gauge, the relation between the magnetic translation and the ordinary
translation along the same vector L is:

T (L) = exp
(
i

2l2
LxLy

)
exp
(
i

l2
Lxy

)
T (L) (B.9)

1Standard textbooks often define the translation operatorT (L) = exp
(
− i

ℏ
L · p

)
whose effect

is to transform the wavefunction as T (L)Ψ(x, y) = Ψ(x− Lx, y − Ly).
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Figure B.2: The periodic boundary conditions transform a system of Ne electrons into an infinite lattice.
Each cell in the lattice is a replica of the original system. Here the number of electrons Ne = 6. The
original electrons are represented by the blue dots. The images of the electrons are represented by the
magenta dots. The vectors L1 = L1x̂ and L2 = ŷ are the primitive vectors of the lattice.

B.3 . Periodic boundary condition

We apply the periodic boundary condition on a rectangular cell of size Lx × Ly:

ψ(x+ Lx, y) =e
−iLxy/l2ψ(x, y)

ψ(x, y + Ly) =ψ(x, y)
(B.10)

The periodic boundary condition implies that:

ψ(0, 0) = ψ(Lx, 0) = ψ(0, Ly) = ψ(Lx, Ly) (B.11)
These values of the wavefunction ψ(x, y) are related by the following relations:

ψ(Lx, 0) =T (Lxx̂)ψ(0, 0)

ψ(0, Ly) =T (Lyŷ)ψ(0, 0)

ψ(Lx, Ly) =T (Lxx̂)ψ(0, Ly) = T (Lyŷ)ψ(Lx, 0)

(B.12)

This implies that:
T (Lxx̂)T (Lyŷ) = T (Lyŷ)T (Lxx̂) (B.13)

According to (B.8), the condition is satisfied if:

exp
(
i

l2
(Lxx̂× Lyŷ) · ẑ

)
= 1 (B.14)
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This is satisfied if the total magnetic field passing through the cell is quantized
and equals an integer multiple Nϕ of the magnetic flux quantum Φ0 = hc/e. This is
consistent with the degeneracy of the Landau levels shown in subsection 2.2.2. The area
of the rectangular cell is related to Nϕ as:

LxLy = Nϕ2πl
2 (B.15)

The periodic boundary condition on the y-direction implies that the allowed values of
ky are:

ky =
2π

Ly

ny(ny ∈ Z) (B.16)
Each Landau level has a degeneracy Nϕ, so the set of allowed values of ky is restricted

to Nϕ classes of equivalent momenta, defined modulo Nϕ2π/Ly. We label each class
with the integer j(1 ≤ j ≤ Nϕ):

ky = ny
2π

Ly

= (j + kNϕ)
2π

Ly

= j
2π

Ly

+ k
Lx

l2
(k ∈ Z) (B.17)

The basis for the Hilbert space of single-particle wavefunctions consists of Nϕ wave-
functions. Each of them is a linear combination of all the wavefunctions whose momenta
ky belong to the same equivalent class. We denote each basis wavefunction as ϕnj(r)
with n(n ∈ N) as the Landau level, and j (j ∈ N, 1 ≤ j ≤ Nϕ) as the index for the
momentum ky. The expression for the basis wavefunction is:

ϕnj(r) =

(
1

Ly

√
πl

)1/2 +∞∑
k=−∞

1√
2nn!

exp

[
−ikyy −

1

2

(
x− kyl

2

l

)2
]
×

×Hn

(
x− kyl

2

l

)
=

(
1

Ly

√
πl

)1/2 +∞∑
k=−∞

1√
2nn!

exp
[
−i
(
j
2π

Ly

+ k
Lx

l2

)
y

]
×

× exp

[
−1

2

(
x

l
− j

2πl

Ly

− k
Lx

l

)2
]
Hn

(
x

l
− j

2πl

Ly

− k
Lx

l

)
(B.18)

Although these wavefunctions are not invariant under the ordinary translation, they
are invariant under magnetic translation along the vectors L1 = Lxx̂ and L2 = Lyŷ:

T (L1)ϕnj(r) =ϕnj(r)

T (L2)ϕnj(r) =ϕnj(r)
(B.19)

When we apply the periodic boundary condition, the system of Ne electrons under Nϕ

magnetic flux quanta becomes a primitive cell in an infinite lattice whose primitive lattice
vectors are L1 and L2 (see Fig.B.2). Each cell in the lattice is a replica of the original
system. The electrons in the system not only interact with each other but also interact
with their images. Therefore, we should replace the iniital electron-electron Coulomb
interaction by a periodic Coulomb interaction:

V (r) =
1

LxLy

∑
q̸=0

2πe2

εq
exp(iq · r) (B.20)
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where q =

(
2π

Lx

s,
2π

Ly

t

)
(s, t ∈ Z). The momentum q = 0 (s = t = 0) is excluded

because it corresponds to the direct interaction and is cancelled by the energy of the
neutralizing background.

B.4 . Coulomb matrix elements

In the second quantization language, the Coulomb interaction
∑
i<j

V (ri − rj) with

V (r) defined in (B.20) is expressed in the basis of wavefunctions ϕnj(r) defined in (B.18)
as: ∑

i<j

V (ri − rj) =
1

2

∑
n1n2n3n4
j1j2j3j4

An1n2n3n4
j1j2j3j4

c†n1j1
c†n2j2

cn3j3cn4j4 (B.21)
where the Coulomb matrix elements An1n2n3n4

j1j2j3j4
are evaluated using the formula:

An1n2n3n4
j1j2j3j4

=

∫
d2r1d

2r2ϕ
∗
n1j1

(r1)ϕ
∗
n2j2

(r2)V (r1 − r2)ϕn3j3(r2)ϕn4j4(r1) (B.22)
The expression of V (r) in Eq.(B.20) allows us to separate the integral into the product

of two integrals over d2r1 and d2r2 as follows:

An1n2n3n4
j1j2j3j4

=
1

LxLy

∑
st

(s,t) ̸=(0,0)

2πe2

εq

∫
d2r1ϕ

∗
n1j1

(r1)ϕn4j4(r1)e
iq·r1

×
∫
d2r2ϕ

∗
n2j2

(r2)ϕn3j3(r2)e
−iq·r2

(B.23)

The integral over d2r1 is equal to:∫
d2r1ϕ

∗
n1j1

(r1)ϕn4j4(r1)e
iq·r

=e−q2l2/4eiqxqyl
2/2eiqxj12πl

2/LyFn1n4(qx, qy)δ
′
t,j4−j1

(B.24)
In this expression, the symbol δ′m,n means m = n(mod Nϕ). Fmn(qx, qy) is the form

factor with Landau level indices m,n:

Fmn(qx, qy)

=

√
(min{m,n})!
(max{m,n})!

(
[iqx + sgn(m− n)qy]l√

2

)|m−n|
L
|m−n|
min{m,n}

(
q2l2

2

) (B.25)

The polynomials Ln
m(x) are the Laguerre polynomials:

Ln
m(x) =

1

m!
e−xx−n d

m

dxm
(e−xxm+n) =

m∑
k=0

(−1)k
(
m+ n
m− k

)
xk

k!
(B.26)

We evaluate the integral over d2r2 in a similar manner. Overall, the Coulomb matrix
element equals to:

An1n2n3n4
j1j2j3j4

=
1

LxLy

∑
st

(s,t)̸=(0,0)

δqx,s2π/Lxδqy ,t2π/Ly

2πe2

εq
e−q2l2/2ei2π(j1−j3)s/Nϕ×

× Fn1n4(qx, qy)Fn2n3(−qx,−qy)δ′t,j4−j1
δ′j1+j2,j3+j4

(B.27)
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B.5 . Many-body wavefunction quantum number

After deriving the formula of the Hamiltonian matrix elements, we need to find the
quantum numbers of the many-body wavefunctions. Let N be the greatest common
divisor of Ne and Nϕ, so that Ne = pN and Nϕ = qN . The filling factor equals ν = p/q.
We define the center of mass translation operator T̃ (a) as the operator which magnetically
moves all the particles by the vector a:

T̄ (a) =
Ne∏
i=1

Ti(a) (B.28)
The translation of the particle i is decomposed into two parts: the center of mass

translation and the relative translation, which is given by the the relative translation
operator :

T̃i(a) =
Ne∏
j=1

Ti

(
a

Ne

)
Tj

(
− a

Ne

)
(B.29)

The motion of particle i is compensated by the motion of the other particles in the
opposite direction so that the position of the center-of-mass remains unchanged. The
application of the relative translation operator on all the particles leaves the system
invariant:

Ne∏
i=1

T̃i(a) = 1 (B.30)
Overall, we write the magnetic translation operator acting on the particle i as:

Ti(a) = T̄

(
a

Ne

)
T̃i(a) (B.31)

The relative translation operator provides the quantum numbers to classify the many-
body wavefunctions. The suitable relative translation operators should commute with the
many-body Hamiltonian and commute with each other, that means [T̃i(a), T̃j(b)] = 0
for all 1 ≤ i, j ≤ Ne. The set of vectors a, b satisfying these conditions is M =
{pLmn|m,n ∈ Z}.

Let Q = (s2π/Lx, t2π/Ly) (s, t ∈ Z) be a reciprocal lattice vector, the following
equality holds:

T̃i(pLmn)

(
Ne∑
k=1

eiQ·rk

)
= e−iQ·pLmn/Ne

(
Ne∑
k=1

eiQ·rk

)
T̃i(pLmn) (B.32)

Let ΨK(r1, . . . , rNe) be an eigenfunction of the relative translation operator T̃i(pLmn)
with eigenvalue e−iK·pLmn/Ne , we have:

T̃i(pLmn)ΨK = e−ik·pLmn/NeΨK (B.33)
The equality (B.32) implies that

(∑Ne

k=1 e
iQ·rK

)
ΨK is also an eigenfunction of

T̃i(pLmn) with quantum number K+Q. Therefore, we identify K as the momentum

154



of the many-body wavefunction, or the many-body momentum. The momentum K is
quantized and takes the same values as the reciprocal lattice vectors Q. It has the form:

K =
2π

Lx

sx̂+
2π

Ly

tŷ(s, t ∈ Z) (B.34)
The eigenvalues of the relative translation operator T̃i(pLmn) have the form

ei2π(sm+tn)/N . We can label the many-body wavefunction by the quantum numbers
s and t. s and t can take N values s, t = 0, 1, . . . , N − 1. The set of allowed many-body
momenta contains N2 vectors, and form a rectangular Brillouin zone in the reciprocal
space. The eigenvalue equation is written as:

T̃i(pLmn)Ψst = e−i2π(ms+nt)/NΨst (B.35)
In general, the quantum numbers s = t = 0 do not correspond to K = 0. In fact, the

point K = 0 has the highest symmetry and is invariant under all symmetry operations.
Therefore:

T̃i(pL1)ΨK=0 = T̃i(pL2)ΨK=0 = T̃i(−pL1)ΨK=0 = T̃i(pL2 − pL1)ΨK=0 (B.36)
We can show that

T̃i(pL2 − pL1) = (−1)pq(Ne−1)T̃i(−pL1)T̃i(pL2) (B.37)
Hence, the many-body wavefunction ΨK=0 is the eigenfunction of all lattice vectors

Lmn(m,n ∈ Z) with the same eigenvalue (−1)pq(Ne−1). The many-body momentum K
is defined as:

K =
2π

Lx

(s− s0)x̂+
2π

Ly

(t− t0)ŷ(s, t ∈ Z) (B.38)
The values s0 and t0 are determined from the observations:

T̃i(pL1)Ψs0t0 = e−i2πs0/NΨs0t0 = (−1)pq(Ne−1)Ψs0t0 (B.39)
and

T̃i(pL2)Ψs0t0 = e−i2πt0/NΨs0t0 = (−1)pq(Ne−1)Ψs0t0 (B.40)
Consequently, we have:

ei2πs0/N =(−1)pq(Ne−1)

ei2πt0/N =(−1)pq(Ne−1)
(B.41)

The quantum numbers of the momentum K = 0 depends on the parity of p,q and
Ne:

- If pq(Ne − 1) is even, then s0 = t0 = 0

- If pq(Ne − 1) is odd, then s0 = t0 = N/2

Let λ = Lx/Ly be the aspect ratio, we can express the many-body momentum as
follows:

Kl =

√
2π

Nϕλ
[(s− s0)x̂+ λ(t− t0)ŷ] (B.42)
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The Brillouin zone contains N2 points. Its center K = 0 corresponds to the quantum
numbers (s0, t0).

We denote |j1, j2, . . . , jNe⟩ the state of Ne electrons constructed from the single-
particle states (B.18) in which the particle k(1 ≤ k ≤ Ne) has quantum number
jk(1 ≤ jk ≤ Nϕ). For a sake of simplicity, we omit the Landau level index and the spin
of the particle. This product state is the eigenstate of a subset of relative translation
operators along the y-direction:

T̃i(npLyŷ)|j1, j2, . . . , jNe⟩ = exp
(
i2π

n

N
t
)
|j1, j2, . . . , jNe⟩ (B.43)

In this expression, t is the sum of the individual momenta of all particles: t =
∑Ne

k=1 jk
(mod N). By contrast, the relative translation operator along the x-direction maps this
state into another state:

T̃i(mpLxx̂)|j1, j2, . . . , jNe⟩ = |j1 − qm, j2 − qm, . . . , jNe − qm⟩ (B.44)
Let L be the minimum set of all states |j1, j2, . . . , jNe⟩ such that

∑Ne

k=1 jk = t(modN)
and the elements of L are related by each other by the relation:

|j′1, j′2, . . . , j′Ne
⟩ = |j1 − qk, j2 − qk, . . . , jNe − qk⟩ (B.45)

for some integer k. The number of elements of the set L is |L| ≤ N . The normalized
state

|(s, t);L⟩ = 1√
|L|

|L|−1∑
k=0

exp
(
i2π

s

N
k
)
|j1 − qk, j2 − qk, . . . , jNe − qk⟩ (B.46)

has the momentum defined in (B.42). We use those states as basis states for the
many-body wavefunctions.

To summarize, let (s, t) be the quantum numbers representing the many-body
momentum K defined in (B.42), we construct the corresponding basis for the Hilbert
space of many-body wavefunctions having momentum K as follows:

1. Construct the set of all the states |j1, j2, . . . , jNe⟩ such that
∑Ne

k=1 jk = t(modNϕ).
(Here we remember that 0 ≤ t < N).

2. Partition this set into equivalent classes L such that each member of the class is
related by another member by (B.45).

3. In each class L, for each quantum number s (0 ≤ s < N), we have a state
|(s, t);L⟩ given in (B.46) having the momentum defined in (B.42).

B.6 . Summary of the torus geometry

Overall, we summarize the key points of the torus geometry:

1. The torus geometry is equivalent to applying the periodic boundary condition on a
system under a magnetic field. To perform simultaneously the translation and the
gauge transformation, we use the magnetic translation operators T (L) instead of
the ordinary translation operators T (L).
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2. The quantum numbers of the many-body wavefunction are defined using the relative
translation operators (B.29). They allow us to define the many-body momentum
K in (B.42).

3. The Brillouin zone of the many-body wavefunctions contains N2 many-body
momenta K, where N is the greatest common divisor of Ne and Nϕ.

4. The quantum numbers s0 and t0 corresponding to the center of the Brillouin
zone (many-body momentum K = 0) are defined from the parity of the product
pq(Ne − 1). If pq(Ne − 1) is even then s0 = t0 = 0; otherwise, s0 = t0 = N/2.
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Synthèse en français

L’effect Hall quantique a été découvert dans les années 1980 et est devenu l’un des
sujets les plus étudiés de la physique. Il y a deux versions de l’effet Hall quantique: l’effet
Hall quantique entier est lié à la quantification de la conductance de Hall, et l’effet
Hall quantique fractionnaire est caractérisé par une conductance qui est une fraction
de l’inverse de la constante de von Klitzing. Tandis que le premier est expliqué dans
une description à un électron, le dernier doit être expliqué en considérant l’interaction
électron-électron. Laughlin a expliqué avec succès les effets Hall quantique de facteur
de remplissage ν = 1/m en proposant une fonction d’onde d’essai qui porte son nom.
Jain a proposé la théorie des fermions composites, qui considère l’effet Hall quantique
fractionnaire des électrons comme l’effet Hall quantique entier des fermions composites
sous un champ magnétique effectif. Sous un champ magnétique fort, les spins des
électrons dans l’état fondamental d’un système de Hall quantique sont polarisés. Mais
si l’énergie de Zeeman est faible, les électrons préfèrent inverser leur spins et forment
un état de Hall quantique singulet qui est plus stable. La compétition entre les effets
Hall quantiques polarisé et singulet de facteur de remplissage ν = 2/3 est un exemple de
l’effet Hall quantique multicomposantes et a été observée dans les expériences.

En principe, on peut observer l’effet Hall quantique dans tous les systèmes d’électrons
bidimensionnels sous un champ magnétique. Au début, ce phénomène a été observé dans
les gaz d’électrons bidimensionnels sous champ magnétique dans les semiconducteurs.
Après la découverte de graphène, les physiciens ont rapidement observé l’effet Hall
quantique dans ce matériau. L’effet Hall quantique a été aussi découvert dans la bicouche
de graphène. Les effets Hall quantiques dans ces matériaux constituent les trois différentes
sortes de l’effet Hall quantique.

Dans cette thèse, nous étudions l’effet Hall quantique fractionnaire dans les mono-
couches de graphène et les bicouches de graphène. Dans ces matériaux, outre le spin, les
électrons possèdent des autres degrés de liberté, qui jouent le rôle des pseudospins. Ces
deux cas sont des exemples du ferromagnétisme de Hall quantique. La thèse se compose
de deux parties. Dans la première partie, nous étudions les phases de symétrie brisée dans
les monocouches de graphène pour les facteurs de remplissage ν = n/3(n = 1, 2, 4, 5).
La symmétrie SU(4) de l’Hamiltonien Coulombien est brisée par des anisotropies. Cela
entraîne la formation de différentes phases avec une variété d’ordre de spin et de vallée.
Dans la seconde partie de la thèse, nous étudions la compétition entre l’état de Laughlin
et le cristal de Wigner dans les bicouches de graphène dont le facteur de remplissage est
ν = 1/3. Dans les bicouches de graphène, les deux niveaux de Landau N = 0 et N = 1
sont approximativement dégénérés. On peut contrôler la différence entre leurs énergies
en variant la tension électrique entre les deux couches. En négligeant le mélange avec
les niveaux de Landau les plus hauts, on peut arriver à une situation qui ressemble à un
mélange extrême des niveaux de Landau, qui favorise la formation du cristal de Wigner.

Nous commençons la première partie de la thèse en rappelant les propriétés de l’effet
Hall quantique dans le graphène. La zone de Brillouin du graphène est un hexagone,
dont les sommets sont classifiés en deux points non-équivalents. Ces points sont nommés
points de Dirac. Les électrons à basse énergie dans le graphène ont une dispersion linéaire
au voisinage des points de Dirac. Cela permet de définir la vallée, qui joue le rôle du
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Figure B.3: Crystal structure of (a) monolayer graphene and (b) Bernal-stacked bilayer graphene.
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pseudospin. Les niveaux de Landau du graphène sont donc quatre fois dégénérés, dû à la
présence des deux degrés de liberté: le spin et la vallée. À la neutralité des charges ν = 0,
le niveau de Landau central, qui a une énergie zéro, est demi-occupé. Sous l’effet Hall
quantique, la symétrie SU(4) de l’interaction Coulombienne est brisée par l’interaction à
deux électrons dépendante de la vallée. Cela entraîne l’apparition de plusieurs phases
avec une variété d’ordre de spin et de vallée. Le diagramme de phase du graphène à
ν = 0 contient quatre phases: la phase ferromagnétique, la phase antiferromagnétique,
la phase de Kékulé, et la densité de charge. Les expériences ont confirmé l’existence de
toutes ces quatre phases. Les expériences STM ont découvert des phases qui ne sont pas
prédites par la théorie.

Dans ce projet, nous étudions les phases de symétrie brisée sous l’effet Hall quantique
fractionnaire. Nous employons deux méthodes: la méthode variationnelle et la méthode
numérique. Tout d’abord, nous proposons les fonctions d’onde variationnelles des états à
deux et trois composantes. Ensuite, nous calculons les énergies d’anisotropies dépendantes
de la vallée pour chaque fonction d’onde d’essai. Puis, nous minimisons l’énergie pour
obtenir l’ordre de spin et de la vallée des états fondamentaux. Le diagramme de phase de
l’état à deux composantes (1, ν)(0 < ν < 1) ressemble à celui du cas de la neutralité des
charges ν = 0. Il y a des phases ferromagnétique, antiferromagnétique, phase de Kékulé,
et densité de charge. Dans le cas de l’état à trois composantes (1, ν, ν)(0 < 2ν < 1), le
diagramme de phase a une autre allure et contient quatre phases A, B, E et F.

Dans le cas de l’état ν̃ = 1/3, l’état fondamental est un état de Laughlin qui possède
une dégénérescence de vallée. Dans le cas de l’état ν̃ = 2/3, il y a une compétition entre
l’état polarisé et l’état singulet. Le diagramme de phase de l’état singulet de facteur de
remplissage ν̃ = 2/3 ressemble à celui du cas de la neutralité des charges ν = 0. Pour
vérifier la validité de la méthode variationnelle pour les états ν̃ = 4/3 et ν̃ = 5/3, nous
utilisons des calculs de diagonalisations exactes. Pour le facteur de remplissage ν̃ = 4/3,
il y a la compétition entre l’état (1,1/3) et l’état (2/3,2/3). Dans la limite où l’effet
Zeeman est nul, l’état (2/3,2/3) est le plus stable et possède un diagramme de phase
similaire à celui du cas ν = 0. L’état (1, 1/3) possède le même diagramme de phase que
l’état (2/3, 2/3) avec les phases ferromagnétique, antiferromagnétique, phase de Kékulé
et la densité de charge. Pourtant, la phase antiferromagnétique est une phase singulet de
spin, même si les facteurs de remplissage des deux composantes sont différentes. Pour
la phase ferromagnétique, il y a une dégénérescence de vallée tandis que l’Hamiltonien
ne possède pas la symétrie SU(2)v. Ces aspects ne sont pas prédits par la méthode
variationnelle.

Pour le facteur de remplissage ν̃ = 5/3, il y a la compétition entre les états (1, 2/3) et
(1, 1/3, 1/3). Sous un effet Zeeman négligeable, l’état à trois composantes (1, 1/3, 1/3)
est l’état fondamental. Le diagramme de phase de l’état (1, 2/3) est similaire au cas de
l’état (1, 1/3). La phase ferromagnétique possède aussi une dégénérescence de vallée,
mais la phase antiferromagnétique n’est pas une phase singulet de spin. Le diagramme
de phase de l’état (1, 1/3, 1/3) calculé numériquement est différent de celui prédit par
la méthode variationnelle. Il y a 5 phases, dont les phases A et B sont capturées
variationnellement. La phase E est remplacée par deux phases E1 et E2 qui ont des
vallées d’Ising et XY, respectivement. La phase F est totalement remplacée par une
phase C qui est une phase singulet de spin et vallée non-polarisée. La nature de la phase
C reste une question ouverte.
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Les conditions expérimentales actuelles favorisent les phases de spin polarisé (1, 1/3)
et (1, 2/3). Les transitions de spin vers les états singulet (2/3, 2/3) et (1, 1/3, 1/3)
pourraient être obtenues en réduisant la composante du champ magnétique B qui est
parallèle au plan du graphène.

Dans la seconde partie de la thèse, nous étudions la compétition entre l’état de
Laughlin et le cristal de Wigner chez le graphène à bicouche avec facteur de remplissage
ν = 1/3. Nous commençons en rappelant la structure cristalline du graphène à bicouche.
Puis, nous présentons le modèle effectif à quatre bandes et le modèle à deux bandes.
Ensuite, nous démontrons le spectre des niveaux de Landau dans le graphène à bicouche.
Dans ce matériau, les deux niveaux de Landau N = 0 et N = 1 sont approximativement
dégénérés, et forment un niveau de Landau central qui est approximativement huit
fois dégénéré. C’est un aspect particulier du graphène à bicouche. Dans le niveau de
Landau central, les huit niveaux d’énergie d’un seul électron se croisent. Nous nous
concentrons au croisement entre les niveaux |K0 ↑⟩ et |K1 ↑⟩. Ce régime est gouverné
par deux paramètres: le poids γ et la différence ∆10 entre les énergies des deux niveaux
de Landau. L’énergie Coulombienne est réduite par l’écrantage du substrat hBN et
des bornes métalliques. Il y a un décalage de Lamb qui est dû à l’interaction entre les
électrons du niveau de Landau central avec les électrons occupant les niveaux de Landau
les plus bas.

Après la discussion sur le graphène à bicouche, nous avons discuté le cristal de Wigner.
C’est une phase qui est en compétition avec le liquide de Hall quantique. Le cristal de
Wigner peut être observé lors des expériences de transport. Quand la résistance Rxx

diverge exponentiellement, le liquide de Hall quantique est remplacé par le cristal de
Wigner. Les scientifiques ont observé le cristal de Wigner autour de l’effet Hall quantique
de facteur de remplissage ν = 1/5 - le cristal de Wigner reentrant. Nous avons discuté
deux facteurs qui influencent la transition entre le liquide de Hall quantique et le cristal
de Wigner: la température et le mélange des niveaux de Landau. À basse température,
le liquide de Hall quantique se solidifie et le cristal de Wigner apparaît. Dans un système
à fort mélange entre les niveaux de Landau, le cristal de Wigner peut former aux grands
facteurs de remplissage. Un exemple est l’observation du cristal de Wigner dans un gas
de trous bidimensionnel dont ν = 1/3. Dans ce cas, la masse effective des trous est plus
large que celle des électrons, ce qui entraîne un plus fort mélange entre les niveaux de
Landau, et favorise le cristal de Wigner sur le liquide de Hall quantique.

À la lumière des connaissances sur l’effet Hall quantique dans le graphène à bicouche
et les cristaux de Wigner, nous étudions la physique au voisinage du croisement des
niveaux |K0 ↑⟩ et |K1 ↑⟩. Nous examinons l’état dont le facteur de remplissage est
ν = 1/3. La physique de ce régime est contrôlée par deux paramètres: γ et ∆10, qui
dépendent du champ magnétique B et du biais intercouche u. Si |∆10| est grand, on
arrive à la physique des états de Laughlin des niveaux de Landau galiléens n = 0 et n = 1.
Au voisinage de ∆10 = 0, on arrive à une situation similaire à un extrême mélange entre
les niveaux de Landau, qui favorise la formation du cristal de Wigner. Cet argument
est confirmé par les calculs de diagonalisations exactes, qui donnent la variété des états
fondamentaux. Nous avons visualisé la structure cristalline par la fonction de corrélation
de paire. Nous avons établi le diagramme de phase de l’état ν = 1/3. La transition entre
le liquide de Hall quantique et le cristal de Wigner est continue ou faiblement du premier
ordre. Nous ne trouvons pas de cristal de Wigner pour le facteur de remplissage ν = 2/3.
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Figure B.4: Phase diagram of Bernal Bilayer graphene in the vicinity of the crossing between the levels
|K0 ↑⟩ and |K1 ↑⟩.

Tout au long de cette thèse, nous avons étudié l’effet Hall quantique fractionnaire
multicomposante dans le graphène et le graphène à bicouche. Dans le graphène, nous
avons étudié l’ordre de spin et de vallée des fractions n/3(n = 1, 2, 4, 5), qui sont les
plus faciles à observer dans les expériences. Notre travail suggère des questions ouvertes
comme proposer des fonctions d’onde d’essai pour expliquer les phases singulet de spin
que nous avons trouvées par la méthode numérique. Dans le graphène à bicouche, nous
prédisons la formation du cristal de Wigner au croisement des niveaux |K0 ↑⟩ et |K1 ↑⟩.
Notre travail montre que le graphène à bicouche est une bonne plateforme pour étudier
le cristal de Wigner.
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