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2Aix Marseille Univ, Université de Toulon, CNRS, CPT, Marseille, France
3Solid State Physics and NanoLund, Lund University, Box 118, S-221 00 Lund, Sweden

4Department of Physics and Astronomy, Uppsala University, Box 516, S-751 20 Uppsala, Sweden
(Dated: December 15, 2022)

We review all symmetry-allowed spin-singlet and spin-triplet superconducting (SC) order parame-
ters in graphene (s-wave, d-wave, p-wave, and f -wave) generated by generic onsite, nearest-neighbor
(NN), and next-to-nearest-neighbor (NNN) pairing interactions in a tight-binding model. For each
pairing channel, we calculate both the band structure and the dependence of the density of states on
energy, chemical potential, and on the pairing strength. In particular, we distinguish between nodal
superconducting states and fully gapped states and study the dependence of gap closing points on
the chemical potential and the superconducting pairing strength. We further investigate the differ-
ence between mono-, bi-, and tri-layer ABC and ABA graphene, including accounting for the effects
of trigonal warping.

I. INTRODUCTION

The recent experimental discoveries of superconductiv-
ity in rhombohedral, or ABC-stacked, trilayer graphene1

and in twisted graphene bilayer systems2 have received
a lot of attention. A vast range of theoretical propos-
als has already emerged exploring the mechanisms and
symmetries of the superconducting (SC) state in these
all-carbon systems3, including the SC pairing mechanism
being both phonon-mediated4–6 and electron-interaction
mediated7 and various SC spin-singlet and spin-triplet
order parameters, ranging from s-wave and d-wave to p-
wave and f -wave symmetries8–22. However, at present,
there exist no experimental definite confirmation of a spe-
cific mechanism or pairing symmetry, nor an emerging
consensus concerning these issues.

While currently achieved critical temperatures in
graphene-based systems are only of the order of a few
Kelvin2, they host some tantalizing similarities to the
high-temperature cuprate superconductors23, in particu-
lar a similar phase diagram with multiple regions reminis-
cent of strongly correlated electron physics, such as Mott
insulating24 and strange metal behavior25,26. The impor-
tance of strong electron correlations are to be expected
due to the normal state hosting low-energy flat energy
bands27,28, which effectively make even very small elec-
tron interactions dominate the kinetic energy. Taken to-
gether, understanding the underlying physics of carbon-
based superconductors may help unveiling the mecha-
nisms at the root of high-temperature SC and thereby
also eventually increasing the presently accessible SC
critical temperatures, which is crucial for technological
developments.

In this work we focus on revealing all possible
symmetry-allowed SC order parameters in a tight-
binding model, without focusing on their possible origins

nor on estimating the exact values that could be reached
in realistic systems. We instead use a priori generic values
for the pairing amplitudes and review the resulting ba-
sic electronic properties, such as the band structure and
the density of states. We start for simplicity with mono-
layer graphene, but the goal of our analysis is to also
access multilayer systems, with both ABA- and ABC-
stacking, particularly focusing on the latter, since it has
already been demonstrated to exhibit superconducting
properties1. We claim that by comparing our results with
experimental measurements one can identify the under-
lying SC order parameter in a graphitic system.

Overall, our project consists of three parts: in the
present work we focus on calculations of the band struc-
ture and density of states, with a particular focus on the
gap closing points in the energy spectrum, as well as on
evaluating the effects of trigonal warping present in bi-
and trilayer graphene. In the upcoming two works we will
focus first on the topological properties of the SC state
in monolayer and multilayer graphene and on the cor-
respoinding edges states, and secondly on the Yu-Shiba-
Rusinov29–31 (or in-short Shiba) subgap states appearing
in the presence of impurities. We show that the results
of these calculations depend strongly on the underlying
SC order parameter, and thus a comparison with exper-
imental measurements would allow to determine the SC
symmetry as well as type of SC pairing.

By using a tight-binding formalism and modeling the
SC pairing in real space as on-site (ON), nearest-neighbor
(NN) and next-nearest-neighbor (NNN) couplings, in
both the spin-singlet and spin-triplet channels, we cap-
ture all relevant symmetry possibilities, as classified by
group theory32. In particular, the possible SC order pa-
rameters can be split into spin-singlet pairing with s-wave
(both a constant gap and extended s-wave) and d-wave
(dxy, dx2−y2 , and d+id ′) spatial symmetry and into spin-
triplet pairings with p-wave (px, py, and p + ip ′) and
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f -wave spatial symmetry. We calculate the full band
structure for each pairing possibility and symmetry, in
particular, we focus on the dependence of the energy of
the lowest (positive energy) band as a function of mo-
mentum and distinguish between nodal superconducting
states (dxy, dx2−y2 , px, and py), which all break the ro-
tational symmetry of the normal state around both the
Dirac points and the Brillouin zone center, and fully
gapped states (usually onsite, p + ip ′, d + id ′ and f),
which in general preserve the spatial symmetries of the
normal state. We note that such differences should be
feasible to detect using, e.g., angle-resolved photoemis-
sion spectroscopy (ARPES), which would help identify-
ing the underlying order parameter.

Moreover, we find that the density of states (DOS) for
the nodal states has a linear dependence of energy at
low energies (V-shaped), while the fully gapped states
produce an U-shaped behavior. However both exhibit a
gap-edge coherence peak in the DOS. We analyze how
the DOS evolves for each state as a function of both the
chemical potential and the SC pairing strength. In par-
ticular, we identify the position of the gap closing points
in the parameter space. We find that the spin-triplet px,
py, and p+ ip ′ states are the most peculiar by exhibiting
most of these gap closing points. Among the spin-singlet
states, only the dxy state exhibits gap closing points; for
this nodal state we denote the point at which the gap
edges merge at zero energy a gap closing point.

Finally, we find that most of the overall physical fea-
tures are preserved when moving from monolayer to mul-
tilayer graphene. The notable difference is a doubling (for
bilayer) or tripling (for trilayer) of the number of nodal
points, all appearing in close proximity to each other in
the Brillouin zone. This also leads to an increase in the
number of gap closing points as a function of the chemi-
cal potential and the SC pairing strength. We note that,
interestingly enough, trigonal warping has a significant
effect on the number of gap closing points and can in fact
also greatly reduce the number of gap closing points.

The remainder of this work is organized as follows. In
Section II we present the tight-binding model for mono-
layer graphene and all possible SC order parameters up
to NNN pairing, as well as the resulting low-energy band
structure and DOS. In Section III we present the equiva-
lent model for multilayer graphene and the corresponding
modifications to the low energy band structure and the
gap closing points in the DOS. We summarize our results
in Section IV. Extra information and more calculational
details are presented in the Appendices.

II. SUPERCONDUCTING MONOLAYER
GRAPHENE

A. Tight-binding Hamiltonian

Graphene has a honeycomb hexagonal lattice with two
atoms per unit cell, here denoted A and B. We take the

FIG. 1. Honeycomb lattice for monolayer graphene with g
(1)
i

and g
(2)
i corresponding to the NN and NNN vectors. Real

space SC order parameters ~∆0,1,2 for ON (green), NN (black),
and NNN (red) couplings are also indicated in the figure and
given in vector form. Honeycomb lattice and its bond vectors
are adapted from Ref. [33].

three vectors connecting the sites A to the NN sites B to

be g
(1)
1 = (0,−1), g

(1)
2 = (−

√
3

2
,

1

2
) and g

(1)
3 = (

√
3

2
,

1

2
),

see Fig.1. For simplicity, we assume here that the dis-
tance between two carbon atoms, a0, is equal to 1. The
standard non-interacting Hamiltonian of graphene in-
volves only NN hopping and can be written as

H0 = −t
∑
〈i,j〉σ

[
a†iσbjσ + b†jσaiσ

]
− µ

∑
iσ

[
a†iσaiσ + b†iσbiσ

]
,

(1)

where t is the NN hopping parameter between A and
B sites and µ is the chemical potential. The operators

a†iσ(b†iσ) create an electron on site i on sublattice A (B)
with spin σ. Unless otherwise specified, we will consider
for simplicity t = 1. Going to momentum space we arrive
at the well-established Bloch Hamiltonian

H0(k) =

(
µ h0(k)

h∗0(k) µ

)
, (2)

h0(k) = −te−iky
(

1 + 2e3iky/2 cos

(√
3

2
kx

))
, (3)

which for µ = 0 has a vanishing gap at two non-equivalent

Dirac points in the Brillouin zone, K = (
4π

3
√

3
, 0) and

K′ = (− 4π

3
√

3
, 0). Near these two Dirac points, the elec-

trons obey a linear dispersion relation leading to the fa-
mous Dirac cones that control the transport properties
of undoped graphene.
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B. Superconducting term

We next consider an interacting term HI , such that
the total Hamiltonian is H = H0 + HI . Here we consider
generic four-body interactions extending as far as NNN,
which we can write as33,34

HI =
1

2

∑
ij,αβδγ

Γαβδγij f†iαf
†
jβfiδfjγ , (4)

with

Γαβδγij =
1

2

∑
η

[
Uijσ

0
αγσ

0
βδ + Jijσ

η
αγσ

η
βδ

]
. (5)

Here σ0 and ση, η ∈ {x, y, z} are the Pauli matrices act-
ing in spin space, while j is constrained to be equal to

i, i+ ~δNN or i+ ~δNNN, respectively, for ON, NN (~δNN =

g
(1)
1,2,3), and NNN interactions (~δNNN = g

(2)
1,2,3,4,5,6). For

notational simplicity, we use here the operators fiσ which
correspond to either ai,σ or bi,σ depending on whether i
corresponds to an electron on an A or B sublattice. By
providing the decomposition of the interaction terms in
Eq. (5), we separate already at this level the effective
Coulomb interactions Uij from the the effective spin-spin
interactions Jij

To study superconductivity we need to carry out a
mean-field decoupling of HI into the SC Cooper chan-
nels. Following Ref. [33], we introduce the SC order pa-
rameters, or equivalently the mean-field decoupling fields
and arrive at

HMF
I =

∑
〈ij〉,η

[
∆η
ji(g

η
ij)
† + (∆η

ji)
∗gηij

]
+
∑
〈〈ij〉〉,η

[
∆η
ji(g

η
ij)
† + ∆η

ji(g
η
ij)
† + (∆η

ji)
∗gηij + (∆η

ji)
∗gηij

]
+2
∑
i,σ

[
∆η
ii(g

0
ii)
† + (∆η

ii)
∗g0
ii

]
, (6)

where the SC order parameters are given by the self-
consistent equations

∆η
ji = Γη,+ij 〈g

η
ij〉 , (7)

with

gηij =
1

2

∑
αβ

fjα[iσyση]αβf
′
iβ . (8)

In the above equations we have an on-site (ON) pairing
determined by ∆η

ii, as well as pairings between nearest
neighbors (NN) 〈ij〉, and next nearest neighbors (NNN)
〈〈ij〉〉, both denoted by ∆η

ji. As no spin-orbit coupling

is present in graphene (carbon atoms are light with an
atomic number of Z = 6), we can separate the treatment
of spin-singlet SC, where η = 0 so that we have the in-
teractions Γ0,+

ij = Uij − 3Jij , from spin-triplet SC, where

η = x, y, z and Γη,+ij = Uij + Jij . We use here the nota-

tion Γη,+ij for interactions acting in the SC channels, but

a similar treatment can be done for Γη,−ij to capture puta-
tive mean-field magnetic or charge-ordered states. As we
will shortly see, this model captures all reasonable pairing
symmetries, including phonon-mediated superconductiv-
ity as well as states very reminiscent of the cuprate
high-temperature superconductors34. More specifically,
an ON coupling necessarily implies spin-singlet super-

conductivity and i = j, such that ∆η
ji = ~∆ON is a 1-

component vector. For NN pairing we can have both
spin-singlet η = 0 and spin-triplet η = x, y, z supercon-
ductivity. Here ∆η

ji has three non-zero components, one
on each NN bond, and can thus be written compactly

as a 3-component vector ~∆1, see Fig. 1. Similarly, for

NNN we create a 6-component vector ~∆2, see Fig. 1,
but where only three components are technically inde-
pendent. Because the spin-orbit coupling is negligible in
graphene35, HMF does not break spin rotation symmetry.
Consequently, the three spin-triplet order parameters are
degenerate. Therefore, when it comes to the basic elec-
tronic properties, such as the band structure and density
of states, it is enough to focus on only one triplet channel.
In what follows we will generally use the η = x channel.

If we know the interaction parameters U and J we
could use Eq. (7) to calculate self-consistently all SC or-

der parameters ~∆. But we very rarely do, and currently
we have very little notion of these interaction parameters
in SC graphene systems. Instead, we concentrate in this
work on the symmetries and overall properties of all rele-
vant SC states. As such, we assume a given overall ampli-

tude ∆0, for either ~∆ON, ~∆1, or ~∆2. Moreover, we know
that at the critical temperature, the SC order parameter
is forced to belong to one of the irreducible representa-
tions of the crystal symmetry group32, in this case the
hexagonal lattice group D6h. This means we can readily
quantify all allowed symmetries of the SC state by using
the irreducible representations of the crystal symmetry
group. Starting with ON pairing we further can have
only spin-singlet s-wave symmetry as the pairing is fully
localized in real space, and hence uniform in momentum
space. This state belongs to the trivial irreducible rep-
resentation. For NN and NNN pairing the possibilities
include both spin-singlet and spin-triplet states, with the
lowest spatial harmonics going up to f -wave symmetry
(higher harmonics induces more nodes and will thus not
generally be energetically favored). In Table I we sum-

marize the allowed ~∆ and their symmetries for ON, NN
and NNN pairing for spin-singlet pairing (η = 0) and in
Table II for spin-triplet pairing (η ∈ {x, y, z})33,36. We
note that the extracted symmetries are those obtained
for the intraband pairing in reciprocal space and around
the Brillouin zone center, see further Section II D.

C. Bogoliubov-de-Gennes Hamiltonian

In order to proceed we rewrite the total Hamiltonian
H = H0 + HMF

I in momentum space in the compact
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Range ~∆ Symmetry

ON 1 sON

NN
(1, 1, 1)T√

3
sext

NN
(2,−1,−1)T√

6
dx2−y2

NN
(0,−1, 1)T√

2
dxy

NNN
(1, 1, 1, 1, 1, 1)T√

6
sext

NNN
(−1, 2,−1,−1, 2,−1)T√

12
dx2−y2

NNN
(−1, 0, 1,−1, 0, 1)T

2
dxy

TABLE I. Spin-singlet SC symmetries (η = 0) for ON, NN,

and NNN pairing in the form of the ~∆ order parameter (up
to an overall amplitude ∆0) and their spatial symmetries in
reciprocal space.

Range ~∆ Symmetry

NN
(2,−1,−1)T√

6
py

NN
(0,−1, 1)T√

2
px

NNN
(1,−1, 1,−1, 1,−1)T√

6
fx(x2−3y2)

NNN
(−1,−2,−1, 1, 2, 1)T√

12
px

NNN
(−1, 0, 1, 1, 0,−1)T

2
py

TABLE II. Spin-triplet SC symmetries (η ∈ {x, y, z}) for ON,

NN, and NNN pairing in the form of the ~∆ order parameter
(up to an overall amplitude ∆0) and their spatial symmetries
in reciprocal space.

Bogoliubov-de-Gennes (BdG) matrix form. Writing the
momentum-space Hamiltonian in a matrix form will al-
low us later to diagonalize H and obtain the band struc-
ture. For this purpose we introduce the spinor

ψk = {ak↑, bk↑, ak↓, bk↓, a†−k↑, b
†
−k↑, a

†
−k↓, b

†
−k↓}

T , (9)

with akσ and bkσ the usual annihilation operators, but
now k belonging to the first Brillouin zone. With this
notation we express the total Hamiltonian

H =
∑
k

ψ†kHBdG(k)ψk. (10)

Note that the dimension of the matrix associated to the
BdG Hamiltonian is doubled compared to the standard
BdG Hamiltonian, since we take into account separately
the up and down spins, as well as the electrons and holes.

The normal-state terms within the BdG form can be
written as (see Appendix A for details)

H0 =
∑
k,σ

h0(k)(a†kσbkσ − b−k,σa
†
k,σ)

+
∑
k,σ

h∗0(k)(b†kσakσ − a−k,σb
†
−k,σ)

−µ
∑
kσ

(a†k,σak,σ − a−k,σa
†
−k,σ + b†k,σbk,σ − b−k,σb

†
−k,σ).

(11)

We next write all the SC terms within the BdG form.
The details of the calculations are given in Appendix A.
Writing out everything explicitly for NN pairing we have
in real space for spin-singlet pairing (η = 0):

H0
NN =

∑
〈ij〉

∆η=0
ij (a†i↑b

†
j↓ − a

†
i↓b
†
j↑) + h.c, (12)

and for spin-triplet pairing (η = x, y, z) we have

Hx
NN =

∑
〈i,j〉

∆η=x
ij (a†i↑b

†
j↑ − a

†
i↓b
†
j↓) + h.c. (13)

Hy
NN =

∑
〈i,j〉

∆η=x
ij (a†i↑b

†
j↑ + a†i↓b

†
j↓) + h.c. (14)

Hz
NN =

∑
〈i,j〉

∆η=z
ij (a†i↑b

†
j↓ + a†i↓b

†
j↑) + h.c. (15)

By Fourier transforming these into reciprocal space we
obtain

H0
NN =

∑
k

h0
NN(k)(a†k↑b

†
−k↓ − a

†
k↓b
†
−k↑) + h.c. (16)

and

Hx
NN =

∑
k

hxNN(k)(a†k↑b
†
−k↑ − a

†
k↓b
†
−k↓) + h.c. (17)

Hy
NN =i

∑
k

hyNN(k)(a†k↑b
†
−k↑ + a†k,↓b

†
−k↓) + h.c. (18)

Hz
NN =

∑
k

hzNN(k)(a†k↑b
†
−k↓ + a†k↓b

†
−k↑) + h.c. (19)

Here hηNN(k) are the overall form factors whose expres-
sions depend on both the spin channel and the spatial
symmetry of the order parameter. Their general expres-
sion is

hηNN(k) = ∆η,d=1
NN e−iky + ∆η,d=2

NN e
i
2ky−

√
3i
2 kx

+∆η,d=3
NN e

i
2ky+

√
3i
2 kx , (20)

where d = 1, 2, 3 correspond to the three NN bonds, fol-
lowing the convention of Fig. 1 and Tables I and II. We
summarize hηNN(k) for each symmetry in Table III for
spin-singlet pairing and in Table IV for spin-triplet pair-
ing. In these Tables we also present the corresponding
results for hηNNN(k) (see Appendix A for details).
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Sym. Range Form factor

sext NN h0,sext
NN (k) = ∆0√

3
h̃0(k)

dx2−y2 NN h
0,d

x2−y2

NN (k) = 2∆0√
6
e−iky

[
1− e

3i
2
ky cos(

√
3

2
kx)

]
dxy NN h

0,dxy

NN (k) = ∆0

√
2i e

i
2
ky sin(

√
3

2
kx)

sext NNN h0,sext
NNN (k) = 2∆0√

6

[
cos(
√

3kx)

+2 cos(
√

3
2
kx) cos( 3

2
ky)

]
dx2−y2 NNN h

0,d
x2−y2

NNN (k) = 4∆0√
12

[
cos(
√

3kx)

− cos(
√

3
2
kx) cos( 3

2
ky)

]
dxy NNN h

0,dxy

NNN (k) = −2∆0 sin( 3
2
ky) sin(

√
3

2
kx)

TABLE III. Form factors h0
NN(k) and h0

NNN(k) for each spin-
singlet SC symmetry (η = 0) for NN and NNN pairing. Here

h̃0(k) = h0(k)
t

.

Sym. Range Form factor

py NN h
η,py
NN (k) = 2∆0√

6
e−iky

[
1− e

3i
2
ky cos(

√
3

2
kx)

]
px NN hη,pxNN (k) = i

√
2∆0e

i
2
ky sin(

√
3

2
kx)

fx NNN hη,fxNNN(k) = 2i∆0√
6

[
sin(
√

3kx)

−2 sin(
√

3
2
kx) cos( 3

2
ky)

]
px NNN hη,pxNNN(k) = 4i∆0√

12

[
cos(
√

3kx)

+ cos( 3
2
ky)

]
sin(

√
3

2
kx]

py NNN h
η,py
NNN(k) = −2i∆0 sin( 3

2
ky) cos(

√
3

2
kx)

TABLE IV. Form factors hηNN(k) and hηNNN(k) for each spin-
triplet SC symmetry (η = x, y, z) for NN and NNN pairing.

For completeness we write out the full BdG Hamilto-
nian in each spin channel in their matrix form. For the
spin-singlet pairing (η = 0) we obtain

H0(k) 02×2 02×2 −h0
∆(k)

02×2 H0(k) h0
∆(k) 02×2

02×2

(
h0

∆(k)
)† −H0(k) 02×2

−
(
h0

∆(k)
)†

02×2 02×2 −H0(k)

 (21)

and for η = x spin-triplet pairing we have
H0(k) 02×2 −hx∆(k) 02×2

02×2 H0(k) 02×2 hx∆(k)

− (hx∆)
†

02×2 −H(k) 02×2

02×2 (hx∆)
†

02×2 −H(k)

 (22)

where 02×2 is a 2 × 2 null matrix, H0(k) is the normal
state Hamiltonian matrix given in Eq. 2, and

h0
∆k) =

1

2

(
∆ON + h0

NNN(−k) h0
NN(k)

h0
NN(−k) ∆ON + h0

NNN(−k)

)
,

hx∆(k) =
1

2

(
hxNNN(−k) −hxNN(k)

hxNN(−k) hxNNN(−k)

)
are the corresponding superconducting order parameter
matrices. The superconducting order parameter matri-
ces for the η = y, z spin-triplet pairing are given in Ap-
pendix B. Diagonalizing the matrices in Eqs. (21)-(22)
yields both the full energy spectrum and the eigenstates
of the various SC states.

D. Intraband pairing symmetries

While the matrix forms in Eqs. (21)-(22) allow for
straightforward numerical diagonalization to easily find
e.g. the energy spectrum, it is still useful to first analyze
the order parameter in some more detail. For this pur-
pose it is beneficial to not work in the sublattice basis
with the operators akσ, bkσ, but to instead in the band
basis with the operators ckσ, dkσ for the two bands, where
the normal-state Hamiltonian H0 is diagonal, with the
band energies εc(k), εd(k) as diagonal entries. In par-
ticular, in the band basis we know that εc(k) = 0 (or
εd(k) = 0 depending on the value of µ) on the Fermi sur-
face. In graphene the Fermi surface forms circles around
the Dirac points at K and K′ with increasing radius as
the chemical potential increases from 0. At |µ| = 1 these
two Dirac Fermi surfaces meet and instead form a sep-
aratrix line joining the M points in the Brillouin zone.
Finally, for |µ| > 1, the Fermi surface becomes centered
around the Brillouin zone center Γ.

Setting αk = (akσ, bkσ)T and χk = (ckσ, dkσ)T , we
find that the basis change can be expressed as

αk = Û (k)χk (23)

with the unitary matrix

Û (k) =
1√
2

(
−e−iϕk e−iϕk

1 1

)
, (24)

where ϕk = arg (h0(k)). Using Û (k) to transform also
the superconducting terms from the sublattice basis of
the previous subsections into the band basis, we arrive
for spin-singlet ON pairing at

H0
ON = ∆0

∑
k

(
c†k↑c

†
−k↓ + d†k↓d

†
−k↑

)
+ h.c., (25)

while for spin-singlet NN pairing we get

H0
NN = ∆0

∑
k,d

∆d

[
cos
(
k · g(1)

d − ϕk

)(
d†k↓d

†
−k↑ − c

†
k↑c
†
−k↓

)
+ i sin

(
k · g(1)

d − ϕk

)(
c†k↑d

†
−k↓ − d

†
k↑c
†
−k↓

)]
+ h.c.,

(26)
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and for spin-triplet NN pairing with η = z

Hz
NN = ∆0

∑
k,d

∆d

[
i sin

(
k · g(1)

d − ϕk

)(
d†k↓d

†
−k↑ − c

†
k↑c
†
−k↓

)
+ cos

(
k · g(1)

d − ϕk

)(
c†k↑d

†
−k↓ − d

†
k↑c
†
−k↓

)]
+ h.c..

(27)

Here d = 1, 2, 3 mark the three NN bonds, following the
convention of Fig. 1, and ∆d is the dth component of the

NN ~∆ bond order parameter, given in Table I.
From Eqs. (26)-(27) we see that in the band ba-

sis superconductivity consists of both intraband pairing

through the terms c†k↑c
†
−k↓ and d†k↑d

†
−k↓ for bands c and

d, respectively, and interband pairing though terms such

as c†k↑d
†
−k↓. Generally, the existence of both intra- and

interband pairing means that the energy spectrum of
the BdG Hamiltonian cannot simply be expressed as
E = ±

√
ε2 + |∆|2, but instead both the intra- and in-

terband pairing terms contribute to the energy E. Here
we are not concerned with deriving the exact expressions,
but instead note that for a qualitative understanding it
has in the past often been enough to only consider the
intraband pairing and ignore the interband term36–39.
This can be understood by noticing that only one of the
bands crosses zero energy (except at the Dirac point),
and therefore contributes to the formation of the Fermi
surface. Thus, pairing within that band is the most im-
portant contribution, while pairing in the other band and
in-between bands are often of less importance. It is also
the symmetry of the intraband order parameters in the
Brillouin zone that we use for naming the different pos-
sible symmetries as s, d, p, f -waves in Tables I-IV.

Based on the above arguments, we analyze the intra-
band SC order parameters for both NN and NNN pairing.
In Fig. 2 we plot the intraband SC order parameter sym-
metry for NN pairing, or equivalently the form factors in
front of the intraband terms in Eqs. (26)-(27). We also
mark the Fermi surface for both µ = 0.4 (yellow lines)
and µ = 1.2 (black lines). We first note that the ex-
tended s-wave follows the symmetry of the normal state,
with nodal points only at the Dirac points. Assuming a
simplified energy dispersion, E = ±

√
ε2 + |∆|2, with ∆

only given by the intraband component, we would then
expect a fully gapped energy spectrum for any finite µ.
Moving on to the dx2−y2 - and dxy-wave order parameters
we note that, for large chemical potential |µ| > 1, when
the Fermi surface is centered around Γ (black lines), the
SC state has d-wave symmetry, and we thus expect four
nodal points in the band structure, one at each of the
intersections between the Fermi surface and the zero-
gap lines (white in Fig. 2). In contrast, around K,K′,
the dx2−y2-wave order has an effective py-wave symme-
try, while the dxy-wave order has an effective px-wave
symmetry. As such, for |µ| < 1, when the Fermi surface
is centered around K,K′ (yellow lines), one expects two
nodal points per Dirac cone. Here we note that the two
Dirac cones have opposite signs on their effective p-wave

order, such that the spin-singlet state still has an over-
all even spatial symmetry, as required by Fermi-Dirac
statistics. We can also combine the two d-wave order pa-
rameters into a chiral combination dx2−y2+ixy = d+ id ′,
resulting in a fully gapped order parameter with restored
rotational symmetry as seen in Fig. 2. It is only at the
Γ,K,K′ points that the order parameter is equal to zero.
This full gap is the reason why the chiral d + id ′-wave
combination is often found to be most stable among all
the d-wave states37,40? –44. Moving on to the NN spin-
triplet order parameters, we find that the py and px-wave
order parameters have a p-wave symmetry both around
the Γ point and the K,K′ Dirac points. This results in
two nodal points per Fermi surface when it is centered
around the Dirac points and also two nodal points for a
Fermi surface centered around Γ. We also note that the
p-wave states hosts additional nodal points, in particular
at the M -points. This is a consequence of adopting a
p-wave symmetry to the six-fold symmetric honeycomb
lattice with its hexagonal first Brillouin zone. Finally,
the chiral combination px+ ipy = p+ ip ′45, is again fully
gapped, except at the Γ,K,K′, as well as at the M -points
where both individual p-wave components have nodes.
Thus, we expect that the p + ip ′ SC to be fully gapped
except when the chemical potential |µ| = 0, 1, 3.

We also perform a similar analysis for NNN pairing, for
which we in fact find that the interband pairing terms are
identically zero. Thus, the energy E in the SC state is
exactly given by E = ±

√
ε2 + |∆|2, with ε the energy of

the normal state, and ∆ the intraband order parameter.
This can be understood by noticing that the NNN pair-
ing couples electrons on the same sublattice and thus
there is no sublattice mixing or any interband pairing
terms. In Fig. 3 we plot the resulting NNN intraband
order parameter symmetries. Overall we find very simi-
lar results to the NN pairing with only a few exceptions:
The extended s-wave state has a peculiar nodal struc-
ture centered around Γ. However, unless µ is fine tuned
such that the Fermi surface exactly hits this node, the
SC state will be fully gapped. Also, for NNN pairing, an
f -wave symmetry is allowed. This order parameter dis-
play the required fx = fx(x2−3y2)-wave symmetry with
a total of six nodal points for a Fermi surface centered
around Γ (black line), but is notably fully gapped on
Fermi surfaces centered around the K,K′ Dirac points.
Technically there also exists another, fy = fy(y2−3x2)-
wave, state that has nodal lines going through the K,K′
Dirac points, such that the energy for |µ| < 1 has six
nodes per Dirac cone. However, due to its high number
of nodes per Dirac cone, this state will be much less en-
ergetically favorable at all doping levels |µ| < 1 and we
do not considering it in this work.

E. Lowest energy bands

Having analyzed the symmetry of the intraband or-
der parameter in detail in the previous subsection, we
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FIG. 2. Intraband SC order parameter form factors for NN (sext-, d-, p-wave) pairing. Top (bottom) row corresponds to
spin-singlet (spin-triplet) pairing. Cyan hexagon denotes the first Brillouin zone, while yellow (black) circles centered around
the K,K′-points (Γ-point) are the normal-state Fermi surfaces for µ = 0.4t, (µ = 1.2t). White regions correspond to nodes, or
zeroes, of the SC order parameter.

FIG. 3. Intraband SC order parameter form factors for NNN (sext-, d-, p-, fx-wave) pairing. Top (bottom) row corresponds to
spin-singlet (spin-triplet) pairing. Cyan hexagon denotes the first Brillouin zone, while yellow (black) circles centered around
the K,K′-points (Γ-point) are the normal-state Fermi surfaces for µ = 0.4, (µ = 1.2). White region corresponds to the nodes,
or zeroes, of the SC order parameter.

now turn to the complete solution, attained by diag-
onalizing the BdG Hamiltonian in Eqs. (21) and (22),
for spin-singlet and spin-triplet pairing, respectively. In
this subsection we are interested in the low-energy band
structure, which we analyze by plotting the lowest energy
band (E > 0) as a function of momentum. These results
directly tell us about both the existence of nodal points
in the energy spectrum and the overall symmetry of the

SC state. We focus primarily on ON s-wave, NN s-, d-
, and p-wave, and NNN f -wave SC states. Due to the
similarities between the remaining NNN order parame-
ters and the corresponding NN ones, we expect to cover
all relevant behavior with this selection.

In Fig. 4 we plot the lowest energy band as a function
of kx and ky for µ = 0.4. This value corresponds to a
normal-state Fermi surface that is a small circle centered
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FIG. 4. Lowest energy band for µ = 0.4, ∆0 = 0.4 and for SC states with ON s-wave, NN sext-, dxy-, dx2−y2 -, px-, py-, p+ ip ′-,
d+ id ′-wave, as well as NNN fx-wave symmetries. Dark blue corresponds to zero energy.

around the Dirac points K,K′, see Fig. 2. As expected,
and consistent with the intuitive analysis in the previous
subsection, we find that the ON s-wave and NN sext-wave
SC states preserve the rotational symmetry in recipro-
cal space around the K,K′ Dirac points. Also, these SC
states give rise to a fully gapped band structure. On the
other hand, we note that the dxy-, dx2−y2- , px-, and py-
wave SC states all break the rotation symmetry around
the K,K′ points. In particular, we observe a nodal en-
ergy spectrum with two nodal points per Fermi surface
arranged in agreement with the nodal structure of the in-
traband order parameters in Fig. 2. These nodal points
can be viewed as the split of the original normal-state
Dirac point into two points in the SC state. Thus the
dxy-, dx2−y2 -, px-, and py-wave SC states all correspond
to nodal superconductors.

By continuing with analyzing the chiral d + id ′- and

p+ ip ′-wave SC states, we find fully gapped energy spec-
tra and a restored rotational symmetry around the K,K′
points (up to the same three-fold symmetry as for the
s-wave state). We note that the convention to generate
these states is to consider both a dxy and dx2−y2 ampli-
tude of ∆0 for the d + id ′ state, and similarly for the
p+ ip ′ state. This convention corresponds to an effective
coupling

√
2 stronger for the chiral states than for the

nodal ones. Finally, for the NNN fx-wave state we find
a fully gapped state with preserved rotation symmetry
around the K,K′ points. Again, all of these results are
consistent with the intraband order parameter picture
discussed in Fig. 2.

In Fig. 4 we focus on Fermi surfaces centered around
the K,K′ points. For completeness we report in Ap-
pendix C the equivalent results for µ = 1, where the
Fermi level sits at the van Hove singularity with the
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Fermi surface forming a separatrix line connecting the
M -points. Similarly, we report the results for NNN pair-
ing in Appendix D, with the conclusion that NN and
NNN pairing hosts very similar low-energy band struc-
tures.

F. Density of states and gap closing points

Having studied the lowest energy bands we next turn
to evaluating the density of states (DOS) at low energies.
For this purpose, we define the Green’s function of the
Bloch Hamiltonian HBdG(q) as

G(q, E) = (E −HBdG(q) + i0+)−1 (28)

We then integrate G(q, E) over the first Brillouin zone
to get the density of states ρ0(E)46

ρ0(E) = − 1

π
Trel

[
Im

∫
BZ

dqG(q, E)

]
, (29)

where the trace Trel is performed over the electron modes
only (first half of the diagonal of the Green’s function
matrix).

We expect that the DOS for the nodal states to have a
linear dependence of energy at low energies (V-shaped),
while the fully gapped states to produce an U-shaped be-
havior. Indeed, this difference is visible in Fig. 5, where
we plot the DOS as a function of energy for the ON s-
wave and the NN dxy-wave SC states. The s-wave state
displays a full gap giving rise to an overall U-type DOS
profile. The nodal d-wave state on the other hand ex-
hibits a V-type DOS near zero energy due to the existence
of nodal quasiparticles. Moreover, we note an additional
near V-type feature at higher energies, centered around
E = µ = 0.4. This corresponds to the normal-state Dirac
point appearing at finite energy due to the finite µ39. We
also note that both nodal and fully gapped profile exhibit
a gap-edge coherence peak in the DOS.

In Fig. 6 we plot the DOS as a function of the overall
strength, or amplitude, of the SC order parameter ∆0

for the same chemical potential µ = 0.4 as in Fig. 4.
The overall particle-hole asymmetry, especially strong
at higher energies, is due to a pronounced particle-hole
asymmetry in the normal state for finite µ. Focusing
primarily on low energies, as relevant for superconduc-
tivity, we note that for the ON s-wave state the energy
gap is roughly linear in ∆0. We observe a similar lin-
ear dependence for the gap edges (or coherence peaks)
as a function of ∆0 for the NN sext-, dxy-, dx2−y2 -, px-,
and py-wave SC states. Note, however, that for the dxy-,
dx2−y2-, px-, and py-wave states the intensity is not zero
inside the gap, which is consistent with the observations
in the previous sections that all these states exhibit nodes
in the band structure.

In Fig. 6 we also note that the overall size of the gap,
or equivalently half the distance between the coherence

FIG. 5. DOS as a function of energy for ON s-wave and NN
dxy-wave SC states at ∆0 = 0.4 and µ = 0.4 illustrating the
difference between the U-shaped and V-shaped behavior, cor-
responding to a full gap and a nodal spectrum, respectively.

peaks for the nodal states, is no longer equal to the over-
all amplitude of SC order parameter ∆0, but generally
lower, except for the ON s-wave state and the NNN f -
wave state. The two exceptions have the normal-state
Fermi surface being gapped out by an SC order param-
eter constant along the Fermi surface, which generates a
gap equal to ∆0. For all the other states the low-energy
spectrum is strongly modified by having the SC order pa-
rameter vary along the normal-state Fermi surface. Still,
even in these cases we can identify a gap that is initially
linearly increasing with ∆0, albeit with a smaller than 1
coefficient. At larger ∆0 this linearity breaks down for
some of the symmetries. This is not surprising, as ∆0 ∼ 1
corresponds to the energy scale of the van Hove singu-
larity point, µ = 1, which marks the energy where the
normal state band structure dramatically changes. For
example in Fig. 6 we noticed a gap closing point for the
px, py and p+ ip ′ at ∆0 ∼ 1.

We also plot in Fig. 7 the DOS as a function of chemical
potential µ, while instead keeping the SC amplitude ∆0

fixed. Normally changing the chemical potential should
not affect the DOS much as it only alters the underlying
normal-state band structure. Indeed, this is what we see
for the ON s-wave which exhibits a constant gap for a
large range of µ. For some of the other states, however,
the intraband SC order parameters exhibits nodes at the
K,K′ Dirac points, such that when µ = 0, both the SC
order parameter and the normal state energy is zero at
the Dirac points. This leads to a gapless system at µ = 0
and to a linear dependence of the gap for small µ.

Around µ = 1 we observe further substantial changes
in the gap, or equivalently in the distance between the
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FIG. 6. DOS as a function of SC amplitude ∆0 for µ = 0.4 for SC states with ON s-wave, NN sext-, dxy-, dx2−y2 -, px-, py-,
p+ ip ′-, d+ id ′-wave, as well as NNN fx-wave symmetries. Dark blue represents zero DOS.

gap coherence peaks, for several SC states (fx, px, py,
dxy, p + ip′). These changes consist primarily in the
existence of points in parameter space where the energy
gap is closing. In order to track these points we plot in
Fig. 8 the energy gap in the band structure for the chiral
p + ip ′-wave state as a function of both the chemical
potential µ and the SC amplitude ∆0. We note that a
continuous gap closing line indeed occurs connecting µ =
1 with ∆0 ∼ 1. These gap closing points are important
for experimentally distinguishing between different SC
states. They are also important from the point of view
of topology, as we will discuss in detail in the next part
of this work. We can trace the gap closing points in
all the p-wave states to the existence of nodes in the
intraband SC order parameter at the M points in the
Brillouin zone, as depicted in Fig. 2. This leads to both a
vanishing band energy and intraband order parameter at
µ ≈ 1. To verify this behavior we plot in Fig. 9 the lowest
energy band for the chiral p + ip ′-wave state at three
different values of µ. Keeping ∆0 = 0.4, we find that
the gap closing occurs at the M points of the Brillouin
zone and at µ ≈ 0.9, corresponding to the middle panel of

Fig. 9. The difference from the intuitively expected value
of µ ≈ 1 comes from interband pairing due to the sizable
∆0. For µ below this gap closing at M , the topology of
the low-energy contours corresponds to having an origin
at the K,K′ Dirac points, while for larger µ’s the contours
are centered around the Γ point. We also note that the
dxy-wave intraband order parameter has nodes at two M
points, which generates the gap closing point at µ = 1 in
Fig. 7. However, the dx2−y2-wave state, and consequently
the chiral d+ id ′-wave state, host no nodes as function of
µ. This different behavior offers a clear way to distinguish
between all p- and d-wave states. Overall these results
shows that, even if the total energy is also dependent on
the interband pairing, many features can be understood
simply by reasoning using the intraband order parameter
and its nodes.

To provide a comprehensive treatment, we report also
the DOS for the NNN pairing in Appendix E. Here we
find that sext-wave and d-wave states have exactly the
same type of behavior as their NN counterparts, while
the NNN p-wave states only shows a gap closing as a
function of µ, at µ = 1 but not as a function of the
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FIG. 7. DOS as a function of chemical potential µ for SC amplitude ∆0 = 0.4 for SC states with ON s-wave, NN sext-, dxy-,
dx2−y2 -, px-, py-, p+ ip ′-, d+ id ′-wave, as well as NNN fx-wave symmetries. Dark blue represents zero DOS.

FIG. 8. DOS as a function of chemical potential µ and SC
amplitude ∆0 for the NN p+ ip ′-wave state. Dark blue rep-
resents zero DOS and illustrates the gap closing points.

SC pairing ∆0. The difference can be explained by the
influence of the interband pairing term for NN pairing
but not for NNN pairing. As such, the gap closing stays
at µ = 1 for all values of ∆0.

III. SUPERCONDUCTING MULTILAYER
GRAPHENE

We next turn to the treatment of SC multilayer
graphene. Here the 2D graphene sheets are stacked to-
gether with interlayer coupling primarily through van der
Waals interaction. The naive configuration of placing
two layers directly on top of each other is not energeti-
cally stable. The most stable form of stacking is instead
known as AB, or Bernal stacking47. Figure 10B illus-
trates this stacking: the two layers are stacked with a
relative relative translation of a0x̂. For bilayer graphene,
there is only this one choice. For trilayer graphene, we
have two choices, we can either perform a a0x̂ transla-
tion between the first and second layer, then also a a0x̂
translation between the second and third layer, giving
rise to a rhombohedral trilayer system, or ABC-stacking,
see Fig. 10D. We can also perform a translation of −a0x̂
for the third layer, which yields a Bernal trilayer sys-
tem, or ABA-stacking, see Fig. 10C. ABA is the ener-
getically most stable stacking, while ABC is technically
only metastable. Still, ABC-stacked multilayer graphene
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FIG. 9. Lowest energy band structure for SC amplitude ∆0 = 0.4 at three different values of the chemical potential, µ = 0.4, 0.9
and 1.4 for the NN p+ ip ′-wave state. Only the middle panel hosts zero energy states.

has been constructed using layer-by-layer deposition in
multiple experiments48,49. ABC-stacking has also been
produced by imposing mechanical constraints on Bernal
graphite.50

FIG. 10. Illustration of bilayer and trilayer graphene adapted
from Ref. [51]. A: monolayer graphene. B: AB or Bernal-
stacked bilayer graphene. C: ABA or Bernal-stacked tri-
layer graphene. D: ABC, or rhombohedral-stacked, trilayer
graphene. Red arrows correspond to intralayer hopping t,
magenta to interlayer hopping γ1, and cyan to trigonal warp-
ing terms γ3.

To be able to model the normal-state in multilayer
graphene we need to introduce interlayer hopping terms.
We denote the two closest hoppings between sites A and
B in neighboring layers by γ1 and γ3. The parameter γ1 is
the direct hopping term between planes, coupling sites A
and B that are spatially on top of each other. Since this is
a purely vertical hopping, it appears as a constant in the
tight-binding Hamiltonian. In constract, γ3 parametrizes
the non-direct interlayer hopping by coupling sites A and
B that are not spatially on top of each other. Due to its

finite intralayer reach it has a k-space modulation and act
as a trigonal deformation term. The values of these pa-
rameters have previously been determined, for example
in Ref. 52 to be γ1 = 0.38 eV, and γ3 = 0.38 eV. Compar-
ing this to the value of intralayer hopping t = 3.16 eV, we
note that the graphene layers are only weakly coupled to
each other, as expected for van der Waals bonded layers.
This weak interlayer coupling leads us in the following
to consider only intralayer superconductivity, and thus
disregard the possibility of interlayer SC bond pairing as
that would require much stronger interlayer bonds than
in the present van der Waals layered structures.

To write down the BdG Hamiltonian for SC bilayer
and trilayer graphene, we use α ∈ {1, 2, 3} to describe
the bottom (1), middle (2) or top (3) layers, respectively,
and we write down

cαk = {aαk↑, bαk↑, aαk↓, bαk↓}. (30)

Thus the bases to use for bilayer and trilayer graphene
are, respectively,

Ψbilayer
k = {c1k, c2k, c

1†
−k, c

2†
−k}

T , and (31)

Ψtrilayer
k = {c1k, c2k, c3k, c

1†
−k, c

2†
−k, c

3†
−k}

T . (32)

Below we treat each case separately.

A. Bilayer Hamiltonian

The BdG Hamiltonian for AB bilayer graphene can be
expressed as

HAB =

(
HAB

0 HSC

H†SC −HAB
0

)
, (33)

with

HAB
0 =

(
H1 H12

H†12 H2

)
, HSC =

(
H1

SC 0

0 H2
SC

)
. (34)



13

The components of the normal-state tight-binding Hamil-
tonian HAB

0 are given by

H1 = H2 =


µ h0(k) 0 0

h∗0(k) µ 0 0

0 0 µ h0(k)

0 0 h∗0(k) µ

 , (35)

which describe the intralayer hoppings in each layer 1
and 2, while the interlayer terms are given by

H12 =


0 γ3h̃

∗
0(k) 0 0

γ1 0 0 0

0 0 0 γ3h̃
∗
0(k)

0 0 γ1 0

 , (36)

where h0(k) and h̃0(k) = h0(k)/t are introduced in Sec-

tion II C. The SC state is represented through H1,2
SC ,

which are 4 × 4 matrices describing the intralayer su-
perconducting pairing in layer 1 and 2, respectively. Due
to the absence of inter-layer SC pairing, HSC is diago-
nal in the layer index. Furthermore, making the nat-
ural assumption of having the same superconducting
mechanism in each layer, we consider that both lay-
ers have the same superconducting symmetry, leading
to H1

SC = H2
SC, and H1

SC then also identical to the SC
monolayer graphene matrix derived in Section II C.

B. Trilayer Hamiltonian

For ABA/ABC trilayer graphene the BdG Hamilto-
nian is given by

HABA/ABC =

(
H

ABA/ABC
0 HSC

H†SC −HABA/ABC
0

)
, (37)

with

HSC =

H1
SC 0 0

0 H2
SC 0

0 0 H3
SC

 . (38)

As in the bilayer case, HSC does not couple the differ-
ent layers, such that the matrix is diagonal in the layer
space and is also characterized for each layer by the same
superconducting Hamiltonian, H1

SC = H2
SC = H3

SC. For
the normal-state Hamiltonian we have

HABC
0 =

H1 H12 0

H†12 H2 H23

0 H†23 H3

 , (39)

HABA
0 =

H1 H12 0

H†12 H2 H ′23

0 (H ′23)† H3

 . (40)

Here the intralayer terms are identical, H1 = H2 = H3

and are given by Eq. (35) above. Furthermore, for the
ABC trilayer H23 = H12, with H12 given by the bilayer
expression in Eq. (36). This is the consequence of hav-
ing the same interlayer coupling between the bottom and
middle layers as between the middle and top layers. In
contrast, for the ABA trilayer, the type of pairs of sites
connecting the top two layers is opposite to that connect-
ing the bottom two layers: γ1 connects a site A in the
middle layer to a site B in the top layer, while γ3 con-
nects a site B in the middle layer to a site A in the top
layer. Thus we need to swap the role of γ1 and γ3 in the
interlayer Hamiltonian and we find H ′23 to have the form

H ′23 =


0 γ1 0 0

γ3h̃
∗
0(k) 0 0 0

0 0 0 γ1

0 0 γ3h̃
∗
0(k) 0

 . (41)

C. Lowest energy bands

Having derived the Hamlitonians for bilayer and tri-
layer graphene, we continue with exact diagonalization
to find the energy spectrum. In the following we fo-
cus mainly on bilayer graphene, aiming to extract the
generic differences between the monolayer and any mul-
tilayer band structures. First we describe briefly the
effect of trigonal warping in the normal-state. To this
end, we plot in Fig. 11 the lowest energy band in bilayer
graphene for zero chemical potential and vanishing SC
pairing. When the trigonal warping γ3 is set to zero, we
obtain at very low energy (dark blue region) a quadratic
and isotropic dispersion relation with circular iso-energy
contours around the K,K′ Dirac points53. When includ-
ing also the interlayer γ3 coupling we note that the be-
havior of the iso-energy contours around the K,K′ points
is significantly altered and acquires a trigonal distortion
also at the lowest energies, hence the name trigonal warp-
ing term for γ3.

FIG. 11. Lowest energy band for undoped bilayer graphene
(µ = 0) in the normal-state (∆0 = 0) when γ3 = 0 (left) and
γ3 = 0.2 (right). Trigonal warping gives rise to deformations
in the lowest-energy iso-energy contours.
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Moving on to the SC states, we plot in Fig. 12 the low-
est energy bands for the same SC symmetries as in mono-
layer graphene (c.p. Fig. 4), but now zoomed-in around
the Dirac point K, to capture most clearly the effects of
the interlayer coupling. We here first use γ3 = 0. We
find that for the fully gapped states, the lowest energy
bands are similar to the monolayer case. However, for all
the nodal states we find a significant difference from the
monolayer, in that all the nodal points double by exhibit-
ing a small splitting in momentum space, see dark blue
color gradient. Thus the nodal d- and p-wave states now
have four nodal points, two on each side of the Dirac
point. Next we turn on the trigonal warping and find
that it has a significant effect on the formation of the
nodes. In Fig. 13 we plot the lowest band as a function
of ky for kx = 0 for the illustrative case of NN py-wave
symmetry. We note that the two nodal points in mono-
layer graphene split and give rise to four nodal points for
bilayer graphene with no trigonal warping. When turn-
ing on γ3 we find that this term slightly gaps two of the
four nodes.

D. Density of states and gap closing points

It is also interesting to study the DOS in bilayer and
trilayer graphene, in particular elucidating the existence
of gap closing points. Using a similar procedure as in the
previous section we calculate the DOS as a function of
energy, chemical potential, and SC order parameter am-
plitude. We find that it has a very similar dependence to
that of monolayer graphene. For completeness we pro-
vide plots of the DOS for the most interesting case, the
p + ip ′-wave state, in Appendix F for both bilayer and
trilayer graphene. The main features observed for the
monolayer are preserved, except that the number of gap
closing points is different for multilayer graphene. Focus-
ing on these gap closing points for the chiral p+ ip ′-wave
SC state, we plot in Fig. 14 the gap in the energy spec-
trum as a function of the chemical potential and the SC
amplitude for bilayer graphene without trigonal warping
(γ3 = 0). We find that there are now two gap closing
lines for each ∆0 as a function of µ, compared to the
single gap closing line in monolayer graphene in Fig. 8.
Adding a finite γ3 changes this, and we find again only
one gap closure line. Thus the trigonal warping has a
strong influence on the number of gap closing points. In-
deed this is confirmed in the right panel in Fig. 14, where
we plot the DOS as a function of both µ and γ3. We find
a similar effect in trilayer graphene, with the number of
gap closing points oscillating between one and three. A
more detailed analysis is presented in Appendix F.

Finally, we note that the formation of an interesting
additional gap closing point at small µ and ∆0, not
present in the monolayer case, see the dark blue line
close to µ ≈ 0.2 in Fig. 14. Since any realistic system
will have a rather small ∆0, this is particularly alluring
from an experimental point of view. It appears that this

gap closing point is not overly sensitive to the value of
γ3. In Fig. 15 we plot the lowest energy band for the
parameters corresponding to this gap closing point and
establish that this interlayer-induced gap closing occurs
at the K,K′ Dirac points, in contrast to the previously
described gap closing points that occur due to a nodal
intraband pairing at the M points. We attribute this
gap closing to the combination of nodal points at the
K,K′ points in the intraband SC order parameter and
the bottom of the second graphene band touching the
K,K′ points when the chemical potential µ is equal to
the interlayer coupling γ1 = 0.2. As such it is intimately
tied to the multilayer aspect.

IV. CONCLUSIONS

In this work we reviewed all symmetry-allowed spin-
singlet and spin-triplet superconducting states in mono-
layer, bilayer and trilayer graphene with different stack-
ing. By allowing on-site pairing, as well as pairing be-
tween nearest neighbors and next-to-nearest neighbors,
we captured all possible spin-singlet and -triplet order
parameters, from s- and d-wave to p- and f -wave states,
including the chiral d + id ′- and p + ip ′-wave states.
To analyze the properties of these states, we calculated
the low-energy band structure, as well as the density of
states as a function of the chemical potential and the su-
perconducting pairing strength. The different SC states
can be classified in two large classes, the fully-gapped
states, such as the s-, f -, d + id ′-, and p + ip ′-wave
states, that exhibit a U-shaped DOS and the nodal ones,
such as the dxy-, dx2−y2-, px-, and py-wave states that
exhibit nodal points in the band dispersion and a V-
shaped DOS. Moreover, we focused on the existence of
gap closing points in the DOS when changing the physi-
cal parameters, and found that many of these points can
be understood by a careful examination of the symme-
try of the intraband superconducting order parameter in
monolayer graphene. For bilayer and trilayer graphene,
we found that the interlayer coupling splits the nodal
points in the band structure, as well as the gap clos-
ing points. We also analyzed the effect of the trigonal
warping present in bilayer and trilayer graphene on the
formation of gap closing points. By distinguishing be-
tween nodal and fully gapped superconducting states our
work provides an experimentally viable tool to differenti-
ate between different superconducting symmetries in all
carbon-based superconductors. In future works we will
discuss the topology and the formation of edge states in
these systems, as well as the formation of Shiba states,
in the hope to provide additional tools to further distin-
guish experimentally between various order parameters
arising in superconducting graphene materials.
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FIG. 12. Lowest energy band structure for µ = 0.4, ∆0 = 0.4, γ1 = 0.2, γ3 = 0, and for SC states with ON s-wave, NN sext-,
dxy-, dx2−y2 -, px-, py-, p+ ip ′-, and d+ id ′-wave, as well as fx-NNN symmetries. Only the region in the Brillouin zone close
to the Dirac point K is displayed. Dark blue corresponds to zero energy.

FIG. 13. Lowest energy band structure for the NN py-wave SC state as a function of ky for kx = 0. We compare monolayer
graphene (left), bilayer graphene with no trigonal warping, γ1 = 0.2 and γ3 = 0 (middle), and bilayer graphene with finite
trigonal warping, γ1 = 0.2 and γ3 = 0.2 (left). Here ∆0 = 0.4 and µ = 0.4.
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FIG. 14. DOS as a function of chemical potential µ and SC amplitude ∆0 for the NN p + ip ′-wave state in bilayer graphene
for γ3 = 0 (left), γ3 = 0.2 (middle) with γ1 = 0.2. (Left): DOS as a function of γ3 and µ for ∆0 = 0.4 and γ1 = 0.2. Dark blue
corresponds to a vanishing DOS and to the gap closing points.

FIG. 15. Lowest energy band for bilayer graphene for the NN
p + ip ′-wave SC state for µ = 0.1, ∆0 = 0.1, γ1 = 0.2 and
γ3 = 0. The dark blue regions correspond to zero energy.
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Appendix A: Derivation of the momentum space Hamiltonian

In this Appendix we provide additional details for the derivation of the BdG Hamiltonian in momentum space.

1. Normal state Hamiltonian

For the tight-binding term in momentum space we have

HTB(k) =
∑
k,σ

(
h0(k)a†k,σbk,σ + h∗0(k)b†k,σak,σ

)
. (A1)

In the BdG form, and also taking into account the doubling of the number of modes to include separately the electron
and the hole spectrum for both up and down spins, this becomes

HTB(k) =
∑
k,σ

h0(k)
(
a†kσbkσ − b−k,σa

†
−k,σ

)
+
∑
k,σ

h∗0(k)
(
b†kσakσ − a−k,σb

†
−k,σ

)
, (A2)

with a form factor

h0(k) = −t

[
e−iky + 2e

i
2ky cos

(√
3

2
kx

)]
. (A3)

For the chemical potential term we have

Hµ = −µ
∑
kσ

(
a†k,σak,σ + b†k,σbk,σ

)
. (A4)

In the BdG form this becomes

Hµ =− µ
∑
kσ

(
a†k,σak,σ − a−k,σa

†
−k,σ + b†k,σbk,σ − b−k,σb

†
−k,σ

)
. (A5)
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2. On-site pairing

In real space the on-site pairing term takes the following form

HON = 2
[∑

i

∆ONa
†
i↑a
†
i↓ +

∑
i

∆ONb
†
i↑b
†
i↓ + h.c.

]
, (A6)

where the factor of 2 come from the doubling of the number of modes to take into account separately the electrons/holes
with spin up and spin down. The Fourier transform of this term is

HON = 2
[∑
kσ

∆ONa
†
k↑a
†
−k↓ +

∑
kσ

∆ONb
†
k↑b
†
−k↓ + h.c.

]
, (A7)

which can be written in the BdG form as

HON =
∑
kσ

∆ON

(
a†k↑a

†
−k↓ − a

†
−k↓a

†
k↑

)
+
∑
kσ

∆ON

(
b†k↑b

†
−k↓ − b

†
−k↓b

†
k↑

)
+ h.c. (A8)

3. NN pairing

For NN pairing in the spin-singlet channel (η = 0) we have

H0
NN =

∑
〈i,j〉

∆η=0
ij

(
a†i↑b

†
j↓ − a

†
i↓b
†
j↑

)
+ h.c. (A9)

while in the spin-triplet channel we find

Hx
NN =

∑
〈i,j〉

∆η=x
ij

(
a†i↑b

†
j↑ − a

†
i↓b
†
j↓

)
+ h.c., (A10)

Hy
NN =

∑
〈i,j〉

∆η=x
ij

(
a†i↑b

†
j↑ + a†i↓b

†
j↓

)
+ h.c., (A11)

Hz
NN =

∑
〈i,j〉

∆η=z
ij

(
a†i↑b

†
j↓ + a†i↓b

†
j↑

)
+ h.c. (A12)

We can now perform the Fourier transform as before. In the spin-singlet channel we obtain

HNN =
∑
k

h0
NN

(
a†k↑b

†
−k↓ − a

†
k↓b
†
−k↑

)
+ h.c. (A13)

and in the spin-triplet channel

Hx
NN =

∑
k

hxNN

(
a†k↑b

†
−k↑ − a

†
k↓b
†
−k↓

)
+ h.c., (A14)

Hy
NN =i

∑
k

hyNN

(
a†k↑b

†
−k,↑ + a†k,↓b

†
−k↓

)
+ h.c., (A15)

Hz
NN =

∑
k

hzNN

(
a†k↑b

†
−k↓ + a†k↓b

†
−k↑

)
+ h.c. (A16)

Here hηNN are the form factors, whose expressions depend on both the spin channel and the symmetry of the order
parameter. Their general expression is:

hηNN = ∆η,d=1
NN e−iky + ∆η,d=2

NN e
i
2ky−

√
3i
2 kx + ∆η,d=3

NN e
i
2ky+

√
3i
2 kx . (A17)

Here, d = 1, 2, 3 correspond to the three NNs, following the convention of Fig. 1. The values of ∆η,d are also detailed
in Tables I and II for each symmetry. By replacing these values we obtain the form factors for NN pairing (h0,sext

NN ,

h
0,dxy

NN , h
0,dx2−y2

NN , hη,pxNN , h
η,py
NN , hη,fxNN ) in Tables III and IV.
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We subsequently express the above NN pairing term in the BdG form

H0
NN =

1

2

∑
k

h0
NN(k)

(
a†k↑b

†
−k↓ − b

†
−k↓a

†
k↑ − a

†
k↓b
†
−k↑ + b†−k↑a

†
k↓

)
+ h.c.,

=
1

2

∑
k

(
h0

NN(k)a†k↑b
†
−k↓ − h

0
NN(−k)b†k↓a

†
−k↑ − h

0
NN(k)a†k↓b

†
−k↑ + h0

NN(−k)b†k↑a
†
−k↓

)
+ h.c.

(A18)

for the singlet channel and

Hx
NN =

1

2

∑
k

(
hxNN(k)a†k↑b

†
−k↑ − h

x
NN(−k)b†k↑a

†
−k↑ − h

x
NN(k)a†k↓b

†
−k↓ + hxNN(−k)b†k↓a

†
−k↓

)
+ h.c.,

Hy
NN =

i

2

∑
k

(
hyNN(k)a†k↑b

†
−k↑ − h

y
NN(−k)b†k↑a

†
−k↑ + hyNN(k)a†k↓b−k↓ − h

y
NN(−k)b†k↓a

†
−k↓

)
+ h.c.,

Hz
NN =

1

2

∑
k

(
hzNN(k)a†k↑b

†
−k↓ − h

z
NN(−k)b†k↓a

†
−k↑ + hzNN(k)a†k↓b

†
−k↑ − h

z
NN(−k)b†k↑a

†
−k↓

)
+ h.c.

(A19)

for the triplet channel.

4. NNN pairing

For NNN pairing in the spin-singlet channel (η = 0) we have

H0
NNN =

∑
〈〈i,j〉〉

∆η=0
ij

(
a†i↑a

†
j↓ − a

†
i↓a
†
j↑ + b†i↑b

†
j↓ − b

†
i↓b
†
j↑

)
+ h.c., (A20)

and in the spin-triplet channel

Hx
NNN =

∑
〈〈i,j〉〉

∆η=0
ij

(
a†i↑a

†
j↑ − a

†
i↓a
†
j↓ + b†i↑b

†
j↑ − b

†
i↓b
†
j↓

)
+ h.c., (A21)

Hy
NNN =

∑
〈〈i,j〉〉

∆η=0
ij

(
a†i↑a

†
j↑ + a†i↓a

†
j↓ + b†i↑b

†
j↑ + b†i↓b

†
j↓

)
+ h.c., (A22)

H0
NNN =

∑
〈〈i,j〉〉

∆η=0
ij

(
a†i↑a

†
j↓ + a†i↓a

†
j↑ + b†i↑b

†
j↓ + b†i↓b

†
j↑

)
+ h.c., (A23)

where the sums are now performed over the NNN pairs. Exactly as before, performing the Fourier transform gives

H0
NNN =

1

2

∑
k

hη=0
NNN(k)

(
a†k↑a

†
−k↓ − a

†
k↓a
†
−k↑ + b†k↑b

†
−k↓ − b

†
k↓b
†
−k↑

)
+ h.c., (A24)

in the spin-singlet channel and

Hx
NNN =

1

2

∑
k

hxNNN(k)
(
a†k↑a

†
−k↑ − a

†
k↓a
†
−k↓ + b†k↑b

†
−k↑ − b

†
k↓b
†
−k↓

)
+ h.c., (A25a)

Hy
NNN =

i

2

∑
k

hyNNN(k)
(
a†k↑a

†
−k↑ + a†k↓a

†
−k↓ + b†k↑b

†
−k↑ + b†k↓b

†
−k↓

)
+ h.c., (A25b)

Hz
NNN =

1

2

∑
k

hzNNN(k)
(
a†k↑a

†
−k↓ + a†k↓a

†
−k↑ + b†k↑b

†
−k↓ + b†k↓b

†
−k↑

)
+ h.c., (A25c)

in the spin-triplet one. Note that we have a 1
2 factor appearing since one takes twice into account the links between

the next-nearest neighbors when summing over all the atoms. Following the NNN conventions of Fig. 1 we write

hηNNN =∆η,d=1
NNN e−

√
3i
2 kx+ 3i

2 ky + ∆η,d=2
NNN e−i

√
3kx + ∆η,d=3

NNN e−
√

3i
2 kx− 3i

2 ky

+ ∆η,d=4
NNN e

√
3i
2 kx− 3i

2 ky + ∆η,d=5
NNN ei

√
3kx + ∆η,d=6

NNN e
√

3i
2 kx+ 3i

2 ky . (A26)

The explicit expressions of the resulting NNN form factors (h0,sext
NNN , h

0,dxy

NNN , h
0,dx2−y2

NNN , hη,pxNNN, h
η,py
NNN, hη,fxNNN) are given in

Tables III and IV.
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Appendix B: Spin-triplet pairing Hamiltonian

In this Appendix we derive the Hamltonian for spin-triplet pairing with η = y, z. The result for η = x is given in
the main text. For the η = y spin-triplet channel, the Hamiltonian reads

µ h0(k) 0 0 −ih̃ηNNN(−k) ih̃ηNN(k) 0 0

h∗0(k) µ 0 0 −ih̃ηNN(−k) −ih̃ηNNN(−k) 0 0

0 0 µ h0(k) 0 0 −ih̃ηNNN(−k) ih̃ηNN(k)

0 0 h∗0(k) µ 0 0 −ihηNN(−k) −ih̃ηNNN(−k)

ih̃η∗NNN(−k) ih̃η∗NN(−k) 0 0 −µ −h0(k) 0 0

−ih̃η∗NN(k) ih̃η∗NNN(−k) 0 0 −h∗0(k) −µ 0 0

0 0 ih̃η∗NNN(−k) ih̃η∗NN(−k) 0 0 −µ −h0(k)

0 0 −ih̃η∗NN(k) ih̃η∗NNN(−k) 0 0 −h∗0(k) −µ


,

(B1)
while for the η = z spin-triplet channel we find

µ h0(k) 0 0 0 0 0 + h̃ηNNN(−k) −h̃ηNN(k)

h∗0(k) µ 0 0 0 0 h̃ηNN(−k) h̃ηNNN(−k)

0 0 µ h0(k) h̃ηNNN(−k) −h̃ηNN(k) 0 0

0 0 h∗0(k) µ h̃ηNN(−k) h̃ηNNN(−k) 0 0

0 0 h̃η∗NNN(−k) h̃η∗NN(−k) −µ −h0(k) 0 0

0 0 −h̃η∗NN(k) h̃η∗NNN(−k) −h∗0(k) −µ 0 0

h̃η∗NNN(−k) h̃η∗NN(−k) 0 0 0 0 −µ −h0(k)

−h̃η∗NN(k) h̃η∗NNN(−k) 0 0 0 0 −h∗0(k) −µ


. (B2)
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Appendix C: Lowest energy band for µ = 1

In this Appendix we provide plots of the lowest energy bands at µ = 1 in Fig. 16. This is to be compared to the
results for µ = 0.4 given in Fig. 4 in the main text. For a doping close to the van Hove singularity, µ = 1, we thus plot
the lowest energy band as a function of kx and ky. We note that in this case the bands for some of the SC symmetries
reach zero energy in the vicinity of the M points (corresponding to the dark blue regions). This gives rise to a gap
closing point in the DOS around the value of µ = 1.

FIG. 16. Lowest energy band structure for µ = 1, ∆0 = 0.4, and for SC states with ON s-wave, NN sext-, dxy-, dx2−y2 -, d+id ′-,
px-, py-, p+ ip ′-wave, as well as NNN fx symmetries. Dark blue corresponds to zero energy.
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Appendix D: Band structure for NNN pairing

In this Appendix we provide plots of the lowest energy bands for NNN pairing in Fig. 17. This is to be compared to
results for NN pairing given in Fig. 4 in the main text. We thus consider both spin-singlet and -triplet NNN pairing
with various symmetries. We note a similarities with the bands resulting from NN pairing Fig. 4, such as the nodal
points in the structure for dxy-, dx2y2-, px-, and py-wave (depicted in dark blue) and a fully gapped structure for the
rest.

FIG. 17. Lowest energy band structure for µ = 0.4, ∆0 = 0.4, and for SC states with NNN pairing with sext-, dxy-, dx2−y2 -,
d+ id ′-, px-, py-, p+ ip ′-, and fx-wave symmetries. Dark blue corresponds to zero energy.
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Appendix E: DOS for NNN pairing

In this Appendix we provide information on the DOS for NNN pairing. First we plot the DOS for NNN pairing
as a function of energy and SC pairing strength in Fig. 18 for the same parameter values as those considered for the
NN pairing described in the main text and in Fig. 6. We note that the main difference from the NN coupling case
is that the dependence with ∆0 is roughly linear, and in contrast to the NN case, there is no critical value of ∆0 for
which we observe additional gap closings, for any of the symmetries. The dependence of the DOS with energy and

FIG. 18. DOS as a function of SC amplitude ∆0 for µ = 0.4 for SC states with NNN pairing with sext-, dxy-, dx2−y2 -, d+ id ′-,
px-, py-, fx- and p+ ip ′-wave symmetries.

the chemical potential is very similar to that for the NN couplings as seen when comparing Fig. 19 with Fig. 7 in the
main text. Furthermore, as mentioned in the main text, the gap closing for the NNN p + ip ′-wave state occurs at
µ = 1, independent of the value of the SC coupling, as seen in Fig. 20.



24

FIG. 19. DOS as a function of µ for ∆0 = 0.4 for SC states with NNN pairing with sext-, dxy-, dx2−y2 -, d+ id ′-, px-, py-, fx-
and p+ ip ′-wave symmetries.

FIG. 20. Gap value as a function of the chemical potential µ and the SC amplitude ∆0 for the NNN p+ ip ′-wave state.
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Appendix F: DOS for NN p+ ip ′-wave pairing in multilayer graphene

In this Appendix we provide additional information of the DOS for NN p+ ip ′-wave pairing in multilayer graphene.
For a vanishing trigonal warping, γ3 = 0, we obtain the DOS as a function of energy and chemical potential in Fig. 21
for different multilayer configurations. We note that these results are very similar to monolayer graphene, except for

FIG. 21. DOS as a function of energy and µ for ∆0 = 0.4, γ1 = 0.2, γ3 = 0 in bilayer, trilayer ABA, and trilayer ABC graphene
for the NN p+ ip ′-wave SC state .

the number of gap closing points. As discussed in the main text, this number is also strongly affected by the trigonal
warping, which we illustrate in Fig. 22 where we plot the DOS in the presence of non-zero trigonal warping γ3 = 0.2.

FIG. 22. DOS as a function of energy and µ for ∆0 = 0.4, γ1 = 0.2, γ3 = 0.2 in bilayer, trilayer ABA, and trilayer ABC
graphene for the NN p+ ip ′-wave SC state.

As opposed to the monolayer case for which we have a single gap closing point as a function of the chemical
potential, for trilayer graphene we find that this number oscillates between one and three. This is illustrated for ABA
trilayer graphene in Fig. 23 and for ABC trilayer graphene in Fig. 24. We find that the effect of trigonal warping is
quite pronounced by modifying the gap closing points.

FIG. 23. DOS as a function of the chemical potential µ and the SC amplitude ∆0 for the NN p+ ip ′-wave state in ABA trilayer
graphene for γ3 = 0 (left) and γ3 = 0.2 (middle) with γ1 = 0.2. (Right): DOS as a function of γ3 and µ for ∆0 = 0.4 and
γ1 = 0.2. Dark blue corresponds to a vanishing DOS and to the gap closing points.
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FIG. 24. DOS as a function of the chemical potential µ and the SC amplitude ∆0 for the NN p+ ip ′-wave state in ABC trilayer
graphene for γ3 = 0 (left) and γ3 = 0.2 (middle) with γ1 = 0.2. (Right): DOS as a function of γ3 and µ for ∆0 = 0.4 and
γ1 = 0.2. Dark blue corresponds to a vanishing DOS and to the gap closing points.
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