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We consider the most energetically favorable symmetry-allowed spin-singlet and spin-triplet su-
perconducting pairing symmetries in monolayer and few-layer graphene, and for each calculate the
energy spectrum in the presence of a scalar or magnetic impurity. We find that two doubly degen-
erate subgap states exist for scalar impurities for all types of pairing, except for the spin-singlet
s-wave state. For magnetic impurities, two or four subgap states may form depending on the order
parameter symmetry. We find that the spin polarization of these states allows one to distinguish
between spin-singlet and triplet pairing, for example, only the spin-triplet states show opposite-
energy subgap states with the same spin. We also calculate the quasi-particle interference patterns
associated with the subgap states and find that they exhibit features that could distinguish between
different types of pairing symmetries, especially a breaking of rotational symmetry for nodal states,
stronger for the spin-singlet dxy and dx2−y2 than for the spin-triplet px and py states.

I. INTRODUCTION

Ever since the discovery of superconductivity (SC)
in graphene-based systems, such as twisted bilayer
graphene1–12 and rhombohedral trilayer graphene13,14,
the identification of the pairing symmetries in these
unconventional superconductors has been one of the
main goals of the theoretical and experimental devel-
opments. However, the present state in the analy-
sis of microscopic theories for the different graphene
systems does not allow for a definite answer to this
question15. Multiple different mechanisms have been pro-
posed based on both phonon-mediated pairing16,17 and
electron-electron interactions18–20 and they predict dif-
ferent pairing symmetries8,9,21–36.

In two recent works37,38 we have examined all expected
spin-singlet and spin-triplet SC states with lowest angu-
lar momentum (l ≤ 3) in monolayer graphene, as well
as in AB-stacked bilayer and ABA- and ABC-stacked
trilayer graphene. Our goal was to analyze both the
basic electronic properties and the topological proper-
ties of various SC graphene systems by computing their
band structure and density of states (DOS), as well as
the Chern number and the associated topologically pro-
tected edge states25,26,39. The analysis of these properties
may help to experimentally distinguish between various
order parameters. For example, the DOS, measurable
in scanning tunneling microscopy (STM), can in prin-
ciple distinguish between nodal SCs (dxy-, dx2−y2 -, px-,
py-wave), which have a V-shaped DOS and gapped SCs
(son-, sext-, p + ip ′-, d + id-, f -wave), which have a U-
shaped DOS. However, in real experiments it can still be
hard to distinguish between these two types of DOS if the

resolution is not sufficient and disorder may additionally
locally perturb the SC state40.

In this last work in the series, we propose another
tool to distinguish between different SC order parame-
ters in graphene by studying the effects of a single im-
purity on the local density of states (LDOS) and on the
spin-polarized local density of state (SPLDOS). It is al-
ready well-known from the Anderson theorem40 that con-
ventional s-wave SCs are not affected by scalar impuri-
ties, and do not allow the formation of subgap states,
whereas scalar impurities usually induce subgap bound
states/resonance states in unconventional fully gapped or
nodal SCs41. Also, it is well-known that a magnetic im-
purity induces Yu-Shiba-Rusinov subgap states in a SC
due to local time reversal symmetry breaking42–44. In
what follows we refer to all low-energy impurity states,
irrespective of their origin, as simply subgap states.

Although subgap states are often expected, their mul-
tiplicity and characteristics strongly depend on the un-
derlying symmetries of the normal state and especially
the SC order parameter41,45. Thus, one may hope that
studying the features induced by a single impurity would
help differentiate between the different SC states. Moti-
vated by these prospects, we perform an extensive study
of the effects of both scalar and magnetic impurities
in monolayer, AB bilayer, and trilayer ABA and ABC
graphene for the same set of symmetries considered in
Ref. 37 and 38. Using the well-known T-matrix ap-
proach41, we compute both the spatially averaged LDOS
as a function of energy, as well as the Fourier transform
of the LDOS change induced by the impurity at a given
energy (FT-LDOS, also known as the quasi-particle inter-
ference pattern, or QPI). The QPI and the spin-polarized
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QPI, measurable via STM and spin-polarized STM, re-
spectively, provide a direct connection to angle-resolved
photoemission spectroscopy experiments46–49, and thus
contain information about the band structure of the sys-
tem. In fact, such measurements have already been
used to study impurity scattering effects in graphene sys-
tems45,50–56.

We first focus on the energy dependence of the spatially
averaged LDOS and SPLDOS. This allows us to study
the formation of subgap states, thereby distinguishing be-
tween conventional and unconventional superconductors.
For example, we confirm that in the presence of scalar im-
purities the spin-singlet s-wave states do not give rise to
subgap states, according to the Anderson theorem40,45.
On the other hand, magnetic impurities are pair-breaking
for both spin-singlet and spin-triplet states and thus gen-
erate subgap states for all types of pairing symmetries.
Here we identify four different subgap states for the fully
gapped d + id ′, p + ip ′ and f -wave symmetries, while
the rest exhibiting only two subgap states. For the SPL-
DOS generated by a magnetic impurity we note that pairs
of subgap states of the same spin but opposite energies
exist only for some of the spin-triplet order parameters
but for no spin-singlet order parameters, which thus be-
comes a clear experimental signature allowing to iden-
tify the existence of a spin-triplet SC state. Another
difference between the spin-singlet and spin-triplet SC
states is that the SPLDOS features depend on the im-
purity spin orientation, while they are automatically in-
dependent of the direction of the impurity spin for all
spin-singlet SC states. We subsequently study the QPI
maps and show that the QPI patterns for nodal SC states
break the six-fold symmetry of the normal state, while
the QPI patterns for the gapped SC states preserve this
symmetry. This establishes that the QPI can distinguish
between gapless and nodal order parameters, such as px-,
py-, dxy-, dx2−y2-wave, from fully gapped order param-
eters, such as s, sext-, p+ ip ′-, d + id ′- and f -wave, in
SC graphene systems. Finally, we note that most of the
features of the subgap states are quite generic and un-
changed when studying bilayer or trilayer graphene, ex-
cept for extra subgap states arising in the ABC trilayer
case and for a smaller splitting of the features due to the
presence of the interlayer coupling.

The rest of this article is organized as follows. In Sec-
tion II we provide the details of the tight-binding model
used and the T-matrix formalism. In Section III we fo-
cus on monolayer graphene and we compute the aver-
aged LDOS and SPLDOS for both scalar and magnetic
impurities, as well as their momentum dependence, or
equivalently, the QPI. We extend the study to multilayer
graphene in Section IV, before summarizing our results
in Section V.

II. MODEL AND METHOD

A. Bulk Hamiltonian

Without trying to justify the pairing mechanism for
SC, we consider SC graphene described by a tight-
binding Hamiltonian with a pairing term that can take all
relevant spin-singlet and spin-triplet symmetries with the
lowest angular momentum, The non-interacting Hamilto-
nian is given by

H0(k) =
∑
k,α

µ
(
a†kαakα + b†kαbkα

)
+

h0(k)a†kαbkα + h∗0(k)b†kαakα,

h0(k) = −te−iky
[

1 + 2e3iky/2 cos

(√
3

2
kx

)]
,

(1)

where µ and h0(k) are the chemical potential and the
kinetic energy, respectively, with t denoting the hopping
strength between nearest neighbor carbon atoms (NN).

Here a†kα (b†kα) is the creation operator for an electron
with momentum k and spin α, in the sublattice A (B).

We focus primarily on the intralayer NN SC pairing
but our results are quite generic and are affected very
little if we were to instead consider intralayer next-to-
nearest-neighbor (NNN) order parameters, similarly to
our earlier to works37,38,57. This is important to note
since self-consistent calculations has shown that NNN
range may be preferred over the NN for some multilayer
graphene configurations17,57. The only type of pairing
symmetry that cannot be captured by NN pairing is the
f -wave state where we thus revert to NNN pairing. The
SC Hamiltonian can be written as

H0
NN =

∑
k

h0NN(k)(a†k↑b
†
−k↓ − a

†
k↓b
†
−k↑) + h.c., (2)

and

Hx
NN =

∑
k

hxNN(k)(a†k↑b
†
−k↑ − a

†
k↓b
†
−k↓) + h.c., (3)

Hy
NN =i

∑
k

hyNN(k)(a†k↑b
†
−k↑ + a†k,↓b

†
−k↓) + h.c., (4)

Hz
NN =

∑
k

hzNN(k)(a†k↑b
†
−k↓ + a†k↓b

†
−k↑) + h.c., (5)

for the spin-singlet channel and spin-triplet channels,
respectively37,38,57. Here hηNN(k) are the overall form fac-
tors whose expressions depend on both the spin channel
chosen and the angular momentum symmetry of the or-
der parameter. Their expressions for the different pairing
symmetries are given in Table I. For the NNN range the
above formulas need to be modified such that the pairing
terms couple two electrons within the same sublattice.
The NNN form factor for the fx = fx(x2−y2) order pa-
rameter, which is the only one considered here, is also
given in Table I (we exclude the fy(y2−3x2)-wave state
has it has multiple nodes and is as such highly unfavor-
able).
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η Symmetry Form factor hηNN(k)

0 sext h0,sext
NN (k) = ∆0√

3
h̃0(k)

0 dx2−y2 h
0,d

x2−y2

NN (k) = 2∆0√
6
e−iky

[
1− e

3i
2
ky cos(

√
3

2
kx)

]
0 dxy h

0,dxy

NN (k) = ∆0

√
2i e

i
2
ky sin(

√
3

2
kx)

x py h
η,py
NN (k) = 2∆0√

6
e−iky

[
1− e

3i
2
ky cos(

√
3

2
kx)

]
x px hη,pxNN (k) = i

√
2∆0e

i
2
ky sin(

√
3

2
kx)

x fx(x2−y2) h
η,fx
NNN(k) = 2i∆0√

6

[
sin(
√

3kx)

−2 sin(
√

3
2
kx) cos( 3

2
ky)

]
TABLE I: Expressions for the SC form factors for

different spin-singlet and spin-triplet symmetries. The
overall amplitude for the SC order parameter is set to
∆0, the distance between two NN carbon atoms is set

to 1, and h̃0(k) = h0(k)/t.

For SC multilayer graphene, the Hamiltonian is given
by

Hk =

L∑
`=1

(
H

(`)
0 +H

(`)
NN

)
+Hinter-layer , (6)

where L is the number of layers, H
(`)
0 and H

(`)
NN are the

non-interacting and the SC Hamiltonians, respectively,
associated to each layer ` and given by Eqs. (1)–(5), and
Hinter-layer is the coupling Hamiltonian between adjacent
layers given in Ref. 37. The interlayer Hamiltonian de-
pends on three additional parameters, the phase differ-
ence φ between the SC state in two adjacent layers, the
interlayer couplings γ1 and γ3

58, where γ1 is the simple
inter-layer coupling corresponding to hopping between
atoms on top of each other, while the smaller γ3 corre-
sponds to hopping between an atom A in one layer and
the neighboring B atoms in the adjacent layer. We have
checked that the addition of this trigonal warping γ3 with
a realistic value γ3 ≤ γ1 does not change our results. We
thus set γ1 = 0.2t and γ3 = 0 in the rest of the work for
simplicity.

Collating the operators in each layer ` into a vector,
the Hamiltonian can be expressed as

Hk =
1

2
Ψ†kĤBdGΨk, (7)

using the basis

Ψk` =
(
ak`↑, bk`↑, ak`↓, bk`↓, a

†
−k`↑, b

†
−k`↑, a

†
−k`↓, b

†
−k`↓

)T
,

(8)
where Ψk thus combines all individual-layer bases Ψk`,
and ĤBdG is the 8L × 8L Bogoliubov-de-Gennes (BdG)
Hamiltonian matrix. The factor 8 corresponds to a prod-
uct of 2 spins, 2 sublattices, and the particle-hole dou-
bling of the degrees of freedom in the BdG formalism.

Finally, The retarded Green’s function for this system is
given by

G r(E,k) =
[
E + iδ − ĤBdG(k)

]−1
, (9)

with δ being the quasiparticle-lifetime. We set δ = 0.03
in the rest of the work.

B. Impurity scattering

In this work we are interested in the consequences of
introducing a point-like (scalar or magnetic) impurity.
Using the basis in Eq. (8), the Hamiltonian matrix for
such point-like impurity can be written as

V̂ = τz ⊗ V̂ , V̂ = û⊗ v̂. (10)

Here

v̂ = Uσ0 + Jσν , (11)

where τν(σν) are the ν-Pauli matrices in the particle-
hole (spin) space, and σ0 is the 2 × 2 identity matrix,
while û is a 2L × 2L matrix for which all the elements
are equal to 0, except for one diagonal element, whose
matrix position iimp corresponds to the layer/sublattice
of the impurity, and which we take to be equal to 1. The
parameters U and J are, respectively, the strength of the
scalar and magnetic impurity.

To compute the corresponding variation of the unpo-
larized (LDOS) and spin-polarized (SPLDOS) local den-
sity of states, we use the T-matrix approach41. The T-
matrix can be written as

T(E) =

[
18L − V̂

∫
d2k

(2π)2
G r(E,k)

]−1
V̂, (12)

where 18L is an 8L × 8L identity matrix. The physi-
cal observables (here LDOS and SPLDOS), that can be
measured near an impurity, can be expressed directly in
terms of this T-matrix, if we assumes the dilute-limit ap-
proximation, such that the impurities are well separated
from each other. The Fourier transform of the change in
LDOS induced by the impurity, δρ(q, E), and the same
quantity for the SPLDOS, δSν(q, E), can then be written
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as

δρ(q, E) = − 1

2πi

∫
d2k

(2π)2

×
∑
b

[ g̃b,↑↑(E,q,k) + g̃b,↓↓(E,q,k) ] , (13)

δSx(q, E) = − 1

2πi

∫
d2k

(2π)2

×
∑
b

[ g̃b,↑↓(E,q,k) + g̃b,↓↑(E,q,k) ] , (14)

δSy(q, E) = − 1

2π

∫
d2k

(2π)2

×
∑
b

[ gb,↑↓(E,q,k)− gb,↓↑(E,q,k) ] , (15)

δSz(q, E) = − 1

2πi

∫
d2k

(2π)2

×
∑
b

[ g̃b,↑↑(E,q,k)− g̃b,↓↓(E,q,k) ] , (16)

where the index b runs over all electron bands (the hole
bands are not taking into account since experimentally
only the available electron density of states is measured)
and

g/g̃(E,q,k) =G r(E,q)T (E)G r(E,q + k)

± (G r(E,k + q))∗T ∗(E)(G r(E,q))∗.

(17)

At q = 0, the quantities δρ(q = 0, E) → δρ(E) and
δSν(q = 0, E) → δSν(E) correspond to the spatially
averaged disorder-induced LDOS and SPLDOS, respec-
tively. In the two following Sections, we plot and analyze
δρ(E) and δSν(E) as a function of energy and impurity
strength to establish the formation of subgap states. Fur-
thermore, at constant energy, the QPI patterns described
by Eq. (13)-(16) provide a map in reciprocal space of
the possible scattering processes. Experimentally, the
QPI patterns are obtained by performing a fast Fourier
transform of the STM measurements of the LDOS in real
space45,53.

III. MONOLAYER GRAPHENE

A. Unpolarized and spin-polarized local density of
states

We first consider the spatially averaged LDOS,
i.e δρ(E) and δSν(E), in the presence of both a scalar
and a magnetic impurity. If and when subgap states
form, these quantities will display clear peaks inside the
SC gap. The position of the peaks may depend on var-
ious parameters, such as the impurity strength, the am-
plitude of the SC order parameter and its symmetry, or
the chemical potential.

In Fig. 1 we plot δρ(E) for all the SC symmetries as
a function of energy and impurity strength in the pres-
ence of a scalar impurity. We first note that for the
on-site (ON) and sext symmetries, there is no impurity
subgap peak. This is consistent with previous observa-
tions in the literature: conventional s-wave superconduc-
tors are unaffected by the presence of non-magnetic or
scalar impurities40,41,45 and thus do not show any subgap
states since these impurities do not break time reversal
symmetry59. This reasoning can also be applied to ex-
tended s-wave superconductors: as long as the chemical
potential is chosen such that the SC order parameter is al-
most constant along the Fermi surface, the phenomenol-
ogy is approximately the same60.

In contrast, the spin-singlet nodal, dxy- and dx2−y2 -
wave, as well as the fully gapped, chiral dxy + idx2−y2 -
wave (d+ id′)states, show spin degenerate subgap states
in the presence of a scalar impurity. For these states the
Anderson theorem does not forbid the presence of subgap
states, even for a non-magnetic impurity. The physical
interpretation is that scattering by an impurity disturbs
the phase distribution for some particular directions of
the momenta in all these nontrivial SC states41. This has
also been noted in d-wave superconductors on the square
lattice, modeling the cuprate superconductors41 and is
also in agreement with former studies on the chiral d +
id ′-wave SC in graphene45,61. Similarly, we find subgap
states for all spin-triplet states, both the nodal px- and
py-wave states, and the fully gapped, chiral px + ipy-
wave (p+ip’) SC state, as well as the fully gapped fx-
wave state. For all these subgap states we find that their
energies evolve with the impurity strength such that the
states cross zero energy at a given, but different, impurity
strength. A similar observation has also been noted in
Ref. 62.

We next study the effect of a magnetic impurity for
the formation of subgap states. First we plot in Fig. 2
δρ(E) as a function for energy and impurity strength for
all the order-parameter symmetries considered. We first
note that for a magnetic impurity we find subgap states
for all types of pairing symmetries, including the s-wave
states. We also note that for the fully gapped d + id ′-,
p+ ip ′-, and f -wave states, the spin degeneracy has been
lifted, and we have now four distinct subgap states rather
than two pairs of degenerate ones. On the other hand,
the nodal SC states dxy-, dx2−y2 -, px-, and py-wave, show
the same number of subgap states, i.e two distinct states,
for both magnetic and scalar impurities, however a pair
of extra impurity states often arises outside the gap. As a
consequence, the number of subgap states can be used to
simple tool to experimentally distinguish between various
order parameters, i.e. if we can identify four distinct sub-
gap states, then we can be sure to have either a d+ id ′-,
p + ip ′-, or f -wave pairing. We note however, that the
reverse may not always work since the four states may
be too close together to distinguish experimentally.

In order to get a better understanding of what hap-
pens for magnetic impurities, we also look at the spin-
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FIG. 1: δρ(E) as a function of energy E and impurity strength U for a scalar impurity. We take µ = 0.4t and
∆0 = 0.4t. The dotted lines indicate the SC gap edge, which as noted in Ref. 37, does not always lie at an energy

equal to ∆0 but may depend on various parameters, including the symmetry of the SC order parameter.

FIG. 2: δρ(E) as a function of energy E and impurity strength Jz for a z-magnetic impurity. We take µ = 0.4t and
∆0 = 0.4t. The dotted lines indicate the gap edge.

FIG. 3: δSz(E) as a function of energy E and impurity strength Jz for a z-magnetic impurity. We take µ = 0.4t and
∆0 = 0.4t. The dotted lines indicate the gap edge.

polarization of the induced subgap states. Here we find that each impurity gives rise to a non-zero spin polariza-
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tion only in the spin channel parallel to its spin direc-
tion, thus for an α-magnetic impurity we plot only the
α-magnetic component of the SPLDOS, with α = x, y, z.
We thus first plot in Fig. 3 the SPLDOS δSz(E) as a
function of magnetic impurity strength and energy for all
types of pairing for a z-magnetic impurity. Here we find
that the SPLDOS shows even more clearly the difference
between the two and four subgap scenarios, as it clearly
differentiates between the different states. We can next
ask if the interplay between the direction of the impurity
spin and the choice of the triplet channel, which we above
fixed to x, influences the results. We have checked that
for this particular choice a y-magnetic impurity yields
exactly the same behavior as the z-magnetic impurity.
However, for an x-magnetic impurity, the LDOS is un-
changed but the x-SPLDOS differs in the spin-triplet
channel. In Fig. 4 we illustrate this by plotting the x-
SPLDOS for all spin-triplet states.

FIG. 4: δSx(E) as a function of energy E and impurity
strength Jx for a x-magnetic impurity. We take µ = 0.4t
and ∆0 = 0.4t. The dotted lines indicate the gap edge.

We further note in Fig. 3 that for the spin-singlet SC
states, opposite-energy states have opposite spin, while
for the spin-triplet states the opposite energy states have
the same spin. This however seems to be a feature de-
pendent on the direction of the impurity spin: for the
different impurity direction considered in Fig. 4, we find
that the states with opposite energy also have opposite
spin for spin-triplet pairing. We thus conclude that the
peculiar occurrence of having the same spin for subgap
states with opposite energies is a distinguishing charac-
teristic of a spin-triplet pairing state (px, py, p+ ip ′ and
f -wave) and could be used as an experimental signature
to identify a spin-triplet order parameter. Moreover, the
dependence of the SPLDOS with the direction of the im-
purity spin is also a characteristic unique to spin-triplet
pairing, which additionally could be used to distinguish
between a spin-singlet and spin-triplet triplet order pa-
rameters.

Energy Scalar Magnetic Symmetry

0.02 J=3.5 sext

0.1 J=2.5 dx2−y2

0.1 U=2.5 J=2.5 dxy

0.1 U=3 J=3 dx2−y2 + idxy

0.1 U=1.5 J=1.5 px

0.1 U=1.5 J=1.5 py

0.1 U=2 J=2 px + ipy

0.2 U=1.5 J=3 fx(x2−y2)

0.2 U=3 J=1.5 sON

TABLE II: Values of impurity strength and energy used
to generate the QPI plot for scalar (U) and magnetic

(J) impurities for all considered order parameter
symmetry in Fig. 5,

Energy Scalar Magnetic Symmetry

0 J=2 sext

0 J=5 dx2−y2

0 U=5 J=5 dxy

0 U=6 J=6 dx2−y2 + idxy

0 U=5 J=5 px

0 U=5 J=5 py

0 U=6 J=6 px + ipy

0 U=6 J=6 fx(x2−y2)

0 U=2.5 J=2.5 sON

TABLE III: Values of impurity strength corresponding
to a zero-energy subgap state used to generate the QPI

for scalar (U) and magnetic (J) impurities for all
considered order parameter symmetry in Figs. 6, 7,8,

and 9.

B. Quasi-particle interference

The plots above describe the dependence of the av-
erage LDOS change induced by an impurity as a func-
tion of energy and impurity strength, and thus tell us at
which energy the subgap states form. In what follows we
are interested in the spatial dependence of the subgap
states. In particular, we study the Fourier transform of
the LDOS and of the SPLDOS at a given subgap energy
peak as a function of momentum. We primarily focus
on two different peak energies, E = 0 and E 6= 0. In
Tables II and III we provide the values of the scalar im-
purity strength U , and of the magnetic impurity strength
J , and the corresponding peak energies for each order pa-
rameter symmetry. All energies are given in units of t,
i.e. we set t = 1.
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In the following we also only plot the absolute value
of δρ(q) and of δSα(q), α = x, y, z. This is because, to
the hexagonal structure of the lattice, these are gener-
ally complex quantities that have both non-zero real and
imaginary parts. However, at present it is very hard to
distinguish experimentally between their real and imag-
inary parts: experiments calculating the QPI patterns
based on fast Fourier transform (FFT) cannot keep track
precisely neither of the phase, nor of the sign. Moreover,
spin-polarized STM experiments with corresponding QPI
are still in their infancy. Thus, in order to avoid the
overload of information, we only focus on the absolute
Fourier transform values. If more accurate experimental
data become available this study can easily be extended
and refined to take into account separately the real and
imaginary parts of the Fourier transforms of both the
LDOS and SPLDOS.

Similarly to above, we start by considering a scalar
impurity (U 6= 0 and J = 0), and calculate the QPI pat-
terns for both a non-zero energy in Fig. 5, and at zero
energy in Fig. 6. Since the sON-wave and sext-wave order
parameters do not exhibit any subgap states for a scalar
impurity we do not include them in the scalar-impurity
QPI analysis. Overall, the QPI patterns are dominated
by a central feature at the center of the Brillouin zone
(Γ-point), corresponding to intra-nodal scattering (in the
normal-state band structure) of the electrons by the im-
purity, and by six features localized at the corners of the
Brillouin zone (K-points) corresponding to inter-nodal
scattering.

We further note that the gapless nodal states clearly
produce a QPI pattern that breaks the six-fold symme-
try, while the gapped states, i.e the f -wave, and the chiral
d + id ′- and p + ip ′-wave states, all show QPI patterns
that preserve the full rotation symmetry of the lattice.
This is fully consistent with the symmetries of the SC
order parameter, modulo the order parameter phase that
might change sign, but which seemingly does not affect
the QPI in contrast to the case of d-wave cuprates63.
It is also fully consistent with the fact that these states
have a symmetry-preserving SC band structure37 for all
gapped states. QPI would thus be a good experimen-
tal tool to distinguish between nodal states that break
rotation symmetry and the gapped states which do not.
A similar observation has already been made in Refs. 45
and 61, when comparing the nodal d-wave states and
the chiral d-wave states. Here we establish that this also
holds for both spin-singlet d-wave and spin-triplet p-wave
symmetries in graphene.

We next analyze the QPI patterns generated by a mag-
netic impurity (J 6= 0 and U = 0). We here only plot
the QPI corresponding to the zero-energy peaks, as we
find that the effect for the non-zero energy subgap states
is very similar. We further find that in the presence of
a z-magnetic impurity we recover the same features for
|δρ(q)| as those for a scalar impurity depicted in Fig. 6.
The main difference is that, in the presence of a magnetic
impurity the states with sON-wave and sext-wave order

parameters also exhibit subgap states. Thus, to avoid
repetition, in Fig. 7 we only plot |δρ(q)| for these two
s-wave states, for which the corresponding values of the
z-magnetic impurity strength, J = Jz, are given in Table
III.

While |δρ(q)| does not show any significant differences,
|δSz(q)|, i.e. the spin-polarized LDOS, shows more in-
teresting features, which we plot in Fig. 8 for the same
z-magnetic impurity. The main differences from the QPI
of the scalar impurity are a ring-like feature arising in
the center of the Brillouin zone in the d-wave SC states,
as well as a reduction in the asymmetry for the K-points
features.
We also note that for the spin-triplet pairing states, the
x-SPLDOS QPI for a x-magnetic impurity is different
from the y and z ones and becomes more reminiscent of
the spin-singlet ones, where there is no dependence on
x, y, z-magnetic impurity directions. For example, as de-
picted in Fig. 9, the spin-polarized QPI’s for px/py/p +
ip ′-wave states at zero energy and the corresponding im-
purity strength values Jx = J provided in Table III, ac-
quire more similarities to the dxy/dx2−y2/d + id ′-wave
states, in that they show a ring of high intensity for the
feature in the center of the Brillouin zone and an in-
creased asymmetry for the features at the corners of the
Brillouin zone.
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FIG. 5: |δρ(q)| at the values of impurity strength U and energy provided in Table II for a scalar impurity. We take
µ = 0.4t and ∆0 = 0.4t. The Brillouin zone is indicated by dashed lines.

FIG. 6: |δρ(q)| at zero energy and the corresponding impurity strength values U in Table III for a scalar impurity.
We take µ = 0.4t and ∆0 = 0.4t. The Brillouin zone is indicated by dashed lines.

FIG. 7: |δρ(q)| at zero energy and the corresponding
impurity strength Jz = J values in Table III. We take
µ = 0.4t and ∆0 = 0.4t. The Brillouin zone is indicated

by dashed lines.

IV. MULTILAYER GRAPHENE

We next consider both AB-stacked bilayer graphene
and ABC or ABA-stacked trilayer graphene. We first

note that for most of the order parameter symmetries,
the number of subgap states, as well as their impurity-
strength dependence and their spin dependences are
quite universal, generic features, and do not depend on
the number of layers or the stacking. In what follows, to
avoid redundancy, we only present the LDOS and SPL-
DOS results when there is a difference from the generic
case. In particular, we find differences for ABC-stacked
trilayer graphene in the presence of gapless dxy-, dx2−y2-,
px-, or py-wave order parameters.

Figures 10 and 11 show δρ(E) in ABC-stacked trilayer
graphene for all nodal order parameters in the presence
of a scalar impurity and a z-magnetic impurity, respec-
tively. Since in our calculations, the LDOS and SPLDOS
are averaged over all atoms in all layers, the results do
not depend of the position of the impurity chosen, so we
here arbitrary consider an impurity in the top layer, lo-
cated on the atom that does not sit on top of any atoms
in the neighboring layer. We note that for ABC-stacked
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FIG. 8: |δSz(q)| at zero energy and corresponding impurity strength values Jz = J in Table III. We take µ = 0.4t
and ∆0 = 0.4t. The Brillouin zone is indicated by dashed lines.

FIG. 9: |δSx(q)| at zero energy and corresponding
impurity strength values Jx = J in Table III for a

x-magnetic impurity. We take µ = 0.4t and ∆0 = 0.4t.
The Brillouin zone is indicated by dashed lines.

trilayer graphene extra subgap states appear beside the
two subgap states observed in all the other graphene sys-
tems. We have checked using tight-binding calculations
that even when these states are close to zero energy for
extended parameter ranges, they however do not appear
to correspond to Majorana zero modes. Furthermore,
Figure 12 plots δSz(E) for the z-magnetic impurity. For
completeness we show in Fig. 13 the effect of changing the
spin orientation for the spin-triplet nodal states by plot-
ting δSx(E) for a x-magnetic impurity. Same as before,
we find that the x-magnetic impurity shows a different
behavior compared to y- and z-magnetic impurities for
spin-triplet order parameters.

We next turn to the QPI patterns. For simplicity we
focus first only on the zero energy plots for AB-bilayer
graphene in the presence of a scalar impurity. The corre-

FIG. 10: δρ(E) as a function of energy and impurity
strength U for a scalar impurity at ∆0 = 0.4 and

µ = 0.4 for the nodal SC states in ABC-stacked trilayer
graphene. The dotted lines indicate the gap edge.

sponding impurity strength values are quasi-identical to
those for the monolayer and thus we use the same val-
ues as those presented in Table III. These results can be
generalized to the other configurations as we find the dif-
ferences from the monolayer analysis to be quite generic.
We here choose to calculate only the contribution to the
LDOS from the top layer atoms, since this is what is mea-
sured experimentally55,56. Similarly to in Refs. 55 and 56
there is a difference in the QPI patterns if the impurity is
placed in the top layer or in the bottom layer. However,
the measured QPI for a given sample becomes an average
between all possible contributions given a random distri-
bution of impurities between the atoms in the two layers.
In Fig. 14 we plot the QPI resulting from a bottom-layer
A-sublattice impurity, while in Fig. 15 we plot the QPI
from a top-layer A-sublattice impurity. Note that here
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FIG. 11: δρ(E) as a function of energy and impurity
strength Jz for a z-magnetic impurity at ∆0 = 0.4 and
µ = 0.4 for the nodal SC states in ABC-stacked trilayer

graphene. The dotted lines indicate the gap edge.

FIG. 12: δSz(E) as a function of energy and impurity
strength Jz for a z-magnetic impurity at ∆0 = 0.4 and
µ = 0.4 for the nodal SC states in ABC-stacked trilayer

graphene. The dotted lines indicate the gap edge.

FIG. 13: δSx(E) as a function of energy and impurity
strength Jx for a x-magnetic impurity at ∆0 = 0.4 and

µ = 0.4 for the spin-triplet nodal SC states in
ABC-stacked trilayer graphene. The dotted lines

indicate the gap edge.

in the top layer the A atom is the atom that does not sit
on top of another atom, while the A atom in the bottom

layer is the one sitting directly underneath another atom.
We find that the main difference for a bottom-layer im-
purity, as compared to a top-layer impurity, consists in
having a more equal intensity between the central fea-
ture at the Γ points (corresponding to intra-nodal scat-
tering) and the features at the corners of the Brillouin
zone (corresponding to inter-nodal scattering). Thus, for
the A bottom-layer impurity the corner features appear
sharper. Note also that the features exhibit an extra split
due to the interband effect introduced by the interlayer
hopping as compared to monolayer graphene.

For ABA- and ABC-stacked trilayer graphene we over-
all obtain similar QPI patterns (not shown), underwrit-
ing the generic features that we observe for all QPI pat-
terns: (i) breaking of the six-fold rotational symmetry
for the nodal d-wave and p-wave states, and more pro-
nounced for the d-wave symmetries; (ii) details of the
QPI patterns depending on the nature of the impurity
(magnetic or scalar), as well as of its spin direction for
the spin-triplet states; and (iii) spin-polarized measure-
ments helping to distinguish better between various order
parameter symmetries. Overall, these features could help
to experimentally identify the symmetry of the SC states
in different mono- and few-layer graphene systems.

V. CONCLUSION

We calculated the impurity-induced LDOS and SPL-
DOS, as well as their Fourier transforms (through the
QPI patterns), for SC monolayer, AB-stacked bilayer
and ABA- and ABC-stacked trilayer graphene, for all
expected SC order parameters resulting from NN pair-
ing, or NNN in the case of f -wave symmetry. We ana-
lyzed the formation of subgap states as a function of en-
ergy and impurity strength and found that the number
of subgap bound states depends on the type of order pa-
rameter. For a scalar impurity we find no subgap states
for s-wave, both on-site and extended s-wave, while two
spin-degenerate subgap states appear for all other or-
der parameter symmetries. For a magnetic impurity we
find two subgap states for order parameters with s-wave
symmetries and for nodal states, dxy-, dx2−y2-, px-, and
py-wave symmetries, while four subgap states exist the
fully gapped d + id ′-, p + ip ′-, and f -wave states. The
spin polarization of the impurity states is also different
if one has a spin-singlet or spin-triplet order parameter
and could thus be used to distinguish between the two.
In particular the spin-triplet SC states are the only ones
for which the opposite-energy subgap states may have an
identical spin polarization, and for which the spin struc-
ture of the subgap states may depend on the direction of
the impurity spin. These observations could provide an
experimental test to distinguish unambiguously via spin-
polarized STM between spin-singlet and spin-triplet SC
order parameters, as well as between gapped and nodal
pairing. The analysis of the QPI patterns additionally
show a breaking of the six-fold symmetry for nodal states,
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FIG. 14: |δρ(q)| at zero energy and the corresponding impurity strength values U in Table III, evaluated in the top
layer for a scalar impurity placed in the bottom layer on an A-sublattice atom. We take ∆0 = 0.4 and µ = 0.4. The

Brillouin zone is indicated by dashed lines.

FIG. 15: |δρ(q)| at zero energy and the corresponding impurity strength values U in Table III, evaluated in the top
layer for a scalar impurity placed in the top layer on an A-sublattice atom. We take ∆0 = 0.4 and µ = 0.4. The

Brillouin zone is indicated by dashed lines.

while the gapped states preserve this crystalline symme-
try, in agreement with the observation that these states
have also a symmetry-preserving SC band structure37.
Except for a few peculiar situations, our results do not
change significantly for bilayer or trilayer graphene, such
that we can easily extend our conclusions to multilayer
graphene and thus the features described here are quite
generic and independent of the number of layers or the
graphene layer stacking.
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