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Abstract: We consider the generalization of a matrix integral with arbitrary spectral
curve ρ0(E) to a 0+1D theory of matrix quantum mechanics (MQM). Using recent tech-
niques for 1D quantum systems at large-N , we formulate a hydrodynamical effective theory
for the eigenvalues. The result is a simple 2D free boson BCFT on a curved background,
describing the quantum fluctuations of the eigenvalues around ρ0(E), which is now the
large-N limit of the quantum expectation value of the eigenvalue density operator ρ̂(E).
The average over the ensemble of random matrices becomes a quantum expectation value.
Equal-time density correlations reproduce the results (including non-perturbative correc-
tions) of random matrix theory. This suggests an interpretation of JT gravity as dual to a
one-time-point reduction of MQM.
As an application, we compute the Rényi entropy associated to a bipartition of the eigenval-
ues. We match a previous result by Hartnoll and Mazenc for the c = 1 matrix model dual
to two-dimensional string theory and extend it to arbitrary ρ0(E). The hydrodynamical
theory provides a clear picture of the emergence of spacetime in two dimensional string
theory. The entropy is naturally finite and displays a large amount of short range entan-
glement, proportional to the microcanonical entropy. We also compute the reduced density
matrix for a subset of n < N eigenvalues.
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1 Introduction

Random Matrix Models have been studied for a long time, as they provide a powerful
computational tool and a great source of insight with many applications in different fields,
from nuclear physics to condensed matter to high-energy physics.1

One of the most intriguing applications arises from the connection to quantum gravity.
It was first observed by ’t Hooft [17] that a theory with matrix degrees of freedom can be
interpreted as a theory of random surfaces in the large-N limit and thus, in many cases, it
can be connected to some 2d quantum gravity/string theory. The perturbative expansion
in Feynman diagrams can be reorganized as a topological expansion in the genus of the
surface, with 1/N playing the role of the expansion parameter (string coupling). This idea
has found its most concrete realization so far in the AdS/CFT correspondence [18–20]. In
its most basic and well-understood instance, this correspondence relates a gravity theory
on 5D Anti-de Sitter space to a SU(N) gauge theory on the 4D boundary. Despite the
fact that the correspondence has a very precise formulation and has been tested to great
accuracy, its perhaps most striking conceptual aspect, namely the emergence of spacetime
from the matrix degrees of freedom, is still poorly understood. The correspondence gives in
principle a complete definition of quantum gravity in AdS, since the boundary theory is well
defined non-perturbatively (e.g. by the CFT axioms); however, because it is a weak/strong
coupling duality, it is still difficult to use it in order to find detailed answers to fundamental
questions, such as the information loss paradox, and the statistical interpretation of the
Bekenstein-Hawking entropy in terms of black hole microstates.

1.1 Motivation

Driven by the desire to understand these questions in a simplified setting, there have been
many recent developments in low dimensional holography. The SYK model [21, 22] is
composed of a large number of fermions interacting with disordered couplings. In the large-
N limit the low-energy sector of the model is described holographically by 2-dimensional
Jackiw-Teitelboim (JT) gravity, or equivalently by a 1D Schwarzian theory [23–25]. The
SYK model and JT gravity were shown to exhibit quantum chaos as universally described
by random matrix theory [26, 27]. The paper [28] showed a much stronger connection to
random matrices: the partition function of JT gravity on a surface of arbitrary genus and
number of boundaries agrees with the perturbative expansion of a certain matrix integral,
thus solving the theory to all orders in the genus expansion. The matrix integral is in-
terpreted as an average over an ensemble of Hamiltonians and the matrix eigenvalues as
the energy levels dual to gravitational microstates. It was also noted that JT gravity can
be seen as the p → ∞ limit of (2, p) minimal strings which were long known to be dual
to matrix models [10, 13, 29–31]. The study of non-perturbative effects in these models
can then help us understand the detailed structure of gravitational microstates. As a con-
sequence much effort has been devoted to this pursuit (see [32] for a review). However

1There are many reviews on the subject. For general aspects see, in rough order of complexity [1–6]. For
applications to low dimensional gravity and string theory see [7–14]. For applications to chaotic systems
see [15, 16].
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many interconnected questions still remain. The matrix integral does not provide a unique
non-perturbative completion of JT gravity [33]. The bulk theory does not seem to have,
at first sight, a well defined dual quantum mechanical system, but rather an ensemble of
them. The presence of connected geometries and the consequent lack of factorization pose
a deep puzzle about the nature of the gravitational path integral [34]. A more explicit
understanding of the emergence of spacetime from the dual degrees of freedom remains to
be attained [35].
In this work we discuss some of these issues by considering a generalization of the kind of
matrix integral dual to JT-gravity, given by a 0 + 1D theory of matrix quantum mechanics
[36]:

S =

∫
dt tr

(
1

2
Ḣ2 + V (H)

)
. (1.1)

with an arbitrary potential V (H). The classical average over the matrix ensemble becomes
a quantum path integral: ∫

dHe−NtrV (H) →
∫
DH(t)e−S . (1.2)

We can think of the original matrix integral as a matrix quantum mechanics with
one-time-point (as discussed in [37] for SYK) meaning that we look at a single instant of
time where the dynamics are frozen. We will make this statement precise and show that
we can reproduce matrix integral results from equal time correlations in matrix quantum
mechanics. In particular, we have a quantum density operator ρ̂(E) whose expectation
value is the ensemble-averaged density of eigenvalues:

ρ(E) = 〈ρ̂(E)〉 (1.3)

and similarly for higher correlations. The spectral curve ρ0(E), defined as the large N limit
of ρ(E), can be chosen to be that of any specific matrix integral. This offers a possible
interpretation of JT gravity as being dual to a one-time-point matrix quantum mechanics
with the appropriate spectral curve ρJT0 (E) [28].
Matrix quantum mechanics is richer than a a matrix integral, first and foremost because
it is a quantum mechanical theory. The eigenvalues are described by a wavefunction
ψN (E1, . . . , EN ) instead of a classical probability distribution ρN (E1, . . . , EN ) as in random
matrix theory. Since the matrix eigenvalues describe the microstates {Ei} of JT gravity,
we might think of matrix quantum mechanics as describing their associated wavefunctions
|Ei〉. It is then natural to consider the entanglement between eigenvalues. The average
over the ensemble of random matrices becomes a quantum expectation value in Hilbert
space. Thus, the statistical fluctuations due to ensemble averaging over Hamiltonians may
now be interpreted as quantum fluctuations of a single quantum mechanical system. These
observations point to Matrix Quantum Mechanics as an interesting generalization of the
matrix integral dual to JT gravity.
In two spacetime dimensions there is another instance of holographic duality: the duality
between two-dimensional string theory and the c = 1 matrix model [38], a theory of matrix
quantum mechanics with a specific potential. This duality precedes AdS/CFT and has
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been extensively checked both perturbatively and non-perturbatively. 2 Two-dimensional
string theory and JT gravity form part of the same family of theories. A minimal string
consists of a Liouville CFT with cL > 25 and a minimal model with cM < 1 coupled by
anomaly cancellation. In the limit p → ∞ of the (2, p) minimal string, which corresponds
to JT gravity, we have that cM → −∞. Instead, two dimensional string theory consists of
a cL = 25 Liouville theory and a cM = 1 free boson. Thus JT gravity and two-dimensional
string theory lie at opposite ends of the same spectrum of worldsheet theories given by
Liouville theory coupled respectively to cM = −∞ and cM = 1.3 Despite knowing they are
related, the relation between the two dualities has yet to be understood explicitly (See [50–
53] for related work). From the matrix model point of view, JT gravity is dual to a matrix
integral over a single matrix while, by discretizing time, matrix quantum mechanics can be
thought of as the continuum limit of a chain of q matrices [54]. Thus JT is dual to a single
matrix while two-dimensional string theory is dual to an infinite number of matrices, one
for each instant of time. Understanding better the relationship between the two dualities
could help elucidate various aspects of JT gravity. For example, in 2D string theory the
dual is a single quantum mechanical system and no averaging is involved. Spacetime can
be thought of as emergent from the continuum of eigenvalues at large N and locality can be
probed by the entanglement between the eigenvalues [55–57], as we will demonstrate. The
worldsheet description present in minimal and 2D string theories allows for a detailed study
of non-perturbative effects [41, 42, 44, 58–65] and their matching to the matrix model. Un-
derstanding the relation between JT gravity and two-dimensional string theory at the level
of the dual matrix models motivates a new consideration of matrix quantum mechanics.
Finally, the duality between the c = 1 matrix model and two-dimensional string theory is
a perfect playground to study the emergence of spacetime from matrix degrees of freedom
in gauge theories since, at large N , the eigenvalues form a continuum that is directly re-
lated to the dual spacetime. The relation between spacetime and eigenvalue-space can be
tested in various ways, e.g. using local observables, scattering of the excitations, or using
entanglement entropy, as was done in [55]. The motivation of this last paper was to apply
to the c = 1 matrix model the insight, gained in AdS/CFT with the Ryu-Takayanagi for-
mula, of the essential role that entanglement plays in the emergence of spacetime [66, 67].
In this paper we will give a different and more comprehensive perspective on the eigen-
value/spacetime relation by explicitly constructing the geometry of eigenvalue-space that
corresponds to the spacetime geometry in a natural way and studying its entanglement
properties. The entanglement between eigenvalues is an example of entanglement in target
space. Characterizing the entanglement of target space degrees of freedom is essential to
understand spacetime in string theory and holography, and recently there has been a grow-
ing interest in the subject, see [68–75] .

2See [8–11] for reviews. See [39–44] for extensive recent work on matching scattering amplitudes. See
[45–49] for recent related work on black holes

3For a review of the Liouville approach, see [14]
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1.2 Overview and results

We start sec. 2 by recalling some basic facts about Matrix Quantum Mechanics. Eigenvalue
repulsion enforces fermionic statistics for the eigenvalues which can be mapped to a system
of fermions in an external potential. We introduce a second-quantized fermionic field Ψ(E)

which gives the eigenvalue density operator ρ̂(E) = Ψ†(E)Ψ(E). The density of eigenvalues
is the expectation value ρ(E) = 〈ρ̂(E)〉 which is, at leading order in the large N limit,
equal to the spectral curve ρ(E) ≈ ρ0(E). We then proceed in sec. 2.2 to illustrate the
construction of an effective hydrodynamical theory for the eigenvalues valid for arbitrary
ρ0(E) . The construction follows from recent developments in the study of 1D many body
quantum systems in external potentials [76–78]. It can be seen as a generalization of the
collective field theory approach [12, 79] to arbitrary potentials. In sec. 2.3 we discuss
quantum fluctuations of the eigenvalues in the effective theory. One can show that the
quantum hydrodynamical fluctuations of the eigenvalues are described by a 2D free boson
CFT on a curved background determined by ρ0(E) with boundaries at the edge of the
spectrum where ρ0(E∗) = 0.

In section 3 we proceed to use the 2D CFT to study the different properties of the
eigenvalues. We start by computing spectral correlations in sec. 3.1 which are now given
by correlation functions of the density operator: 〈ρ̂(E)〉 and 〈ρ(E1)ρ(E2)〉. These are given
by correlation functions of vertex operators in the CFT. We reproduce the leading non-
perturbative corrections to the density of states ρ(E) and to the level-correlation ρ(E1, E2)

as described in sec. 5 of [28] by considering equal-time correlations. In other words, we
reproduce the oscillations of ρ(E) around the semiclassical density ρ0(E) and the terms in
ρ(E1, E2) corresponding to the ramp and plateau in the spectral form factor (i.e. the sine
kernel). In matrix quantum mechanics these spectral correlations arise due to quantum
fluctuations of a single quantum mechanical system, as opposed to statistical fluctuations
due to ensemble averaging. This matching provides evidence to support the idea that
a matrix integral and consequently JT gravity might be interpreted as a one-time-point
matrix quantum mechanics with the same spectral curve ρ0(E).

In sec. 3.2 we consider the entanglement between the eigenvalues. We compute the
Rényi entropies for a bipartition (0, E)∪(E,ER), where ER is the right edge of the eigenvalue
density, finding some interesting features. For non double-scaled matrix models, where the
density has a right edge ER, we see that the entanglement entropy follows a “Page curve”
(as a function of the lenght of the interval) as required by unitarity and comes down
instead of growing indefinitely. This feature is lost in double-scaled models where ER →∞
indicating that indeed we are missing states from the spectrum. The entanglement entropy
is naturally finite due to the mean spacing between the eigenvalues 1

ρ0(E) ∼ e−S0 acting
as a UV cutoff.4 In two-dimensional string theory we can interpret the finiteness of the
entropy as due to gs stringy effects regulating the divergence as first noted in [55]. We notice
that the entanglement entropy Sent(E) present a leading contribution proportional to the

4While finishing this paper, the work [80] appeared which discusses the finiteness of the entanglement
entropy in matrix quantum mechanics. Their methods are different and the discussion is complementary.
In particular, they discuss a vanishing potential V = 0 while we treat arbitrary potentials.
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microcanical entropy in the window E ± dE such that Sent(E) ∝ S0(E) = log(ρ0(E)),
indicating a large amount of short range entanglement between eigenvalues close to the
boundary. We also compute the entanglement entropy for an interval bipartition (E1, E2),
extending the results of [55] for the c = 1 matrix model to arbitrary spectral curves ρ0(E).
We provide constructive evidence for the proposed map between the eigenvalue-space and
the emergent spacetime in two-dimensional string theory[55, 57] and the identification of
the spacetime geometry with the geometry of the Fermi surface.

In sec. 3.3 we compute the one eigenvalue reduced density matrix obtained by tracing
out N − 1 eigenvalues, corresponding to the fermion one-body density matrix g(E,E′) =

〈Ψ†(E)Ψ(E′)〉. We also write the general expression for the n eigenvalue density matrix.
We conclude in sec. 4 with a discussion of open questions and possible future work.

2 Quantum hydrodynamics of random matrix eigenvalues

We study the quantum mechanics of a random N ×N hermitian matrix H(t) in a generic
potential V (H) with the following action:

S = N

∫
dt tr

[
1

2
Ḣ2 + V (H)

]
. (2.1)

The eigenvalues (E1 . . . EN ) of H no longer obey a classical probability distribution
as in Random Matrix Theory. Instead they are now described by a quantum mechanical
wavefunction ψN (E). We will now briefly summarize some well known facts about ma-
trix quantum mechanics (MQM) and derive the Schrodinger equation for the N -eigenvalue
wavefunction ψN (E). More details can be found in the above mentioned reviews [2, 7–11].

2.1 Eigenvalues as fermions

To study the eigenvalues we diagonalize the matrix H:

H = Ω†E Ω (2.2)

where Ω ∈ SU(N) and E = diag(E1, . . . , EN ). This change of variables has a non-trivial
jacobian which modifies the path integral measure DH(t):∫

DH =

∫
DΩ

∏
i

DEi∆2(E), (2.3)

where ∆(E) =
∏
i<j(Ei − Ej) is the well known Vandermonde determinant which causes

eigenvalue repulsion in random matrix theory. We will now see that in MQM, eigenvalue
repulsion becomes the Pauli exclusion principle resulting in fermionic eigenvalues [36]. Due
to the non-trivial Jacobian, the kinetic term for the eigenvalues becomes:

− 1

2

N∑
i=1

1

∆2(E)

d

dEi
∆2(E)

d

dEi
. (2.4)
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Thanks to the fact that
∑

i
d2∆
dE2

i
= 0, this is equal to:

− 1

2∆

∑
i

d2

dE2
i

∆. (2.5)

The HamiltonianH of matrix quantum mechanics, after diagonalization ofH, is then [8, 36]:

H = − 1

2∆

∑
i

d2

dE2
i

∆ +
∑
i

V (Ei) +
∑
i<j

L2
ij + L̃2

ij

(Ei − Ej)2
. (2.6)

The first term is the kinetic term for the eigenvalues we just discussed. The matrix poten-
tial V (H) becomes a single particle potential for the eigenvalues V (Ei) due to invariance
of the trace. The last term is the kinetic term for the angular degrees of freedom Ω, where
Lij , L̃ij are the angular momenta and (Ei −Ej)2 plays the role of a radius in the direction
ij. Let us denote a generic wavefunction for the Hamiltonian H as χN (E,Ω), which will
depend on both the eigenvalues E and the angular variables Ω. We use the subscript N as a
reminder that the wavefunctions depend on all the eigenvalues E1, . . . , EN . We will restrict
ourselves to scalar configurations which are invariant under SU(N) rotations, namely the
singlet sector. Thus we consider wavefunctions χN (E) which are independent of the angular
variables. The singlet wavefunctions χN (E) are the relevant ones and correctly describe
MQM in the following regimes:

• Ground state. Since the angular term is positive definite, the ground state of the
system is given by the singlet sector ground state . Thus the singlet wavefunction describes
the collective ground state of the N eigenvalues.

• Low temperature phase. Considering MQM at finite temperature, we have a
Berezinski-Kosterlitz-Thouless transition at βBKT . The singlet sector describes the low
temperature phase β > βBKT [81–84].

Consider now the Schrodinger equation for the singlet sector HχN (E) = εχN (E). The
wavefunctions χN (E) are clearly symmetric functions of the eigenvalues. By defining a
completely anti-symmetric wavefunction ψN (E) = ∆(E)χN (E), the Schrodinger equation
now reads:

N∑
i=1

HiψN (E) =

N∑
i

εiψN (E), Hi = −1

2

d2

dE2
i

+ V (Ei). (2.7)

The Hamiltonian acting on ψN (E) is now a sum of single-particle Hamiltonians. The wave-
function ψN (E) is completely antisymmetric by construction due to the antisymmetry of
the Vandermonde and vanishes whenever Ei = Ej . We see that the eigenvalue repulsion
of random matrices enforces the Pauli exclusion principle. The eigenvalues Ei are then
equivalent to a system of N fermions each in an external potential V (E), interacting only
through the exclusion principle/eigenvalue repulsion.
The many-body ground state wavefunction ψN (E) can be obtained by first solving for
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the single particle wavefunctions ψε(E) and building the Slater determinant ψN (E) =
1√
N !

detij(ψεi(Ej)) which involves a single fermion in each energy level up to the Fermi en-
ergy εF , the energy of the last (N -th) fermion. We will not do this as it involves solving the
Schrodinger equation for a specific choice of potential with the resulting Slater wavefunc-
tions ψN being complicated expressions for large N . We will instead describe the system
in second quantization by introducing a fermionic field Ψ(E) [55, 85] with the following
Hamiltonian H :

H = N

∫
dEΨ†(E)

(
− 1

2N2

d2

dE2
+ V (E)

)
Ψ(E). (2.8)

The fermionic field Ψ(E) can be expressed as a mode expansion with creation/annihilation
operators aε, a

†
ε weighted by the single particle wavefunctions ψε(E):

Ψ(t, E) =

∫
dεe−iεtaεψε(E). (2.9)

The fermions fill the potential V (E) up to the Fermi energy εF . We can control how
the potential is filled by introducing a chemical potential µ = NεF in the Hamiltonian
H − µΨ†Ψ. The system forms a Fermi surface |µ〉 on which the operators aε, a

†
ε act as

follows:

aε |µ〉 = 0 ε > µ,

a†ε |µ〉 = 0 ε < µ.
(2.10)

The presence of a Fermi sea corresponds to having a finite density of eigenvalues ρ0(E)

in RMT. In what follows we will employ recent techniques from condensed matter [86]
describing the quantum fluctuations of the Fermi surface by a 2D effective hydrodynamical
theory .
Correspondingly, one can develop a quantum hydrodynamical theory for the eigenvalue
density ρ(E), describing the fluctuations around a semiclassical background ρ0(E) given by
the RMT spectral curve. Quantum fluctuations on top of the Fermi surface involving the
creation/annihilation of a single eigenvalue will produce non-perturbative effects in 1

ρ0(E) ∼
e−S0 (similarly as described in sec. 5 of [28]). The effective theory will be a simple free boson
CFT on a curved background with a boundary. This simple description allows us to study
many interesting features of Matrix Quantum Mechanics. We can access non-perturbative
physics like the oscillations in the density of states ρ(E) and the plateau in the two level
correlation ρ(E1, E2) which are a consequence of the underlying discreetness of the spectrum
of H. We can also compute observables that do not have a clear classical counterpart such
as the reduced density matrix obtained by tracing out k-out-of-N eigenvalues and the
spectrum of Renyi entropies for arbitrary bipartition (E1, E2).
Incorporating the chemical potential, we arrive at the following Hamiltonian, which is the
starting point for the rest of discussion:

H =

∫
dEΨ†(t, E)

(
−1

2

d2

dE2
+ (V (E)− µ)

)
Ψ(t, E). (2.11)
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2.2 Effective hydrodynamics of the eigenvalue density ρ(E)

We now give a self-contained review of some recent developments in the study of 1D many-
body quantum systems in external potentials via hydrodynamics [76, 87–89]. The hydro-
dynamics approach to 1D quantum systems was introduced a few years ago in [77, 78] and
has been rapidly developing ever since, see the recent lectures [90] for a review. We will
only introduce the necessary tools for our purposes.
Conformal Field Theory in 2D is a well-proven technique in addressing 1D critical quantum
systems [91]. It is commonly used to describe low energy excitations around a fixed energy
scale (such as the Fermi energy εF ) and so it is not a priori possible to apply it to inho-
mogeneous systems, where there is a varying energy scale due to an external potential or
out-of-equilibrium dynamics. On the other hand, hydrodynamics is useful to describe inho-
mogeneous systems at mesoscopic scales, large enough to contain a macroscopic number of
degrees of freedom but smaller than the characteristic scale of the inhomogeneities. In [76],
they obtained a 2D CFT describing inhomogeneous 1D quantum systems using hydrody-
namics. The CFT lives on a non-trivial background metric encoding the inhomogeneities
of the original system.
Let us start by considering a many-body quantum system composed of N particles with a
finite density ρ(x) in the large N limit in an interval x ∈ (xL, xR). This means that the
quantum density operator ρ̂(x) = Ψ†(x)Ψ(x) acquires a VEV ρ(x) ≡ 〈Ψ†(x)Ψ(x)〉. The
VEV introduces a length scale in the system corresponding to the local average spacing
between particles d(x) = 1

ρ(x) . In Random Matrix Theory there is a finite density of eigen-
values ρ(E) due to eigenvalue repulsion, which is analogous to the non-zero VEV of the
quantum density operator ρ̂. We will make this correspondence precise in MQM: since the
eigenvalues are fermions we have x = E and we have that ρ(E) = 〈ρ̂(E)〉. The mean level
spacing is then equal to d = 1

ρ(E) ∼ e
−S0 .5 The key assumption to develop hydrodynamics

for inhomogeneous systems is the separation of scales, meaning there exists an intermediate
mesoscopic scale ` such that:

d� `� ρ(x)

∂xρ(x)
, (2.12)

where ρ
∂ρ is the characteristic length scale of the inhomogeneities. The scale ` is then

small enough such that the system is quasi-homogeneous and large enough to contain a
thermodynamically large number of particles. These scales provide both UV and IR cutoffs
in the effective theory defined at energy scales Λ such that:

∂xρ(x)

ρ(x)
= ΛIR � Λ� ΛUV =

1

d
= ρ(x), (2.13)

Having understood the characteristic scales and the regime of validity of the effective theory,
we will now focus on a specific system: the Lieb-Liniger gas of interacting bosons in an

5This is not the first instance where the spectral density ρ(E) is identified with a VEV, in [92]
ρ(E) is identified as the order parameter responsible for Causal Symmetry Breaking in the universal late
time behaviour of chaotic systems.
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external potential. It is defined by the following Hamiltonian:

H =

∫
dx

(
Φ†
(
h̄2∂2

x

2m
+ V (x)

)
Φ +

g

2
Φ†

2
Φ2

)
, (2.14)

where Φ(x) is a bosonic field [Φ(x),Φ(x′)] = δ(x− x′). This system can be solved exactly
via Bethe-Ansatz in the homogeneous V = 0 case [93]. In the limit of hard-core bosons
g →∞ it is equivalent to a system of free fermions in the potential V (x) and thus describes
the eigenvalues of MQM. This limit is often referred to as the Tonks-Girardeau gas in
the literature. The mapping between hard-core bosons and free fermions is made via a
Jordan-Wigner string:

Ψ†(x) = eiπ
∫
y<x Φ†(y)Φ(y)dyΦ†(x). (2.15)

Ψ(x) is now a fermionic field {Ψ†(x),Ψ(x′)} = δ(x− x′). We then obtain the free fermion
hamiltonian:

H =

∫
dxΨ†

(
− h̄

2∂2
x

2m
+ V (x)

)
Ψ. (2.16)

The hydrodynamic description of the homogeneous case (V = 0) was first presented in
[94] where the authors developed the hydrodynamics of out-of-equilibrium systems with an
infinite number of conserved charges. Let us now proceed with the case of a general external
potential V (x). We start by writing down the Euler equations for a Galilean invariant fluid
in the presence of an external potential:

∂tρ+ ∂xj = 0,

∂tu+ u∂xu+
1

ρ
∂xP = −∂xV,

(2.17)

where ρ is the particle density, u is the mean velocity given by u = j
ρ with j the momentum

density and P is the pressure. To close the system of equations we need the equation
of state at zero temperature which expresses the pressure as a function of the density
P (ρ). This can be obtained from the energy density ρE by the thermodynamic relation
P (ρ) = −ρE + ρ

(
∂ρE
∂ρ

)
T=0

. In the Lieb-Liniger model, these equations follow from the
conservation of the following charges:

ρ̂(x) = Φ†(x)Φ(x)

ρ̂P (x) = −ih̄Φ†(x)∂xΦ(x)

ρ̂E(x) =
h̄2

2

(
∂xΦ†(x)∂xΦ(x)

)
+
g

2
Φ†2(x)Φ2(x)

(2.18)

with associated currents ĵ, ĵP , ĵE . The Euler equations describe the expectation values of
the charges and currents 〈ρ〉 = ρ, 〈j〉 = j.6 In particular, consider the quantum expectation
value of the density operator for the fermionic field Ψ :

ρ(x) ≡ 〈Ψ†(x)Ψ(x)〉 . (2.19)
6Since we will be considering zero temperature and thus zero entropy hydrodynamics, the continuity

equation for the energy density is trivially satisfied and we have not displayed it in the text.
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In the hydrodynamic description where the system is quasi-homogeneous at the scales we
are probing, we will have a semiclassical background density ρ0(x) at leading order in the
large N limit such that ρ(x) ≈ ρ0(x). We can then describe fluctuations of this semiclassical
density which will give both subleading corrections to ρ(x) and correlations 〈ρ̂(x)ρ̂(x′)〉. The
semiclassical density sets the scales for which the effective theory is valid and self-consistent:

∂xρ0(x)

ρ0(x)
� Λ� ρ0(x). (2.20)

In Random Matrix Theory the density ρ0(x) is given by the leading density of eigenvalues
ρ0(E) in the large N limit, meaning the spectral curve/the disk density of states.
We can obtain an approximate expression for ρ0(x) as a function of the potential V (x) in
the hydrodynamical effective theory. Since ρ0(x) is the density at equilibrium, meaning
∂tρ = 0, u = 0, the Euler equation reduces to 1

ρ∂xP = − 1
m∂xV . Using the thermodynamic

relation dP = ρSdT + ρ
mdµ at T = 0 we have that ∂x(µ(x)+V (x)) = 0. The local chemical

potential is then µ(x) = µ− V (x) where µ is the fixed chemical potential appearing in the
Hamiltonian. For a homogeneous system, the equilibrium density is just a function of the
chemical potential ρhom = ρhom(µ) so for scales where the system is quasi-homogeneous we
can simply substitute the local chemical potential µ(x) in the homogeneous density. We
have then that the semiclassical density ρ0(x) in the hydrodynamic description is given by:

ρ0(x)
hydro
≈ ρhom(µ(x)), µ(x) = µ− V (x). (2.21)

The theory will be entirely defined in terms of the density ρ0(x), without making reference
to the potential so it is not necessary to use the relation above although it can be useful if
we wish to define our MQM by the potential V (x) instead of the spectral curve.
In particular, the density for free fermions with V (x) = 0 is:

ρhom(µ) =

√
2µ

πh̄
, (2.22)

we then have that the semiclassical density is:

ρ0(x) ≈ 1

πh̄

√
2(µ− V (x)). (2.23)

This expression is usually called the Local Density Approximation (LDA) and it is well-
known that it correctly describes the bulk density (sufficently away from edges where ρ ≈ 0)
of a Fermi gas in the large N limit [95, 96]. We can see immediately that for a Gaussian
potential V (x) = x2

2 it correctly reproduces Wigner’s semicircle law. We can also see that
this is exactly the expression for the momentum p(x) of a particle with energy µ appearing
in the WKB approximation:

ψWKB ≈
A√
p(x)

exp

(
± i
h̄

∫ x

p(x′)

)
, p(x) = πh̄ρ0(x). (2.24)

As a final consistency check note that the density of free fermions scales as ρ ∼ O(h̄−1)

so that the mean spacing d = 1
ρ ∼ O(h̄) while the scale of inhomogeneities is ρ

∂xρ
O(1). Thus
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for h̄ → 0 there is indeed separation of scales and we can always find a regime ` ∼ O(h̄ν)

with 0 < ν < 1 where the hydrodynamic description is valid. If we send h̄ → 0, the
total number of particles N =

∫
ρ(x)dx diverges so we should take the large N limit with

Nh̄ = O(1). This is the well known property that large N limits are semiclassical.

2.3 2D CFT for the quantum fluctuations of ρ(E)

We are now ready to build the field theory for the hydrodynamical fluctuations of the
density ρ(x). Let us now consider a microscopic correlation function of local operators
O(x) in the ground state:

〈O(x1) . . . O(xn)〉 ≡ lim
β→∞

tr
[
O(x1) . . . O(xn)e−βH

]
tre−βH

, (2.25)

where H is the fermion Hamiltonian in eq. 2.11.
In the hydrodynamic limit where 1

N ∼ h̄→ 0 we can compute the correlation function
by doing a path integral over the hydrodynamic fields ρ(x, τ) and j(x, τ) with an Euclidean
action SE [ρ, j]:

〈O(x1) . . . O(xn)〉
h̄, 1
N
→0

=
1

Z

∫
DρDjδ(∂τρ+ ∂xj)O(x1) . . . O(xn)e−SE [ρ,j], (2.26)

where the continuity equation is a constraint in the space of configurations (ρ, j) of the path
integral7. The task now is to determine the action SE [ρ, j] that computes these correlation
functions in the hydrodynamic limit. To do so we will proceed by first finding an action
which gives the Euler equations as its equations of motion. We consider the following action:

S[ρ, j] =

∫
dxdt

(
j2

2ρ
+ ρE(ρ) + (V (x)− µ)ρ

)
. (2.27)

We now perform a variation of the action (ρ̄+ δρ, j̄ + δj) starting from a configuration
(ρ̄, j̄) which satisfies the Euler and continuity equations. To perform a variation consistent
with the constraint ∂tρ+ ∂xj = 0 we write the fluctuations as:

δρ(x, t) =
1

2π
∂xh(x, t), δj(x, t) = − 1

2π
∂th(x, t). (2.28)

We have introduced a new field h(x, t) such that the constraint is now trivially satisfied
due to the fact that partial derivatives commute. The second order variation δ2SE [ρ̄ +

δρ, j̄ + δj] gives a quadratic action for the quantum fluctuations described by the field
h(x, t). The action is the following:

S[h] =
1

8π

∫ √
g d2x

K(x)
gab∂ah∂bh, (2.29)

7The same type of path integral has also appeared recently in [97] as the action for ballistic MFT,
although in that case it is supposed to apply at finite temperature and describe statistical fluctuations
(thanks to T. Yoshimura for pointing it out).
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where K, known as the Luttinger parameter, is a function of the density ρ̄(x)

K(x) =
πh̄ρ̄(x)

v(x)
with v(x) =

√
ρ̄(x)∂2

ρρE , (2.30)

and the metric is given by

ds2 = (dx− (u+ v)dt)(dx− (u− v)dt). (2.31)

where u(x) = j̄
ρ̄ is the background local fluid velocity. We see from the metric that v(x)

is the local speed of sound in the fluid since excitations which propagate along light-rays
correspond to sound waves propagating at velocity u±v. The system exhibits curved light-
cones due to the dependence on the local value of the density ρ̄(x)[98]. This metric is the
effective geometry of the Fermi surface seen by the excitations.
The above action thus describes quantum fluctuations around non-trivial hydrodynamical
backgrounds ρ̄(x, t), j̄(x, t) for 1D inhomogenous quantum systems specified by their micro-
scopic equation of state ρE(ρ), from which we obtain the Luttinger parameter K and the
sound velocity v.
There can be corrections to the effective action for the fluctuations 2.29 by expanding to
higher order the hydrodynamic action 2.27. There can also be hydrodynamic gradient cor-
rections, recently discussed in [99].
We will now restrict ourselves to the case of free fermions since we wish to describe fluc-
tuations of the eigenvalues of random matrices. We also restrict ourselves to equilibrium
configurations given by the saddle point (ρ̄, j̄) = (ρ0(x), 0) where ρ0(x) is the semiclassical
density. We leave the study of out-of-equilibrium dynamics of the eigenvalues for future
work. The equation of state for free fermions at zero temperature is:

ρE =
π2h̄2ρ3

6
. (2.32)

We have that the sound velocity is simply proportional to the density

v(x) = πh̄ρ0(x), (2.33)

and the Luttinger parameter is simply K = 1. Notice that v(x) is equal to the classical
momentum p(x) appearing in the WKB approximation. We arrive then at the following
Euclidean action, describing the quantum hydrodynamical fluctuations of free fermions in
an external potential:

S[h] =
1

8π

∫
√
g d2x gab∂ah∂bh, (2.34)

with metric given by (now in units where h̄ = 1):

ds2 = π2ρ2
0(x)dτ2 + dx2, (2.35)

The action S[h] provides a description of the eigenvalue fluctuations around the semi-
classical spectral density ρ0(E) in terms of quantum hydrodynamics of the Fermi surface.
Analogously to the 1

N genus expansion of matrix models, which is completely fixed by
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Topological Recursion in terms of the spectral curve ρ0(E) (see [3] for an extensive expla-
nation), the theory of hydrodynamic fluctuations of the eigenvalues is completely deter-
mined by the matrix model spectral curve ρ0(E). The theory is defined on the domain
(x, τ) ∈ (xL, xR) × R, where (xL, xR) are the points where the semiclassical density van-
ishes ρ0(xL,R) = 08. As long as we work at scales Λ inside the range of validity of the
hydrodynamic effective theory given in eq. 2.20, we can apply the theory to a matrix
model specified by its semiclassical density of eigenvalues ρ0(E). In particular, to apply
this description to JT gravity, (2, p) minimal strings and related models it is enough to use
the spectral density of the desired model, i.e. ρ(E) = ρJT (E). On the other hand, if one
wishes to specify the matrix model potential V (E), we can obtain the spectral density in
the hydrodynamic approximation as:

ρ0(E) =
√

2(µ− V (E)). (2.36)

We will use this expression for the density to study the c = 1 matrix model which corrre-
sponds to an inverted oscillator potential V (E) = −E2

2 .
The hydrodynamic theory is valid in the domain of non-vanishing particle density so

the theory has a boundary at points xL, xR such that ρ(xL,R) = 0. To summarise, we have
an effective theory for the quantum hydrodynamical fluctuations of the Fermi surface of
free fermions corresponding to the fluctuations of the eigenvalues of a random matrix H.
They are described by a 2D free boson BCFT on a curved geometry determined by the
spectral density ρ0(E). In this formalism it is straightforward to consider double scaled
matrix models, it is enough to use the double scaled spectral density which has only one
zero at xL = 0 and xR =∞ so we have a BCFT on the half-line.

To complete the correspondence we are in need of a prescription to relate local operators
OF in the microscopic fermionic theory (2.11), such as Ψ,Ψ†, to local operators OEff in the
effective theory (2.34). A single operator in the microscopic theory OF (x) can be expanded
as a sum of local operators OEff(x):

OF (x) =
∑
i

ÃO,OiOi(x), (2.37)

where ÃO,Oi are dimensionful coefficients [ÃO,Oi ] = ∆Oi−∆O and we dropped the subscript
from the operators OEff(x) in the right hand side. We define dimensionless coefficients AO,Oi
using the characteristic length scale of the microscopic system d = (ρ0(x))−1 , we have then

ÃO,Oi =
AO,Oi

ρ0(x)∆Oi
−∆O

. (2.38)

Using this prescription we can in principle write any correlation function in the microscopic
model as a sum of CFT correlators which we know explicitly given the simplicity of the

8We are treating the case of a single interval with non-zero density, corresponding to single cut matrix
models
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CFT:

〈OF (x1) . . .OF (xn)〉 =
∑
i1,...,in

AO,Oi1

ρ0(x1)
∆Oi1

−∆O
. . .

AO,Oin

ρ0(xn)∆Oin
−∆O

〈Oi1(x1) . . . Oin(xn)〉CFT .

(2.39)
The sum can be organized according to the relevance of the operators in the effective
theory as each term in the sum is suppressed by the UV scale d(x) as d

∑
k ∆Ok

−n∆O . The
dimensionless coefficients AO,Oi are determined by matching to the microscopic theory, as
usual in effective theories.
Consider the fermionic fields Ψ†,Ψ in the microscopic theory, they are charged under a
global U(1) symmetry with charge q = 1 so the the corresponding CFT operators should
also be. The bosonic U(1) charge is the winding or magnetic number q of vertex operators
Vp,q. Thus the corresponding operators are the CFT vertex operators Vp,q=1 and their
descendants, where we define a (p, q) vertex operator by

Vp,q(z, z̄) =: ei(p−
q
2)φ(z)+i(p+ q

2)φ̄(z̄) : . (2.40)

We have used chiral factorization of the CFT to write the boson field h(x, t) as a sum of
holomorphic and antiholomorphic fields h(x, τ) = φ(z) + φ̄(z̄).

Considering only the most relevant most relevant operator we have then:

Ψ†(x) ≈ ÃΨ†,V0,1(x)V0,1(x). (2.41)

Since the fermion fields have dimension 1
2 and the vertex operator has dimension 1

4 the
coefficient ÃΨ†,V0,1 has dimensions −1

4 such that:

ÃΨ†,V0,1(x) = AΨ†,V0,1ρ0(x)1/4. (2.42)

The dimensionless coefficient AΨ†,V0,1 is the same as in the homogeneous V (x) = 0 case,
and so it can be calculated analytically by Bethe-Ansatz to obtain:

|AΨ†,V0,1 |
2=

G4(3/2)√
2π

, (2.43)

where G indicates Barnes’ G-function. This completes the prescription for how to com-
pute observables in the fermion theory using the hydrodynamical effective theory. We can
now proceed to apply this framework to study the quantum mechanics of random matrix
eigenvalues.

3 Spectral correlations and entanglement

We now apply the effective theory describing the quantum hydrodynamical fluctuations
of the eigenvalue density (eq. 2.34) . The theory is a free boson 2D CFT on a non
trivial background with boundaries. Thanks to its simplicity, we can easily compute many
quantities of interest straightforwardly and reproduce previous results obtained via less
trivial methods. Let us first summarize the results we derive.
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We compute corrections to the semiclassical spectral density ρ0(E) reproducing the leading
non-perturbative correction to ρ(E) as described, for example, in sec. 5 and appendix A of
[28].
We compute the two-level correlation between eigenvalues ρ(E1, E2) and reproduce the
ramp and plateau contributions to the Spectral Form Factor in the limit |E1 − E2|� 1.
We compute the spectrum of Renyi entropies for an arbitrary interval bipartition of the
eigenvalues Sn(E1, E2) which generalises the results of [55] to an arbitrary spectral curve
ρ0(E) and reproduces their results in the appropriate limit.
Finally we compute the n < N eigenvalue reduced density matrix obtained by integrating
out (N − n) eigenvalues.
Let us start by defining a new coordinate X:

X(x) =

∫ x

xL

dx′

πρ0(x′)
, dX =

dx

πρ0(x)
(3.1)

such that the metric gab(x) becomes conformally flat:

ds2 = π2ρ0(x)2(dX2 + dt2). (3.2)

The domain of the coordinate X is X ∈ (0, L), where L ≡ X(xR) is given by the mapping
the right boundary point. Since πρ0(x) is the Fermi velocity, we can think of the coordinate
X(x) as the time it takes for an eigenvalue to go from the boundary xL to the point x.

3.1 Spectral correlations

We start by considering correlations of spectral densities 〈ρ(E)〉 and 〈ρ(E1)ρ(E2)〉. The
spectral correlations in RMT are computed by averaging the discrete density ρ(E) over the
ensemble of random matrices H:

ρ(E) ≡
N∑
i=1

δ(E − Ei)→ 〈ρ(E)〉H =

∫
dHetrV (H)ρ(E). (3.3)

In Matrix Quantum Mechanics the average over random matrices becomes a quantum
expectation value of the density operator ρ̂(E):

ρ̂(E) ≡ Ψ†(E)Ψ(E)→ 〈ρ̂(E)〉 . (3.4)

The n-eigenvalue correlation is then given by the n-point correlation function of the
density operator. The quantum hydrodynamics effective theory allows us to easily compute
these density correlations [89] in terms of free CFT correlation functions. We are able to
reproduce the leading non-perturbative corrections to 〈ρ(E)〉 and 〈ρ(E1)ρ(E2)〉 discussed
in sec. 5 of [28] . This shows that we can think of matrix integrals as equal time expectation
values in matrix quantum mechanics. We start by expanding the density operator ρ̂(x) into
CFT operators:

ρ̂(x, t) ≈ ρ0(x)Id +
∂xh(x, t)

2π
+

∞∑
p=1

(
Aρ,Vp,0Vp,0(x, t) +Aρ,V−p,0V−p,0(x, t)

)
. (3.5)
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The first two operators follow directly from the construction of the effective theory since
ρ0(x) is the saddle point value of the density and the linear variation around the saddle is
δρ ≡ ∂xh(x,t)

2π . The expansion of ρ̂ only includes vertex operators Vp,q with q = 0 since ρ̂
does not change the total number of eigenvalues. Keeping only the most relevant operators
in the expansion we have:

ρ̂(x, t) ≈ ρ0(x)Id +
∂xh(x, t)

2π
+Aρ,V1,0V1,0(x, t) +Aρ,V−1,0V−1,0(x, t). (3.6)

The coefficients Aρ,V±1,0 are naturally dimensionless since both ρ̂ and V±1,0 have scaling
dimension ∆ = 1.

They are given by the following expression

Aρ,V±1,0 =
1

2π
e±2πiθ(x), θ(x) =

∫ x

0
ρ0(x′)dx′ − 1

2
. (3.7)

The absolute value |Aρ,V±1,0 |= 1
2π can be obtained exactly from Bethe-Ansatz form factors

(see appendix B of [89]). The phase θ(x) is a WKB phase.

3.1.1 Non perturbative corrections to density of eigenvalues 〈ρ(E)〉

The quantum hydrodynamical fluctuations will give the leading non-perturbative correc-
tions to the semiclassical spectral density ρ0(x). These corrections produce oscillations on
top of the semiclassical density which, from the fermionic point of view, can be identified as
Friedel oscillations. Let us now compute 〈ρ̂(x)〉 by taking the expectation value of the pre-
vious expression for ρ̂. We have that 〈∂xh〉 = 0 due to Z2 symmetry. The vertex operator
VEV is obtained again by first changing coordinates X(x) so the metric is conformally flat,
performing a Weyl transformation to go to flat space and using a conformal transformation
w(z) = ei

π
L
z to map the strip to the upper half plane H:

〈V±1,0(z)〉g = (πρ0(x))−1 〈V±1,0(z)〉strip = (πρ0(x))−1

∣∣∣∣dwdz
∣∣∣∣ 〈V±1,0(w(z))〉H . (3.8)

The expectation value on the upper half plane can be computed by the method of images
and is given by

〈V±1,0(w(z))〉H = e
1
2
GD(w) GD(w) = − log|w − w̄|2, (3.9)

where GD(w) is the regularised Green’s function at coincident points with Dirichlet
boundary conditions. Setting t = 0 in z = X + it and using the mapping w(z) = ei

π
L
z we

have:
GD(X) = − log

∣∣∣2 sin
(π
L
X
)∣∣∣2. (3.10)

We arrive at the following expression for 〈ρ̂〉:

〈ρ̂(x)〉 = ρ0(x)−
cos
(
2π
∫ x

ρ0(x′)dx′
)

2πLρ0(x) sin
(
πX
L

) . (3.11)
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As a consistency check, this expression precisely matches with the large N limit of the exact
solution of the Gaussian matrix model, given by Hermite polynomials. 9 As a function of
the eigenvalues E the density is:

〈ρ̂(E)〉 = ρ0(E)−
cos
(

2π
∫ E

ρ0(E′)dE′
)

2πLρ0(E) sin
(

1
L

∫ E dE′

ρ0(E′)

) , (3.12)

This gives the first quantum correction to the spectral density ρ(E). In a double scaled
matrix model, where L =∞, we have:

〈ρ̂(E)〉 = ρ0(E)−
cos
(

2π
∫ E

ρ0(E′)dE′
)

2πρ0(E)
(∫ E dE′

ρ0(E′)

) , (3.13)

This is a non-perturbative correction to the density of states since it is of the form cos
(
eS0
)

=

eie
S0 . It reproduces the leading non-perturbative correction to the density of states.

As an example, take the Airy spectral curve ρ0(E) =
√
E for which we obtain:

〈ρ̂(E)〉 = ρ0(E)−
cos
(

2π
∫ E

ρ0(E′)dE′
)

4πE
, (3.14)

this is exactly the expression in eq. (155) of [28].

3.1.2 The ramp and plateau in 〈ρ(E1)ρ(E2)〉

We can now compute the two-point function of the density of eigenvalues 〈ρ̂(E1)ρ̂(E2)〉.
One has to multiply the expansions for the density operators and take the expectation
value. Two point functions of vertex operators and the height field are entirely determined
in terms of the Green function with Dirichlet boundary conditions GD(w1, w2) on H which
is given by:

GD(w1, w2) = log

∣∣∣∣w1 − w2

w1 − w̄2

∣∣∣∣2. (3.15)

Evaluating it at equal times t1 = t2 = 0 and using the mapping w(z) = ei
π
L
z we have:

GD(X̄1, X̄2) = log

∣∣∣∣∣∣
sin
(
X̄1−X̄2

2

)
sin
(
X̄1+X̄2

2

)
∣∣∣∣∣∣
2

, X̄ =
π

L
X. (3.16)

The two-point correlation of the spectral density is given by:

9For the GUE the map to free fermions in a harmonic potential is actually exact [100], since the probabil-
ity density |ψN (x1, . . . , xN )|2 is equal to the GUE joint eigenvalue probability density |ψN (x1, . . . , xN )|2=
ρGUE(x1, . . . , xN ).
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〈ρ̂(x1)ρ̂(x2)〉c =
1

π2ρ0(x1)ρ0(x2)

{
−
∂X̄1

∂X̄2
GD(X̄1, X̄2)

4π2
+[

∂X̄1
GD(X̄1, X̄2) sin(2πθ(x2))e

1
2
GD(X2) + (X̄1 ↔ X̄2)

]
+

e
1
2

(GD(X1)+GD(X2))
(
eGD(X̄1,X̄2) − 1

)
cos [2π(θ(x1) + θ(x2))] +

e
1
2

(GD(X1)+GD(X2))
(
e−GD(X̄1,X̄2) − 1

)
cos [2π(θ(x1)− θ(x2))]

}
.

(3.17)

The derivatives appearing in the expression are the following:

∂X̄1
GD(X̄1, X̄2) =

[
cot

(
π(X1 −X2)

2L

)
− cot

(
π(X1 +X2)

2L

)]
(3.18)

∂X̄2
GD(X̄1, X̄2) = −

[
cot

(
π(X1 −X2)

2L

)
+ cot

(
π(X1 +X2)

2L

)]
(3.19)

∂X̄1
∂X̄2

GD(X̄1, X̄2) =
1

2

[
sin−2

(
π(X1 −X2)

2L

)
+ sin−2

(
π(X1 +X2)

2L

)]
. (3.20)

For finite L it is enough to substitute the expressions for the Green functions and their
derivatives, which we won’t do explicitly. For a double scaled matrix model where L→∞
we have:

〈ρ̂(x1)ρ̂(x2)〉 =
1

2π2

(
1

π2ρ0(x1)ρ0(x2)

){
−
(

1

(X1 −X2)2
+

1

(X1 +X2)2

)
+[

sin(2πθ(x2))

X2

(
1

(X1 −X2)
− 1

(X1 +X2)

)
+ (X1 ↔ X2)

]
+(

−cos(2π(θ(x1) + θ(x2)))

(X1 +X2)2
+

cos(2π(θ(x1)− θ(x2)))

(X1 −X2)2

)}
.

(3.21)

Approximating the integral
∫ E

0
1

ρ0(E′) ≈
E

ρ0(E) we have that X ≈ E
πρ0(E) . Moreover, in the

limit where |E2 − E1|� 1 we can write ρ0(E1) = ρ0(E2) = ρ0(E) where E = E1+E2
2 . We

have then:

〈ρ̂(E1)ρ̂(E2)〉 =
1

2π2

{
−
(

1

(E1 − E2)2
+

1

(E1 + E2)2

)
+

1

(E1 − E2)

cos
(

2π
∫ E2 ρ0(E′)dE′

)
E2

−
cos
(

2π
∫ E1 ρ0(E′)dE′

)
E1

+

−cos
(

2π
(∫ E2 ρ0(E′)dE′ +

∫ E1 ρ0(E′)dE′
))

(E1 + E2)2
+

cos
(

2π
∫ E2

E1
ρ0(E′)dE′

)
(E1 − E2)2

}.
(3.22)
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For |E2 − E2|� 1 we recover the well known Sine kernel expression for the two-point
correlation of eigenvalues in Random Matrix Theory:

〈ρ̂(E1)ρ̂(E2)〉 = − 1

2π2

1

(E1 − E2)2
+

1

2π2

cos
(

2π
∫ E2

E1
ρ0(E′)dE′

)
(E1 − E2)2

+ reg

= − 1

π2

sin2(π
∫ E2

E1
ρ0(E′)dE′)

(E1 − E2)2
.

(3.23)

We have reproduced the known matrix integral expressions for 〈ρ(E)〉 and 〈ρ(E1)ρ(E2)〉 by
considering equal time quantum expectation values of the eigenvalue density operator ρ̂(E)

in Matrix Quantum Mechanics. This shows that, in this sense, we can think of a matrix
integral as a fixed time instance of a corresponding quantum mechanical theory of matrices.
The statistical fluctuations given by integrating over an ensemble of matrices can now be
understood as quantum fluctuations of a single matrix in the large N limit.

3.2 Entanglement entropy

An observable present in MQM that has no analogue in RMT is the entanglement between
eigenvalues. Since the eigenvalues are quantum mechanical with a collective wavefunction
ΨN (E1, . . . , EN ) we can consider the entanglement entropy for a bipartition of eigenvalue
space. Thanks to the CFT description of the hydrodynamical fluctuations we can compute
the entanglement entropy using the universal Cardy-Calabrese formula [101]. Thus we
don’t need to map any microscopic operators to the effective theory in this case. The Renyi
entropies for a subsystem A are defined as:

Sn ≡
1

1− n
log(Tr(ρnA)), (3.24)

where ρA is the reduced density matrix.

Half-space bipartition (0, E) ∪ (E,∞)

We consider the Renyi entropies for a bipartition (xL, x) ∪ (x, xR) which in X coordinates
is (0, X(x)) ∪ (X(x), L). In a 2D CFT the Renyi entropies for such a bipartition can be
computed by the expectation value of a single twist field [101]:

Sn(x) =
1

1− n
log
(
ε∆n 〈Tn(x, t = 0)〉

)
, (3.25)

where ∆n is the dimension of the twist operator:

∆n =
c

12
(n− 1

n
), (3.26)

and ε is a UV cut-off for the formally divergent entanglement entropy. The cut-off is known
to encode the divergent amount of short-range entanglement in continuum Quantum Field
Theories. This divergence is an issue when attempting to give a rigorous definition of
entanglement entropy in QFT (see [102, 103]). However, as illustrated in section 2, in the
effective hydrodynamical description we have a microscopic length scale, the mean particle
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spacing d(x) = ρ−1
0 (x) which gives a natural UV cut-off ΛUV = ρ0(x). Since the system is

inhomogeneous, the UV cutoff scale is position dependent and we have:

ε(x) =
ε0

ρ0(x)
, (3.27)

where ε0 is a dimensionless constant and the cutoff is evaluated at the boundary point
x of the bipartition. We have then a UV-finite expression for the entanglement entropy.
This can be interpreted as a consequence of having a finite density of eigenvalues ρ0(E) in
RMT due to eigenvalue repulsion. Equivalently, it is a consequence of having a non-zero
VEV for the density ρ(x) = 〈Ψ†Ψ〉. In the next section we will see that in the duality
between the c = 1 matrix model and two-dimensional string theory the finiteness of the
entanglement entropy can be interpreted as due to stringy effects [55]. String theory, as
expected, regulates the UV-divergence to give a finite answer for the entropy.

We work in complex coordinates z = X + it defined on the infinite strip (0, L) ×
R. The metric in complex coordinates is ds2 = π2ρ0(x)2dzdz̄. We can perform a Weyl
transformation gab → (πρ0(x))−2gab to go to flat space. Under the Weyl transformation
the twist operator scales as Tn → (πρ0(x))−∆nTn. Next we map the z-strip to the upper
half-plane H via a conformal transormation g(z) = eiπ

z
L . Under this map the twist field

transforms as Tn(z)Strip →
∣∣∣dg(z)dz

∣∣∣∆n

Tn(g(z))H. The last ingredient is the expectation value

of the twist field on the upper-half plane which is 〈Tn(g(z))〉H = (Img(z))−∆n . We combine
everything together to arrive at:

Sn(x) =
n+ 1

12n
log

[
Ω(x)

ε(x)

∣∣∣∣dg(z)

dz

∣∣∣∣−1

Img(z)

]
, (3.28)

where ∣∣∣∣dg(z)

dz

∣∣∣∣ =
π

L
, (3.29)

Img(z) = sin

(
πX

L

)
. (3.30)

We then obtain the entanglement entropy for a bipartition (xL, x) ∪ (x, xR) of eigenvalues
in a model with spectral density ρ0(x):

Sn =
n+ 1

12n
log

(
L

π
ρ2

0(x) sin

(
πX(x)

L

))
+ const. (3.31)

Writing this explicitly in the eigenvalue coordinate x = E for a bipartition (EL, E)∪(E,ER)

we have:

Sn(E) =
n+ 1

12n
log

(
L

π
ρ2

0(E) sin

(
1

L

∫ E

EL

dE′

ρ0(E′)

))
+ const. (3.32)

We see that, due to the term sin
(
π
LX
)
with X ∈ (0, L), the entropy has the expected

Page-curve behaviour as a function of the bipartition point E, increasing until a turning
point and decreasing afterwards. This is a consequence of unitarity in a system with a
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finite number of states N =
∫
ρ0(E)dE and does not survive the double scaling limit. As

N → ∞ in the double scaling limit we lose unitarity of the entanglement entropy Sn(E)

and we have information loss. There are many examples of the tension between unitarity
and the large N limit [102, 104–108] .

For a double scaled matrix model we have that xR =∞ and thus L =∞. Expanding
the sine we have that the L dependence drops out and we obtain:

Sn(E) =
n+ 1

12n
log

(
1

π
ρ2

0(E)

∫ E

EL

dE′

ρ0(E′)

)
+ const. (3.33)

Approximating the integral by assuming an almost constant density
∫ E
EL

dE′

ρ0(E′) ≈
E−EL
ρ0(E) we

obtain:

Sn(E) ≈ n+ 1

12n
log

(
1

π
ρ0(E)(E − EL)

)
+ const. (3.34)

We see that the entanglement entropy presents a leading term proportional to the micro-
canonical entropy:

Sn(E) ∝ log(ρ0(E)) = S0(E). (3.35)

This shows that the entanglement entropy contains a large amount of short-range en-
tanglement coming from neighbouring eigenvalues separated by the bipartition, since the
entropy S0(E) counts the number of states in a window (E − dE,E + dE).
The second term Sn(E) ∝ log(E − EL) is the usual Cardy-Calabrese behaviour in two
dimensions. Note that we should not extrapolate this result to the edge of the spectral
density E ∼ EL. In RMT, there are distinct ’bulk’ and ’edge’ limits for the spectral density
with different universal kernels describing them [6] and we should not extrapolate a bulk
result to the edge region. Hydrodynamics requires the derivative of the density to be small,
thus it describes the ’bulk’ region.

Interval bipartition (E1, E2)

We now calculate the Renyi entropies for a subregion A = (X1, X2) ∈ (0, L) equal to
A = (x1, x2) ∈ (xL, xR), where X1,2 ≡ X(x1,2). The Renyi entropies are given by the two
point function of the twist field at the extrema of the interval:

Sn ∝ log
(
ε∆n 〈Tn(z1)T̃n(z2)〉

)
. (3.36)

T̃n is the conjugate twist field [101]. The cutoff now is ε = ε0
ρ(x1)ρ(x2) . Repeating the same

manipulations as before we can reduce the computation to a correlation on the flat upper
half plane H:

〈Tn(z1)T̃n(z2)〉strip =

(
Ω(x1)

∣∣∣∣dg(z1)

dz1

∣∣∣∣)∆n
(

Ω(x2)

∣∣∣∣dg(z2)

dz2

∣∣∣∣)∆n

〈Tn(g(z1))T̃n(g(z2))〉H .

(3.37)
The two point function on the upper half plane H is a priori a non trivial calculation

corresponding to a four-point function on the plane. In the case of a free boson theory it is
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known [101, 109, 110] and we have:

〈Tn(z1)T̃n(z2)〉 =

[
Ω(x1)

∣∣∣∣dg(z1)

dz1

∣∣∣∣Ω(x2)

∣∣∣∣dg(z2)

dz2

∣∣∣∣ |g∗(z1)− g(z2)|2

Img(z1)Img(z2)|g(z1)− g(z2)|2

]∆n

.

(3.38)
The Renyi entropies are:

Sn ∝ log

[(
L

π

)2

ρ2
0(x1)ρ2

0(x2) sin

(
π
X1

L

)
sin

(
π
X2

L

)
|g(z1)− g(z2)|2

|g∗(z1)− g(z2)|2

]
, (3.39)

where the last term is equal to:

|g(z1)− g(z2)|2

|g∗(z1)− g(z2)|2
=

1− cos
(
π
L(X2 −X1)

)
1− cos

(
π
L(X1 +X2)

) =
sin2( π

2L(X2 −X1))

sin2( π
2L(X1 +X2))

. (3.40)

The final result is then:

Sn(x1, x2) =
n+ 1

12n
log

((
L

π

)2

ρ2
0(x1)ρ2

0(x2) sin

(
π
X1

L

)
sin

(
π
X2

L

)
sin2( π

2L(X2 −X1))

sin2( π
2L(X1 +X2))

)
+const.

(3.41)
Writing this in terms of the eigenvalues (E1, E2) we have:

Sn(x1, x2) =
n+ 1

12n
log

[(
L

π

)2

ρ2
0(E1)ρ2

0(E2) sin

(
1

L

∫ E1

EL

dE′

ρ0(E′)

)
sin

(
1

L

∫ E2

EL

dE′

ρ0(E′)

)

×
sin2

(
1

2L

∫ E2

E1

dE′

ρ0(E′)

)
sin2

(
1

2L

(
2
∫ E1

EL
dE′

ρ0(E′) +
∫ E2

E1

dE′

ρ0(E′)

))]+ const.

(3.42)

For a double scaled matrix model L =∞ we have:

Sn(x1, x2) =
n+ 1

12n
log

(
ρ2

0(x1)ρ2
0(x2)X1X2

(X2 −X1)2

(X1 +X2)2

)
+ const, (3.43)

which in terms of the eigenvalues is:

Sn(E1, E2) =
n+ 1

12n
log

[(
1

π

)2

ρ2
0(E1)ρ2

0(E2)

(∫ E1

EL

dE′

ρ0(E′)

)(∫ E2

EL

dE′

ρ0(E′)

)

×

(∫ E2

E1

dE′

ρ0(E′)

)2

(
2
∫ E1

EL
dE′

ρ0(E′) +
∫ E2

E1

dE′

ρ0(E′)

)2

]
+ const.

(3.44)

Approximating the integrals by assuming an almost constant density
∫ E
EL

dE′

ρ0(E′) ≈
E−EL
ρ0(E)

we obtain:

Sn(E1, E2) ≈ n+ 1

12n
log

[(
1

π

)2

ρ0(E1)ρ0(E2)(E1 − EL)(E2 − EL)
(E2 − E1)2

((E2 + E1)− 2EL)2

]
(3.45)
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In the limit of RMT unviersality where (E1 − E2)� 1 we obtain the simple expression:

Sn(E1, E2) ≈ n+ 1

12n
log

(
ρ2

0(E)(E1 − E2)2

4π2

)
(3.46)

where E = E1+E2
2 is the average energy. We see again that there is a leading contribution

proportional to the average microcanonical entropy Sn ∝ S0(E) = log(ρ0(E)) of the interval
(E1, E2). The entanglement entropy derived via the hydrodynamic CFT has been checked
against numerical simulations in [76] for a double well potential finding excellent agreement.

3.2.1 Emergence of spacetime in 2D string theory

Two-dimensional string theory is a non-critical bosonic string theory inD = 2 flat spacetime
with a linear dilaton background and a massless tachyon. The worldsheet is a Liouville CFT
with cL = 25 and a free boson cM = 1 which cancel the ghost central charge cg = −26

[8, 9]. The low energy effective action is [111, 112]:

S =
1

2

∫
dtdx
√
−ge−2Φ

(
R

2
+ 2(∂Φ)2 + 8− (∂T )2 + 4T 2 − 2V (T )

)
, (3.47)

where V (T ) is a potential for the tachyon. The background has a tachyon condensate with
a free parameter µ̄ which determines the effective string coupling geff ∼ µ̄−1, thus we
have a perturbative string theory for µ � 1. Equivalently, µ̄ is the cosmological constant
of the worldsheet Liouville theory. Two-dimensional string theory is dual to a theory of
matrix quantum mechanics with an inverted oscillator potential V (x) = −x2

2 and chemical
potential µ = −µ̄ < 0. The potential arises from a double scaling limit of a potential
U(x) = −x2

2 + gx3 by taking N → ∞ and g → 0 while keeping µ = −NεF fixed, where
εF is the Fermi energy of the fermions filling up the well in the potential. This zooms into
the vicinity of the maximum of the potential which gives the universal critical behaviour.
The supersymmetric string is described instead by a double well potential [113]. In the
hydrodynamic approach it is perfectly possible to treat both the general case with potential
U(X) but we will focus on the inverted oscillator. The leading density of eigenvalues is given
by 2.36:

ρ0(x) =
1

π

√
2(−V (x)− µ̄) =

1

π

√
x2 − 2µ̄. (3.48)

It has a left edge xL =
√

2µ̄ and extends to infinity as it is a double scaled model. The
density of states gives the geometry of the Fermi surface on which the 2D CFT (2.34)
describing the quantum hydrodynamical fluctuations lives:

ds2 = (x2 − 2µ̄)dτ2 + dx2. (3.49)

The coordinate transformation which renders the metric conformally flat is explicitly:

X(x) =

∫ x

√
2µ̄

dλ√
−2µ̄+ λ2

= cosh−1

(
x√
2µ̄

)
= log

(
x+

√
x2 − 2µ̄√
2µ̄

)
, (3.50)
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It was argued first in [57] that the transformation X(x) gives, at the semiclassical level,
the map from the eigenvalue-space x to the string theory spacetime X since physically it is
the "time-of-flight", meaning the WKB time it takes for an eigenvalue to go from xL to a
point x. Then in [55] a consistency argument identifying X(x) with the map between the
eigenvalues and the emergent spacetime was given based on entanglement. They computed
the entanglement entropy of the eigenvalues using the techniques of [114] and the WKB
wavefunctions. Then they argued that the entanglement entropy in spacetime should be
given by the Cardy-Calabrese formula and found that the relation X(x) produced the right
matching. The hydrodynamic approach instead provides a natural and more constructive
point of view: the geometry of the Fermi surface is dual to the spacetime geometry and
the mapping X(x) is simply the map between the two metrics. The Cardy-Calabrese
formula follows immediately from the fact that the quantum hydrodynamical theory of the
eigenvalues is a 2D CFT. We will now show explicitly the match with the entanglement
entropy derived in [55]. We can invert eq. 3.50 to write the density ρ0(X) in spacetime
coordinates:

π2ρ2
0(x) = −2µ+ x2 = 2µ(−1 + cosh2(X)) = 2µ sinh2(X). (3.51)

One can define a string coupling given by:
1

g̃s(X)
≡ 2µ̄ sinh2(X) ≡ π2ρ2

0(X), (3.52)

which at weak coupling µ̄� 1 is equal to the string coupling in the linear dilaton background
g̃s(X) = gs(X)

2µ . The entanglement entropy for a spacetime bipartition (0, X)U(X,L) in
two-dimensional string theory is then:

Sn(X)
∣∣∣
2D String

=
n+ 1

12n
log

[
L

π

1

g̃s(X)
sin

(
πX

L

)]
+ const, (3.53)

while for a spacetime interval (X1, X2) it is given by:

Sn =
n+ 1

12n
log

((
L

π

)2 sin
(
πX1
L

)
sin
(
πX2
L

)
g̃s(X1)g̃s(X2)

sin2( π
2L(X2 −X1))

sin2( π
2L(X1 +X2))

)
+ const. (3.54)

This reproduces the results of [55] when considering the Von Neumann entropy n = 1 and
L→∞:

S1 =
1

6
log

[
X1X2

g̃s(X1)g̃s(X2)

(X2 −X1)2

(X1 +X2)2

]
+const =

1

3
log

(
X2 −X1√
g̃s(X1)g̃s(X2)

)
+

1

6
log

(
X1X2

X1 +X2)2

)
+const.

(3.55)
Since they were working in the microscopic fermion field theory (2.11), they were able to
determine the additive constant for L → ∞. However the constant can depend on the
system size L so we cannot use their results to fix the constant in the general L case.
Often in in two-dimensional string theory a cut-off is introduced for the inverted oscillator
potential which comes from the potential U(x) before the double-scaling limit. The cut-off
is at a distance xR ∼ 1

g ∼ N so at large N it is effectively not there. Since our results
are valid for finite L we can also probe the region close to the cut-off or directly do the
computation for the potential U(x).
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3.3 Reduced density matrix for n < N eigenvalues

The one-particle density matrix in the fermionic field theory 2.11 is computed by the two-
point function of the fermion field [88, 115, 116]:

g1(x, x′) ≡ 〈Ψ†(x)Ψ(x′)〉 . (3.56)

We have seen that the fermionic operators Ψ,Ψ† can be expanded as an infinite sum of CFT
primary operators and their descendants consistent with the symmetries. In particular,
Ψ,Ψ† corresponds to vertex operators Vp,±1 and their derivatives. Considering only the
most relevant most relevant operator we have:

Ψ†(x) ≈ AΨ†,V0,1ρ0(x)1/4V0,1(x), (3.57)

where the dimensionless coefficient is given by

|AΨ†,V0,1 |
2=

G4(3/2)√
2π

. (3.58)

The one-eigenvalue reduced density matrix is then given, at leading order in the hy-
drodynamic effective theory simply by a two-point function of vertex operators:

g1(x, x′) = |Aψ,V0,−1 |2ρ0(x)1/4ρ0(x′)1/4 〈V0,1(x),V0,−1(x′)〉CFT . (3.59)

We make use of coordinates X(x) such that the geometry is conformally flat. We map the
correlator to the flat space infinite strip:

〈V0,1(x),V0,1(x′)〉g =

(
dX

dx

)1/4(dX

dx

)1/4

〈V0,1(X),V0,1(X ′)〉flat . (3.60)

The two-point function of vertex operators on an infinite strip (0, L)× R is known to be:

〈V0,1(X),V0,1(X ′)〉CFT,flat =

∣∣∣sin(πXL ) sin
(
πX′

L

)∣∣∣1/4∣∣∣2Lπ sin
(
π(X−X′)

2L

)
sin
(
π(X+X′)

2L

)∣∣∣1/2 . (3.61)

We arrive at the following result for the one-eigenvalue density matrix:

g1(x, x′) =
|Aψ,V0,−1 |2√

π

(
sin
(
πX
L

)
sin
(
πX′

L

))1/4

∣∣∣2Lπ sin
(
π(X−X′)

2L

)
sin
(
π(X+X′)

2L

)∣∣∣1/2 . (3.62)

We can easily generalize this result to obtain the n-eigenvalue density matrix:

gn({x}, {x′}) =
|Aψ,V0,−1 |2n

πn/2

n∏
i=1

∣∣∣∣sin(πXi

L

)
sin

(
π
X ′i
L

)∣∣∣∣ 14×
∏
k<l

∣∣∣(2L
π

)2
sin
(
π (Xk−Xl)

2L

)
sin
(
π (Xk+Xl)

2L

)
sin
(
π

(X′k−X
′
l)

2L

)
sin
(
π

(X′k+X′l)
2L

)∣∣∣1/2∏
i,j

∣∣∣2Lπ sin
(
π

(Xi−X′j)
2L

)
sin
(
π

(Xi+X′j)

2L

)∣∣∣1/2 .

(3.63)
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For a double scaled matrix model L = ∞, the one-eigenvalue density matrix is given
by:

g1(x, x′) =

√
2|Aψ,V0,−1 |2√

π

|XX ′|1/4

|(X −X ′)(X +X ′)|1/2
, (3.64)

writing it explicitly in terms of the eigenvalues we have:

g1(E,E′) =

√
2|Aψ,V0,−1 |2√

π

∣∣∣(∫ EEL dE′′

ρ0(E′′)

)(∫ E′
EL

dE′′

ρ0(E′′)

)∣∣∣1/4∣∣∣(∫ E′E
dE′′

ρ0(E′′)

)(∫ E
EL

dE′′

ρ0(E′′) +
∫ E′
EL

dE′′

ρ0(E′′)

)∣∣∣1/2 , (3.65)

Approximating the integrals by assuming an almost constant density
∫ E
EL

dE′

ρ0(E′) ≈
E−EL
ρ0(E)

we obtain:

g1(E,E′) ≈
√

2|Aψ,V0,−1 |2
|ρ0(E)ρ0(E′)(E − EL)(E′ − EL)|1/4

|E′ − E|1/2|E + E′ − 2EL|1/2
. (3.66)

In the limit of RMT universality |E − E′|� 1 we have the simple expression:

g1(E,E′) ≈ |Aψ,V0,−1 |2
|ρ0(E)ρ0(E′)|1/4

|E − E′|1/2
. (3.67)

In the double scaling limit L =∞ the n-eigenvalue density matrix is:

gn({x}, {x′}) = |Aψ,V0,−1 |2n
(

2

π

)n/2 n∏
i=1

|XiX
′
i|1/4×

∏
k<l|(X2

k −X2
l )(X ′k

2 −X ′l
2)|1/2∏

i,j |(X2
i −X ′

2
j )|1/2

.

(3.68)
The factors of L cancel exactly.

We recognize the Vandermonde determinant ∆(X2) =
∏
i<j(X

2
i − X2

j ) of the matrix

X
2(j−1)
i :

gn({x}, {x′}) = |Aψ,V0,−1 |2n
(

2

π

)n/2 n∏
i=1

|XiX
′
i|1/4×

|∆(X2)∆(X ′2)|1/2∏
i,j |(Xi −X ′j)(Xi +X ′j)|1/2

. (3.69)

To obtain the expression in terms of the eigenvalues it is again enough to substitute xi = Ei
and Xi =

∫ Ei
EL

dE
πρ0(E) . Approximating the integrals by assuming an almost constant density∫ E

EL
dE′

ρ0(E′) ≈
E−EL
ρ0(E) we obtain:

gn({E}, {E′}) ≈ |Aψ,V0,−1 |2n2n/2
n∏
i=1

∣∣∣∣(Ei − EL)(E′i − EL)

ρ0(Ei)ρ0(E′i)

∣∣∣∣1/4∏
i,j

∣∣∣∣∣(Ei − EL)2

ρ0(Ei)2
−

(E′j − EL)2

ρ0(E′j)
2

∣∣∣∣∣
−1/2

∏
k<l

∣∣∣∣(Ek − EL)2

ρ0(Ek)2
− (El − EL)2

ρ0(El)2

∣∣∣∣1/2∣∣∣∣(E′k − EL)2

ρ0(E′k)
2
−

(E′l − EL)2

ρ0(E′l)
2

∣∣∣∣1/2.
(3.70)

These expressions have been checked against numerical simulations performed via Density
Matrix Renormalization Group (DMRG) methods for harmonic and double-well potentials
in [88]. The hydrodynamic CFT accurately matches the numerical results already for
N = 15 and improves as N � 1.
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4 Open questions and future work

We conclude with several questions and possibilities for future work.

• Time-dependent spectral density ρ0(E, t): We have only considered fluctuations
of the eigenvalues around an equilibrium spectral density ρ0(E) which is time independent.
In matrix quantum mechanics, the matrix H(t) will evolve in time, thus it is natural to
consider a time dependent density ρ0(E, t). The hydrodynamic effective theory can de-
scribe such out-of-equilibrium configurations and the quantum fluctuations around them.
At equilibrium, we have seen that equal time correlations reproduce spectral statistics of
matrix integrals such as the one dual to JT gravity. It would be interesting to understand
what is the bulk picture for the time t since it is a priori different from the time τ coming
from analytical continuation of the Euclidean boundary circle β → β + iτ .
One possibility is that time evolution corresponds to out-of-equilibrium dynamics in the
bulk. Black hole evaporation is a dynamical out-of-equilibrium process so one might won-
der whether we can use matrix quantum mechanics as a toy model to describe it. We could
consider coupling the system to a bath or performing a quench and computing the entan-
glement entropy as a function of time to see if we have the desired Page curve behaviour.
Another possibility is to investigate whether it is possible to dynamically evolve between
different theories, e.g. from JT ρ0(E, t = 0) = ρ

(JT )
0 (E) to a minimal string ρ0(E, t∗) =

ρ
(2,p)
0 (E) or among minimal strings. This could be interpreted as the matrix model dual of

an RG flow between the different minimals models on the worldsheet. Along these lines,
it was recently proposed [53] that JT gravity is related to the c = 1 matrix model on a
particular time-dependent background. Since in two dimensional string theory the time t
is simply the time direction in target space [8], this connection could elucidate the role of
t. The effective hydrodynamic approach could be useful for studying time-dependent back-
grounds in two-dimensional string theory as in [117]. More recently quantum quenches in
the c = 1 matrix model and their string theory interpretation were considered in [118, 119].

• Topological recursion in MQM The duality between JT gravity and a matrix
integral was established at all orders in 1

N thanks to topological recursion [3, 28, 120]. It
would then be good to understand topological recursion from the point of view of MQM.
In particular, the 1

N ∼ h̄ corrections in MQM are given by higher orders in the WKB
expansion of the eigenvalue wavefunction ψ(E). It has been shown, for certain classes of
spectral curves, that the WKB expansion of an associated quantum mechanical system
satisfies topological recursion [121].10 This connection between WKB and topological re-
cursion might shed light on MQM and its one-time-point reduction to the matrix integral
dual to JT gravity.

• Universe field theory: We can think of Matrix Quantum Mechanics as a quanti-

10The class of spectral curves for which this has been shown does not include JT gravity’s spectral curve
but it does include the Airy case ρ(E) =

√
E.
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zation of the matrix integral dual to JT gravity. We define an operator Ẑ(β) given by:

Ẑ(β) =

∫
dEe−βE ρ̂(E) (4.1)

which creates a spacetime with a boundary of length β. Ẑ(β) gives a realization of the
operators acting on the Hilbert space of baby universes discussed in [122–124].
In particular, understanding the connection between the universe field theory defined by
MQM and the one proposed in [123, 124] is an interesting prospect which deserves further
investigation. From this point of view, the time t in MQM corresponds to the time evolution
eiHBU t generated by the third quantised Hamiltonian HBU on the baby universe Hilbert
space. This Hamiltonian should then be identified with the Hamiltonian of the MQM in
eq. 2.6.
Similarly to Ẑ(β), the eigenvalue wavefunction ψN (E1 . . . EN ) and the reduced density
matrix gn(E,E′) describe the Wheeler–DeWitt wavefunction of universes with specified
boundaries. It would be interesting to understand better the implications of the reduced
density matrix in this context. In two-dimensional string theory the operators Ẑ(β) are
known as loop operators and their third quantised interpretation in the c = 1 matrix model
has been discussed in [52].

• Finite temperature and non-singlet sector: We can consider matrix quantum
mechanics at finite temperature by compactifying the time direction t with period 2πR (see
secs. 8, 9 and 10 of [8]). It is well known that a Berezinskii–Kosterlitz–Thouless (BKT)
phase transition takes place: for R < RBKT vortices condense and the non-singlet degrees
of freedom dominate the free energy [81–84]. The physics of the non-singlet sector is very
rich, involving 2D black holes and long strings [45, 125, 126]. Thus it would be interesting to
understand the transition by incorporating vortices into the hydrodynamic effective theory.
Moreover, at high temperatures R→ 0, fluctuations along the thermal circle are suppressed
and we recover a 0-dimensional matrix integral with potential V (H). This suggests that we
could think of the matrix integral dual to JT gravity as a high temperature limit of Matrix
Quantum Mechanics. From this point of view, JT gravity would be dual to a single quantum
mechanical system in the high temperature limit. The apparent ensemble averaging could
be due to the system being in a disordered phase at high temperature.
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