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We study the statistics of Hamiltonian cycles on various families of bi-
colored random planar maps (with the spherical topology). These families
fall into two groups corresponding to two distinct universality classes with
respective central charges c = −1 and c = −2. The first group includes
generic p-regular maps with vertices of fixed valency p ≥ 3, whereas the sec-
ond group comprises maps with vertices of mixed valencies, and the so-called
rigid case of 2q-regular maps (q ≥ 2) for which, at each vertex, the unvis-
ited edges are equally distributed on both sides of the cycle. We predict for
each class its universal configuration exponent γ, as well as a new univer-
sal critical exponent ν characterizing the number of long-distance contacts
along the Hamiltonian cycle. These exponents are theoretically obtained by
using the Knizhnik, Polyakov and Zamolodchikov (KPZ) relations, with the
appropriate values of the central charge, applied, in the case of ν, to the cor-
responding critical exponent on regular (hexagonal or square) lattices. These
predictions are numerically confirmed by analyzing exact enumeration results
for p-regular maps with p = 3, 4, . . . , 7, and for maps with mixed valencies
(2, 3), (2, 4) and (3, 4).

1. Introduction

A planar map is a connected graph embedded in the two-dimensional sphere without
edge crossings, and considered up to homeomorphisms. A map is characterized by its
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vertices, its edges and its faces which all have the topology of the disk. In this paper, the
size of a map is defined as its number of vertices. A planar map is bicolored if its vertices
are colored in black and white so that edges connect only vertices of different colors. A
Hamiltonian cycle is a closed self-avoiding path drawn along the edges of the map that
visits all the vertices of the map. This paper addresses the combinatorial problem of
enumerating Hamiltonian cycles on various families of bicolored planar maps. Note that
the length of a Hamiltonian cycle on a bicolored map is necessarily an even integer and
we shall denote it by 2N , which is also the size of the underlying map.
For a given family of bicolored planar maps, we will denote by zN the number of

configurations of such maps with size 2N , equipped with a Hamiltonian cycle and with
a marked visited edge. The quantity zN will be referred to as the partition function1 of
the model at hand. At large N , we expect the asymptotic behavior

zN ∼
N→∞

κ
µ2N

N2−γ , (1)

where κ and µ depend on the precise family of maps we are dealing with, while the
configuration exponent γ has a more universal nature: as we shall see, only two possible
values of γ will be encountered, and it is precisely the aim of this paper to understand
when and why one or the other value is observed.
As was done in [1] in the case of bicubic maps (i.e., bicolored maps with only 3-

valent vertices), we shall argue in the next section that the asymptotic properties of our
Hamiltonian cycles on planar bicolored maps may be captured by viewing the problem
as the coupling to gravity of a particular critical statistical model described by a con-
formal field theory (CFT), whose central charge c may itself be deduced from a height
reformulation of the problem. More precisely, it is known from the celebrated Knizhnik
Polyakov Zamolodchikov (KPZ) formulas [2, 3, 4] that the coupling to gravity of a CFT
with central charge c ≤ 1 corresponds to a fixed size (rooted) partition function zN with
asymptotics (1) where (in the planar case considered in this paper):

γ = γ(c) :=
1

12

(
c− 1−

√
(1− c)(25− c)

)
. (2)

As it will appear, the various families of bicolored maps that we shall study fall into
two categories: when equipped with Hamiltonian cycles, some families will correspond
to a CFT with central charge c = −1 and therefore exhibit a configuration exponent
γ = γ(−1) = −(1 +

√
13)/6, while the other families correspond to a CFT with central

charge c = −2, leading to a configuration exponent γ = γ(−2) = −1.
In our discussion, it will prove useful to extend our Hamiltonian cycle problem to that,

more general, of fully packed loops (FPL) on planar bicolored maps. A fully packed loop
configuration on a given map is defined as a set of self- and mutually avoiding loops
drawn on the edges of the map such that every vertex is visited by a loop. The lengths

1This should more precisely be called a “rooted partition function” since we decided to mark an edge
of the configuration. This marking is convenient as it prevents configurations from having internal
symmetries.

2



of all loops are again even, with total length equal to 2N , and we finally attach a weight
n to each loop: this defines the so-called FPL(n) model on the family of bicolored maps
at hand. The case of Hamiltonian cycles may be recovered from the n → 0 limit of the
FPL(n) model.

Remark 1. The FPL(n) model itself may be viewed as a particular critical point of the
two-dimensional O(n) model. Recall that this latter model describes configurations of
self- and mutually avoiding loops with a weight n per loop and a fugacity x per vertex
visited by a loop. The FPL(n) model is thus recovered within the O(n) model framework
by letting x → ∞ so that all vertices be visited by a loop. As we shall recall later, the
FPL(n) model is intimately linked to the dense critical phase of the O(n) model.

Remark 2. Let us insist on the fact that all the maps that we consider in this paper
are bicolored. As explained in [5, 1], this coloring constraint is crucial when it comes
to identifying the central charge of the associated CFT. We will comment on this in
Remark 10 below.

We also address the question of long-distance contacts within Hamiltonian cycles on
random planar maps. Marking two points at distance N along a cycle splits the latter
into two equal parts, and defines a set of contact links, i.e., edges that are incident to both
parts of the cycle; these contact links can be seen as connected by a dual contact cycle
on the dual map. Their average number scales as Nν , with a new exponent ν depending
on the underlying map family. The values of ν are predicted theoretically by using, for
the proper value of the central charge c, the KPZ formula applied to a similar exponent
on regular (hexagonal or square) lattices, which is (half) the Hausdorff dimension of
contacts within a loop of the regular FPL(n→ 0) model. As we shall see, in the scaling
limit, a bicolored random planar map equipped with a Hamiltonian cycle is expected to
converge to a Liouville quantum gravity (LQG) sphere [6], decorated by an independent
(space-filling) whole-plane Schramm-Loewner evolution SLE8 [7], the dual contact cycle
itself converging to a dual whole-plane SLE2. The LQG parameter is γL = 2/

√
1− γ,

with either γ = γ(c = −1) or γ = γ(c = −2), depending on the chosen map’s family.
These predictions are in the same spirit as those made in Refs. [1, 8, 9].

The paper is organized as follows: Section 2 discusses Hamiltonian cycles on bicolored
planar maps whose all vertices have the same valency and gives our prediction for the
configuration exponent γ in this case. Section 3 deals on the contrary with the case of
maps having several allowed vertex valencies, leading to another value of γ. The pre-
dictions of these two sections are verified numerically in Section 4 by analyzing exact
enumeration results for maps of finite sizes. Section 5 introduces the notion of rigid
Hamiltonian cycles and predicts a configuration exponent different from that of the non-
rigid case. This result is confirmed by the derivation of exact expressions for zN for
arbitrary N . Section 6 addresses the question of long-distance contacts within Hamilto-
nian cycles, whose average number scales as Nν with the exponent ν depending on the
underlying map family. Two possible values of ν are predicted theoretically and then
checked numerically in Section 7. We conclude with a few remarks in Section 8.
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Figure 1: Example of the edge environment of (a) a black vertex and (b) a white vertex. Each
vertex is surrounded by a B-edge, a C-edge and a total of (p−2) A-edges (here p = 7,
m = 2 and m′ = 3).

2. The case of p-regular bicolored maps

Recall that a p-regular map is a map whose all vertices have valency p. This section is
devoted to the enumeration of Hamiltonian cycles on p-regular bicolored planar maps for
a fixed integer p ≥ 3. It includes in particular the case of bicubic maps (p = 3) studied
in [1, 5].
From now on, we therefore assume that p takes a fixed value and we start by considering

the FPL(2) model on p-regular bicolored planar maps. Assigning the weight n = 2 per
loop amounts equivalently to having unweighted oriented loops (the weight 2 arising then
from the 2 possible orientations for each loop). This allows us to define three types of
edges (see Figure 1): the unvisited edges, called A-edges, the edges visited by a loop
whose orientation points toward their white incident vertex, which we call B-edges, and
finally the edges visited by a loop whose orientation points toward their black incident
vertex, which we call C-edges. The configuration of edges around a black vertex is then
that of Figure 1-(a) with an ingoing C-edge, an outgoing B-edge and a total of p − 2
unvisited A-edges which are distributed in all possible ways on both sides of the loop.
Similarly, the configuration of edges around a white vertex is that of Figure 1-(b) with
now an ingoing B-edge, an outgoing C-edge and p− 2 unvisited A-edges.
We may now transform the FPL(2) model into a d-component height model by assigning

a height X ∈ Rd to each face of the map, whose variation ∆X between adjacent faces
depends on the nature of the edge between them according to the rules of Figure 2: we
demand that ∆X = A (resp. B, C) if the crossed edge is of type A (resp. B, C) and
traversed with its incident white vertex on the right. To guarantee that the height is well
defined across the whole map, we have to ensure that we recover the same value of X
after making a complete turn around any vertex of the map. This requires (see Figure 2)
the necessary and sufficient condition:

(p− 2)A + B + C = 0 (3)

which, de facto, implies that X lives in the (B,C) two-dimensional plane. For definite-
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Figure 2: Top: rules for the variation in the height variable X when crossing an edge of the
map. Bottom: making a complete turn counterclockwise (resp. clockwise) around a
black (resp. white) vertex results in a height variation ∆X = (p−2)A+B+C which
for consistency must be taken equal to 0.

ness, we choose d = 2 with B and C two unit vectors of R2 satisfying, say B ·C = −1/2.
In particular, the property |B| = |C| implies that (B −C) · (B + C) = 0 hence, if we
define

b2 := B −C , (4)

we deduce from (3) that A · b2 = 0 and a natural convention consists in expressing our
two-component height variable X in the orthogonal basis (A, b2). In the continuous
limit, we expect that the FPL(2) model is therefore described by the coupling to gravity
of a two-dimensional CFT involving a two-component vector field Ψ = ψ1A+ψ2b2 (i.e.,
with components both along A and along b2) measuring locally the “coarse grained”
averaged value Ψ = 〈X〉 and governed by a free field action for both ψ1 and ψ2, see [1].
We deduce the following:

Claim 3. The FPL(2) model on p-regular bicolored planar maps is described by the
coupling to gravity of a CFT with central charge

c = 2 . (5)

We now wish to understand how this result is modified if we give an arbitrary weight
n to each loop, hence consider the FPL(n) model on p-regular bicolored planar maps.
The case p = 3 of bicubic maps was discussed in details in [1]. There, the underlying
CFT is identified as that describing the FPL(n) model on the honeycomb, i.e., hexagonal
lattice (which is 3-regular and can be bicolored canonically), a model well studied in
[10, 11, 12, 13] by Bethe Ansatz or Coulomb gas techniques. For this lattice model,
the passage from n = 2 to an arbitrary n ∈ [−2, 2] modifies in the continuous limit
the Gaussian free field action by adding a term which couples the component ψ2 of the
two-component field Ψ to the local intrinsic curvature of the underlying surface, while
the action for the component ψ1 remains that of a free field. For n ∈ [−2, 2], the net
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Figure 3: An example of a 4-regular bicolored planar map equipped with a set of fully packed
oriented loops (thick lines). The unvisited edges (thin lines) automatically form a
complementary set of fully packed unoriented loops on the map.

result is a shift of the central charge from c = cfpl(2) = 2 to a lower value c = cfpl(n) [11]
whose expression is recalled just below.
Since the FPL(2) model on p-regular bicolored planar maps has the same two-component

field description for any arbitrary integer p ≥ 3, we expect that the passage from n = 2
to an arbitrary n ∈ [−2, 2] induces the very same lowering of the central charge. This
leads us to express the following statement:

Claim 4. For −2 ≤ n ≤ 2, the FPL(n) model on p-regular bicolored planar maps is, for
arbitrary p ≥ 3, described by the coupling to gravity of a CFT with central charge

c = cfpl(n) := 2− 6
(1− g)2

g
where n = −2 cos(π g) with 0 ≤ g ≤ 1 . (6)

In the n→ 0 limit, we deduce in particular:

Corollary 5. The model of Hamiltonian cycles on p-regular bicolored planar maps is
described by the coupling to gravity of a CFT with central charge

c = cfpl(0) = −1 . (7)

In particular, using KPZ (2), the partition function zN of Hamiltonian cycles on p-regular
bicolored planar maps of size 2N has the asymptotic behavior (1) with

γ = γ(−1) = −1 +
√

13

6
. (8)

This extends the conjecture of [5] (see also [14, 1]) for p = 3 to an arbitrary value of
the integer p ≥ 3.

6



It is interesting to remark that for p = 4 we may arrive at the statements of Claim
4 and Corollary 5 by a different route as follows. For p = 4, each vertex is incident
to exactly 2 unvisited edges: the unvisited edges thus naturally form loops visiting all
the vertices of the bicolored map, see Figure 3. We therefore have by construction
two complementary systems of fully packed loops: the original fully packed loops which
receive a weight n1 = n and the loops formed by the unvisited edges which receive
the neutral weight n2 = 1. The FPL(n) model on 4-regular bicolored planar maps
may therefore be viewed as a particular instance of the coupling to gravity of the so-
called FPL2(n1, n2) model, which involves two complementary fully packed loop systems
with respective weights n1 and n2 on the square lattice (which is 4-regular and can be
bicolored canonically). The FPL2(n1, n2) model on this lattice was studied in details in
[15, 16, 17, 18] by Coulomb gas and Bethe Ansatz techniques. Its central charge was
found to equal cfpl2(n1, n2) = 3 − 6(1 − g1)2/g1 − 6(1 − g2)2/g2 where, for i = 1, 2,
ni = −2 cos(π gi) with 0 ≤ gi ≤ 1. Taking g1 = g as in (6) and g2 = 2/3 so that
(n1, n2) = (n, 1), we recover the value cfpl2(n, 1) = 2− 6(1− g)2/g = cfpl(n) as in Claim
4 and Corollary 5 .
Note that, for p ≥ 5, we can no longer rely on hypothetical results for a fully packed

loop model on some regular lattice, since there exists no such bicolored regular lattice
with p-valent vertices only2. Moreover, for p ≥ 5, there is no canonical way to arrange
the unvisited edges into loops, would it be only for a subset of these unvisited edges.

3. The case of bicolored maps with mixed valencies

In this section, we deal with planar maps whose vertices have valencies within the fixed set
S = {p1, p2, . . . , pk} where k ≥ 2 and where the integers pi satisfy 2 ≤ p1 < p2 < · · · < pk.
Such maps will be generically referred to as maps with mixed valencies. Again we are
interested in evaluating the number of such bicolored maps equipped with a Hamiltonian
cycle, or more generally a set of fully packed loops with a weight n per loop. Since the
(self- and mutually-avoiding) loops visit all the vertices, the underlying maps have by
construction an even size 2N , with exactly N black and N white vertices. The statistical
ensemble that we consider is that with fixed N and with a weight wi ∈ R+ attached to
each vertex with valency pi. We insist here on the fact that the numbers mi of vertices
of valency pi are not fixed individually but that their sum m1 + m2 + · · · + mk = 2N
is fixed. We call zN the associated partition function with, as before, a marked visited
edge. The partition function zN depends implicitly on the set S and on the weights wi.
Note that, since wi > 0 for all i ∈ {1, . . . , k}, we expect the average number of vertices
〈mi〉 = wi

∂
∂wi

LogzN to be of order N for all i’s, i.e., extensive for each valency pi.

As in the previous section, we start by studying the FPL(2) model on our bicolored
maps with mixed valencies and fixed size 2N . As before, the weight 2 per loop can be
realized by orienting the loops, and we may again describe alternatively the configurations
by a d-component height variable X ∈ Rd defined from the loop content according to

2For p = 6, a natural candidate with only 6-regular vertices is the triangular lattice but this lattice is
not bicolorable.
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the rules of Figure 2-top. Note that configurations where valencies belong only to a
proper subset of S may appear. However, since all weights wi, i ∈ {1, 2, . . . , k} have
been chosen to be strictly positive, the asymptotic behavior of the partition function
zN is exponentially dominated by configurations where all valencies are macroscopically
present. Considering two different valencies, say pi1 and pi2 , we must, in order to have a
well defined uni-valued height, impose simultaneously the two conditions (pi1−2)A+B+
C = 0 (necessary around a vertex of valency pi1) and (pi2−2)A+B+C = 0 (necessary
around a vertex of valency pi2). Since we assumed pi1 6= pi2 , these two conditions imply

A = 0 and B + C = 0 . (9)

This now implies that X stays colinear to B, or equivalently to b2 := B −C = 2B. In
the continuous limit, we expect that the FPL(2) model is now described by the coupling
to gravity of a two-dimensional CFT involving a one-component field Ψ = ψ2b2 (i.e.,
with a components along b2 only, so that we may in practice fix d = 1) measuring as
before the “coarse grained” averaged value Ψ = 〈X〉 and governed by a Gaussian free
field action. This leads us to the following:

Claim 6. The FPL(2) model on bicolored planar maps with mixed valencies is described
by the coupling to gravity of a CFT with central charge

c = 1 . (10)

As for the case of arbitrary n ∈ [−2, 2], the action of the associated continuous CFT
is again obtained by adding to the free field action for ψ2 a term which couples it to
the local intrinsic curvature of the underlying surface. Since there is no component ψ1

anymore, the obtained central charge becomes equal to c = cdense(n) := cfpl(n)− 1. We
arrive at:

Claim 7. For −2 ≤ n ≤ 2, the FPL(n) model on bicolored planar maps with mixed
valencies is described by the coupling to gravity of a CFT with central charge

c = cdense(n) := 1− 6
(1− g)2

g
where n = −2 cos(π g) with 0 ≤ g ≤ 1 . (11)

In the n→ 0 limit, we deduce in particular:

Corollary 8. The model of Hamiltonian cycles on bicolored planar maps with mixed
valencies is described by the coupling to gravity of a CFT with central charge

c = cdense(0) = −2 . (12)

In particular, using KPZ, the associated partition function zN has the asymptotic behavior
(1) with

γ = γ(−2) = −1 . (13)

8



Figure 4: Representation of a Hamiltonian cycle (after opening its marked visited edge) as an
infinite straight line with alternating black and white vertices, connected by non-
crossing bicolored arches on both sides of the infinite line. Top: example in the
p-regular case with p = 5. Bottom: example in the case of mixed valencies 3 and 4,
i.e., k = 2 and S = {3, 4}.

Remark 9. The denomination “dense” refers to the fact that the value cdense(n) of the
central charge is precisely that associated with the two-dimensional O(n) model in its
dense critical phase, where the number of occupied vertices is macroscopic, with loops
being no longer required to visit all the vertices (see Section 6.1 for a detailed discussion).
Here we recover this value even though, in our problem, loops by definition visit all
vertices. The randomness due to the multiple choice of valencies somehow erases the
full-packing constraint, which corresponds to an unstable manifold in the parameter
space of the O(n) model [11].

Remark 10. Note that a similar reduction in the central charge from cfpl(n) to cdense(n) =
cfpl(n)−1 would be observed for p-regular maps in the absence of the bicoloring constraint.
Indeed, in that case, it is no longer possible to distinguish the two sides of an A-edge
(see Figure 2-top), which forces one to set A = 0 and thus B + C = 0 as in (9); see [1]
for a detailed discussion in the 3-regular map case.

4. Numerical verification

In order to verify the claims of Corollaries 5 and 8, we performed a direct numerical
enumeration of Hamiltonian cycles on various p-regular map families as well as on various
families of maps with mixed valencies. In all cases, by cutting the Hamiltonian cycle
at the level of its marked visited edge and opening it into a straight line, we obtain a
configuration of the form of that in Figure 4, with an infinite line carrying 2N alternating
black and white vertices. A vertex of valency pi leads to a total number (pi − 2) of
incident unvisited half-edges distributed in all possible ways on both sides of the infinite
line. Finally, these half-edges are connected in pairs so as to form a set of bicolored
non-crossing arches. To obtain the value of the number of possible configurations zN for
a given map family, we use a transfer matrix approach, generalizing that of [1], in which

9
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0
} `u = 14

}
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00 `d = 5

T◦

11
1

Figure 5: Illustration of the transfer matrix method in the case of mixed valencies with S =
{3, 4}. Here we display one of the possible outcomes for the action of the elementary
transfer matrix T◦ at the crossing of a white vertex.

the arch configurations are built from left to right along the straight line of alternating
black and white vertices. A transfer matrix state is described by the color sequence of
those arches which have been opened but not yet closed, each arch inheriting the color
of the vertex it originates from (see Figure 5). The upper arch color sequence is read
from bottom to top and the lower one from top to bottom. A sequence of s arches with
colors a1, . . . , as (where we choose aj = 1 for black and 0 for white) is encoded by the
integer ` = 2s +

∑s
j=1 aj2

(j−1) so that a transfer matrix intermediate state is coded by
two positive integers `u (upper sequence) and `d (lower sequence) and denoted as |`u, `d〉.
With these notations, the partition function zN may be written as

zN = 〈1, 1|(T◦T•)N |1, 1〉 (14)

where |1, 1〉 correspond to the empty configuration (the vacuum state) while T• and T◦
are two elementary transfer matrices transferring the state respectively across a black
and a white vertex. Note that, for N even, we may write

zN =
∑
`u,`d

〈1, 1|(T◦T•)N/2|`u, `d〉〈`u, `d|(T◦T•)N/2|1, 1〉

=
∑
`u,`d

(
〈`u, `d|(T◦T•)N/2|1, 1〉

)2
,

(15)

where the sum is over the finite number of reachable states after N steps (N/2 of each
color). Here we used the symmetry of the problem under combined left-right reversal
and black-white inversion of vertex colors. Similarly, for N odd, we have

zN =
∑
`u,`d

〈1, 1|(T◦T•)(N−1)/2T◦|`u, `d〉〈`u, `d|T•(T◦T•)(N−1)/2|1, 1〉

=
∑
`u,`d

(
〈`u, `d|T•(T◦T•)(N−1)/2|1, 1〉

)2
.

(16)
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b̃(3)

2− γ = 13+
√
13

6

N

b̄(3)

Figure 6: Estimates of 2 − γ for Hamiltonian cycles on 3-regular bicolored planar maps, as
obtained from the associated accelerated series b̃(3)N and b̄(3)N defined in (17) and (18).
These estimates confirm and extend the results of [5] and [1].

We therefore see that, for both parities and for a total size 2N of the map configuration,
we only have to perform the action of N elementary transfer matrices.
From zN , we may obtain µ and γ in (1) as the limits of appropriate sequences: for

instance the sequence
bN := N2 Log

zN+2zN
(zN+1)2

(17)

tends to 2 − γ for N → ∞. We may therefore get an estimate for γ from the value of
bN for some finite, large enough, N . To get a better estimate, we also have recourse to
series acceleration methods, involving sequences constructed from bN by recursive use of
the finite difference operator ∆ (defined by (∆f)N := fN+1 − fN ) and which converge
faster to the same limit 2−γ as N →∞. In practice, we use the two “accelerated” series
b̃N and b̄N defined as3

b̃N :=
1

3!
(∆3 b̂)N with b̂N := N3bN ,

b̄N := bN+2 − 2
(∆b)N+2(∆b)N+1

(∆2 b)N+1
.

(18)

Appendix B presents our numerical results for the enumeration of zN . More precisely,
we deal with the following map families:

- p-regular bicolored planar maps for p = 3, 4, . . . , 7;

- bicolored planar maps with mixed valencies for S = {2, 3}, {2, 4} with weights
w2 = w3 = w4 = 1 and for S = {3, 4} with (w3, w4) = (1, 1), (1, 2) and (2, 1).

From these values, we extract the estimates of µ2 listed in Table 1.
Figures 6 and 7 present our estimates of 2− γ for the p-regular bicolored planar maps

with p = 3 and p = 4 to 7 respectively (for each p, we denote by b(p)N the associated series
3The two series are defined so that their N ’th element involves values of zM for M up to N + 5.
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b̃(4)

2− γ = 13+
√
13

6

N

b̄(4)
b̃(5)

b̄(5)
b̃(6)

b̄(6)
b̃(7)

b̄(7)

Figure 7: Estimates of 2 − γ for Hamiltonian cycles on p-regular bicolored planar maps, as
obtained from the associated accelerated series b̃(p)N and b̄(p)N for p = 4, 5, 6, and 7.

p-regular maps µ2 maps with mixed valencies µ2

3-regular 10.113± 0.001 {2, 3} (w2 = w3 = 1) 16.204± 0.001
4-regular 41.60± 0.02 {2, 4} (w2 = w4 = 1) 49.9± 0.1
5-regular 117.0± 0.2 {3, 4} (w3 = w4 = 1) 86.02± 0.05
6-regular 265.5± 1. {3, 4} (w3 = 1 , w4 = 2) 244.0± 0.2
7-regular 522.8± 2. {3, 4} (w3 = 2 , w4 = 1) 151.0± 0.2

Table 1: Estimated values of the exponential growth factor µ2.

(17)). These estimates are in perfect agreement with the expected value γ = −(1+
√

13)/6
of Corollary 5.
Figure 8 presents our estimates of 2−γ for bicolored planar maps with mixed valencies

for S = {2, 3} and {2, 4} (with all weights wi = 1) while Figure 9 presents our estimates
for bicolored planar maps with mixed valencies in S = {3, 4} with (w3, w4) = (1, 1), (1, 2)
and (2, 1) respectively. The estimates now agree with the expected value γ = −1 of
Corollary 8.

5. Rigid Hamiltonian cycles on 2q-regular bicolored planar
maps

5.1. Definition and properties

Let us now discuss a restricted class of Hamiltonian cycles, or more generally of fully
packed loops, which, as in [19], we call rigid. Those are defined as follows: a rigid fully
packed loop (RFPL) configuration is a set of fully packed loops on a 2q-regular bicolored
planar map, with q ≥ 2 a fixed integer, such that, at each vertex, the unvisited edges are
equally distributed on both sides of the loop, i.e., with exactly (q − 1) of them on each
side, see Figure 10. As before, each loop receives a weight n: this defines the RFPL(n)
model on 2q-regular bicolored planar maps. Again the n→ 0 limit selects configurations
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b̃(23)

2 − γ = 3

N

b̄(23)
b̃(24)

b̄(24)

Figure 8: Estimates of 2 − γ for Hamiltonian cycles on bicolored planar maps with mixed va-
lencies in S = {2, 3} (accelerated series b̃(23)N and b̄

(23)
N with w2 = w3 = 1) and in

S = {2, 4} (accelerated series b̃(24)N and b̄(24)N with w2 = w4 = 1).

2 − γ = 3

N

b̃(34)

b̄(34)

(1, 1) (1, 2) (2, 1)(w3, w4)

Figure 9: Estimates of 2 − γ for Hamiltonian cycles on bicolored planar maps with mixed va-
lencies in S = {3, 4} with (w3, w4) = (1, 1), (1, 2) and (2, 1) respectively.
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} q − 1

}
q − 1

} q − 1

}
q − 1

Figure 10: Example of the edge environment of a black and of a white vertex in the RFPL
model. Each vertex is traversed by a loop (thick edges) in such a way that there are
exactly q − 1 unvisited edges (thin edges) on each side of the loop (here q = 4).

of rigid Hamiltonian cycles, i.e., configurations with a single self-avoiding loop visiting
all the vertices of the map.
For 2q = 4, a rigid Hamiltonian cycle configuration is what was called a meandric

system in [20, 9]. Note that a 4-regular planar map equipped with a rigid Hamiltonian
cycle is automatically bicolorable.
Let us again start with the RFPL(2) model, corresponding to (unweighted) oriented

loops. As we did in Section 2, we may distinguish A- (unvisited), B- (visited oriented
towards a black vertex) and C- (visited oriented towards a black vertex) edges, which
allows us to assign a d-component heightX ∈ Rd to each face of the map, whose variation
∆X between adjacent faces depends on the nature of the edge between them according
to the rules of Figure 2. As before, this height is well-defined by requiring the necessary
and sufficient condition (corresponding to (3) for p = 2q):

2(q − 1)A + B + C = 0 (19)

which, de facto, fixes d = 2, with X living in the (B,C)-plane with B and C two
unit vectors with, say B · C = −1/2. As before, it is convenient to express X in the
orthogonal basis (A, b2), with b2 := B − C and, as in Section 2, write the associated
coarse grained average value Ψ = 〈X〉 as a two-component vector field Ψ = ψ1A+ψ2b2
with components both along A and along b2. Reproducing the arguments of Section 2, it
would be tempting to infer that the results of Claims 3 and 4 hold, i.e., that the RFPL(n)
model is the coupling to gravity of a CFT of central charge cfpl(n). We will now argue
that this conclusion is actually incorrect and that the RFPL(n) model is the coupling to
gravity of a CFT of central charge cdense(n) = cfpl(n)− 1. Indeed, even though we may
define the coordinate ψ1 in the A direction, the value of this coordinate is in practice
frozen, equal to a fixed value (which we may take equal to 0) on the entire map. We thus
state:

Proposition 11. The two-component vector field Ψ varies only via its coordinate ψ2

along the b2 direction, which makes it in practice a one-component vector field.

14



This de facto reduces the central charge by 1, hence we arrive at:

Claim 12. For −2 ≤ n ≤ 2, the RFPL(n) model on 2q-regular bicolored planar maps is
described by the coupling to gravity of a CFT with central charge

c = cdense(n) = 1− 6
(1− g)2

g
where n = −2 cos(π g) with 0 ≤ g ≤ 1 . (20)

In the n→ 0 limit, we deduce in particular:

Corollary 13. The model of rigid Hamiltonian cycles on 2q-regular bicolored planar
maps is described by the coupling to gravity of a CFT with central charge

c = cdense(0) = −2 . (21)

In particular, using KPZ (2), the associated partition function zN has the asymptotic
behavior (1) with

γ = γ(−2) = −1. (22)

5.2. Proof of Proposition 11

Proof. The following argument is a generalization to arbitrary q of that given in [14,
Sect. 11.3] for the case q = 2. The first remark is that the set of faces of a bicol-
ored p-regular planar map is naturally split into p subsets as follows4: pick a reference
face f0 and label each face f of the map by `(f) = (L(f) mod p) + 1 where L(f) is
the number of crossed edges of any path connecting f0 to f and traversing only edges
with their white vertex on the right (or equivalently turning clockwise around white ver-
tices and counterclockwise around black ones). It is easily seen that L(f) is indeed
independent on the chosen path. This splits the set of faces into p-subsets which we
denote by F1,F2, . . . ,Fp where Fj is the set of faces labelled j. Moreover, it is easily
seen that, by construction, the cyclic order of the labels is (1, 2, . . . , p) both clockwise
around white vertices and counterclockwise around black ones. For p = 2q, we may
instead use labels ` ∈ {1, 2, . . . , q, 1̂, 2̂, . . . , q̂} so that the subsets are now denoted by
F1,F2, . . . ,Fq,F1̂,F2̂, . . . ,Fq̂ and the cyclic order of the labels is (1, 2, . . . , p, 1̂, 2̂, . . . , q̂).
In the presence of rigid fully packed oriented loops, we may finally choose the face f0 so
that the loops always separate faces in F1 from faces in Fq̂ and faces in F1̂ from faces in
Fq (it is enough to impose this property at one vertex and, since the loops are rigid, it
automatically propagates5 to all the vertices), see Figure 11 for an example in the case
q = 3.

4The reader might be more familiar with the dual picture: bicolored p-regular planar maps are dual
to planar Eulerian p-angulations (with bicolored black and white faces all of valency p), a particular
instance of p-constellations [21].

5Note that the set F1 ∪ F1̂ needs not be connected. Still, one can check that the property propagates
from one connected component to the other. This is because the edges separating Fj from Fj−1 and
Fĵ from F

ĵ−1
for any given j ∈ {2, . . . q} also form a set of rigid fully packed loops.
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Figure 11: The splitting of the face set into subsets F1,F2,F3,F1̂,F2̂,F3̂ for a 6-regular bicol-
ored planar map. The order of appearance of the faces is (1, 2, 3, 1̂, 2̂, 3̂) clockwise
around white vertices and counterclockwise around black vertices (as shown the up-
per right corner) and, in the presence of rigid fully packed loops, we may chose the
numbering so that the loops always separate faces labelled 1 from faces labelled 3̂
and faces labelled 1̂ from faces labelled 3.

q1

∆X1→1̂=(q−1)A+B

= +1
2(B−C)

q̂ 1̂
2̂

2

q1

q̂ 1̂
2̂

2

∆X1→1̂=(q−1)A+C

= −1
2(B−C)

q 1

q̂1̂
2̂

2

q 1

q̂1̂
2̂

2

Figure 12: The change of height ∆X1→1̂ at a given vertex when going from the face with label
1 to that, opposite, with label 1̂ is given by ∆X1→1̂ = (q − 1)A + B or ∆X1→1̂ =
(q − 1)A + C depending on the orientation of the loop. From the relation (19),
∆X1→1̂ is therefore equal to ± 1

2 (B −C) = ± 1
2b2, with no component along the A

direction.
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Focusing now on the subset F1∪F1̂, we observe that, as shown in Figure 12, the change
of height ∆X1→1̂ when going from of the face with label 1 to that with label 1̂ at a given
vertex is always given by

∆X1→1̂ = ±1

2
(B −C) = ±1

2
b2 , (23)

with a sign depending on the orientation of the loop. Note finally that, at any given
vertex, the change of height ∆X`→ˆ̀ when going from the incident face with label ` to
that with label ˆ̀ is in practice independent of `: all in all, the coarse grained height Ψ
(whatever its precise definition) has only variations in the b2 direction.

5.3. Exact enumeration

The fact that γ = γ(−2) = −1 for rigid Hamiltonian cycles on 2q-regular bicolored
planar maps may be checked by an exact enumeration of the allowed configurations. By
embedding the map on the Riemann sphere, i.e., opening the cycle into a straight line
of alternating black and white vertices, we immediately see that the rigidity constraints
(imposing that the number of unvisited edges incident to any vertex is (q − 1) on each
side of the straight line) allows us to write by symmetry

zN = c2
N , (24)

where cN enumerates configurations of non-crossing bicolored arches connecting the black
and white vertices on one side of the straight line only, each vertex being incident to
exactly (q − 1) arches, see Figure 13-top for an illustration.
As for cN , it is easily evaluated from the following argument: start by splitting each

vertex into (q−1) copies of the same color, with one arch incident to each copy, the choice
of the arch to be connected being entirely dictated by the non-crossing constraint of the
arches. We now have a sequence made of N groups of (q − 1) successive black vertices
alternating with N groups of (q − 1) successive white vertices. In a given monocolor
group of size (q − 1), we may label the vertices from 1 to (q − 1) from left to right: the
non-crossing constraint imposes that a black vertex with label j is necessarily connected
to a white vertex with label (q − j) for any j ∈ {1, . . . , q − 1}, see Figure 13-middle.
Looking now at the (q− 1) first black vertices on the left, denoted by u1, . . . , uq−1 (so

that uj has the abovementioned label j) and calling vq−j the white vertex to which uj is
connected (so that vq−j has the abovementioned label (q− j)), these latter vertices split
the remaining 2(q − 1)(N − 1) vertices into subsequences respectively between uq−1 and
v1, between v1 and v2, . . ., between vq−2 and vq−1, and finally to the right of vq−1. This
yields a total of q subsequences of non negative integer lengths 2(q−1)m1, . . . , 2(q−1)mq

respectively with mj ≥ 0 for j = 1, . . . , q. Due to the presence of the (q− 1) first arches,
each of these q subsequences is separated from the others: in particular, the pairing by
arches of the vertices takes place independently within each subsequence. Moreover, at
the price of a cyclic permutation of its vertices, the j-th subsequence is made ofmj groups
of (q− 1) successive black vertices alternating with mj groups of (q− 1) successive white
vertices, see Figure 13-bottom. The number of possible arch configurations for the j-th
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Figure 13: Top: an example of rigid Hamiltonian cycle on a 2q-valent bicolored planar map
(here with q = 3), after opening it into a straight line of alternating black and white
vertices. The upper and lower parts are independent arch systems, both enumerated
by cN . Middle: alternative representation of the upper arch system after splitting
each vertex into (q − 1) successive copies of the same color. A black (resp. white)
vertex labelled j is connected to a white (resp. black) one labelled q − j (here with
q = 3 and j = 1, 2). Bottom: schematic picture of the decomposition of an arch
configuration enumerated by c(x) (with a weight x per group of q arches) into q
sequences of arch configurations, each of them also enumerated by c(x). Note that
the order of colors within different subsequences is always the same, up to a cyclic
permutation.

subsequence is therefore given by cmj (independently of the required cyclic permutation).
We arrive at the recursion relation

cN =
∑

m1,...,mq≥0

m1+···+mq=(N−1)

q∏
j=1

cmj , N ≥ 1 (25)

with the convention c0 = 1. Introducing the generating function c(x) :=
∑

N≥0 cN x
N ,

we deduce that
c(x) = 1 + x (c(x))q , (26)

where we recognize the equation determining the generating function c(x) of the q-th
generalized Fuss-Catalan numbers [22]

cN =
1

(q − 1)N + 1

(
q N

N

)
, N ≥ 0 . (27)

In particular, when q = 2, we recover the celebrated Catalan numbers. As a consequence
of (27), we get

zN =

(
1

(q − 1)N + 1

(
q N

N

))2

∼
N→∞

q

2π(q − 1)3

(
qq

(q−1)q−1

)2N

N3
. (28)
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As expected, zN has the asymptotic behavior (1) with

γ = γ(−2) = −1 , µ =
qq

(q − 1)q−1
and κ =

q

2π(q − 1)3
. (29)

6. Long-distance contacts within Hamiltonian cycles

6.1. Scaling limits of the O(n) and FPL(n) models on regular lattices

It is widely believed that the scaling limit of the critical O(n) model on two dimen-
sional regular (e.g., hexagonal or square) lattices is described by the celebrated Schramm-
Loewner evolution SLEκ [7, 23], and its collection of critical loops by the so-called con-
formal loop ensemble CLEκ [24]. This conformally invariant random process depends on
a single parameter κ ≥ 0, which in the O(n) model case is κ = 4/g [24, 25, 26, 27] so
that :

n = −2 cos(4π/κ), κ ∈ [8/3, 4] for the dilute critical point,
κ ∈ (4, 8] for the dense critical phase.

(30)

For n ∈ (0, 2], one has κ ∈ (8/3, 8), i.e., the range for which CLEκ is defined, whereas
the SLEκ process is actually defined for κ ∈ [0,∞). Note that for n → 0, in the dilute
case, the limit of CLEκ as κ ↘ 8/3 is SLE8/3 and, in the dense case, the limit of
CLEκ as κ ↗ 8 is space-filling SLE8. The full critical O(n) model range n ∈ [−2, 2]
corresponds to κ ∈ [2,∞) SLEκ paths, which are always non self-crossing, are simple,
i.e., non-intersecting when κ ∈ [0, 4], and non-simple when κ ∈ (4,∞) [23].
This scaling limit has been rigorously established in several cases: the uniform span-

ning tree for which n = 0, g = 1/2, κ = 8 [28]; the loop-erased random walk for which
(formally) n = −2, g = 2, κ = 2 [28, 29]; the contour lines of the discrete Gaussian
free field, for which n = 2, g = 1, κ = 4 [30]; critical site percolation on the triangular
lattice [31, 32], for which n = 1, g = 2/3, κ = 6; the critical Ising model and its asso-
ciated Fortuin-Kasteleyn random cluster model on the square lattice [33, 34] for which,
respectively, n = 1, g = 4/3, κ = 3 and n =

√
2, g = 3/4, κ = 16/3.

The associated SLEκ central charge is then

c = csle(κ) :=
1

4
(6− κ)

(
6− 16

κ

)
∈ (−∞, 1] for κ > 0 . (31)

Notice the invariance of the central charge (31) under the SLEκ duality [35, 25, 26, 36, 37],

κ↔ 16/κ =: κ̃ . (32)

The geometrical interpretation of this duality is as follows. In the scaling limit, loops
in the dense O(n) model are non-simple paths of Hausdorff dimension [38, 39] D =
1 + (2g)−1 = 1 + κ/8 > 3/2 for g ∈ [1/2, 1), κ ∈ (4, 8] ; their external perimeters are
simple critical paths of Hausdorff dimension [35] D̃ = 1 + g/2 = 1 + κ̃/8 < 3/2. These
Hausdorff dimensions thus satisfy the universal duality relation

(D − 1)(D̃ − 1) =
1

4
, (33)
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which has been directly established for critical percolation [40]. Non-simple SLEκ paths
for κ ∈ (4, 8] have indeed been proven to have for outer boundaries dual simple SLEκ̃
paths, with κ̃ = 16/κ ∈ [2, 4) [36, 37].
The so-called watermelon exponents (conformal weights) corresponding to the merging

of a number ` of conformally invariant SLEκ paths [26], in particular of ` critical lines in
the (dense or dilute) O(n) model with n as in (30) are given by [38, 39, 41, 42, 43, 44,
45, 46, 47]

h
(κ)
` =

1

16κ

[
4`2 − (4− κ)2

]
, ` ∈ Z+. (34)

As anticipated above, the Hausdorff dimension of SLEκ is [48]

D = inf{2(1− h(κ)
2 ), 2} = inf{1 + κ/8, 2} . (35)

The fully-packed FPL(n) model on the hexagonal lattice [11, 12, 13] or on the square
lattice [15, 16] is related to the corresponding dense O(n) model via a shift of its central
charge by one unit as in (6) and (11). The watermelon exponents for an even number
of paths are the same in FPL(n) and dense O(n) models, and in particular the 2-leg
exponent which gives the Hausdorff dimension of the paths, whereas those for a odd
number of paths differ both on the hexagonal (7) [11, 12, 13], and on the square (�)
[15, 16] lattices,

h
fpl(n)
2k = h

(κ)
2k ,

h
fpl(n)
2k−1 = h

(κ)
2k−1 +

3

4κ
(7),

h
fpl(n)
2k−1 = h

(κ)
2k−1 +

1

6 + κ
(�), k ∈ Z+.

(36)

Even in the presence of the mismatch of central charges (6) and (11), one is thus led to
conjecture [1, 8, 9] that the scaling limit of the fully-packed FPL(n) loop model itself on
the honeycomb or square lattices is described by a conformal loop ensemble CLEκ, with
κ corresponding to the dense O(n) model phase [10, 11, 12, 13, 15, 16],

κ =
4π

arccos(−n/2)
∈ (4, 8] for n ∈ [0, 2) . (37)

6.2. Scaling limit for Hamiltonian cycles

Let us now consider the FPL(n = 0) case of a single Hamiltonian cycle C with 2N
vertices, drawn on the regular bicolored hexagonal (or square) lattice, with the sphere
topology. Marking two points at distance N along C splits this cycle into two equal parts
Ci, i = 1, 2 such that C = C1 ∪C2. They are separated by a single closed path C̃ drawn on
the dual triangular lattice, that crosses the whole set of contacts links, i.e., edges incident
to a vertex in C1 and to one in C2. We write C̃ = C1 ∩C2 by a slight abuse of notation. In
the spherical topology, this dual path can be viewed as the common external perimeter
shared by each of the two halves Ci, i = 1, 2 of C (see Figure 14).
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Figure 14: On the hexagonal lattice with the spherical topology, the two (red and green) halves
C1 and C2 of a Hamiltonian cycle C = C1 ∪ C2 are separated by a (dotted) dual loop
C̃ = C1 ∩ C2 on the dual lattice that crosses the whole set of their contact links. This
separatrix can be seen as the external perimeter of each half of C. A point along that
dual loop can be viewed as the origin of either ` = 4 compact O(n = 0) half-lines,
or of ` = 2 dual half-lines. In the scaling limit, the fully-packed loop C converges to
space-filling SLEκ=8 with Hausdorff dimension D = 2, and its fractal contact set C̃
to whole-plane SLEκ̃=2, with Hausdorff dimension D̃ = 5/4.

In the scaling limit, one has g = 1/2, κ = 8, so the cycle C should converge to a
conformally invariant SLE8 path drawn on the Riemann sphere, which is a Peano curve,
i.e., a space-filling curve with Hausdorff dimension D = 2. By duality (32) (33), the path
C̃ should then converge to a whole-plane SLE2 curve with Hausdorff dimension D̃ = 5/4.
This can be directly checked by observing that a contact point on C̃ can be viewed

as the origin of ` = 4 fully-packed n = 0 lines, i.e., in the scaling limit, that of ` = 4
space-filling SLE8 paths, as well as the origin of ` = 2 SLE2 dual paths, with identical
conformal weights (34)

h1∩2 := h
fpl(0)
`=4 = h

(κ=8)
`=4 = h

(κ̃=2)
`=2 =

3

8
. (38)

The expected number |C̃| = |C1 ∩ C2| of contact links between the two halves of Hamil-
tonian cycle C, in a large domain D of area A = |D| on the regular bicolored lattice, is
then given, in the scaling limit, by

E |C1 ∩ C2| � AD̃/2 = A1−h1∩2 , h1∩2 = 3/8, A→∞ , (39)

where the asymptotic equivalence � means that the ratio of logarithms tends to 1.

6.3. Coupling to quantum gravity

Random planar maps, as weighted by the partition functions of critical statistical models,
are widely believed to have for scaling limits Liouville quantum gravity (LQG) coupled to

21



the conformal field theory describing these critical models [2, 3, 4], or, equivalently, to the
corresponding SLE processes [49, 50, 51, 6]. The continuum description of the random
planar map area involves a (regularized) Liouville quantum measure d2x : eγLϕL(x) :
in terms of a Gaussian free field (GFF) ϕL [52], possibly weighted as in the Liouville
action [2, 3, 4]. For the coupling to gravity of a CFT with central charge c, the Liouville
parameter γL is [2, 3, 4, 6, 49, 50, 51]

γL = γL(c) :=
1√
6

(√
25− c−

√
1− c

)
∈ (0, 2] for c ∈ (−∞, 1] . (40)

An Euclidean fractal measure associated with a set of Hausdorff dimension D = 2(1−h)
is transformed in LQG into a quantum fractal measure, via a local multiplicative factor
of the form : eαϕL : with α := γL(1−∆), where the quantum scaling exponent ∆ is the
analogue of the Euclidean scaling exponent h [3, 4, 51]. It is given by the celebrated KPZ
relation [2],

∆ = ∆(h, c) :=

√
1− c+ 24h−

√
1− c√

25− c−
√

1− c
, (41)

in terms of the original scaling exponent h (e.g., conformal weight) of the CFT of central
charge c. Eq. (41) can be inverted with the help of the Liouville parameter (40) as the
simple quadratic formula,

h(∆) =
γ2
L

4
∆2 +

(
1− γ2

L

4

)
∆ . (42)

Its rigorous proof [52, 53, 54, 55] rests on the assumption that the GFF or Liouville
field ϕL and (any) random fractal curve (possibly described by a CFT) are independently
sampled.
The other KPZ result (2) for γ(c), the configuration or “string susceptibility exponent”

γ = 1− 4/γ2
L, (43)

or equivalently (40) for γL(c), gives the precise coupling between the LQG and CFT or
SLE parameters. By substituting the SLE central charge c = csle(κ) (31), one indeed
obtains the simple expressions

γ = 1− sup{4/κ, κ/4}, γL = inf{
√
κ,
√

16/κ} . (44)

This has been rigorously established in the probabilistic approach by coupling the Gaus-
sian free field in LQG with SLE martingales [49, 51]. In the scaling limit, random
cluster models on random planar maps can then be shown to converge (in the so-called
peanosphere topology of the mating of trees perspective) to LQG-SLE [6, 56].
This matching property (44) of γ, γL and κ applies to the scaling limit of the critical,

dense or dilute, O(n) model on a random planar map, as well as to the fully-packed
FPL(n) model on random (non bicolored) cubic maps [1]. In the case of the fully-packed
model on random bicolored maps, this also holds in the case of mixed valencies (Claim
(7)), or in the rigid case of 2q-regular maps (Claim (12)), with

c = cdense(n) = csle(κ) . (45)
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However, for random bicubic planar maps, as seen in Ref. [1], and for the general non-
rigid case of p-regular bicolored planar maps (Claim (4)), the correspondence (44) no
longer holds, and one then has a mismatch [8, 9], with (45) replaced in (2), (40) and (41)
by

c = cfpl(n) = 1 + csle(κ) , (46)

with κ still given by (37). Note that the constraint c ≤ 1 in the KPZ relations restricts
the loop fugacity of the FPL(n) model on a bicubic map to the range n ∈ [0, 1] with
κ ∈ [6, 8], while the complementary range n ∈ (1, 2) with κ ∈ (4, 6) is likely to correspond
to random tree statistics.
A coupling between LQG and SLE with such mismatched parameters has yet to be

described rigorously. Following [1], we can simply conjecture here that for n ∈ [0, 1] the
scaling limit of the FPL(n) model on a bicolored p-regular planar map with no rigid
condition, will be given by CLEκ [6], with κ ∈ [6, 8] as in (37), on a γL-LQG sphere with
Liouville parameter

γL =
1√
12

(√
3

(
κ+

16

κ

)
+ 22−

√
3

(
κ+

16

κ

)
− 26

)
, (47)

in agreement with conjectures proposed in [8, 9].

Figure 15: On a random bicubic planar map with the spherical topology, the two (red and green)
halves C1 and C2 of a Hamiltonian cycle C = C1 ∪ C2 are separated by a (dotted)
dual loop C̃ = C1 ∩ C2 on the dual map that crosses the whole set of their nearest
neighbour contact links. In the scaling limit, the random map, the fully-packed loop
C and the separatrix C̃ converge (in the peanosphere topology [6]) to a γL-LQG
sphere decorated by a space-filling SLE8 and a whole-plane SLE2. In the case of this
(p = 3)-regular bicolored map, c = −1 and γL = 1√

3

(√
13− 1

)
.

6.4. Hamiltonian cycles and LQG

The FPL(n = 0) model on a random planar map converges to space-filling SLEκ=8

coupled to Liouville quantum gravity, the scaling limit of a Hamiltonian cycle in the
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spherical topology being SLE8 decorating an independent γL-LQG sphere (for a proper
definition, see [6, 57, 58]), with a Liouville parameter and a central charge depending
on the choice of the map’s vertex statistics. In the case of generic (i.e., non-bicolored)
cubic maps [1], of bicolored maps with vertices of mixed valencies (Corollary (8)), and of
2q-regular bicolored maps with a local rigidity condition (Corollary(13)), we have from
(44) and (45) for κ = 8,

γL =
√

2, γ = −1, c = −2 . (48)

In the case of bicubic maps [1] or, more generally, of p-regular bicolored maps (Corollary
(5)) we have from (46) and (47) for κ = 8,

γL =
1√
3

(√
13− 1

)
, γ = −1 +

√
13

6
, c = −1 . (49)

Let us consider the set C̃ = C1 ∩ C2 of contact points between the two halves of the
Hamiltonian cycle C = C1 ∪ C2, on a bicolored random planar map of fixed size 2N (see
Figure 15). In the thermodynamic limit N →∞, and after rescaling, this set converges
(in the peanosphere topology [6]) to the intersection of the two halves of an infinite
SLE8 path, i.e., a whole-plane SLE2, decorating a quantum sphere of fixed γL-LQG area
A [6, 57, 58]. An SLEκ=2 quantum length measure [51, 6] based on the SLE natural
parametrization [59] is associated in the scaling limit with the cardinal |C̃| = |C1 ∩ C2|.
Its expectation scales as

ELQG|C1 ∩ C2| � Aν := A1−∆1∩2 , (50)

an expression entirely similar to the scaling form (39), but now with a quantum exponent
∆1∩2 := ∆(h1∩2, c) given by the KPZ relation (41) in terms of h1∩2 = 3/8 (38). Its value
thus crucially depends on the central charge c, i.e., on the choice of vertex statistics on
the bicolored map. For case (48), we find

∆1∩2 = ∆(3/8, c = −2) = 1/2 ,

ν = 1−∆1∩2 = 1/2 ;
(51)

whereas in case (49) we predict

∆1∩2 = ∆(3/8, c = −1) =

√
11−

√
2√

26−
√

2
,

ν = 1−∆1∩2 =

√
26−

√
11√

26−
√

2
= 0.483715 · · · .

(52)

These two predictions for ν will now be tested numerically using extrapolations from
exact enumerations.

7. Numerics for long-distance contacts

Our Hamiltonian cycles have a marked visited edge e. We may thus label all the vertices
by their natural order along a cycle C, starting from the black vertex incident to e
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(labelled 1) and ending at the white vertex incident to e (labelled 2N if the map has size
2N). This allows us to canonically define the two half-cycles C1 and C2 as the parts of C
containing the vertices 1 to N , and N + 1 to 2N respectively. Let us denote by kN the
average number of contact links between these two halves of C, see Figure 15. We have

kN =
yN
zN

(53)

where yN denotes the partition function of Hamiltonian cycles (with a marked visited
edge) of length 2N weighted by the number of contact links between their two halves. In
the representation of Figure 4, this number of contacts is nothing but the number of (up
or down) arches which have been opened along the first half of the straight line and are
closed only in its second half. In the transfer matrix formalism, this number is given by
the integer parts

blog2(`u)c+ blog2(`d)c (54)

where, as in (15), |`u, `d〉 denotes the “middle” state (i.e., that obtained after the action
of N elementary transfer matrices T◦ or T•). For N even, we may therefore write

yN =
∑
`u,`d

〈1, 1|(T◦T•)N/2|`u, `d〉
(
blog2(`u)c+ blog2(`d)c

)
〈`u, `d|(T◦T•)N/2|1, 1〉

=
∑
`u,`d

blog2(`u)c
(
〈`u, `d|(T◦T•)N/2|1, 1〉

)2
+
∑
`u,`d

blog2(`d)c
(
〈`u, `d|(T◦T•)N/2|1, 1〉

)2
= 2

∑
`u,`d

blog2(`u)c
(
〈`u, `d|(T◦T•)N/2|1, 1〉

)2
,

(55)

where we used the symmetry of the problem under combined left-right reversal and black-
white inversion of colors to go from the first to the second line, as well as its up-down
symmetry to go from the second to the third line. For N odd, we have instead

yN = 2
∑
`u,`d

blog2(`u)c
(
〈`u, `d|T•(T◦T•)(N−1)/2|1, 1〉

)2
. (56)

At large N , we expect the asymptotic behavior

kN ∼
N→∞

% Nν (57)

with % depending on the bicolored map family at hand and with ν as in (51) or (52).
We expect however that the corrections to this leading behavior depend on the parity
of N . This is confirmed by our numerical data: to properly estimate ν from the se-
quence (kN )N≥1, we now have to split this sequence into two subsequences, an “even”
one (k2M )M≥1 and an “odd” one (k2M−1)M≥1. This leads us to define the following two
independent accelerating series (ν̃2M (s))M≥1 and (ν̃2M−1(s))M≥1:

ν̃2M (s) =
1

3!
(∆3 ν̂)M with ν̂M := M3

(
M × Log

k2M+2 + 2s

k2M + 2s

)
(58)
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and
ν̃2M−1(s) =

1

3!
(∆3 ν̌)M with ν̌M := M3

(
M × Log

k2M+1 + 2s

k2M−1 + 2s

)
. (59)

Here we introduced for future convenience an arbitrary shift parameter s. Both series
tends to ν at large M independently of the shift s. The value of s will eventually be
fixed numerically for each series so as to optimize the acceleration of the convergence
(see below).

It is instructive to start our analysis with the rigid 4-regular case, for which we can
write explicit expressions for kN . We indeed have in this case (see Appendix A)

k2M + 2s =
2
(

2M
M

)2
1

2M+1

(
4M
2M

) + 2(s− 1) ,

k2M−1 + 2s =
2
(

2M
M

)(
2M−2
M−1

)
1

2M

(
4M−2
2M−1

) + 2(s− 1) .

(60)

It is easily checked from these exact expressions that the “even” and “odd” accelerated
series (ν̃2M (s))M≥1 and (ν̃2M−1(s))M≥1 do converge to ν = 1/2 as expected, since, at
large N , kN + 2s ∼ 4

√
N/π at large N for any fixed s. In order for (58) (resp. (59))

to define a series which is effectively accelerated, i.e., for which the convergence towards
ν is fast, it is mandatory that ν̂M (resp. ν̌M ) have only corrections of the form M3−i

for integers i ≥ 1 so that the first 3 such corrections (i = 1, 2, 3) are killed by the 3
iterative finite difference operators ∆ . It is easily checked from (60) that, in the present
case, this holds only if we choose s = 1: for s 6= 1, ν̂M (resp. ν̌M ) also have corrections
involving half-integer powers of M , which are not killed by the finite difference operators
∆, leading to a much slower convergence. Otherwise stated, the convergence to ν = 1/2
of (ν̃2M (s))M≥1 (resp. (ν̃2M−1(s))M≥1) is fast and reliable only if we choose s = 1.
Suppose now that we do not know the exact expressions (60) and have access only to

the first values of ν̃2M (s) (resp. ν̃2M−1(s)) up to some finite value Nmax = 2Mmax (resp.
Nmax = 2Mmax − 1). We may estimate numerically the best value s∗ of s by demanding
that our estimate be stabilized at Nmax, namely that

ν̃Nmax(s∗) = ν̃Nmax−2(s∗) . (61)

As displayed in Figure 16, using as input the “even” accelerated series for (60) with N
up to Nmax = 26, we obtain numerically the values

s∗ = 1.000 , ν = ν̃Nmax(s∗) = 0.5000 , (62)

in perfect agreement with the values of s∗ and ν coming from the above analysis based
on the exact asymptotic formulas. This therefore validates a posteriori our numerical
recipe (61) for the choice s∗ of the shift s.
We have repeated this analysis separately with the “even” data and with the “odd”

data for Hamiltonian cycles on various families of bicolored planar maps. For instance,
Figure 17 displays our results for 3-regular bicolored maps: we get the estimates

s∗ = 1.161 , ν = ν̃Nmax(s∗) = 0.4837 , (63)
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ν̃2M

ν = 1/2

M

s
s∗

ν̃26 − ν̃24

Figure 16: Inset: determination of the shift s∗ from the condition ν̃Nmax
(s∗) = ν̃Nmax−2(s∗) for

rigid Hamiltonian cycles on 4-regular bicolored maps (here with Nmax = 26). We
displayed the sequence (ν̃2M (s))1≤M≤Nmax/2 for 5 different values of s. From top to
bottom: s = s∗−0.4, s = s∗−0.2, s = s∗ (red), s = s∗+0.2 and s = s∗+0.4. The value
of ν is finally estimated from ν̃Nmax(s∗) with s∗ = 1.000 , ν = ν̃Nmax(s∗) = 0.5000

.

ν̃2M

ν = 0.483715 · · ·

M

s
s∗

ν̃26 − ν̃24

Figure 17: Determination of the shift s∗ and the exponent ν for Hamiltonian cycles on 3-regular
bicolored maps (with Nmax = 26). See caption of Figure 16 for details.
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ν̃2M

ν = 1/2

M

s
s∗

ν̃22 − ν̃20

Figure 18: Determination of the shift s∗ and the exponent ν for Hamiltonian cycles on bicolored
maps with mixed valencies 2 and 3 (with Nmax = 22). See caption of Figure 16 for
details.

hence a value of ν very close to the predicted value (52). Figure 18 displays similar
results for maps with mixed valencies 2 and 3 (and w2 = w3 = 1), giving now s∗ = 0.965
and ν = 0.4997 very close to the predicted value 1/2 of (51). Table 2 gives a summary of
our estimates for ν for Hamiltonian cycles on six different bicolored map families and for
the two parities of N . All the results are in perfect agreement with the expected values.

8. Conclusion

In this paper, we studied the statistics of Hamiltonian cycles, and more generally of fully
packed loops, on various families of bicolored random planar maps and found that the
corresponding models fall into two distinct universality classes. The first, most common
universality class corresponds to the coupling to gravity of a CFT with central charge
cdense(n) as defined in (11). This universality class is found for fully packed loops on
bicolored maps with mixed valencies, for rigid fully packed loops on 2q-regular bicolored
maps, but also for fully packed loops on non-bicolored maps (see Remark 10). It would
also be found for non-rigid or rigid dense loops (i.e., O(n) loops in their dense critical
phase) on either bicolored or non-bicolored maps. The common feature of all these models
is that they can be described by a single height field Ψ = ψ2b2. The associated CFT on
a regular lattice is that describing the dense phase of the O(n) model, with conformal
dimensions which can be computed indifferently on any (hexagonal [39], square [46] or
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map family parity of N Nmax s∗ measured ν = ν̃Nmax(s∗) predicted ν
3-regular even 26 1.161 0.4837 0.483715 · · ·

odd 25 1.185 0.4829
4-regular even 10 1.008 0.4844 0.483715 · · ·

odd 11 1.054 0.4828
rigid 4-regular even 26† 1.000 0.5000 0.5

odd 25† 1.000 0.5000
rigid 6-regular even 22 0.817 0.5000 0.5

odd 21 0.825 0.4999
mixed valencies even 22 0.965 0.4997 0.5

2 and 3 odd 21 0.975 0.4992
mixed valencies even 8 0.815 0.4962 0.5

3 and 4 odd 7 0.855 0.4987

Table 2: Estimated values of the exponent ν. The value s∗ of the shift is determined numerically
by the condition ν̃Nmax

(s∗) = ν̃Nmax−2(s∗). In the cases of mixed valencies, we set
w2 = w3 = 1 (respectively w3 = w4 = 1). †[For rigid Hamiltonian cycles on 4-regular
maps, our explicit expressions (60) allow us to take Nmax arbitrarily large. The value
26 (resp. 25) was chosen for a better comparison with the 3-regular case.]

Manhattan [45, 60]) regular lattice. For instance, the watermelon exponent h(κ)
` is given

by (34) for any (even or odd) `, with κ as in (37) and its gravitational counterpart
[61, 62, 63, 26] by

∆
(
h

(κ)
` , csle(κ)

)
=
`

4
+

1

8
(4− κ) . (64)

More interesting is the second universality class, corresponding to the coupling to
gravity of a CFT with central charge cfpl(n) = 1 + cdense(n) as defined in (6). This
universality class is found for fully packed loops on p-regular bicolored maps for any
p ≥ 3, and corresponds to models which may now be described by a two-component
height field Ψ = ψ1A + ψ2b2. In particular, we may cook up observables corresponding
to (magnetic) defects (i.e., height dislocations) with a component along the A direction:
this is the case for instance for watermelon configurations with an odd number ` of lines.
As already noticed in Section 6, such observables are special in the sense that their

conformal weights are different if we compute them on the (naturally bicolored) square
and hexagonal regular lattices, see (36). In this sense, universality is not as strong for
the second class (with c = cfpl(n)) as it is for the first class and only the spectrum of
those observables which do not involve the A direction seems to be fully universal: this
is in particular the case for the 2- or 4-line observables involved in (38) and associated
with the exponent ν that we considered in this paper. As for the special observables
(involving the A-direction), which seem to retain in the scaling limit a memory of the
original lattice, one may wonder about their proper continuous description within the
SLEκ formalism.
When considering the watermelon configurations with an odd number of lines on p-

regular bicolored random maps, the fact that there are two possible values for the fully
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packed conformal weight h = h
fpl(n)
2k−1 in (36) casts some doubt on the naive use of the

KPZ formula (41) to get the analogue of the dense formula (64). Even when some choice
seems “natural” (like for instance that of the hexagonal lattice value in (36) when dealing
with 3-regular bicolored maps), it was observed in [1] that the associated gravitational
exponent ∆ is no-longer directly related to h via the KPZ formula (41) and that some
prior “renormalization” of the conformal weight is required.
A subsidiary question about Hamiltonian paths on p-regular bicolored maps is therefore

whether such special exponents depend on p, just like they do on regular lattices with
p = 3 and p = 4, hence lead to a weaker notion of universality. We leave this issue for a
future work.
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A. Rigid Hamiltonian cycles on 4-regular bicolored maps:
exact enumeration formulas

The case of rigid Hamiltonian cycles on 4-regular bicolored maps (also called meandric
systems in [20, 9]) is particularly simple as we may get exact expressions for zN and yN ,
hence for kN in (53). As already mentioned in Section 5.3, opening the rigid cycle into
a straight line of alternating black and white vertices totally decouples the upper and
lower parts, implying that

zN = c2
N , (65)

where cN enumerates non-crossing arch configurations connecting 2N vertices along a
line on one side only. Note that the fact that arches connect vertices of different colors
is automatic for non-crossing arch configurations, hence we may forget about the colors
in this particular case. As it is well known, cN is nothing but the celebrated Catalan
number

cN =
1

N + 1

(
2N

N

)
, (66)

in agreement with (27) for q = 2. Let us now discuss the quantity yN . The decoupling

gN
1 N 2N

} g(A)
A

Figure 19: An arch configuration A contributing to gN (here with N = 12) and the number
g(A) of arches passing above the middle point (here g(A)=2), whose parity is the
same as that of N .
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of the upper and lower parts (together with the up-down symmetry) implies that

yN = 2gNcN (67)

where gN enumerates arch configurations A connecting 2N vertices along a line on one
side only, weighted by the number g(A) of arches passing above the middle point of the
straight line (i.e., the middle point of the edge connecting the N -th to the (N + 1)-th
vertex), see Figure 19. Let us first assume that N is even and write N = 2M . This
implies that g(A) is even too. More precisely, for 0 ≤ p ≤ M , those arch configurations
A for which g(A) = 2p are enumerated by6((

2M

M + p

)
−
(

2M

M + p+ 1

))2

=

(
2p+ 1

M + p+ 1

(
2M

M + p

))2

. (68)

This yields

gN =

M∑
p=0

(
2p+ 1

M + p+ 1

(
2M

M + p

))2

(2p)

=

M∑
p=0

(
2p+ 1

M + p+ 1

(
2M

M + p

))2

(2p+ s)− s cN ,

(69)

where we used the sum rule
M∑
p=0

(
2p+1

M+p+1

(
2M
M+p

))2
= cN for the total number of arch

configurations. Noting that(
2p+ 1

M + p+ 1

(
2M

M + p

))2

(2p+ 1) = ∆p

(
−(M + 2p2)

M

(
2M

M + p

)2
)

(70)

where ∆p is the forward finite difference operator in p, we see that the sum in the second
line of (69) is telescopic for the choice s = 1.
We eventually end up with

gN =

(
2M

M

)2

− cN for N = 2M , (71)

and

kN =
yN
zN

=
2gN
cN

=
2
(

2M
M

)2
1

2M+1

(
4M
2M

) − 2 for N = 2M . (72)

If we now assume that N is odd, a similar calculation leads to

kN =
2
(

2M
M

)(
2M−2
M−1

)
1

2M

(
4M−2
2M−1

) − 2 for N = 2M − 1 . (73)

Eqs. (72) and (73) lead to the desired formulas (60).
6In the Dyck path representation of non-crossing arch systems [64], these configurations correspond to
pairs made of (i) a path of length 2M from height 0 to height 2p (hence with M + p up-steps) and
(ii) a complementary path of length 2M from height 2p to height 0 (hence with M + p down steps),
both paths having only non-negative heights.
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B. Numerical data
N zN yN/2

1 2 1
2 8 4
3 40 28
4 228 182
5 1424 1376
6 9520 10256
7 67064 82256
8 492292 657258
9 3735112 5483168
10 29114128 45720644
11 232077344 392225248
12 1885195276 3367237302
13 15562235264 29496561288
14 130263211680 258689070208
15 1103650297320 2303183835424
16 9450760284100 20532423715862
17 81696139565864 185194267822952
18 712188311673280 1672505538588120
19 6255662512111248 15246126785026456
20 55324571848957688 139146249302900840
21 492328039660580784 1279654964632731016
22 4406003100524940624 11781309072368013800
23 39635193868649858744 109156077594746888256
24 358245485706959890508 1012371771569816836390
25 3252243000921333423544 9439721149094472748640
26 29644552626822516031040 88100169337671128409824
27 271230872346635464906816 826012547472307809557896
28 2490299924154166673782584 7751024033279177862804200
29 22939294579586403144527440 73022459752163336202562352
30 211949268051816569236796848 688468559155925660846596544
31 1963919128426791258770276024 6513579576440364032532422976
32 18246482008315207478524287044 61667572983605062268400200798
33 169953210523325203868381657400 585630198026539853341680121888
34 1586759491069775179474823509344 5565011094981145493511752402704

Table 3: Values of zN (sequence A116456 in OEIS [65]) and yN for Hamiltonian cycles
on bicolored 3-regular planar maps.
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N zN yN/2

1 3 3
2 34 34
3 583 797
4 12370 18962
5 299310 541218
6 7914962 15658990
7 223112249 492077299
8 6599227954 15610597634
9 202656932134 519177791710
10 6413548643796 17387351622688
11 208040580206216 600403799410348
12 6888733433298402 20842604582620710
13 232117149975205154 739230697828101014
14 7939206408814949506 26327452538168278582
15 275098365065617821621 952653521434740072227
16 9641385973628938712306 34586535913246138331782
17 341313811643888153301006 1271131209796113395573406
18 12191280053256623302185704 46844535638524226902706228
19 438954593201892408379178942 1743184882186466069552567270

Table 4: Values of zN and yN for Hamiltonian cycles on bicolored 4-regular planar maps.

N 5-regular 6-regular 7-regular
1 4 5 6
2 104 259 560
3 4640 25094 104024
4 266084 3192155 25715048
5 17669760 474183765 7462790096
6 1292292432 77907665840 2401948332096
7 101201942512 13740308705438 831180015105160
8 8340015146964 2554205527336363 303462839364701128
9 714995787362600 494475099243189329 115462177891927344416
10 63259444105430512 98867302126812855515
11 5742719613679409832 20294465583102673352590
12 532599319939460085760
13 50295898068432583524224
14 4823733144104904305892304

Table 5: Values of zN for Hamiltonian cycles on bicolored 5-regular, 6-regular and 7-
regular planar maps.
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N zN yN/2

1 3 1
2 17 6
3 125 67
4 1077 676
5 10335 8047
6 107151 93898
7 1176999 1184387
8 13518677 14869772
9 160872323 195389839
10 1970329025 2566924518
11 24715305741 34751956495
12 316322082895 471076136766
13 4118646279649 6523535179149
14 54428554176853 90491263299716
15 728662270487961 1275474547319661
16 9866887839946229 18009066127518820
17 134967673222112567 257454410282564295
18 1862969746410518745 3686602712849035850
19 25924506623086706277 53316166797618448047
20 363415643231059957421 772238458092154850980
21 5128518034166712107763 11276238109326334073237
22 72814980427431398768943 164883291621449041519854
23 1039603583945087464438759 2427283275342458095362671
24 14918925552410770296750503 35777211288494249743148062
25 215108422239328159518817305 530360761101151938386907819
26 3115114976238433506239203399 7870933845679033785904203612
27 45295058700528813260672278919 117382878931669305354337886003
28 661097024940535265310437647345 1752373351490083766149516091464
29 9682937008170057158267261746831 26271697196196181749006295843637
30 142290916972981046011294091297071 394231951670046541461277392969298
31 2097420196208084754056265923088015 5937785334543529526068890061788573

Table 6: Values of zN and yN for Hamiltonian cycles on bicolored planar maps with
mixed valencies 2 and 3 (with w2 = w3 = 1).
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N zN N zN
1 4 10 24584694155437
2 47 11 930530200722914
3 872 12 36039351335158162
4 20579 13 1423250588260168692
5 562346 14 57153474076536198864
6 16959202 15 2328611379453123805998
7 549029380 16 96085895789053111221723
8 18750074923 17 4009433404474389044318028
9 667653126308 18 168976691280496979237329801

Table 7: Values of zN for Hamiltonian cycles on bicolored planar maps with mixed va-
lencies 2 and 4 (with w2 = w4 = 1).

N zN yN/2

1 5 4
2 98 80
3 3089 3572
4 124622 163552
5 5844034 9159648
6 303138220 522941716
7 16901630655 32699927584
8 994850903414 2071909682642
9 61080867353216 138275419169022
10 3878907227559258 9315849112395598
11 253224873797465540 649064156160267680
12 16915976848381443504 45541980819371884184
13 1152241256370476649482 3271499179479967664002
14 79806203708523623827632 236287877905404626333174
15 5608021949255349143950993 17365297252695426225180534
16 399095475044872817013511142 1281725711268335772862571494

Table 8: Values of zN and yN for Hamiltonian cycles on bicolored planar maps with
mixed valencies 3 and 4 (with w3 = w4 = 1).
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As already seen in Section 5 (Eqs. (24) (27)) and in Appendix A when q = 2, using
the arch representation such as that of Figure 4 in the case of rigid Hamiltonian cycles
on 2q-regular bicolored planar maps for arbitrary q ≥ 2 leads to a complete decoupling
between the upper and lower arch configurations. This implies the following the two
identities (extending (65) and (67)):

zN = c2
N with cN =

1

(q − 1)N + 1

(
q N

N

)
(74)

and
yN = 2gNcN , (75)

where gN enumerates arch configurations on one side only, weighted by the number of
arches passing above the middle point of the straight line, see Figure 19 when q = 2. We
have no exact expression for gN for arbitrary q ≥ 3 (which would generalize (71)). The
following table gives the first values of gN in the case q = 3, from which we can get yN
via (75).

N gN N gN
1 2 16 429765359266
2 6 17 2747996363358
3 32 18 17558452105246
4 162 19 112880676289328
5 930 20 725294746632006
6 5260 21 4683479629941570
7 31432 22 30229921171815208
8 186606 23 195925602453080976
9 1142582 24 1269396826660493508
10 6971466 25 8252873289420323592
11 43385904 26 53640502233395278680
12 269429292 27 349671835181599650032
13 1696338360 28 2278921678933838458548
14 10665144516 29 14890267787292439785072
15 67735129000 30 97273104239590589753820

Table 9: Values of gN (such that yN = 2gNcN with cN as in (74)) for rigid Hamiltonian
cycles on 6-regular bicolored planar maps (i.e., q = 3).
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