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Warning: The following notes are un-
der construction.
They contain many inaccuracies, rep-
etitions, and last but not least misprints.
Every bit should be taken with a grain
of salt.





Foreword

These notes are written as the basis of an eight hours lecture series given at the
Institut de physique théorique de Saclay (IPhT).

The aims are quite modest, as the reader may check on the table of contents.
The first part contains few formally stated theorems and no proofs. There

are many (maybe even too much) explicit computations on simple examples. We
hope that this helps the reader to get a precise if non-rigorous perspective on the
most basic rough paths concepts. Some mathematical elaborations are presented
in the second part.

When I first heard introductory seminars or tried to read the few textbooks on
the subject, I really felt at sea and it took me quite a few hours of intense efforts
before something clicked. As usual, once it appended, I realized that the text-
books were in fact extremely clear and well-written and I could hardly remember
why I did not grasp the basic definitions on the spot.

This is why I decided to offer a different starting point in these notes, with
the hope that it might help some readers so they will waste less time than I did.
I apologize to the others. Anyway, either to start or to get deeper, I can only
recommend the textbooks [2] and (at a more slightly more advanced level) [3].

Another aim of these notes is to build on some physical intuition for certain
of the phenomena and constructions encountered in rough paths theory. We
shall try to reinterpret these features using the vocabulary of the renormalization
group. The analogy is far from perfect, limited but nevertheless illuminating.
One of the important simplification is that there are no anomalous dimensions
in rough paths theory, which essentially deals with paths (!) that is with one-
dimensional objects. The ideas of rough path theory can be generalized to fields,
yielding to the theory of regularity structures, which has even closer links with
renormalization theory, but which requires a much higher technical background
(in distribution theory for instance) than rough paths theory. We shall not at all
deal with regularity structures in these notes, but they have been used to tackle
some long standing open (mathematical) questions, one example being the solu-
tion of the Kardar-Parisi-Zhang equation.

Rough paths theory has a deep interplay with continuous stochastic processes,
and I this is apparent even at the modest level of these notes. Brownian motion,
and its fractional cousins at a more advanced level, serve as a constant source of
examples.
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Basic Concepts





Introduction

Rough paths with words . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

It is a frequent situation in mathematics that certain notions are defined via a
limiting procedure.

Think for instance as integrals as limits of sums: integrals are approximated
by sums, sums involve only very basic algebra whereas integrals involve some
analysis, so there is a price to pay. But once integrals are defined, they can be used
in the opposite direction, to approximate sums. And integrals are more flexible
tools than sums, mainly because the possibility of changing variables.

Another example is the deep relationship between random walks and Brow-
nian motion. Among the multitude of definition of Brownian motion, quite a few
are via the approximation by random walks. Again, random walks are rather con-
crete objects (in particular the simple symmetric random walk) whose definition
requires minimal mathematical investment, whereas Brownian motion requires
a more involved mathematical setting. But Brownian motion is nevertheless a
sharp and invaluable tool to study (asymptotic properties of) random walks, a
salient example being the law of the iterated logarithm. And again Brownian
motion, the limiting object, is a more flexible tool than random walks. It is fully
characterized by a few axioms in which it is not so easy to detect the relation-
ship to random walks, though ignoring this relationship would really be a sad
omission.

It is to be noted that some random walks are not good approximations to
Brownian motion (or vice versa). Sometimes, they approximate other processes,
like Levy processes. But there is always a flavor of what physicists call universal-
ity: a huge zoo of random walks and a more manageable menagerie of processes.

Rough
paths with

words

Rough path theory can also be viewed as such an interplay involving approx-
imations, limits and the like. Just a Brownian motion or Levy processes, rough
paths can be defined axiomatically without talking of any approximation scheme.
And just as Levy processes theory, rough path theory tames a wildlife. This time
it is about the possible limiting behaviors of paths and their iterated integrals.

The basic observation is that whereas the iterated integrals of a piecewise
smooth1 function are defined without ambiguity and can be recovered from the

1Contrary to standard practice, is these notes the term “smooth” refers to differentiable, not
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function, this can be completely scrambled by taking limits even when they exist.
Let us illustrate this on a trivial example: the approximation of the diagonal

of the unit square in the plane by a path on the square lattice, as pictured below
with mesh 1, 1/4, 1/16:

The lattice path gets closer and closer to the diagonal, but its length remains 2,
and in particular does not converge to the length of the diagonal,

√
2. Though the

analogy is limited, the rough paths philosophy would be to take as the limiting
object of the lattice paths not only the diagonal of the unit square, but also to keep
track of the anomalous scale. Rough path theory would also put this additional
information to good use.

Returning to the general setting, the failure of the limit of functions/paths to
describe faithfully what is going on has two main manifestations. First, good
approximations to a functions can lead to different approximations of its iterated
integrals, even if one is approximating smooth objects. Second, functions and
their line integrals may converge, but there may be no direct integration theory
to define the iterated integrals of the limiting function because it is too irregular.

The axiomatic definition of rough paths is a way to take those two elementary
observations into account. Basically, one needs to break the strict bond between
functions and their iterated integrals and give those some freedom. So a rough
path is a collection of objects, with a standard function/path as its most basic
object, and some substitutes for its iterated integrals. Those substitutes have a
part of arbitrariness but they are constrained by some combinatorial and analyti-
cal conditions that reflect those of bona-fide iterated integrals. The combinatorial
conditions are essentially Chasles relation in disguise. Another way to say the
same thing, the combinatorial conditions ensure the closure of the flow in the
context of solutions of differential equations. The analytical conditions endow
rough paths with a topology which allows to compare them to various objects,
discrete or continuous.

It turns out that the combinatorial plus analytical conditions ensure that in fact
only a finite number of iterated integrals need to be specified, and then the others
are fully determined. This leads to a first analogy with renormalization in quan-
tum field theory. In a renormalizable theory, only finite number of conditions
are needed to eliminate infinities and ambiguities, making all correlation func-
tions finite. There are (at least) two important differences. First, in quantum field

necessarily infinitely differentiable.
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theory a finite number of constants need to be specified, whereas in rough paths
theory one needs a finite number of functions. Second, whereas renormaliza-
tion is needed because naive computations lead to infinities, rough paths theory
is needed because naive computations lead to undefined (but not systematically
unbounded) results.

Before we give a more detailed and technical motivation for rough paths via
differential equations, let us note that scale invariance plays a fundamental role
in rough path theory, but there are no anomalous dimensions. Regularity struc-
tures, a subject we shall not elaborate on, are a generalization of rough paths
that allow to tackle more realistic problems involving true renormalization. This
approach culminates in a rigorous treatment of a number of singular stochastic
partial differential equations, like the famous Kardar-Parisi-Zhang equation.

Rough paths theory was built in the 1990’s mainly under the impulse of Terry
Lyons. A friendly but serious introduction to rough path is [2], to which we
refer the reader for a deeper treatment of the subject. A more difficult but more
complete reference is [3].





CHAPTER 1

Motivations

1.1 Controlled differential equations . . . . . . . . . . . . . . . . . . . . 7
1.2 The generic one-dimensional setting . . . . . . . . . . . . . . . . . . 9

The following discussion is a bit technical but stresses a few important points
of the rough paths philosophy. We introduce the notion of controlled differential
equations. If one tries to adapt the traditional Euler scheme for solving ordinary
differential equations to this new situation, problems arise: it may happen that
the Euler scheme does not apply naively, or that it simply fails. An attempt to
improve it quickly leads to a new structure, that of a rough path.

As we mentioned briefly, among the origins of rough paths theory is the be-
havior of iterated integrals: if Q := (Qi)i∈J1,nK is a collection of smooth functions
from [a, b]toR, the iterated integrals of Q are the tensors

∫
a<s1<···<sk

dQi1
s1
· · ·dQik

sk

for k ∈ N∗. The point is that if Q(ε)ε>0 is a family of such maps and there is a limit
Q := limε↓0 Q(ε) exists in some appropriate sense, several (related) pathologies
are possible. First, it may happen that the limit Q is smooth but the limit of iter-
ated integrals does not exist, or does not coincide with the iterated integrals of the
limit. Second, the iterated integrals might have a limit, but Q itself is not smooth
enough for its iterated integrals to make any apriori sense. We shall see a num-
ber of examples in what follows. Controlled differential equations will quickly
confront us with those questions.

1.1
Controlled
differential
equations

Even if the name itself is not well-known, most of us are probably familiar
with the concept of controlled differential equations. They make their appearance
when a system does not respond directly to the passage of time, but to some aux-
iliary time dependent quantities taken as input. A controlled differential equation
has the following generic form

dYt = V(Yt, Xt)dXt for t ∈ [a, b] with initial condition Ya = ya

where X := (Xt)t∈[a,b] is a given path in some vector space E , Y := (Yt)t∈[a,b] is some
unknown path in another vector space F and, for each (y, x) ∈ F × E, V(y, x) is a
linear map from E to F. It is often the case that V(y, x) is not defined globally but
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only in a neighborhood of (ya, xa) and then we look for at least a local solution
for t ∈ [a, a+ δ] for some δ > 0.

For the time being, we have given no meaning to controlled differential equa-
tions. If the path X is smooth, i.e. if the derivative dXt

dt
is well-defined for t ∈

[a, b] we can interpret the above controlled differential equation to fall back to the
framework of ordinary differential equations by setting Ṽ(Yt, t) := V(Yt, Xt)

dXt

dt

an turning the controlled differential equation into

dYt = Ṽ(Yt, t)dt for t ∈ [a, b] with initial condition Ya = ya.

Let us stress that this is an interpretation: we do not relate two meaningful things,
but turn an apriori meaningless one to a meaningful one. Rough paths theory
gives a precise meaning to controlled differential equations for sources X that
may be far from smooth. It turns out that for smooth sources rough paths theory
is consistent (it better be!) with the above interpretation.

We can, and shall often, introduce local coordinates, say E ∼= Rn, F ∼= Rd so
that the controlled differential equation rewrites

For µ = 1, · · · , d : dYµ
t =

n∑
i=1

Vµ
i (Y

1
t , · · · , Yd

t , X
1
t , · · · , Xn

t )dX
i
t.

We shall often suppress the explicit summation sign and apply the Einstein sum-
mation convention. For instance i is repeated twice, once as a subscript and once
as a superscript so we may dispense with the summation sign

∑
i.

One example that is well-known to physicists is when n = 2, d = 1 and X =(
Bt

t

)
t≥0

where B is a Brownian motion and V(y, x) = (σ(y), v(y)) so that,

dYt = v(Yt)dt+ σ(Yt)dBt or Ẏt = v(Yt) + σ(Yt)ξt in physicists notation,

where ξt is a white noise (hence a distribution, not a function). In this context, the
name “stochastic differential equation” is used in place of controlled differential
equation. To make sense of this diffusion equation, one turns it into an integral
equation:

Yt = y0 +

∫ t

O

v(Yt)dt+

∫ t

O

σ(Ys)dBs.

Then a solution to the diffusion equation is a process Y such that first both inte-
grals on the right-hand side are well-defined, and second such that the two sides
turn out to be equal. Several mathematical remarks are in order. Assume that σ is
not constant (i.e. independent on the position y). First, a new integration theory,
stochastic integration, has to be available. Second, the stochastic integral theory
is defined as a limit of discrete sums but the limit depends on conventions: math-
ematicians usually work with the Itō convention, when physicists tend to favor
the Stratanovich convention. And last but not least, the stochastic integral is not
defined pathwise, but in mean square or in probability: informally, the statement
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is that when the mesh is small, the discretized sum has a probability close to 1

to be close to the integral – this is far from saying that sample by sample the dis-
cretized sum goes to the integral when the mesh goes to 0. These subtleties cause
little or no trouble usually. Stochastic calculus (à la Itō or Stratanovich) justifies
blind manipulation, and numerical computations are not really sensitive to the
problem because one works usually only with regular time steps – adaptative
methods are already harder to justify.

The intrinsic study of stochastic differential equations on manifolds is no-
tably difficult, one of the reason being the absence of a pathwise definition of
the stochastic integral. Let us clarify this point in the general context of control.
Instead of vector spaces E and F, practical applications may force to consider
manifolds M and N, a given curve X on M parameterized by time and a family
V(y, x), x ∈ M,y ∈ N of linear maps: for given (x, y) ∈ M×N, V(y, x) is a linear
map taking a tangent vector to M at x as input and yielding a vector tangent to
N at y as output. The form of the equation is unchanged:

dYt = V(Yt, Xt)dXt for t ∈ [a, b] with initial condition Ya = ya,

and we can always take local coordinates, in Rn for M and Rd for N. It this ge-
ometric context, it is crucial however that the meaning given to a controlled dif-
ferential equation is intrinsic. In terms of local coordinates, the solutions over
different coordinate patches should knit together nicely. Rough paths theory is
successful in that aspect to.

The notion of pathwise versus non-pathwise solution is important in that
rough paths theory allows to solve stochastic differential equations via a path-
wise procedure. But the general context if that one is given a single X (not a
sample space of Xs) so there is no choice but to work pathwise.

In the next section we specialize to the one-dimensional setting and illustrate
a number of issues on a very simple example.

1.2 The
generic one-
dimensional

setting

Think of making sense, or solving numerically, the equation

dYt = V(Yt)dXt for t ∈ [a, b] with initial condition Ya = ya,

where V is some smooth function, X is a given real source defined on [a, b] and Y

is a real unknown function.
This is called a controlled differential equation because the variations of Y

respond to those of a function X. When Xt := t we recover a standard ordinary
differential equation when the variations of Y respond to the passage of time.
When X is a (piecewise) smooth function of t, it is natural to interpret dYt =
V(Yt)dXt as dYt

dt
= V(Yt)

dXt

dt
which is a special case of the familiar dYt

dt
= U(Yt, t).

We return to the controlled setting.
If f is a smooth function, we expect naively that df(Yt) = f ′(Yt)V(Yt)dXt

which, assuming the integral to make sense, should be a tantamount for f(Yt) =
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f(Ys) +
∫t

s
f ′(Yu)V(Yu)dXu. Thinking of t as close to s, the Euler scheme approxi-

mates f ′(Yu)V(Yu) on the interval [s, t] by f ′(Ys)V(Ys) yielding

f(Yt) = f(Ys) +

∫ t

s

f ′(Ys)V(Ys)dXu + error

= f(Ys) + f ′(Ys)V(Ys)

∫ t

s

dXu + error

= f(Ys) + f ′(Ys)V(Ys)(Xt − Xs) + error.

We’ve made some hair-splitting, the point being that some definitions of integrals
do not allow to factor out constants,1 and that as we have said nothing about
the regularity of X, the “obvious”

∫t

s
dXu = Xt − Xs is maybe not so obvious.

This is what is produced if dXu is interpreted as an exact differential, and also
what discretization suggests. Hence this interpretation is not challenged in the
following.

The idea is then to propagate the solution from the initial to the final time by
small steps, with the hope that the errors do not accumulate to a sizable quantity.

Let us check this idea on one of the simplest examples.

Example 1.1. The case when V(y) := y. Specializing the Euler scheme to this
case, we write Yt ≃ Ys(1 + (Xt − Xs)). Thus if ∆ : a = t0 < t1 < · · · < tn = b is a
subdivision of [a, b] we define Y∆ at subdivision points by

Y∆
a = ya Y∆

tm+1
= Y∆

tm
(1+ Xtm+1

− Xtm) for 0 ≤ m ≤ n− 1,

and extend the definition of Y∆
t for t ∈ [a, b] by linear interpolation for instance.

We assume that X is continuous, so that if s, t ∈ [a, b] with |t − s| small enough,
say |t− s| ≤ δ then |Xt − Xs| ≤ 1/2. If the mesh of the subdivision ∆ , mesh(∆) :=

max0≤m≤n−1 tm+1 − tm, is ≤ δ we can take logarithms: log Y∆
tm

ya
=

∑m1

l=0 log(1 +

Xtm+1
−Xtm). Using the elementary bound −x2 ≤ log(1+ x) − x ≤ −x2/3 for |x| ≤

1/2 we infer that log Y∆
b

ya
− (Xb − Xa) ∈ [−Q∆,−Q∆/3] where Q∆ :=

∑n−1
m=0(Xtm+1

−

Xtm)
2, the quadratic variation of X along ∆. The fate of Y∆ as mesh(∆) ↓ 0 is clear

if X has vanishing 2-variation on [a, b] which by definition means that Q∆ goes to
0 at small mesh.2 Then there is a limiting Y which is Yt = yae

Xt−Xa .
It is a (not so well-known) theorem that, as X is assumed to be continuous,

there is a sequence (∆k)k∈N of finer and finer partitions of [a, b] such that Q∆k

goes to 0 at large k. This has two consequences. First, we could decide to restrict
to such sequences, but this would have major drawbacks because they need a
detailed knowledge of X to be constructed whereas we want an algorithm that
works for arbitrary partitions in the small mesh limit. Second, if arbitrary par-
titions are to be considered, there is a dichotomy: either Q∆ goes to 0 at small

1A prominent example is the Skorokhod stochastic integral.
2This happens in particular if (Xt − Xs)

2 is uniformly a o(t − s), which occurs for instance if
there is a σ > 0 and a constant K such that |Xt − Xs| < K|t− s|1/2+σ for s, t ∈ [a, b].
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mesh, or it diverges3, in which case the discretization leads to a dead end. We
may expect that the situation will not be better when V is generic!

We take this opportunity of discuss an important test case for rough paths
ideas, Brownian motion. If (∆k)k∈N is a sequence of finer and finer partitions of
[a, b] and X is a Brownian motion then, with probability 1, Q∆k converges to b−a

at large k. This is the usual quadratic variation of Brownian motion, and this
result is at the heart of Itō’s stochastic calculus.

Example 1.2. The case when V(y) := y (continued). If (∆k)k∈N is a given se-
quence of finer and finer partitions of [a, b] and X is a Brownian motion then,
with probability 1, the approximation Y∆k based on the Euler scheme above ap-
proaches a limiting Y which is Yt = yae

Xt−Xa−(t−a)/2. Indeed, we can refine the
above inequality for the log to: −x2/(2(1− ε)) ≤ log(1+ x) − x ≤ −x2/(2(1− ε))
for |x| ≤ ε. By assumption δk := mesh(∆k) goes to 0 at large k. Then εk :=
sup

s,t∈[a,b], |t−s|≤δk
|Xt −Xs| goes to 0 at large k as well(Brownian motion is continu-

ous!) and log Y
∆k
b

ya
− (Xb −Xa) ∈ [−Q∆k/(2(1− εk)),−Q∆k/(2(1+ εk))]. This settles

the case when t = b. We leave it to the reader to make the obvious modifications
needed to deal with a generic t ∈ [a, b].

Brownian motion could seem to be a counter-example to the above statement
that 0 is the only possible finite limit for 2-variation. It is not, and the subtlety
is the following. It is another (again not so well-known) theorem that if X is a
Brownian sample, there is, with probability 1, a sequence (∆k)k∈N of finer and
finer partitions of [a, b] such that Q∆k goes to +∞ at large k.4

The situation here is not too bad because when we do numerical computation
we usually fix a single partition with small mesh (or a few partitions to test sta-
bility) and use them for a number of samples. The use of adaptative methods
is already more questionable but can be dealt with. However, let us stress that
the rough paths philosophy insists apriori that rough paths theory should work
pathwise. That is, given the Brownian sample X we want some Y to exist such
that for every partition of sufficiently small mesh Y∆ is close to Y. This could
be judged as too stringent a condition but, as we shall see below, it can be ful-
filled with some modification of the Euler scheme. Moreover, we have not made
any mention whatsoever of conventions for stochastic integrals in the above dis-
cussion. The result of our naive approach, that the solution of dYt = Yt dXt is
Yt = yae

Xt−Xa−(t−a)/2 for X a Brownian motion, should look strange: we have
automatically (should we say automagically?) implemented the Itō convention

3Remember that divergence is just the negation of convergence, we do not mean “diverges to
infinity” in general.

4Thus if the sequence of partitions is given in advance and used for each and every Brown-
ian sample then the 2-variation behaves well. However, if the we give the Brownian sample in
advance we can tailor partitions for which the 2-variation is as small or as large as we wish.



12 CHAPTER 1. MOTIVATIONS

even if we dealt with classical manipulations of differentials. We shall see be-
low that the rough paths philosophy revives the possibility of several different
conventions.

Then again, how should we deal in general with sources X that do not have
vanishing 2-variation ? The clue is a closed (but implicit) formula for the er-
ror: applying to f ′V the formula we had for f, we get (f ′V)(Yu) = (f ′V)(Ys) +∫u

s
(f ′V) ′(Yv)V(Yv)dXv leading to

f(Yt) = f(Ys) +

∫ t

s

(
(f ′V)(Ys) +

∫u

s

(f ′V) ′(Yv)V(Yv)dXv

)
dXu.

This formula has (at least) two useful applications. Before turning to those, let us
mention that we could iterate again, this time using a representation of (f ′V) ′V)(Yv)−
(f ′V) ′V)(Ys) as an integral and so on, a close analog of the Born expansion in
quantum mechanics.5

The first application is that the error in our previous computation is

error =

∫ t

s

(∫u

s

(f ′V) ′(Yv)V(Yv)dXv

)
dXu.

Very naively, we expect that this error (an integral involving the data over a tri-
angle) to be of the order of the square of the term retained in the approximation
(an integral involving the data on a segment). In the case when X is smooth, it
is clear that the line integral is O(t − s) and the surface integral is O((t − s)2)
and the accumulated error over a finite interval is of order the mesh of the set of
points chosen to interpolate between the initial and the final point, leading to a
convergent approximation at small mesh.

As a second application we may approximate (f ′V) ′(Yv)V(Yv) on the interval
[s, u] by (f ′V) ′(Yv)V(Yv), leading to

f(Yt) = f(Ys) + (f ′V)(Ys)(Xt − Xs) + ((f ′V) ′V)(Ys)

∫ t

s

(∫u

s

dXv

)
dXu + error

= f(Ys) + (f ′V)(Ys)(Xt − Xs) + ((f ′V) ′V)(Ys)

∫ t

s

(Xu − Xs)dXu + error.

Getting to the next order in the Born expansion would show that when X is
smooth the error is uniformly O((t − s)3), leading to an improved convergence,
the accumulated error over a finite interval being of the order of the square of the
mesh. All this is well-known, but our whole point is to deal with the case when
X is not smooth...

It is again tempting to make the obvious guess that
∫t

s
(Xu − Xs)dXu = (Xt −

Xs)
2/2, interpreting (Xu−Xs)dXu as an exact differential. Let us see where it leads

us, i.e. explore the behavior of Y∆. We do this again for our simple example.

5And we use the name “Born expansion” for the procedure in the sequel.



1.2. THE GENERIC ONE-DIMENSIONAL SETTING 13

Example 1.3. The case when V(y) := y (continued). Using the second order Born
approximation, we are led to

Y∆
a = ya Y∆

tm+1
= Y∆

tm
(1+ (Xtm+1

− Xtm) + (Xtm+1
− Xtm)

2/2) for 0 ≤ m ≤ n− 1.

If s, t ∈ [a, b] with |t − s| small enough, say |t − s| ≤ δ then |Xt − Xs| ≤ 2. We
can take the logarithm again and bound with | log(1 + x + x2/2) − x| ≤ e|x||x|3/6

for x ≥ −2 to get that | log Y
∆k
tm

ya
− (Xtm − Xa)| ≤ C∆e2/6 if mesh(∆) ≤ δ where

C∆ :=
∑n−1

m=0 |Xtm+1
− Xtm |

3 is the cubic variation of X along ∆. This time the fate
of Y∆ as mesh(∆) ↓ 0 is clear if X has vanishing 3-variation on [a, b] which by
definition means that C∆ goes to 0 at small mesh.6 Then there is a limiting Y

which is Yt = yae
Xt−Xa . Thus, if X has vanishing 3-variation, using a second order

Born expansion and a naive integration formula
∫t

s
(Xu − Xs)dXu = (Xt − Xs)

2/2

we recover the naive solution of dYt = Yt dXt namely Yt = yae
Xt−Xa .

Let us see some consequences when X is a Brownian motion. Then X has
vanishing 3-variation with probability 1 (in the strong, pathwise, sense: we can
choose the sample and then choose any subdivision with small mesh to approach
the 3-variation). It is reassuring that implementing the Stratanovich convention
for the integral

∫t

s
(Xu−Xs)dXu i.e. setting its value to (Xt−Xs)

2/2 (for which there
is no pathwise justification via a discretization) the use of the second order Born
approximation leads pathwise to the Stratanovich solution of dYt = Yt dXt.

Notice that “integration” as the operation “inverse of differentiation” was al-
most a definition before Riemann (though Archimedes already used discretiza-
tion to compute areas and volumes). However, 175 years later we recognize that
this fact, the fundamental theorem of calculus, is a consequence of an indepen-
dent definition of the integral via discrete approximations. Moreover, it is easy to
generalize the Born expansion to the case when X = (Xi)i=1,n (and Y) have several
components, see Section 12.2. Instead of one double integral, the above formula
would involve a linear combination of

∫t

s
(Xi

u − Xi
s)dX

j
u with possibly different

components i, j of X and then no exact differential miracle could save us from
the boredom of really dealing with another definition of the iterated integral. Itō
integration gives a definition (though not a pathwise one) of

∫t

s
(Xu − Xs)dXu via

a discretization. Let us see where this definition, when applied to the second or-
der Born approximation, leads us to. But before that, we propose the following
exercise to the reader

Exercise 1.4. Check that the naive Born expansion (valid if X is differentiable) to
kth order for dYt = Yt dXt is

Yt = Ys

(
1+

∫
s≤u1≤t

dXu1
+ · · ·+

∫
s≤u1≤···≤uk≤t

dXu1
· · ·dXuk

)
+

∫
s≤u1≤···≤uk+1≤t

Yu1
dXu1

· · ·dXuk+1
.

6This happens in particular if |Xt − Xs|
3 is uniformly a o(t − s), which occurs for instance if

there is a σ > 0 and a constant K such that |Xt − Xs| < K|t− s|1/3+σ for s, t ∈ [a, b].
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Check that the kth iterated integral is, if X is differentiable, (Xt − Xs)
k/k!.

Check that if X is the (pointwise) limit of a sequence of differentiable maps,
the limit of the kth is again (Xt − Xs)

k/k!.7

Check that under the naive assumption that this formula holds also for a less
regular source, the corresponding kth order Euler scheme leads to a convergent
procedure if X has vanishing (k+ 1)-variation, and the corresponding solution is
the naive solution of dYt = Yt dXt namely Yt = yae

Xt−Xa .
Check (or accept) that if X has vanishing (k + 1)-variation then all its higher

variations vanish as well and infer that the procedure is stable under a change of
the order of the Euler scheme.

Example 1.5. The case when V(y) := y (continued). We suppose that X is a Brow-
nian motion and we use the second order Born approximation, but this time with
the Itō convention 2

∫t

s
(Xu − Xs)dXu = (Xt − Xs)

2 − (t− s). We are led to Y∆
a = ya

and

Y∆
tm+1

= Y∆
tm
(1+(Xtm+1

−Xtm)+(Xtm+1
−Xtm)

2/2−(tm+1−tm)/2) for 0 ≤ m ≤ n−1.

We observe that

log(1+ x+ x2/2+ r/2) = x+ r/2−
x3

6
(1+ c1(x)) −

xr

3
(1+ c2(x)) −

r2

8
(1+ c3(x, r)),

where c1, c2, c3 vanish at the origin and are analytic close to the origin. We in-
fer that for small enough x, y we have | log(1 + x + x2/2 + r/2) − x − r/2| ≤
|x|3/3+ |xr|+ r2/4. Using that

∑n−1
m=0 |Xtm+1

− Xtm |
3,
∑n−1

m=0 |Xtm+1
− Xtm |(tm+1 − tm)

and
∑n−1

m=0(tm+1 − tm)
2 are small if ∆ has a small mesh (the first is because Brow-

nian motion has vanishing 3-variation, the second because Brownian motion is
continuous), we infer the there is a limiting Y, namely Yt = yae

Xt−Xa−(t−a)/2.

It is reassuring again that implementing the Itō convention for the integral∫t

s
(Xu−Xs)dXu i.e. setting its value to (Xt−Xs)

2/2−(t−s)/2, the use of the second
order Born approximation leads pathwise to the Itō solution of dYt = Yt dXt.

To summarize this slightly lengthy discussion,

• The first order Euler scheme for dYt = Yt dXt

– Yields a limiting Y if X has vanishing 2-variation.

7This holds even if X is irregular enough that no known procedure allows to make sense
of the integral directly. Thus the naive assumption in the next question is natural somehow.
Nevertheless, pointwise convergence is not the only way to approach X. Moreover, as already
mentioned, when we turn to integrals involving several components of a path, it may happen
that the limiting X is regular enough for a direct definition of the integral, but which is not the
limit of the integrals of the approximations, even if the convergence is better than pointwise, see
Section 3.1 and D.1for an illustration.
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– Breaks down if X does not have vanishing 2-variation, tough for Brow-
nian motion, renouncing to a pathwise procedure, is leads to the Itō
solution.

• The second order Euler scheme for dYt = Yt dXt

– Yields the Stratanovich solution if X has vanishing 3-variation (in par-
ticular if X is a Brownian motion) and if the integral

∫t

s
(Xu − Xs)dXu is

taken in the Stratanovich sense.
– Yields the Itō solution if X has vanishing 3-variation (in particular if X

is a Brownian motion) and if the integral
∫t

s
(Xu−Xs)dXu is taken in the

Itō sense.

Thus, even if we would restrict our attention to Brownian motion, the second
order Euler scheme is better behaved than the first order Euler scheme: it leads to
a pathwise solution and leaves room for the different conventions in a consistent
way.

For Brownian motion, the Itō and Stratanovich convention are natural and
the most used in practice, but they are certainly not the only ones. And if an X is
given, of vanishing 3-variation for instance, but yet with important short distance
“fluctuations”, there are few clues to decide what

∫t

s
(Xu − Xs)dXu should be. As

we have observed at the beginning of this chapter, approximating X with smooth
paths does not lead to an unambiguous definition (if any) of

∫t

s
(Xu − Xs)dXu. So

why no give it a name, i.e. set “
∫t

s
(Xu − Xs)dXu := Xs,t” and see what happens?

Example 1.6. The case when V(y) := λy. We introduce a parameter, λ, for con-
venience, so that the second order Born approximation to go from time s to time
u is Yu ≃ Ys(1 + λ(Xu − Xs) + λ2Xs,u). On the other hand, adding another point
in the game, t, we may go from s to u via t, leading to Yu ≃ Ys(1 + λ(Xt − Xs) +
λ2Xs,t)(1+ λ(Xu − Xt) + λ2Xt,u). How do these two approximation compare? The
difference between the second and the first is seen to yield 1 − 1 = 0 at order λ0,
(Xu − Xs) − ((Xu − Xt) + (Xt − Xs)) = 0 at order at order λ1. Then come

Xs,u − (Xs,t + Xt,u + (Xt − Xs)(Xu − Xt)) at order λ2,

−(Xs,t(Xu − Xt) + (Xt − Xs)Xt,u) at order λ3,

and −Xs,tXt,u at order λ4. It is readily checked that if the Itō or Stratanovich inter-
pretations of

∫t

s
(Xu − Xs)dXu are substituted for Xs,t the term of order λ2 vanishes

identically. It is also easy to relate this vanishing to Chasles’ relation, or, what
amounts to the same in the case at hand, to the closure of the flow in the putative
solution of the controlled differential equation. Doing the same substitutions in
the higher order terms in λ does not yield 0 but the result at order λ3 is negligible
when the times steps are small and X is such that “(Xt−Xs) = o((t−s)1/3) in which
case

∫t

s
(Xu − Xs)dXu (Itō or Stratanovich) is o((t − s)2/3. Then the λ4 contribution

is harmless.
To summarize, if (X,X) is chosen in such a way that
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Combinatorial condition: Xs,u − (Xs,t + Xt,u + (Xt − Xs)(Xu − Xt)) = 0,

Regularity conditions: (Xt − Xs) = o((t− s)1/3) and Xs,t = o((t− s)2/3),

the second order Euler scheme for dYt = λYtdXt with the interpretation
∫t

s
(Xu −

Xs)dXu := Xs,t will be convergent.

Exercise 1.7. Show that the cocycle relation Xs,u−(Xs,t+Xt,u+(Xt−Xs)(Xu−Xt)) =
0 is enough to ensure the closure of the flow for the second order Euler scheme
associated to the general equation dYt = V(Yt)dXt, i.e. Yt ≃ Ys + V(Ys)(Xt −Xs) +
(V ′V)(Ys)Xs,t.

Exercise 1.8. Show that if X is smooth, Xs,t :=
∫t

s
(Xu − Xs)dXu (note what defines

what here) satisfies automatically the cocycle relation Xs,u − (Xs,t + Xt,u + (Xt −
Xs)(Xu − Xt)) = 0. Infer that if X(ε)ε>0 is a family of such maps and there is a
limit when ε ↓ 0, say X for the paths and Xs,t for the iterated integrals, then the
limit satisfies the cocycle relation. This is another reason to consider this relation
as fundamental.

This suggests that to make sense of a numerically convergent scheme for a
controlled differential equation when the driving function X is irregular (typi-
cally, when the driving function does not have vanishing quadratic variation),
one needs to supplement X with other data which involve some arbitrariness.
The path X supplemented with additional components playing the role of inte-
grals, subject to certain natural conditions (the object called X above) is what is
called a rough path.

Let us note that we have not really defined what it means for Y to be a solution
of dYt = V(Yt)dXt. But we are close enough. First, we should acknowledge that
X must be supplemented with a X, set X := (X,X = and rewrite the equation as
dYt = V(Yt)dXt. The we say that Y solves the equation (on some interval) if for
s, t in that interval Yt − Ys − V(Ys)(Xt − Xs) − (V ′V)(Ys)Xs,t = o(t− s).

This is hopefully enough motivation for the usefulness of a notion of rough
path and we turn to a formal definition.
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These notes take for granted some familiarity with Brownian motion. The
following sections section hopefully may help a reader who lacks this familiar-
ity. Of course, this presentation only covers a microscopic fraction of the subject.
Though all definitions are (hopefully) correct, the way we formulate them is far
from optimal.

1.A Basic
definitions

from
probability

theory

The reader is advised to skip this section at first reading and jump directly
to the next one, coming back here only when faced with an unknown notion or
notation. We recall a few basic definitions.

Notion of σ-algebra A σ-algebra on a set Ω is a subset F of P(Ω), the set of
subsets of Ω (also denoted by 2Ω) such that:

1. The empty set ∅ ∈ F
2. If A ∈ F then its complement Ω\A also belongs to F .

3. If sets An ∈ F for n ∈ N are given, the ∪n∈NAn also belongs to F .

A member of F is called F-measurable or simply measurable when there is
no risk of confusion. An element of F is also called an event. Suppose that P
is a property of some elements of Ω, i.e. that {ω ∈ Ω, P(ω)} defines a subset
of Ω. The property P is called measurable if {ω ∈ Ω, P(ω)} is an event. It is
customary in probability theory to abbreviate {ω ∈ Ω, P(ω)} simply by P,
that is talk of “the event P”.

The pair (Ω,F) is called a measurable space.

Notion of random variable If (Ω,F) is a measurable space, a map X : ΩtoR is a
(real-valued) random variable if for every interval I ⊂ R the inverse image
X−1(I) := {ω ∈ Ω, X(ω) ∈ I} belongs to F . As an example, for each A ∈
F there is a random variable 1A, called the indicator of A defined by 1A :

ΩtoR, ω 7→ 1A(ω) =

{
1 if ω ∈ A

0 ifω /∈ A
.
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Notion of probability measure If (Ω,F) is a measurable space, a probability mea-
sure on (Ω,F) is a map p : F → [0, 1] such that if An ∈ F for n ∈ N are
disjoint then p(∪n∈NAn) =

∑
n∈N p(An). This last condition if rephrased as

“p is σ-additive”.

The triple (Ω,F , p) is called a probability space.

An event A such that p(A) = 0 is called negligible. One defines N :=
{B ⊂ Ω,∃A ∈ F , p(A) = 0}. One shows that8 F := {B ⊂ Ω, ∃A ∈
F such that A∆B ∈ N } is a σ-algebra on Ω called the completion of F with
respect to p, and F is said to be complete if F = F , i.e. if N ⊂ F . One
shows that there is a unique probability measure p on (Ω,F) such that p|F ,
the restriction of p to F coincides with p. Thus, it is usually harmless to
assume that F is complete to start with.

Notion of expectation If (Ω,F , p) is a probability space, one defines the expec-
tation of an indicator by E (1A) := p(A) for A ∈ F .

A simple random variable is a finite linear combination with real coeffi-
cients of indicators of measurable sets. If X :=

∑
m∈J1,nK λm1Am , where Am ∈

F and λm ∈ R are given for m ∈ J1, nK, is a simple function, one sets
E (X) :=

∑
m∈J1,nK λmp(Am).

If X is an arbitrary positive (i.e. ≥ 0) random variable one sets E (X) :=
sup

Y simple, Y≤X
E (Y), a member of [0,+∞]; one says that X is integrable if

E (X) < +∞. If X is an arbitrary random variable, one says that X is inte-
grable |X| is integrable. Then X+ := X1X≥0 and X− := −X1X≤0 are integrable
(i.e. E (X+) < +∞ and E (X−) < +∞) and one sets E (X) = E (X+) − E (X−).

This construction is a special case of the construction of the Lebesgue in-
tegral, and a more standard notation for E (X) outside probability theory
would be

∫
Ω
X(ω)dp(ω).

Spaces of integrable random variables The space of integrable random variables
is denoted by L1(Ω,F , p), or L1 when no confusion is possible. One shows
that L1(Ω,F , p) is a vector space, that X 7→ E (X) is a linear map from L1 to
R. For X, Y ∈ L1, E (|X+ Y|) ≤ E (|X|) + E (|Y|). Moreover, for X ∈ L1 and
λ ∈ R, E (|λX|) = |λ|E (|X|) and E (|X|) = 0 if and only if p(X ̸= 0) = 0, a
condition which defines a linear subspace of L1 called the subspace of neg-
ligible random variables. The map E (·) descends to the quotient of L1 by
this subspace. It is a common abuse of notation that the class modulo neg-
ligible random variables of a random variable X is still denoted by X.9 In
the quotient, the function E (| · |) defines a norm, and the quotient has an
important property: it is complete.

For q ≥ 1, the space of q-integrable random variables (|X|q is integrable) is
denoted by Lq(Ω,F , p). By Hölder’s inequality, it is a vector space and

8Recall that A∆B := {x ∈ A, x /∈ B} ∪ {x ∈ B, x /∈ A}, the symmetric difference of A and B.
9In fact L1 is usually the notation of the quotient space.
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going to the quotient modulo negligible random variables, the function
E (| · |q)1/q defines a norm for which Lq is complete, i.e. every Cauchy se-
quences converges. A sequence (Xn)n ∈ N of members of Lq satisfies the
Cauchy criterion if ∀ε > 0, ∃n ∈ N such that, for l,m ≥ n, E ((Xm − Xl)

q) ≤
ε. Then, as Lq is complete, there is a random variable X ∈ Lq such that
limn→∞ E ((Xn − X)q) = 0.

A very important example is q = 2. Convergence in L2 is also called con-
vergence in mean square.

Exercise 1.9. Check that the sum and product of two random variables are ran-
dom variables.

Check that if X is an arbitrary random variable, X+ := X1X≥0, X− := −X1X≤0

and |X| are positive random variables.
Check that a simple function is a random variable.
Check that the definition of E (X) when X is a simple function is consistent

despite the fact that X can have several representations as
∑

m∈J1,nK λm1Am . Hint:
show that if

∑
m∈J1,nK λm1Am = 0 (the function vanishing everywhere on Ω) then∑

m∈J1,nK λmp(Am) = 0.
Check that if An ∈ F and λn ∈ R are given for n ∈ N with

∑
n∈N |λn| < +∞

then X :=
∑

n∈N λn1An is a random variable.Check that E (X) =
∑

n∈N λnp(An).

1.B A quick
reminder on

Brownian
motion

Brownian motion A Brownian motion on a probability space (Ω,F , p) is a map
B : [0,+∞[×Ω → R, (t,ω) 7→ Bt(ω) such that

1. For each fixed t ∈ [0,+∞[, the map Bt : Ω → R, ω 7→ Bt(ω) is a ran-
dom variable.

2. For each fixed ω ∈ Ω the map (trajectory) B(ω) : sTime → R, t 7→
Bt(ω) is continuous.

3. The probabilistic laws governing Brownian motion are:

Brownian motion is a Gaussian process The finite linear combinations∑
m∈J1,nK λmBtm where λ1, · · · λn ∈ R and 0 < t1 < · · · < tn < +∞

are Gaussian random variables.
Brownian motion starts at the origin With probability 1, B0 = 0.
Brownian motion has independent increments For 0 ≤ s ≤ t ≤ u ≤

v < +∞ the random variables Bt−Bs and Bv−Bu are independent.
For a Gaussian process, this independence reduces to the fact that
E ((Bt − Bs)(Bv − Bu)) = 0.

Law of increments For 0 ≤ s ≤ t < +∞, Bt−Bs is a Gaussian random
variable with mean 0 and variance t − s, i.e. E (Bt − Bs) = 0 and
E
(
(Bt − Bs)

2
)
= t− s.
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The probabilistic laws governing Brownian motion can be rewritten in explicit
terms that suggest a path integral representation: for 0 = t0 < t1 < · · · < tn ∈
[0,+∞[ and I0, I1, · · · , In intervals of R

p(Bt0 ∈ I0, Bt1 ∈ I1, · · · , Btn ∈ In) = 10∈I0

∫
I1×···×In

dx1 · · ·dxn
n∏

m=1

K(tm − tm−1, xm − xm−1)

where x0 := 0 and K(t, x) := 1√
2πt

e−x2/(2t) is the Gaussian kernel. Note that
K(t, x) = 1√

t
K(1, x/

√
t), the density of a standard centered Gaussian random vari-

able of mean 0 and variance 1. This scaling property lies at the heart of the intri-
cacies of Brownian trajectories.

The fact that all those properties can be satisfied is non-trivial.

1.C Two
simple com-

putations

In this section, B : [0,+∞[×Ω → R, (t,ω) 7→ Bt(ω) is a Brownian motion
defined on some probability space.

We start with the quadratic variation. Take an interval [a, b] ⊂ [0,+∞[. If
∆ : a = t0 < t1 < · · · < tn = b is a subdivision, we set Q∆ :=

∑n−1
m=0(Btm+1

−

Btm)
2, which with more details would read Q∆(ω) :=

∑n−1
m=0(Btm+1

(ω)−Btm(ω))2,
stressing that is is a random variable. .

By the basic rules of expectations and the defining properties of Brownian
motion, E

(
Q∆
)
=

∑n−1
m=0(tm+1 − tm) = b− a. Then

E
(
(Q∆)2

)
=

n−1∑
l,m=0

E
(
(Btl+1

− Btl)
2(Btm+1

− Btm)
2
)

= 2
∑

0≤l<m<n

E
(
(Btl+1

− Btl)
2(Btm+1

− Btm)
2
)
+

n−1∑
m=0

E
(
(Btm+1

− Btm)
4
)
.

By independence of increments,

2
∑

0≤l<m<n

E
(
(Btl+1

− Btl)
2(Btm+1

− Btm)
2
)

= 2
∑

0≤l<m<n

(tl+1 − tl)(tm+1 − tm)

=

n−1∑
l,m=0

(tl+1 − tl)(tm+1 − tm) −

n−1∑
m=0

(tm+1 − tm)
2

= (b− a)2 −

n−1∑
m=0

(tm+1 − tm)
2.

Using that the fourth moment of a standard centered Gaussian random variable
is 3 we get by scaling that E

(
(Btm+1

− Btm)
4
)
= 3(tm+1 − tm)

2. To summarize,
E
(
(Q∆)2

)
= (b− a)2 + 2

∑n−1
m=0(tm+1 − tm)

2 and

E
(
(Q∆ − (b− a))2

)
= 2

n−1∑
m=0

(tm+1 − tm)
2 ≤ (b− a)mesh(∆).



1.C. TWO SIMPLE COMPUTATIONS 21

Using the definition of mean square convergence, we infer that the family of ran-
dom variables Q∆ converges in mean square towards b − a, a non-random ran-
dom variable. This limit is called the quadratic variation of Brownian motion
on [a, b]. One also says the quadratic variation of Brownian motion is Qt := t

because the quadratic variation on [a, b] is Qb −Qa.
We turn to the computation of

∫b

a
Bs dBs à la Itō. The Itō algorithm define

integrals as limits of Riemann-like sums is to use retarded sums: the time at which
the integrand (here Bs) is evaluated is always before the times of the increment
of the integrator (here dBs). Concretely this means that

∫b

a
Bs dBs is defined to

be the limit at small mesh of S∆ :=
∑n−1

m=0 Btm(Btm+1
− Btm).10 Of course, nothing

guarantees in advance that the limit exists, or the sense in which it exists. For this
simple case, things are easy. We just have to note that S∆ + Q∆/2 is a telescopic
sum, namely

S∆ +
1

2
Q∆ =

1

2

n−1∑
m=0

(B2
tm+1

− B2
tm
) =

1

2
(B2

b − B2
a).

As Q∆ converges towards b−a in mean square at small mesh by our first compu-
tation, we infer that at small mesh S∆ converges towards ((B2

b − b) − (B2
a − a))/2

in mean square. This is in fact the mode of convergence used for the Itō integral,
and we have shown that∫b

a

Bs dBs =
1

2
(B2

b − b) −
1

2
(B2

a − a).

We note the appearance of an anomalous term with respect to the naive integral.
As already explained in the main text, for (p-almost) every sample B(ω) there

are subdivisions ∆(Ω) of arbitrary small mesh such that Q∆(ω)(ω) is arbitrary
small and others for which it is arbitrary large : one can fine-tune the subdivisions
to the sample to get wildly different results for the quadratic variation Q∆, hence
for the approximations S∆. Thus, for (p-almost) every sample B(ω), S∆(ω) varies
wildly when ∆ ranges over all subdivisions of arbitrary small mesh. There is
no pathwise definition of the integral

∫b

a
Bs dBs. And rough path theory will not

attempt to define this particular integral pathwise. What it will do it take it as
given and use it to provide a pathwise definition of integrals with integrator dBs

but more complicated integrands.
Note that for this simple case, one can show however that if (∆)k∈N is a se-

quence of subdivisions of [a, b] with limk→∞ mesh(∆k) = 0 then, for (p-almost)
every sample B(ω), S∆k goes to ((B2

b − b) − (B2
a − a))/2 at large k. For all these

subtleties, a nice reference (and the only one I know) is [1].

10Again, a more detailed notation stressing the status of random variable would be S∆(ω) :=∑n−1
m=0 Btm(ω)(Btm+1

(ω) − Btm(ω)).
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Informally, a rough path is a collection of objects whose first component is
a standard path and the other components contain enough data to compute in-
tegrals involving the first component. Moreover, these additional data involve
some arbitrariness, but they are not totally arbitrary. This is very vague but our
survey of simple controlled differential equations has uncovered some salient fea-
tures of the tools we need. Our next goal is to extract a precise definition. We start
with combinatorics.

2.1 Rough
paths, com-

binatorics

In this section, we focus on the simplest situation. From the viewpoint of
controlled differential equations, it covers the case when the second order of the
Born expansion is needed, but not more. Later we shall generalize to cases where
higher orders are needed (see Exercise 1.4 for motivation).

Combinatorial rough path A combinatorial two-component rough path on the
interval [a, b] with values in a vector space E is a pair X = (X,X) where
X : [a, b] → E is a function of one real variable with values in E (i.e. a path)
and X : [a, b]2 → E⊗E is a function of two real variables with values in E⊗E

with the consistency relation (known as Chen’s relation):

Xs,u − Xs,t − Xt,u = (Xt − Xs)⊗ (Xu − Xt) for a ≤ s, t, u ≤ b.

The Chen relation is precisely the multidimensional generalization of the re-
lation uncovered in Example 1.6. It guarantees the closure of the flow if one
attempts to solve the controlled differential equation dYt = V(Yt)dXt for t ∈
[a, b] with initial condition Ya = ya (where Y lives in some vector space) by a sec-
ond order approximation Yt ≃ Ys+V(Xt−Xs)+V ′(Ys)V(Ys)Xs,t, or in coordinates
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(with Einstein’s summation convention)

Yµ
t ≃ Yµ

s + Vµ
i (X

i
t − Xi

s) +
∂Vµ

i

∂yν
(Ys)V

ν
j (Ys)X

ji
s,t.

For a smooth X we could take Xji
s,t :=

∫t

s
(
∫u

s
dXj

v)dX
i
u =

∫t

s
(Xj

u−Xj
s)dX

i
u. In that case

the above formula is the second order Born approximation and Chen’s relation
is Chasles’ relation for standard integrals.1 Later, we shall study rough integrals
against X (more precisely against the rough path (X,X) because without surprise
the definition involves X) via limits of Riemann type sums. The sums approx-
imating the rough integral

∫t

s
(Xu − Xt) ⊗ dXu will turn out to be telescopic by

Chen’s relation so that the rough integral
∫t

s
(Xu − Xt) ⊗ dXu will be found to be

precisely Xs,t.
The Chen relation, which is of combinatorial nature, leads to a consistent ap-

proximate flow, but does not guarantee that iteration with a small time increment
leads to a convergent approximation. For that, some analytical constraints, to be
introduced later, have to be put on X and X. But first let us make a few remarks.

Gauge freedom If (X,X) is a rough path, and F : [a, b] → E⊗E a path with values
in E⊗ E and X̃s,t := Xs,t + Ft − Fs then (X, X̃) is also a rough path, i.e. Chen’s
relation is satisfied.
Conversely, if (X,X) and (X, X̃) are two rough paths with the same first com-
ponent, setting Fs,t := X̃s,t − Xs,t one gets Fs,t + Fs,t = 0 and Fs,t = Fa,t − Fa,s

for a ≤ s, t ≤ b, and defining Ft := Fa,t yields X̃s,t = Xs,t + Ft − Fs.
Thus the ambiguity in the definition of the second component of a rough
path is exactly the gauge freedom.

Scalar case Consequently, the general X if E = R is Xs,t =
1
2
(Xt − Xs)

2 + Ft − Fs.

A rough path is a path More precisely, one recovers a rough path from a path:
Taking u = t in Chen’s relation yields Xt,t = 0 for a ≤ t ≤ b. Then taking

1By Chasles relation

Xs,u − Xs,t =

∫u
s

(Xv − Xs)⊗ dXv −

∫t
s

(Xv − Xs)⊗ dXv =

∫u
t

(Xv − Xs)⊗ dXv.

Then using the linearity of the integral

Xs,u − Xs,t − Xt,u =

∫u
t

(Xv − Xs)⊗ dXv −

∫u
t

(Xv − Xt)⊗ dXv =

∫u
t

(Xt − Xs)⊗ dXv.

As Xt − Xs is a constant (the variable of integration is v), it factors out of the integral so

Xs,u − Xs,t − Xt,u = (Xt − Xs)⊗
∫u
t

dXv.

The remaining integral is
∫u
t
dXv = Xu − Xt leading to Chen’s relation.
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u = s yields Xs,t +Xt,s = (Xt −Xs)⊗ (Xt −Xs) so that the symmetric part (in
the arguments s, t, not in V ⊗ V) of X is determined by X. Moreover, taking
s = a yields Xt,u = Xa,u −Xa,t − (Xt −Xa)⊗ (Xu −Xt) so that the knowledge
of Xt and Xa,t for a ≤ t ≤ b is enough to determine the rough path.

Any path can be lifted to a combinatorial rough path Conversely, consider an ar-
bitrary path (X(1), X(2)) on [a, b] with values in V ⊕ V ⊗ V with first compo-
nent X(1) : [a, b] → V , and second component X(2) : [a, b] → V ⊗ V , and an
arbitrary point c ∈ [a, b]. Then it is immediate to check that (X,X) defined
by

Xs := X(1)
s for s ∈ [a, b] and Xs,t := X

(2)
t −X(2)

s −(X(1)
s −X(1)

c )⊗(X
(1)
t −X(1)

s ) for s, t ∈ [a, b]

is a combinatorial rough path, i.e. satisfies the Chen relation.
Changing the reference point c to, say, d ∈ [a, b] is easily seen to amount, as
it should, to a (special) gauge transformation, with Ft = (X

(1)
d − X

(1)
c )⊗ X

(1)
t .

Changing X(2) obviously amounts to a gauge transformation, as it should.

In that sense (combinatorial) rough paths on [a, b] with values in V (more
precisely in V⊕V⊗V) are in correspondence with paths with values in V⊕V⊗V

in the usual sense, and the correspondence is one to one if one normalizes for
instance the component of the path in V ⊗ V so that it vanishes at a.

2.2 Rough
paths,

regularity

It is time to impose some regularity conditions on combinatorial rough paths.
This imposes to put some topology, on the target spaces E and E ⊗ E and we do
so by introducing norms, which we denote by ∥·∥E and ∥·∥E⊗E.2

A rough path of Hölder type of order α ∈]1/3, 1/2] on [a, b] with values in E

is a two-component combinatorial rough path X = (X,X) such that

First component regularity X : [a, b] → E is α-Hölder. This means that for some
constant K and ∀s, t ∈ [a, b], ∥Xt − Xs∥E ≤ K|t − s|α. Equivalently, X is
α-Hölder if

∥X∥α := sup
s,t∈[a,b],s̸=t

∥Xt − Xs∥E
|t− s|α

< +∞.

.

Second component regularity X : [a, b] → E⊗ E is such that for some constant K
and ∀s, t ∈ [a, b], ∥Xs,t∥E⊗E ≤ K|t− s|2α. Equivalently,

∥X∥2α := sup
a≤s ̸=t≤b

∥Xs,t∥E⊗E

|t− s|2α
< +∞.

These conditions define the space of rough paths, but also allow to define a
metric on it. In particular, we may talk of convergence in the rough paths topol-
ogy. With words, two rough paths X and = Y are close to each other if ∥Xa − Ya∥E

2Or simply by ∥·∥ for both, it is easy from the context to decide in which space the norm is
taken.
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is small, as are ∥X− Y∥α and ∥X − Y∥2α. The first condition is needed because the
Hölder condition is insensitive to translation by a constant. See Subappendix 2.A
for a precise definition.

Somme words of caution. First, the target spaces E and E⊗E are vector spaces
but Chen’s relation is quadratic, not linear, so the space of rough paths is not
a vector space. Second, the “norms” for X and X do not have the same scal-
ing:

√
∥X∥α is a natural object to consider, but it does not satisfy the triangular

inequality needed in the definition of a metric. Third, trading ∥·∥E and ∥·∥E⊗E

for two equivalent norms gives the same space of rough paths endowed with
an equivalent metric. We shall mostly concentrate on the case when E is finite-
dimensional. Then so is E⊗ E, so all norms on E are equivalent, and so are those
on E ⊗ E. But it is to be noted that rough paths theory works and has important
applications when E is an infinite-dimensional Banach space, and then one has
14 norms with nice properties3 at disposal to define E⊗ E as a Banach space, but
only one, the projective norm, which allows to “linearize bilinear maps” makes
life easy for rough paths.

The conditions we introduced are not exactly the ones that we uncovered
heuristically at the end of Example 1.6.4 Those conditions hold with the above
definition of rough paths for every α > 1/3, but not for α ≤ 1/3. Thus we may
hope for success if we try to solve controlled differential equations with the sec-
ond order Euler scheme (with X as a substitute for the second iterated integral)
for α > 1/3 but we expect problems when a combinatorial rough path X = (X,X)
fullfils the regularity conditions for no α > 1/3. As suggested by Exercise 1.4,
dealing with less and less regular paths would imply the definition of substi-
tutes for more and more iterated integrals. This generalization is touched upon
in Chapter 12.

The reasons why we restrict to α ≤ 1/2 are also easy to understand. First, if
one takes α > 1/2 in the above definition, one can show that a naive integration
theory can be defined via (avatars of) Riemann sums. This is the so-called Young
integral that we shall introduce in Chapter 5. Second, the gauge freedom Xs,t →
Xs,t + Ft − Fs disappears because the function F, which must be 2α-Hölder by the
second component regularity, can only be a constant if α > 1/2 (why?). Thus,
even if the above definition makes sense for α > 1/2 it does not bring anything
new: given X, there is only one X, and it is given by naive integration methods.

In one dimension, we know that any combinatorial X has a second component
of the form Xs,t = (Xt−Xs)

2/2+Ft−Fs. If X is α-Hölder (Xt−Xs)
2/2 automatically

satisfies the second regularity condition, and the additional F makes it is and only
if it as α-Hölder (Xt − Xs)

2/2 so the situation is clear.
In the multidimensional setting, we have shown in the previous section how

any X could be lifted to a combinatorial rough path. But it is easy to realize
that the resulting X in general fails to fulfill the regularity conditions: if ∥X∥α is
finite then so is ∥X∥α/2 but in general ∥X∥α is not: in words, the short distance

3A counting due to Grothendieck!
4Recall that they where (Xt − Xs) = o((t− s)1/3) and Xs,t = o((t− s)2/3).
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fluctuations of a Xs,t constructed this way are generically of order |t− s|α whereas
the definition imposes that they should be of order |t − s|2α. However, there is
a general theorem that says essentially5 that any α-Hölder path, α ∈]1/3, 1/2]
has a lift to a rough path (X,X). To conclude this overview, let us stress that
even if the the “lifting to a rough path” theorem is conceptually crucial, it does
not lead to a canonical way to lift. So it is no surprise the often a more direct
approach, unrelated to rough path theory, is used. For instance, if X is a sample
of some process for which a natural stochastic integrals exists, one defines Xs,t :=

”the stochastic integral
∫t

s
(Xu−Xs)⊗dXu”. Usually, the Chen relation is automatic

in such an approach. As we shall explain later, equipped with this Xs,t rough
path theory allows to define integrals against dX or solve differential equations
controlled by X without any further use of stochastic integration.

5There are a few exceptional borderline cases in infinite dimensions. The theorem is not an
easy one. The proof has some similarities with the proof of the Kolmogorov-Centsov theorem.
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2.A The
rough paths

metric

We define more precisely the rough paths metric. Recall that α ∈]1/3, 1/2] and
we fixed norms on E and E ⊗ E. For X : [a, b] → E, ∥X∥α := sup

s,t∈[a,b],s ̸=t
∥Xt−Xs∥E

|t−s|α

and we define Cα
1 ([a, b], E, ∥ ∥E) := {X : [a, b] → E, ∥X∥α < +∞}. In the same vein,

for X : [a, b] → E ⊗ E, ∥X∥2α := sup
a≤s̸=t≤b

∥Xs,t∥E⊗E

|t−s|2α
and we define Cα

2 ([a, b]
2, E ⊗

E, ∥ ∥E⊗E) := {X : [a, b]2 → E, ∥X∥α < +∞}. Then

Cα
1 ([a, b], E, ∥ ∥E)⊕ C2α

1 ([a, b], E, ∥ ∥E)

is a vector space, which we can endow with a norm, for instance ∥X∥α := ∥Xa∥E+
∥X∥α + ∥X∥2α for X := (X,X).6 This norm induces a distance on that vector space,
hence on any subspace, in particular the (quadratic) subspace of rough paths
RPα([a, b], E) ⊂ Cα

1 ([a, b], E, ∥ ∥E) ⊕ C2α
1 ([a, b], E, ∥ ∥E) made of pairs (X,X) sat-

isfying Chen’s relation. In particular, we may talk of convergence in the rough
paths topology.

6Of course max {∥Xa∥E, ∥X∥α, ∥X∥2α} for instance would define an equivalent norm. The
∥Xa∥E contribution is needed because the Hölder condition (as well as the Chen relation for that
matter) is insensitive to translation by a constant.
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We shall illustrate the ideas mentioned in the Introduction, especially in the
section “Rough paths with words” (see p. 3) on a very simple example whose
avatars reappear several times in these lectures under different disguises.

3.1 A
minimal

example of
a rough path

We shall study a family of smooth paths, depending on a parameter, and for-
malize what happens when the parameter goes to 0. Given ε > 0 we set

Z(ε) : [0,+∞[→ C, t 7→ Z
(ε)
t :=

√
εeit/ε

which we view as a path in C = R+ iR ≃ R2. This path winds on a circle of radius√
ε and shrinks to a point, i.e. a constant path we call Z ≡ 0, when ε ↓ 0.

However, the winding gets faster as ε gets smaller, and this leaves a footprint
on integrals. Writing Z(ε) = X(ε) + iY(ε) we compute that both∫ t

s

X(ε)
u dX(ε)

u =
ε

2
(cos2 t/ε− cos2 s/ε) and

∫ t

s

Y(ε)
u dY(ε)

u =
ε

2
(sin2 t/ε− sin2 s/ε)

go to 0 (uniformly in s and t) when ε ↓ 0 but both∫ t

s

X(ε)
u dY(ε)

u =
1

2
(t− s) +

ε

4
(sin 2t/ε− sin 2s/ε)

and ∫ t

s

Y(ε)
u dX(ε)

u = −
1

2
(t− s) +

ε

4
(sin 2t/ε− sin 2s/ε)

have a non-trivial limit,

lim
ε↓0

∫ t

s

X(ε)
u dY(ε)

u =
1

2
(t− s) and lim

ε↓0
∫ t

s

Y(ε)
u dX(ε)

u = −
1

2
(t− s)
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(uniformly in s and t).
In particular

1

2

∫ t

s

(X(ε)
u dY(ε)

u − Y(ε)
u dX(ε)

u ) = t− s,

is the area of the sector of the disk of radius
√
ε based on the arc beginning at

parameter s/ε and ending at parameter t/ε. It is mainly the desire to have a non
trivial limit for the area swept by Z(ε) that justifies the choice of scaling in Z(ε).

A crucial point is that the “Euler approximation” to this integral,∫ t

s

(X(ε)
u dY(ε)

u − Y(ε)
u dX(ε)

u ) ≈ X(ε)
x (Y

(ε)
t − Y(ε)

s ) − Y(ε)
x (X

(ε)
t − X(ε)

s ) = ε sin(t− s)/ε

exhibits a crossover: the approximation is accurate only for |t− s| ≪ ε.
To summarize our results, we introduce a new object, in complex notation for

convenience:

Z(ε)
s,t :=

∫ t

s

(
(Z

(ε)
u − Z

(ε)
s )dZ

(ε)
u (Z

(ε)
u − Z

(ε)
s )dZ

(ε)

u

(Z
(ε)

u − Z
(ε)

s )dZ
(ε)
u (Z

(ε)

u − Z
(ε)

s )dZ
(ε)

u

)
.

We have established that

lim
ε↓0 (Z(ε),Z(ε)) = (Z,Z),

where Zt = 0 and Zs,t = (t − s)

(
0 −i

i 0

)
for s, t ∈ [0,+∞[. The way we obtained

this limit is pointwise, which as usual is too weak a convergence for many pur-
poses. It is easy to do better, the interested reader may look at Subappendix 3.A
to see an explicit computation of convergence in the rough paths metric.

Integrals along the 0 path Z vanish, so we interpret the existence of a nontrivial
Z as an anomaly: taking the integral of Z(ε) and then the limit ε ↓ 0 is not the same
as taking the limiting Z and then the integral. This phenomenon is of course very
familiar. What is new with rough path theory is the way one exploits it. More on
this on an example in the next section.

As a concluding remark, it may seem strange to talk of rough path to describe
such smooth objects as the 0 path Z and its companion Z. The point is first that
the Z(ε)s are indeed wild objects, and their limit Z must be a “rough” kind of 0
path Z to have integrals involving it (more precisely limits of integrals involving
the Z(ε)s) yield a nonzero result. But true, rough path theory is tailored in general
to deal with rather singular objects, wilder than Brownian motion for instance.

3.2 A
controlled

differential
equation

Consider the controlled differential equation dW(ε) = W
(ε)
dZ(ε) (and its com-

plex conjugate dW
(ε)

= W(ε)dZ
(ε)

) on [0, 2π], interpreted as the ordinary differen-
tial equation for W(ε)

dW
(ε)
s

ds
= W

(ε)

s

dZ
(ε)
s

ds
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on [0, 2π] with initial condition W
(ε)
0 = 1. This is simple enough to be solved

explicitly: taking derivations and using Z(ε)Z
(ε)

= 1/ε one infers that W(ε) satisfies
an ordinary linear differential equation with constant coefficients, namely

ε
d2W

(ε)
s

ds2
= i

dW
(ε)
s

ds
+W(ε)

s .

This differential equation is singular when ε ↓ 0 as confirmed by the expression
of the solution: for ε < 1/4 (which we assume from now on) the characteristic
exponents are imaginary and setting ω± := 1±

√
1−4ε
2ε

one checks that

W(ε)
s =

1

1+
√
εω+

eiω+s +
1

1+
√
εω−

eiω−s =: W(ε,+)
s +W(ε,−).

It is easily seen that W(ε,−) behaves nicely as ε ↓ 0 because ω− ↓ 1, leading to
the fact that limε↓0 W(ε,−) = Z(1) the limit being valid in essentially any topology.
On the other hand W(ε,+) can be rewritten as

W(ε,+) =
1

√
ε+ +

√
1− ε+

Z(ε+)

with ε+ := 1/ω+ going down to 0 when ε ↓ 0. So W(ε,+) can be studied modulo
minor modifications of the study of Z(ε), an exercise left to the reader after he has
read Section D.1. For the time being, we content with the pointwise convergence
of W(ε) to Z(1).

Due to the presence of the singular piece W(ε,+) in W(ε) it is perhaps not sur-
prising that integrals have non-trivial limits when ε ↓ 0. Explicit computations
are elementary if tedious. We leave to the reader to check that, defining

W(ε)
s,t :=

∫ t

s

(
(W

(ε)
u −W

(ε)
s )dW

(ε)
u (W

(ε)
u −W

(ε)
s )dW

(ε)

u

(W
(ε)

u −W
(ε)

s )dW
(ε)
u (W

(ε)

u −W
(ε)

s )dW
(ε)

u

)
,

one is led to
lim
ε↓0 (W(ε),W(ε)) = (W,W),

where Wt = eit and

Ws,t =

(
(eit − eis)2/2 −i(t− s) + 1− e−i(t−s)

i(t− s) + 1− ei(t−s) (e−it − e−is)2/2

)
+ (t− s)

(
0 −i

i 0

)

for s, t ∈ [0,+∞[. The first contribution is
∫t

s

(
(Wu −Ws)dWu (Wu −Ws)dWu

(Wu −Ws)dWu (Wu −Ws)dWu

)
which is somehow expected, but again there is an anomaly. Thus W ought to be
complemented to a rough path.

It is natural to ask whether W, the limit of the solutions to a sequence of nice
differential equations, can itself be seen as the solution of a differential equation.
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The good news is that (at least naively) there is a limit for the differential
equation dW(ε) = W

(ε)
dZ(ε). Closing the eyes, the left-hand side should be dWt

and the right-hand side WtdZt.
But now comes the bad news: because Z is the 0 path, it is clear that for the W

we obtained in the ε ↓ 0 limit one has dWt ̸= WtdZt!
However, forgetting for a moment W and Z, think of solving numerically (and

naively) the equation

dPt = PtdQt with initial condition P0 = 1,

where Q is a known complex value function of time and P is to be found. Rewrite
the differential equation as Pt = Ps +

∫t

s
PudQu, with its complex conjugate com-

panion Pu = Ps +
∫u

s
PvdQv. Performing another step of the Born expansion, we

inject the second formula in the first and obtain

Pt = Ps +

∫ t

s

(
Ps +

∫u

s

PvdQv

)
dQu = Ps + Ps(Qt −Qs) +

∫ t

s

(∫u

s

PvdQv

)
dQu.

In the spirit of the (second order) Euler scheme, we set Pv ≃ Ps in the inner inte-
gral to find

Pt ≃ Ps + Ps(Qt −Qs) + Ps

∫ t

s

(∫u

s

dQv

)
dQu.

We may “specialize” this formula for P = W(ε) and Q = Z(ε):

W
(ε)
t ≃ W(ε)

s +W
(ε)

s (Z
(ε)
t − Z(ε)

s ) +W(ε)
s

∫ t

s

(∫u

s

dZ
(ε)

v

)
dZ(ε)

u .

The double integral is
∫t

s

(
Z
(ε)

u − Z
(ε)

s

)
dZ

(ε)
u , i.e the lower left corner of Z(ε)

s,t . Even

if Z(ε) goes to the 0 path Z when ε ↓ 0 it is not true for its iterated integrals and

limε↓0 Z(ε) = Z with Zs,t = (t − s)

(
0 −i

i 0

)
.Taking the limit when ε ↓ 0 of the

second order Born formula we obtain

Wt ≃ Ws +W
(ε)

s .0+Ws.i(t− s) = Ws(1+ i(t− s)).

It is reassuring if not surprising that the function satisfying the identity at small
t− s and taking value 1 at time 0 is indeed Wt = eit.

The moral is that W is not a solution of the ordinary differential equation
dWt = Wt dZt with Z the 0 path, but that it solves the rough differential equation
dWt = WtdZt (same formula, different meaning) controlled by the rough path
Z := (0,Z). Note finally that the ordinary differential equation can be seen as the
rough differential equation controlled by the trivial rough path 0 := (0, 0). This
may be a bit confusing, but one gets used to it. A way to clarify things would
be to replace Z by Z in the controlled differential equation, i.e. introduce a new
notation to rewrite it as dW = WdZ. The meaning being exactly that the solution
is the limit at small mesh of the second order Euler scheme using Z instead of the
naive iterated integral of Z.
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3.A An
example of

conver-
gence in the
rough paths

metric

Recall that for ε > 0 we have set

Z(ε) : [0,+∞[→ C, t 7→ Z
(ε)
t :=

√
εeit/ε

The shrinking of Z(ε) towards Z ≡ 0 when ε ↓ 0 happens uniformly along the
path, in that sup

t
|Z

(ε)
t −Zt| =

√
ε ↓ 0.1 In the same vein, Z(ε) converges uniformly

to Z. However, for rough path theory, it is more relevant to know how variations
(as physicists we might prefer the term “fluctuations”) of Z(ε) and Z(ε) on small
scales evolve. These fluctuations are controlled by the rough path metric.

In the following, we use freely two obvious facts: for x ∈ R, | sin x|min {|x|, 1}

and, for x, y ∈ [0,+∞[ and α ∈ [0, 1], min {x, y} ≤ xαy1−α (the min-inequality).

Fluctations of Z(ε) − Z To get a hold on Z(ε) − Z = Z(ε) in Cα
1 ([0,+∞[,C) spaces

we compute2

|Z
(ε)
t − Z(ε)

s | = 2
√
ε| sin((t− s)/(2ε))| ≤ min {2

√
ε, |t− s|/

√
ε}.

This inequality is rather crude, but captures well the crossover between the
regime when |t − s| ≫ ε and when |t − s| ≪ ε. Even if for fixed ε the paths
Z(ε) are smooth, each derivative pulls out a factor 1/ε so to get a hold on
what happens for varying ε at every scale of |t − s| one has to accept less
regularity. Using the min-inequality for α = 1/2 we find that

|Z
(ε)
t − Z(ε)

s | ≤
√
2|t− s|1/2

for every epsilon, and for every s, t ∈ [0,+∞[. So the family Z(ε) is bounded
in C1/2

1 ([0,+∞[,C). For general α the min-inequality yields

|Z
(ε)
t − Z(ε)

s | ≤ 21−α|t− s|αε1/2−α,

1We take this opportunity to recall that for the Riemann integral uniform convergence for
a sequence of integrands on a bounded interval is enough to guarantee the convergence of the
integral towards its naive limit. But here, the integrand and the integrator depend on a parameter,
and as should be expected uniform convergence is not strong enough a criterion for the integrator.

2As Z(ε)
0 → Z0 when ε ↓ 0, there is no issue with translation by a constant.
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This impliess that for α ∈]0, 1/2[ ∥Z(ε)−Z∥α is a O(ε1/2−α) leading to conver-
gence in Cα

1 ([0,+∞[,C) for every α ∈]0, 1/2[. This can be rephrased as the
fact that the fluctuations of Z(ε) are 1/2-Hölder uniformly in ε > 0 and get
close to those of the 0 path in the α-Hölder sense when ε ↓ 0 for α < 1/2. A
simple scaling property shows that Hölder convergence does not hold for
α < 1/2.

See Subappendix 3.B for a generalization.

Fluctations of Z(ε) − Z Our computations have shown that

Z(ε)
s,t := (t− s)

(
0 −i

i 0

)
+

(
1
2
(Z

(ε)
t − Z

(ε)
s )2 −Z

(ε)
s (Z

(ε)

t − Z(ε)
s)

−Z
(ε)

s (Z
(ε)
t − Z

(ε)
s ) 1

2
(Z

(ε)

t − Z
(ε)

s )2

)
.

We look at each matrix element of Z(ε) − Z which is given by the matrix on
the right in the previous line. The computations parallel closely the ones for
Z(ε). For instance the (1, 1) component is simply 1

2
(Z

(ε)
t −Z

(ε)
s )2 so one simply

has to take squares in the previous discussion. As the (2, 2) components is
the complex conjugate of the (1, 1) component, the same remark applies.
Finally, for the (1, 2) or the (2, 1) components (again complex conjugates of
each other) we have, by the min-inequality∣∣∣−Z

(ε)

s (Z
(ε)
t − Z(ε)

s )
∣∣∣ = ε|2 sin((t−s)/(2ε))| ≤ min {|t−s|, 2ε} ≤ |t−s|2α(2ε)1−2α

for α ∈ [0, 1/2]. For α = 0 we get uniform convergence and for α = 1/2 we
get boundedness in C1/2

2 ([0,+∞[2,C ⊗R C).

Taking all the components into account, we have found that ∥Z(ε) − Z∥1
is bounded, and that for α ∈]0, 1/2[ ∥Z(ε) − Z∥2α is a O(ε1−2α) leading to
convergence in C2α

2 ([0,+∞[2,C ⊗R C) for every α ∈]0, 1/2[.

3.B The in-
terpolation

property

In fact, the above computations illustrate a general result and which has an
extension to rough paths (where Chen’s relation proves again crucial).

Interpolation property Suppose X(n), n ∈ N is a sequence of paths on [a, b] such
that first, for some β ∈]0, 1], sup

n
∥X(n)∥β < +∞ and second X

(n)
t → Xt point-

wise on [a, b]. Then Xt is β-Hölder, X(n) converges towards X uniformly on
[a, b] and ∥X(n) − X∥α → 0 at large n for every α ∈]0, β[.

Proof. By hypothesis, there is a constant C > 0 such that
∣∣∣X(n)

t − X
(n)
s

∣∣∣ ≤ C|t − s|β

for every n ∈ N and every s, t ∈ [a, b]. Taking the limit n → ∞ we infer that
|Xt − Xs| ≤ C|t − s|β for every s, t ∈ [a, b], i.e. X = limn→+∞ X(n) is β-Hölder.
This being established, Y(n) := X(n) −X satisfies

∣∣∣Y(n)
t − Y

(n)
s

∣∣∣ ≤ 2C|t− s|β for every

n ∈ N and every s, t ∈ [a, b], and Y
(n)
t → 0 pointwise on [a, b].
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We show that this implies that Y(n) → 0 uniformly on [a, b]. For that, let ε > 0.
Take a subdivision ∆ of [a, b] with mesh(∆)/2 ≤

(
ε
4C

)1/β. Take m large enough

that
∣∣∣Y(n)

s

∣∣∣ ≤ ε/2 for every n ≥ m and every subdivision point s of ∆ (there is only
a finite number of subdivision points). For each t ∈ [a, b] there is a subdivision
point st of ∆ such that |t− st| ≤ mesh(∆)/2 so that for n ≥ m∣∣∣Y(n)

t

∣∣∣ ≤ ∣∣∣Y(n)
t − Y(n)

st

∣∣∣+ ∣∣Y(n)
st

∣∣ ≤ 2C|t− st|
β + ε/2 ≤ ε.

Thus convergence is indeed uniform, and there is a sequence εn, n ∈ N such that
εn → 0 at large n and

∣∣∣Y(n)
t

∣∣∣ ≤ εn for every n and every t ∈ [a, b]. We can use again

the min-inequality:
∣∣∣Y(n)

t − Y
(n)
s

∣∣∣ ≤ min {2C|t−s|β, 2εn} ≤ 2
(
C|t− s|β

)α/β
ε
1−α/β
n for

α ∈ [0, β], for every n ∈ N and every s, t ∈ [a, b] so that ∥Y(n)∥α → 0 at large n for
α ∈]0, η[.

Our computations with Z illustrate (in the case β = 1/2) that this result is
sharp: in general ∥Y(n)∥β cannot be expected to go to 0 at large n.
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In this chapter, we change subject almost completely... or so it seems. What
remains in the background is ta systematic construction of an integration theory
well-suited to rough path.

4.1
Motivation

We want to abstract a construction that we are all familiar with in the context
of the Riemann integral. In any situation when one needs to define an integral
“à la Riemann”

∫t

s
(δΓ)u, depending on the upper and lower bounds s, t via a

limiting procedure, one starts from an explicit expression Γs,t, wishing that the
integral

∫t

s
(δΓ)u we look forward is close enough to Γs,t when |t − s| is small so

that the integral
∫b

a
(δΓ)u may be approximated by a finite sum over subdivisions.

This informal discussion emphasizes the role played by Chasles’ relation, which
is extremely fundamental.

For instance, to define the standard Riemann integral denoted by
∫t

s
Yudu one

takes Γ Ys,t := Ys(t−s) and it is immediate that a general Riemann sum S∆(Y, a, b) :=∑n−1
m=0 Yt2m+1

(t2m+2− t2m) along a tagged subdivision1 ∆ : a = t0 ≤ t1 · · · ≤ t2n = b

of [a, b] can be rewritten as S∆(Y, a, b) =
∑n−1

m=0 Γ
(Y)
t2m+1,t2m+2

−Γ
(Y)
t2m+1,t2m

. By definition
Y is Riemann-integrable if the Riemann sums associated to Y go to a finite limit
when mesh(∆) ↓ 0.

In the same spirit, when we discussed the Euler scheme for controlled differ-
ential equations of the type dY = V(Y)dX where Y is an unknown real function
and X is a real function that appears as the first component of a two-components
rough source X := (X,X), we were led to approximate a formal expression

∫t

s
V(Yu)dXu

(more correctly
∫t

s
V(Yu)dXu) by V(Ys)(Xt − Xs) + V ′(Ys)V(Ys)Xs,t for small |t − s|.

1For the reader who feels the need for it, the formal definition of subdivisions and tagged
subdivisions is recalled in Section A.1
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In the same rough path context, we would approximate a formal expression∫t

s
f(Xu)dXu by Γ

(X,f)
s,t := f(Xs)(Xt − Xs) + F ′(Xs)Xs,t for small |t − s|, and then de-

clare that the rough integral
∫t

s
f(Xu)dXu exists if the sums along subdivisions∑n−1

m=0 Γ
(X,f)
t2m+1,t2m+2

− Γ
(X,f)
t2m+1,t2m

go to a finite limit when mesh(∆) ↓ 0.
It turns out to be fruitful to discuss more generally the existence of a limit for

such sums when Γ (Y) or Γ (X,f) are replaced by an arbitrary function of two variables
Γ on [a, b].

4.2
Riemann

sums and
their limits

Let Γ : [a, b]2 → R be a map. Let∆ : a = t0 ≤ t1 · · · ≤ t2n = b be a tagged
subdivision of [a, b].

Generalized Riemann sums The Riemann sum of Γ along ∆ is defined to be

S∆(Γ, a, b) :=

n−1∑
m=0

Γt2m+1,t2m+2
− Γt2m+1,t2m .

A map from [a, b]2 to R is also called a summand (with value in R) in what follows.
Instead of the term “Riemann sum of Γ” we often write “Γ -Riemann sum”, or
simply “Riemann sum” when there is no risk of confusion.

Retarded and advanced Riemann sums of Γ play a useful role in the discus-
sion.

Advanced and retarded Γ -Riemann sums If ∆ : a = t0 < t1 · · · < tn = b is a
subdivision (not a tagged subdivision) of [a, b] we set

Sret
∆ (Γ, a, b) :=

n−1∑
m=0

Γtm,tm+1
− Γtm,tm Sadv

∆ (Γ, a, b) =

n−1∑
m=0

Γtm+1,tm+1
− Γtm+1,tm .

Those are special cases of general Riemann sums. Recall from Section A.1 that
if ∆ : a = t0 ≤ t1 · · · ≤ t2n = b is a tagged subdivision of [a, b] then ∆∗ : a =
t0 < t2 · · · < t2n = b is a subdivision of [a, b]. If ∆ is such that t2m+1 = t2m (resp.
t2m+1 = t2m+2) for m = 0, · · · , n − 1 the Riemann sum along ∆ is just a retarded
(resp. advanced) Riemann sum along ∆∗.

We want to explore the small mesh behavior of Riemann sums. If limmesh(∆)↓0 S∆(Γ, a, b)

exists, we denote it by
∫b

a
(δΓ) and call it the integral of Γ on the interval [a, b].

Here is a list of basic facts, the details and proofs can be found in Appendix C.

Locality If Γ vanishes in a neighborhood of the diagonal, then
∫b

a
(δΓ) exists and

is 0. By linearity, the existence and then the value, of
∫b

a
(δΓ) depend only on

the germ of Γ along the diagonal, or in physical term on the short distance
behavior of Γs,t, |t− s| small.

Subintervals Let a ≤ s ≤ t ≤ b. We can restrict Γ to [s, t]2. If
∫b

a
(δΓ) exists then

so does
∫t

s
(δΓ).



4.3. AN ATTEMPT AT AN ANALOGY 41

Chasles’ relation If a ≤ t ≤ b and
∫b

a
(δΓ) exists then

∫b

a
(δΓ) =

∫t

a
(δΓ) +

∫b

t
(δΓ).

Thus there is a function Γ̌ : [a, b] → R, well-defined up to an additive con-
stant such that

∫t

s
(δΓ) = Γ̌t − Γ̌s. As usual, this allows to define

∫t

s
(δΓ) for

t ≤ s as well in a way consistent with Chasles relation.2Joined with the
previous fact, this allows to define

∫
(δΓ) : [a, b]2 → R by (

∫
(δΓ))s,t :=

∫t

s
(δΓ).

Integrability conditions, locality (II) If
∫b

a
(δΓ) exists then

∑n−1
m=0 |

∫tm+1

tm
−(δΓ) −

(Γtm,tm+1
− Γtm,tm)| and

∑n−1
m=0 |

∫tm+1

tm
−(δΓ) − (Γtm+1,tm+1

− Γtm+1,tm)| are small
when the mesh of the subdivision ∆ : a = t0 < t1 · · · < tn = b is small.
Conversely, if there is a function Γ̌ : [a, b] → R such that

∑n−1
m=0 |(Γ̌tm+1

− Γ̌tm)−

(Γtm,tm+1
− Γtm,tm)| and

∑n−1
m=0 |(Γ̌tm+1

− Γ̌tm) − (Γtm+1,tm+1
− Γtm+1,tm)| are small

when the mesh of the subdivision ∆ : a = t0 < t1 · · · < tn = b is small then∫b

a
(δΓ) exists and equals Γ̌b − Γ̌a.

Reparameterization invariance If φ : [c, d] → [a, b] is an arbitrary function we
can define the pullback φ∗Γ : [c, d]2 → R of Γ by φ by (φ∗Γ)u,v := Γφ(u),φ(v). If
φ is continuous and increasing, and if

∫b

a
(δΓ) exists then

∫d

c
(δ(φ∗Γ)) exists

as well and the two are equal.

Exercise 4.1. Find Γ : [−1, 1]2 → R such that
∫0

−1
(δΓ) and

∫1

0
(δΓ) both exist, but∫1

−1
(δΓ) does not.

4.3 An
attempt at

an analogy

In this section, we concentrate on retarded Riemann sums for convenience.
Thus the only values of Γs,t that count are those for which s ≤ t and we define
[a, b]2≤ := {s, t ∈ [a, b], s ≤ t}. Accordingly, when we write that

∫b

a
(δΓ) exists, we

only mean that retarded Riemann sums have a limit at small mesh.3

We denote by G[a,b] the (vector) space of all functions Γ : [a, b]2≤ → R which
vanish at coinciding points. We turn G[a,b] into an algebra with unit by pointwise
multiplications: (Γ ′ · Γ ′′)s,t := Γ ′

s,tΓ
′′
s,t. We want to view G[a,b] as a space analogous

to a space of field theories (with a cutoff).
If u ∈ [a, b] and Γ ∈ G[a,b] we define RuΓ ∈ G[a,b] i.e. (RuΓ)s,t for (s, t) ∈ [a, b]2≤

by (RuΓ)s,t :=

{
Γs,t if u /∈]s, t[

Γs,u + Γs,t if u ∈]s, t[ . Thus Ru is a linear transformation on

G[a,b].
It is easy to check that Ra = Rb = Id, that each Ru is a projection (R2

u = Ru)
and that the transformations (Ru)u∈[a,b] commute. Thus we may always write a
product of Rus where the us are in increasing order and without repetition, i.e.

2Beware however that the existence of
∫t
a
(δΓ) and

∫b
t
(δΓ) for some t ∈]a, b[ does not imply

the existence of
∫b
a
(δΓ), see Exercise 4.1.

3It is plain that Chasles relation remains valid, and that the integrability conditions reduce to
the one involving the retarded situation.
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write the product as Rt1 · · ·Rtn−1
for some subdivision ∆ : a = t0 < t1 · · · < tn = b

of [a, b]. The interesting point is that Sret
∆ (Γ, a, b) = (Rt1 · · ·Rtn−1

Γ)a,b. Finally,
RuΓ = Γ for every u ∈ [a, b] if and only if Γs,t = Γ̌t−Γ̌s for some function Γ̌ : [a, b] →
R. This leads to the following analogy.

We view the Rus, more generally their products, as renormalization group
transformations. The general renormalization transformations are in one-to-one
correspondence with subdivisions. The cutoff scale of the renormalization trans-
formation is defined to be the mesh4 of the associated subdivision. Then

∫b

a
(δΓ)

exists if and only if Γ goes to a fixed point under renormalization transformations
when the cutoff goes to 0.

From all viewpoints, this flow is much simpler than renormalization group
flows on realistic spaces of field theories. In particular, our toy renormalization
transformations are linear. One feature that is slightly unusual is that we deal
with local transformations: nothing prevents us from looking at much smaller
scales in one region than in another, the only thing that matters for the approach
of a fixed point is that the overall scale gets small. A more standard approach
would be to consider just a sequence of nested subdivisions, splitting [a, b] in 2,
then 4, then 8 and so on, pieces of equal size. This would hide the reparameteri-
zation invariance though.

There are some obvious manifestations of universality. To mention only one,
suppose that Γ goes to a fixed point and let Γ be an arbitrary bounded member of
G[a,b]. Then Γ ·(Γ−

∫
(δΓ)) goes to the trivial fixed point, an immediate consequence

of the integrability criterion plus the assumed boundedness of Γ . In particular
either Γ · Γ and Γ ·

∫
(δΓ) go to the same fixed point, or none of them goes to a fixed

point.

4.4
Integrability

via
Hölder-type
conditions

Up to now, we have given some properties of
∫
(δΓ) when it exists, but it re-

mains to offer some conditions on Γ sufficient to guarantee the existence of a
fixed point. These conditions should be of some generality but also be verifiable
in practice.

The simplest condition is of Hölder type. Let γ ∈ R.

Triangular summands A function Γ : [a, b]2 → R is triangular with exponent γ if
there is a constant K such that for every s, t, u ∈ [a, b]

|Γs,u − Γs,t − Γt,u + Γt,t| ≤ K|s, t, u|γ.5

4Maybe it is more standard to take the inverse of the mesh as the cutoff, but we stick to the
direct definition as the mesh itself.

5We denote by |s, t, u| the length of the smallest interval containing s, t, u, i.e.

|s, t, u| := max(|t− s|, |u− t|, |u− s|) = max(s, t, u) − min(s, t, u),

a quantity which vanishes if and only of the three points s, t, u coincide, and equals u − s if
s ≤ t ≤ u.
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If Γ is in reduced form, i.e. vanishes on the diagonal, there are only three terms
in the condition to be triangular and the structure of Γs,u−Γs,t−Γt,u is reminiscent of
the triangular condition in metric spaces, hence the name “Triangular summand”.

We denote by K[a,b](Γ) or simply K[a,b] the best possible constant, i.e.

K[a,b](Γ) := sup
s,t,u∈[a,b], |s,t,u|>0

∥Γs,u − Γs,t − Γt,u + Γt,t∥
|s, t, u|γ

,

which makes sense only if [a, b] is a nontrivial interval, i.e. if a < b. By con-
vention, we set K[a,b](Γ) := 0 if a = b. Note that if Γ is triangular on [a, b]2 and
[s, t] ⊂ [a, b] is a nontrivial interval the restriction of Γ to [s, t]2 is also triangular
(for the same exponent) and clearly K[s,t] ≤ K[a,b].

With this definition in mind, we can state the main result of this Chapter,
which gives it his name.

The sewing lemma Suppose Γ : [a, b]2 → R is triangular with exponent γ > 1.
Then

∫b

a
(δΓ) exists.

The Young-Loëve inequality Then |
∫b

a
(δΓ)−(Γa,b−Γa,a)| ≤ 1

1−21−γK[a,b](Γ)(b−a)γ

holds.

The Young-Loëve inequality has an immediate consequence: using Chasles’
relation we infer that if ∆ : a = t0 < t1 · · · < tn = b is a subdivision of [a, b]
then |

∫b

a
(δΓ) − Sret

∆ (Γ, a, b)| ≤ 1
1−21−γK[a,b](Γ)(b − a)mesh(∆)γ−1. In terms of our

renormalization group interpretation, γ − 1 is a critical exponent that describes
the approach of the fixed point. Unlike the usual field theory situation, γ − 1 is
only a lower bound for the speed of approach. This is because γ is also only a
lower bound in the formulation of the triangular property. Loosely speaking, if γ
is sharp uniformly in s, t, u in the triangular property, we expect that γ − 1 will
also be sharp for the approach to the fixed point.

Let us mention the main points of the strategy of proof:
– First one proves the convergence of retarded Riemann sums for a special se-
quence of nested subdivisions of [a, b]: at step k the subdivision points are the
dyadic rationals of order k that belong to ]a, b[. So up to (small) boundary effects,
going from step k to step k + 1 divides the cutoff by 2 uniformly in [a, b] as in
standard renormalization group transformations. One gets get via the triangu-
lar property an exponentially decreasing bound for the difference between the
(retarded) Riemann sums at one step and the next and this implies convergence.
The drawback of small boundary effects is compensated by the fact that Chasles’
relation for the limit can be proven easily. One proves also that the limit satisfies
the Young-Loëve inequality.
– The Young-Loëve inequality plus Chasles’ relation and the triangular property
imply easily that in fact general retarded Riemann sums converge to the same
limit at small mesh.
– The same tools then allow to deal with general Riemann sums. This is the only
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place where the triangular property is used with t ≤ s ≤ u and not s ≤ t ≤ u.
– Using plain dichotomy of [a, b] to construct a sequence of nested subdivisions,
one improves the constant in the Young-Loëve inequality.

We are now ready to apply the sewing lemma to Young integrals.
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In this appendix (E, ∥ ∥E) denotes a Banach space (i.e. a normed vector space
in which Cauchy sequences converge). We fix a, b ∈ R, a ≤ b.

If Γ is a function on [a, b]2 with values in E and ∆ : a = t0 ≤ t1 · · · ≤ t2n = b is
a tagged subdivision of [a, b], recall that the Γ -Riemann sum along ∆ is

S∆(Γ, a, b) :=

n−1∑
m=0

Γt2m+1,t2m+2
− Γt2m+1,t2m .

We observe that S∆(Γ, a, b) is a sum of independent contributions, one for each
part of ∆. Retarded and advanced sums play an important role in the sequel.
Recall that if ∆ : a = t0 < t1 · · · < tn = b is a subdivision of [a, b] we have defined

Sret
∆ (Γ, a, b) :=

n−1∑
m=0

Γtm,tm+1
− Γtm,tm Sadv

∆ (Γ, a, b) =

n−1∑
m=0

Γtm+1,tm+1
− Γtm+1,tm .

As usual, a Γ -Riemann sum with respect to a tagged subdivision ∆ : a = t0 ≤
t1 · · · ≤ t2n = b such that t2m+1 = t2m (resp. t2m+1 = t2m+2) for m = 0, · · · , n− 1 is
just a retarded (resp. advanced) Riemann-Young sum for the subdivision ∆∗.

Recall that if limmesh(∆)↓0 S∆(Γ, a, b) exists, we denote it by
∫b

a
(δΓ) and some-

times call it the integral of Γ on the interval [a, b]. More precisely the existence of
the limit means that there an element of E, denoted by

∫b

a
(δΓ) such that for any ε >

0 there is δ > 0 such that ∥S∆(Γ, a, b) −
∫b

a
(δΓ)∥E ≤ ε whenever mesh(∆) ≤ δ. We

denote by mε(Γ, a, b) ∈ [0,+∞] the supremum of those δs: one has ∥S∆(Γ, a, b) −∫b

a
(δΓ)∥E ≤ ε whenever mesh(∆) ≤ mε(Γ, a, b) but for every δ > mε(Γ, a, b) there

is at least one subdivision ∆ with mesh ≤ δ such that ∥S∆(Γ, a, b) −
∫b

a
(δΓ)∥E > ε.

We shall sometimes concentrate only on retarded or advanced subdivisions,
and we define the existence condition for

∫b

a
(δΓ)ret or

∫b

a
(δΓ)adv accordingly, lead-

ing to introduce mret and madv analogously by using only retarded and advanced
Γ -Riemann sums.

Obviously, the existence of
∫b

a
(δΓ) implies the existence of the retarded and

advanced versions (and then the three are equal), and the obvious inequalities
mret,madv ≥ m hold (for given ε, Γ, a, b). We shall show a converse below.



46 CHAPTER 4. THE SEWING LEMMA

4.A Generic
properties

of
Γ -Riemann

sums:
proofs

We turn to the proof of the results announced in the main text.
We start with the more than elementary:

Reduction, Summands with vanishing Riemann sums If Y : [a, b] → V is an ar-
bitrary function then Λ : [a, b]2 → V, (s, t) 7→ Ys is such that S∆(Λ,a, b) = 0

for every tagged subdivision of [a, b]. By linearity, for any Λ : [a, b]2 → V ,
S∆(Γ +Λ,a, b) = S∆(Γ, a, b) for every tagged subdivision of [a, b].

In particular, taking Ys := −Γs,s for s ∈ [a, b], we see that is is harmless to replace
Γ by Γ red

s,t := Γs,t− Γs,s and assume that Γ vanishes on the diagonal {(t, t), t ∈ [a, b]}
of [a, b]2. We shall often do so.

Locality If Γ vanishes in a neighborhood of the diagonal, then
∫b

a
(δΓ) exists and

is 0. By linearity, the existence and then the value, of
∫b

a
(δΓ) depend only on

the germ of Γ along the diagonal, or in physical term on the short distance
behavior of Γs,t, |t− s| small.

Proof. If Γs,t = 0 for |t− s| ≤ δ then Γ -Riemann sums along subdivisions of mesh
≤ δ vanish identically.

There is an obvious analog for advanced and retarded Γ -Riemann sums.
The next results require an argument.

Subintervals Let a ≤ s ≤ t ≤ b. We can restrict Γ to [s, t]2. If
∫b

a
(δΓ) exists then

so does
∫t

s
(δΓ).

Proof. The existence of
∫t

s
(δΓ) follows from the Cauchy criterion. Indeed, let ε >

0 and let δ > 0 be such that ∥S∆(Γ, a, b) −
∫b

a
(δΓ)∥E ≤ ε/2 if mesh(∆) ≤ δ. Let

∆ ′, ∆ ′′ be two tagged subdivisions of [s, t] both with mesh ≤ δ and let ∆a, ∆b we
any fixed tagged subdivisions of [a, s] and [t, b] respectively, both with mesh ≤ δ.
Let ∆

′
(resp. ∆

′′
) be the tagged subdivision of [a, b] obtained by “gluing” ∆a ∆ ′

(resp.∆ ′′) and ∆b. Then mesh(∆
′
),mesh(∆

′′
) ≤ δ and S∆ ′(Γ, s, t) − S∆ ′′(Γ, s, t) =

S
∆

′(Γ, a, b) − S
∆

′′(Γ, a, b) (the contributions of the peripheral intervals cancel) so

∥S∆ ′(Γ, s, t) − S∆ ′′(Γ, s, t)∥E = ∥S
∆

′(Γ, a, b) − S
∆

′′(Γ, a, b)∥E
≤ ∥S

∆
′(Γ, a, b) −

∫b

a
(δΓ)∥E + ∥

∫b

a
(δΓ) − S

∆
′(Γ, a, b)∥E

≤ ε/2+ ε/2 = ε.

By the Cauchy criterion, this shows that Γ is integrable on [s, t].
Integrability on subintervals also holds for the advanced and retarded ver-

sions. the proof is the same, mutatis mutandis.

As a corollary we obtain:

Chasles’ relation Suppose a ≤ c ∈ R. If Γ : [a, b]2 → V is such that
∫b

a
(δΓ) is

defined, then so are
∫s

a
(δΓ) and

∫b

s
(δΓ) for any s ∈ [a, b] and Chasles’ relation∫b

a
(δΓ) =

∫s

a
(δΓ) +

∫b

s
(δΓ) holds.
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Proof. The existence of
∫s

a
(δΓ) and

∫b

s
(δΓ) follows from the previous result. Then

Chasles’ relation follows by considering a subclass of tagged subdivisions of
[a, b], those for which t is a subdivision point, and letting the mesh go to 0.Note
that Chasles relation implies the existence of a function Γ̌ : [a, b] → E such that∫t

t
(δΓ) = Γ̌t − Γ̌s, and Γ̌ is uniquely defined if we add the condition that Γ̌a = 0.

Chasles relation also holds for the advanced and retarded versions. The proof
is the same, mutatis mutandis.

This yields yet another corollary.

Subintervals (II) Let a ≤ s ≤ t ≤ b. Suppose the
∫b

a
(δΓ) exists. Then mε(Γ, s, t) ≤

mε(Γ, a, b).

Proof. Let ε > 0. Fix a tagged subdivision ∆ of [s, t] with mesh ≤ mε(Γ, a, b). If
∆a, ∆b are any tagged subdivisions of [a, s] and [t, b] respectively, both with mesh
≤ mε(Γ, a, b) let ∆ be the tagged subdivision of [a, b] obtained by “gluing” ∆a ∆

and ∆b. Then mesh(∆) ≤ mε(Γ, a, b). As S∆(Γ, a, b) = S∆a(Γ, a, s) + S∆(Γ, s, t) +
S∆b(Γ, t, b), using Chasles’ relation we have

∥
(
S∆a(Γ, a, s) −

∫ s

a

(δΓ)

)
+

(
S∆(Γ, s, t) −

∫ t

s

(δΓ)

)
+

(
S∆b(Γ, t, b) −

∫b

t

(δΓ)

)
∥E ≤ ε.

Using the Subintervals item, we know that S∆a(Γ, a, s) −
∫s

a
(δΓ) can be made as

small as we please by taking ∆a fine enough, and the same holds for S∆b(Γ, t, b)−∫b

t
(δΓ) by taking ∆b fine enough. Thus ∥S∆(Γ, s, t) −

∫t

s
(δΓ)∥E ≤ ε. As ∆ is

an arbitrary tagged subdivision of [s, t] with mesh ≤ mε(Γ, a, b), we infer that
mε(Γ, s, t) ≤ mε(Γ, a, b).

This inequality also holds for the advanced and retarded versions. The proof
is the same, mutatis mutandis.

Integrability conditions, locality (II) In case dimE < +∞, if
∫b

a
(δΓ) exists then∑n−1

m=0∥
∫tm+1

tm
(δΓ) − (Γtm,tm+1

− Γtm,tm)∥E and
∑n−1

m=0∥
∫tm+1

tm
(δΓ) − (Γtm+1,tm+1

−
Γtm+1,tm)∥E are small when the mesh of the subdivision ∆ : a = t0 < t1 · · · <
tn = b is small. Conversely, without restrictions on dimE if there is a func-
tion Γ̌ : [a, b] → R such that

∑n−1
m=0∥(Γ̌tm+1

− Γ̌tm) − (Γtm,tm+1
− Γtm,tm)∥E and∑n−1

m=0∥(Γ̌tm+1
− Γ̌tm)− (Γtm+1,tm+1

− Γtm+1,tm)∥E are small when the mesh of the
subdivision ∆ : a = t0 < t1 · · · < tn = b is small then

∫b

a
(δΓ) exists and

equals Γ̌b − Γ̌a.

The conditions and the conclusions only involve the reduced form of Γ and
we may assume by Reduction that Γ vanishes on the diagonal to lighten the no-
tations.
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Proof of the direct statement. We do a bit better: under the weaker condition that∫b

a
(δΓ)ret exists, we prove that

∑n−1
m=0∥

∫tm+1

tm
(δΓ)−(Γtm,tm+1

−Γtm,tm)∥E is small when
the mesh of the subdivision ∆ : a = t0 < t1 · · · < tn = b is small. The proof of the
second inequality assuming only that

∫b

a
(δΓ)ret exists is analogous.

We first prove the statement when E = R. Suppose thus that
∫b

a
(δΓ)ret exists

and fix ε > 0. Let ∆ be a subdivision of [a, b] with mesh ≤ mret
ε (Γ, a, b). Let M+ :=

{m ∈ J0, n − 1K,
∫tm+1

tm
(δΓ)ret − Γtm,tm+1

≥ 0} and M− be the complement, M− :=

{m ∈ J0, n − 1K,
∫tm+1

tm
(δΓ)ret − Γtm,tm+1

< 0}. If the ∆(m)s, m ∈ M−, are arbitrary
subdivisions of [tm, tm+1] we may “glue” them with the intervals [tm, tm+1], m ∈
M+ (left untouched and each seen as the simplest subdivision of [tm, tm+1]) to get
a subdivision of [a, b] which we denote by ∆. Using Chasles relation we get∫b

a

(δΓ)ret − S∆(Γ, a, b) =
∑

m∈M+

(∫ tm+1

tm

(δΓ)ret − Γtm,tm+1

)
+

∑
m∈M−

(∫ tm+1

tm

(δΓ)ret − Sret
∆(m)(Γ, tm, tm+1)

)
.

The absolute value6of the left-hand side is ≤ ε because mesh(∆) ≤ mret
ε (Γ, a, b).

On the right-hand side, using the Subintervals item we know that that the ab-
solute value of each term

∫tm+1

tm
(δΓ) − Sret

∆(m)(Γ, tm, tm+1), m ∈ M− can be made
as small as we please by taking the ∆(m)s fine enough. This implies that in fact∣∣∣∑m∈M+

(∫tm+1

tm
(δΓ) − Γtm,tm+1

)∣∣∣ ≤ ε. But
∫tm+1

tm
(δΓ) − Γtm,tm+1

≥ 0 for m ∈ M+

so
∑

m∈M+

∣∣∣∫tm+1

tm
(δΓ) − Γtm,tm+1

∣∣∣ ≤ ε. A similar reasoning (this time refining ∆ on
the intervals associated to M+, leaving the intervals associated to M− untouched)
shows that

∑
m∈M−

∣∣∣∫tm+1

tm
(δΓ) − Γtm,tm+1

∣∣∣ ≤ ε. Putting things together, we have

proven that for each subdivision ∆ of [a, b] with mesh ≤ madv
ε (Γ, a, b)

n−1∑
m=0

∣∣∣∣∫ tm+1

tm

(δΓ)ret − (Γtm,tm+1
− Γtm,tm)

∣∣∣∣ ≤ 2ε,

valid if Γ vanishes on the diagonal and then in general by Reduction.
If d := dimE < +∞ we proceed in two steps. First endow E with a basis

e1, · · · , ed and prove the result for the L1 norm with respect to that basis: ∥v∥E =∑d
i=1 |vi| if v = viei. Then we may decompose Γ = Γ iei. It is plain that retarded

Γ -Riemann sums have a small-mesh limit if an only if this holds for each Γ i and
we may apply the previous reasoning to each Γ i. This yields immediately that for
each subdivision ∆ of [a, b] with mesh ≤ mret

ε (Γ, a, b)

n−1∑
m=0

∥
∫ tm+1

tm

(δΓ)ret − (Γtm,tm+1
− Γtm,tm)∥E ≤ 2εdimE,
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This settles the case of the L1 norm. As all norms are equivalent in finite di-
mensions, the announced result holds for arbitrary norms:

∑n−1
m=0∥

∫tm+1

tm
(δΓ)ret −

(Γtm,tm+1
− Γtm,tm)∥E is small if ∆ : a = t0 < t1 · · · < tn = b has a small mesh.7

These arguments is easily transposed to advanced Γ -Riemann sums to get that
if
∫b

a
(δΓ)adv exists then for each subdivision ∆ of [a, b] with mesh ≤ madv

ε (Γ, a, b),

n−1∑
m=0

∣∣∣∣∫ tm+1

tm

(δΓ)adv − (Γtm+1,tm+1
− Γtm+1,tm)

∣∣∣∣ ≤ 2εdimE

if E is endowed with the L1 norm.
As mret,madv ≥ m we have proven the direct statement.

Proof of the reverse statement (this is simpler). Fix ε > 0 and chose δ such that
such that

∑n−1
m=0∥(Γ̌tm+1

− Γ̌tm) − (Γtm,tm+1
− Γtm,tm)∥E and

∑n−1
m=0∥(Γ̌tm+1

− Γ̌tm) −
(Γtm+1,tm+1

− Γtm+1,tm)∥E are ≤ ε/2 whenever ∆ : a = t0 < t1 · · · < tn = b is a
subdivision of [a, b] with mesh ≤ δ. If ∆ : a = t0 ≤ t1 · · · ≤ t2n = b is a tagged
subdivision of [a, b] we write

Γ̌b − Γ̌a − S∆(Γ, a, b) =

n−1∑
m=0

((Γ̌t2m+2
− Γ̌t2m+1

) − (Γt2m+2,t2m+1
− Γt2m+1,t2m+1

))

+

n−1∑
m=0

((Γ̌t2m+1
− Γ̌t2m) − (Γt2m+1,t2m+1

− Γt2m+1,t2m)).

We claim that
n−1∑
m=0

∥∥E(Γ̌t2m+2
− Γ̌t2m+1

) − (Γt2m+2,t2m+1
− Γt2m+1,t2m+1

))
E
≤

2n−1∑
m=0

∥(Γ̌tm+1
−Γ̌tm)−(Γtm,tm+1

−Γtm,tm)∥E ≤ ε/2.

The first inequality holds because the terms in the first sum are those with odd
m in the second sum. The set {t0, · · · , t2n} defines a subdivision of [a, b] denoted
by ∆∗∗ (see Appendix A.1 for details) which has mesh ≤ δ and by the hypothesis
applied to this subdivision one gets the second inequality. Observe that due to
coincidences ∆∗∗ may have less than 2n parts because, for some ms, tm and tm+1

can be equal, but then they count automatically for 0 in the second sum. The
same argument shows that
n−1∑
m=0

∥∥E(Γ̌t2m+1
− Γ̌t2m) − (Γt2m+1,t2m+1

− Γt2m+1,t2m))E ≤
2n−1∑
m=0

∥(Γ̌tm+1
−Γ̌tm)−(Γtm+1,tm+1

−Γtm+1,tm)∥E ≤ ε.

Thus we have shown that Γ̌b− Γ̌a−S∆(Γ, a, b) has norm ≤ ε whenever ∆ has mesh
≤ δ, so that

∫b

a
(δΓ) exists and equals Γ̌b − Γ̌a.

6Recall the E = R in this part of the argument.
7Beware however that to get explicit bounds one has to take into account that though we did

not emphasize it in the notation, m depends on the choice of norm.
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We note the following corollary

From retarded and advanced to general integrals Suppose that dimE < +∞.

Assume that
∫b

a
(δΓ)ret,

∫b

a
(δΓ)adv both exist. If

∫t

s
(δΓ)ret =

∫t

s
(δΓ)adv for s ≤

t ∈ [a, b] then the general integral
∫b

a
(δΓ) exists (and coincides with the

retarded-advanced versions). Else
∫b

a
(δΓ) does not exist.

Proof. Start with the first statement. The first part of the previous result gives the
inequalities needed in the second part. Thus part however requires a consistent

Γ̌ – which amounts to the equality
∫
(δΓ)ret =

∫
(δΓ)adv– to be carried.

If φ : [c, d] → [a, b] is an arbitrary function we can define the pullback φ∗Γ : [c, d]2 →
E of Γ by φ by (φ∗Γ)u,v := Γφ(u),φ(v).

Reparameterization invariance If φ is continuous and increasing, and if
∫b

a
(δΓ)

exists then
∫d

c
(δ(φ∗Γ)) exists as well and the two are equal.

Proof. Being increasing φ maps tagged subdivisions : if ∆ : c = u0 ≤ u1 · · · ≤
u2n = d is a tagged subdivision of [c, d], we set φ(∆) : a = φ(u0) ≤ φ(u1) · · · ≤
φ(u2n) = b. Let ε > 0 and let δ̃ > 0 be such that ∥S∆̃(Γ, a, b) −

∫b

a
(δΓ)∥E ≤ ε for

mesh(∆̃) ≤ ε. Being continuous on the compact interval [c, d], φ is uniformly
continuous there: there is a δ > 0 such that mesh(φ(∆)) ≤ δ̃ whenever ∆ is a
tagged subdivision of [c, d] with mesh(∆) ≤ δ. If this is the case, as S∆(φ

∗Γ, c, d) =

Svarphi(∆)(Γ, a, b) we obtain ∥S∆(φ
∗Γ, c, d) −

∫b

a
(δΓ)∥E ≤ ε. Thus the summand φ∗Γ

is integrable on [c, d] and
∫d

c
(δ(φ∗Γ)) =

∫b

a
(δΓ).

4.B The
sewing
lemma:
proofs

We now turn to a useful setting that guaranties the existence of
∫
(δΓ). This

setting is not optimal because the conditions are not reparameterization invariant
To study the small mesh behavior of Γ -Riemann sums, a first step is to control

what happens to, say, a retarded sum, when a single subdivision point is added
to a subdivision. Suppose that [s, u] is a part of a subdivision ∆ and point t ∈]s, u[
is inserted. Then

Sret
∆ (Γ, a, b) − Sret

∆∪{t}(Γ, a, b) = Γs,u − Γs,t − Γt,u + Γt,t.

This motivates the definition of a triangular summand, which we repeat here.

Triangular summand Let γ ∈ R. A summand Γ : [a, b]2 → E is triangular with
exponent γ if there is a constant K such that for every s, t, u ∈ [a, b]

∥Γs,u − Γs,t − Γt,u + Γt,t∥E ≤ K|s, t, u|γ,

where |s, t, u| denotes the length of the smallest interval containing s, t, u,
i.e.

|s, t, u| := max(|t− s|, |u− t|, |u− s|) = max(s, t, u) − min(s, t, u),

a quantity which vanishes if and only of the three points s, t, u coincide, and
equals u− s if s ≤ t ≤ u.
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We denote by K[a,b](Γ) or simply K[a,b] the best possible constant, i.e.

K[a,b](Γ) := sup
s,t,u∈[a,b], |s,t,u|>0

∥Γs,u − Γs,t − Γt,u + Γt,t∥
|s, t, u|γ

,

which makes sense only if [a, b] is a nontrivial interval, i.e. if a < b. By conven-
tion, we set K[a,b](Γ) := 0 if a = b.

Now for our main result of this section:

The sewing lemma Suppose Γ : [a, b]2 → E is triangular with exponent γ > 1.
Then the Γ -Riemann sums S∆(Γ, a, b) have a limit when mesh(∆) ↓ 0. We
denote this limit by

∫b

a
(δΓ).

Chasles’ relation If a ≤ s ≤ t ≤ u ≤ b, the restriction of Γ to [s, t]2, [t, u]2 and
[s, u]2 is also triangular and Chasles relation∫u

s

(δΓ) =

∫ t

s

(δΓ) +

∫u

t

(δΓ)

holds.

The Young-Loëve inequality Then

∥
∫b

a

(δΓ) − Γa,b∥E ≤ 1

1− 21−γ
K[a,b](Γ)(b− a)γ

holds.

If Γ is triangular on [a, b]2 and [s, t] ⊂ [a, b] is a nontrivial interval the restric-
tion of Γ to [s, t]2 is plainly also triangular (for the same exponent) and clearly
K[c,d] ≤ K[a,b]. Moreover, we have already proven Chasles’ relation under the sole
assumption that

∫b

a
(δΓ) exists. So we concentrate on the first and third assertions.

Most of the proof relies on the use of retarded sums Sret
∆ . It is split into a

number of intermediate results. We often write simply K for K[a,b] remembering
that this constant decreases if [a, b] is replaced by [s, t] ⊂ [a, b].

From now on, taking advantage of Reduction, we assume that Γ vanishes on
the diagonal. Then retarded sums simply read Sret

∆ (Γ, a, b) :=
∑n−1

m=0 Γtm,tm+1
, and

being triangular reads ∥Γs,u − Γs,t − Γt,u∥ ≤ K|s, t, u|γ, which amusingly implies in
turn that Γ vanishes on the diagonal, as seen by taking s = t = u.

We shall use dyadic subdivisions of [a, b] to define refinements. This is a bit
cumbersome because of boundary effects when a, b are not themselves dyadic
numbers, but there are some advantages. In particular we construct the “inte-
gral” simultaneously for all intervals on which Γ is defined and has the required
properties, i.e. we obtain the integral as a function of a and b.

We may (and shall) assume that a < b. Recall that, for k ∈ Z, Dk := {l/2k, l ∈
Z} is the set of dyadic rationals of order k.
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Dyadic subdivisions of [a,b], a < b Let ∆k := ∆k([a, b]) be the subdivision de-
fined by ordering the set {a, b} ∪ (]a, b[∩Dk). Let nk ≥ 1 be the number of
parts of ∆k and write ∆k : a = tk,0 < · · · < tk,nk

= b. Let Sret
k := Sret

∆k
(Γ) be the

retarded sum associated to ∆k.

Claim 1 The difference Sret
k+1 − Sret

k is bounded by Knk2
−kγ.

Proof. The parts of ∆k have length at most 2−k. When going from ∆k to ∆k+1

two things may happen to a part of ∆k. The first possibility is that this part is
also a part of ∆k+1, and then it does not contribute to Sret

k+1 − Sret
k . The second

possibility is that it splits in two parts, but then by the triangular property of Γ
the corresponding contribution to Sret

k+1 − Sret
k is at most K2−kγ. The total number

of parts of ∆k is nk, leading to the announced bound.

Claim 2 There is a largest l ∈ Z such that ]a, b[∩Dl is a singleton. The inequality
2−l < 2(b− a) holds.

Proof. Obviously the cardinal of ]a, b[∩Dk is an increasing function of k. Define
j ∈ Z by the inequality 2−j−1 < b−a ≤ 2−j. Then ]a, b[ contains at most 1 point of
Dj, at least 1 point of Dj+1 and at least 2 points of Dj+2. If ]a, b[ contains exactly 1
point of Dj+1 take l = j+ 1. If ]a, b[ contains more than 1 point of Dj+1, it contains
two consecutive points of Dj+1, and one of them is in Dj so that ]a, b[ contains
exactly 1 point of Dj and then take l = j. The announced inequality follows.

Claim 3 The sequence Sret
k has a limit, which we denote by

∫b

a
(δΓ)dyad, as k → +∞

and

∥
∫b

a

(δΓ)dyad − Γa,b∥E ≤ C(γ)K(b− a)γ

for some “constant” C which depends only on γ.

Proof. First note that nk−2 ≤ (b−a)2k because appart from the parts containing
a and b, all others parts of ∆k have length 2−k. Thus, using Claim 1

∥Sret
k+1 − Sret

k ∥E ≤ K
(
(b− a)2k + 2

)
2−kγ.

Hence ∥Sret
k+1−Sret

k ∥E is bounded by a sequence decreasing exponentially to 0 when
k → +∞ (because γ > 1). As (E, ∥ ∥E) is complete, Sret

k has a limit when k → +∞,
which we denote by

∫b

a
(δΓ)dyad. Taking l as in Claim 2 and k > l we obtain

∥Γa,b − Sret
k ∥E ≤ ∥Γa,b − Sret

l ∥E + ∥Sret
l − Sret

l+1∥E + · · ·+ ∥Sret
k−1 − Sret

k ∥E.

Taking the limit k → +∞ we find

∥
∫b

a

(δΓ)dyad − Γa,b∥E ≤ ∥Γa,b − Sret
l ∥E + K

∑
j≥0

(
(b− a)2l+j + 2

)
2−(l+j)γ.
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The triangular property of Γ says precisely that the first term on the right is
bounded by K(b − a)γ because ∆l contains a single subdivision point in ]a, b[.
The sum is (b− a)2−l(γ−1) 1

1−21−γ + 2−lγ 2
1−2−γ . As γ > 1 we may bound 2−l(γ−1) and

2−lγ using the inequality 2−l < 2(b − a) established in Claim 2 This leads to the
announced bound with C(γ) := 1 + 2γ−1

1−21−γ + 2γ+1

1−2−γ . This explicit value of C is of
no interest but the bound on ∥

∫b

a
(δΓ)dyad − Γa,b∥E, especially the factor (b − a)γ it

involves, is decisive for the end of the argument.

Of course, if a ≤ s ≤ t ≤ b we can restrict Γ to [s, t]2 and the bound

∥
∫ t

s

(δΓ)dyad − Γs,t∥E ≤ C(γ)K(t− s)Γ .

holds. Call it the general dyadic Young-Loëve inequality. The constant K = K[a,b]

on the right-hand side could be replaced by the possibly smaller K[s,t].

Claim 4 The integral
∫b

a
(δΓ)dyad satisfies Chasles relation.

Proof. Take t ∈ [a, b]. The restriction of Γ to [a, t]2 and [t, b]2 is triangular and
K[a,t], K[t,b] ≤ K[a,b], so that

∫t

a
(δΓ)dyad and

∫b

t
(δΓ)dyad are well-defined. Insert point

t to refine the subdivision ∆k([a, b]) into another subdivision which we call ∆k([a, b], t):
it is nothing but the union of ∆k([a, t]) and ∆k([t, b]). The retarded sum for
∆k([a, b], t) defines the dyadic approximation of order k to (and thus at large k is
close to)

∫t

a
(δΓ)dyad +

∫b

t
(δΓ)dyad. But at most one part of ∆k is split in ∆k([a, b], t),

and this part has length at most 2−k so, by the triangular property of Γ , ∥∆k −
∆k([a, b], t)∥E ≤ K2−kγ. Taking the limit k → +∞,∫ t

a

(δΓ)dyad +

∫b

t

(δΓ)dyad =

∫b

a

(δΓ)dyad for a ≤ t ≤ b

as announced.

This leads us to

Claim 5 Let ∆ be a subdivision of [a, b]. The corresponding retarded Riemann-
Young sum Sret

∆ (Γ) satisfies

∥
∫b

a

(δΓ)dyad − Sret
∆ (Γ)∥E ≤ C(γ)K(b− a)mesh(∆)γ−1.

In particular, retarded sums for arbitrary subdivisions converge to
∫b

a
(δΓ)dyad

when their mesh goes to 0.

Proof. Write ∆ : a = t0 < t1 · · · < tn = b so that Sret
∆ (Γ) :=

∑n−1
m=0 Γtm,tm+1

and use
Chasles relation to get

∥
∫b

a

(δΓ)dyad − Sret
∆ (Γ)∥E ≤

n−1∑
m=0

∥
∫ tm+1

tm

(δΓ)dyad − Γtm,tm+1
∥E.
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By the general dyadic Young-Loëve inequality, ∥
∫tm+1

tm
(δΓ)dyad−Γtm,tm+1

∥E ≤ C(γ)K(tm+1−

tm)
γ. Using (tm+1 − tm)

γ ≤ (tm+1 − tm)mesh(∆)γ−1 and summing over m yields
the announced formula.

To stress the fact that retarded sums for arbitrary subdivisions are close to the
same limit when their mesh is small, we denote this limit by

∫b

a
(δΓ)ret instead of∫b

a
(δΓ)dyad from now on.
The convergence of sums S∆ in general is now easily settled.

Proof of the sewing lemma. We show that Riemann-Young sums for arbitrary tagged
subdivisions converge to

∫b

a
(δΓ)ret when their mesh goes to 0. Let ∆ : a = t0 ≤

t1 ≤ · · · ≤ t2n = b be a tagged subdivision of [a, b] in n parts, and ∆∗ its associated
subdivision. Then

S∆(Γ) =

n−1∑
m=0

Γt2m+1,t2m+2
− Γt2m+1,t2m

=

n−1∑
m=0

Γt2m,t2m+2
+

n−1∑
m=0

(
Γt2m+1,t2m+2

− Γt2m+1,t2m − Γt2m,t2m+2

)
= Sret

∆∗(Γ) +

n−1∑
m=0

(
Γt2m+1,t2m+2

− Γt2m+1,t2m − Γt2m,t2m+2

)
.

Note that this is the only place in the whole argument where we face the expres-
sion Γs,u − Γs,t − Γs,u in a case when the order is t ≤ s ≤ u (in all other instances,
the order is s ≤ t ≤ u). The triangular property yields, for m = 0, · · · , n− 1, that
∥Γt2m+1,t2m+2

− Γt2m+1,t2m − Γt2m,t2m+2
∥E ≤ K(t2m+2 − t2m)

γ, so that

∥S∆(Γ) − Sret
∆∗(Γ)∥E ≤ K

n−1∑
m=0

(t2m+2 − t2m)
γ ≤ K(b− a)mesh(∆)γ−1.

Combining with the bound for retarded sums in Claim 5 we obtain

∥
∫b

a

(δΓ)ret − S∆(Γ)∥E ≤ (C(γ) + 1)K(b− a)mesh(∆)γ−1,

and in particular sums S∆(Γ) for arbitrary subdivisions are close to one and the
same limit,

∫b

a
(δΓ)ret, when their mesh is small. This common limit is denoted∫b

a
(δΓ) from now on.
Chasles relation has been proven in Claim 5 But is it also a consequence of the

mere existence of
∫b

a
(δΓ)

Proof of the Young-Loëve inequality. We prove the improved integral estimate

∥
∫b

a

(δΓ) − Γa,b∥E ≤ 1

1− 21−γ
K[a,b](Γ)(b− a)γ.
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For k = 0, 1, 2, · · · define ∆k as the regular subdivision of [a, b] in 2k parts. We
denote by tk,m := a +mb−a

2k
for m = 0, · · · , 2k the subdivision points of ∆k. Each

part of ∆k is made of two parts of ∆k+1, and

Sret
∆k(Γ) − Sret

∆k+1(Γ) =

2k−1∑
m=0

(
Γtk+1,2m,tk+1,2m+2

− Γtk+1,2m,tk+1,2m+1
− Γtk+1,2m+1,tk+1,2m+2

)
.

Thus, using the triangular property of Γ for each term in the sum , we infer

∥Sret
∆k(Γ) − Sret

∆k+1(Γ)∥E ≤ K2k(2−k(b− a))γ.

This is enough to show that Sret
∆k has a limit when k → +∞. Of course we

already know from Claim 5that it converges, and that the limit is
∫b

a
(δΓ). But

what we get is a better bound. Indeed, summing the series over k we obtain:

∥
∫b

a

(δΓ) − Γa,b∥E ≤ K

1− 21−γ
(b− a)γ

which is the integral estimate.

This completes the proofs.
One may wonder why the subdivisions ∆k are not used from the beginning

to define the integral. The problem is that the subdivision points depend on the
interval [a, b] that is under consideration, and it is hard to compare the integrals
in different intervals. In particular Chasles relation is quite hard to derive from
this definition, and Chasles relation is crucial to show that arbitrary subdivisions
can be used to compute the integral.

Though this is of limited practical value, we may improve the integral esti-
mate into

∥
∫b

a

(δΓ) − Γa,b∥E ≤ K̃

1− 21−γ
(b− a)γ,

where K̃ = K̃[a,b](Γ) := sup
s,u∈[a,b], s<u

∥Γs,u−Γs,(s+u)/2−Γ(s+u)/2,u∥E
|s−u|γ

(the only combination
that is relevant to compute with the subdivisions ∆k) is smaller than K in general.

Uniqueness The function s ≤ t ∈ [a, b] 7→ ∫t

s
(δΓ) ∈ E is the only one satisfying

Chasles relation and an integral estimate with respect to Γ .

Proof. Indeed, if Its is another candidate, we infer that ∥
∫t

s
(δΓ)−Γs,t∥E = O((t−s)γ)

and ∥Its − Γs,t∥E = O((t − s)γ) so that ∥Its −
∫t

s
(δΓ)∥E = O((t − s)γ), and then by

Chasles relation that as a function of t the function Ita −
∫t

a
(δΓ) is γ-Hölder, i.e.

constant because γ > 1 i.e 0 because 0 at t = a.

We end the section with a simple observation. The interval [a, b] and the
number γ > 1 being given, we say that a function Γ : [a, b]2 → E is negligible
if ∥Γs,t∥E ≤ K|t− s|γ for some unspecified constant K and for s, t ∈ [a, b].

Clearly, the sum of two negligible functions is negligible, as is the product of
a negligible function by a bounded scalar function, and negligible functions are
bounded. Moreover, the following result holds:
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Negligible summands Suppose that Γ is negligible. Then Γ is triangular with the
same exponent γ and as γ > 1 by assumption,

∫
(δΓ) ≡ 0.

Proof. That Γ is triangular is clear, and then the corresponding Γ -Riemann sums
for a subdivision ∆ are O(mesh(∆)γ−1), hence go to 0 when mesh(∆) ↓ 0.

This elementary fact can be seen as a generalization of Locality, p. 46: if Γ

vanishes in a neighborhood of the diagonal, it is automatically negligible as soon
as it is bounded on [a, b]2.
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Suppose that X, Y : [a, b] → R are two functions. In 1936 the mathematician
Laurence C. Young asked about the possibility to make sense of a notion of inte-
gral

∫b

a
Yt dXt:

– When Xt = t and Y is Riemann integrable we have
∫b

a
Yt dt at our disposal.

– More generally when X is differentiable with derivative Ẋ and YẊ is Riemann
integrable we can interpret

∫b

a
Yt dXt as

∫b

a
(YẊ)t dt.

Young studied the possibility to define the integral in cases not covered by the
above two, concretely as a limit of discrete sums.

5.1
Riemann-

Young
sums

Young integrals fit into the general discussion of Chapter 4. Indeed, the dis-
crete sums introduced by Young amount to work with Γ : [a, b]2 → R, (s, t) 7→
YsXt, or with a reduced version (which we use in the sequel) Γ : [a, b]2 → R, (, s, t) 7→
Ys(Xt−Xs) which leads to the same Γ -Riemann sums. If ∆ : a = t0 ≤ t1 · · · ≤ t2n =
b is a tagged subdivision of [a, b], we define A∆(X, Y) := S∆(Γ, a, b) which rear-
ranges to yield

A∆(X, Y) =

n−1∑
m=0

Yt2m+1
(Xt2m+2

− Xt2m).

Such sums are called Riemann-Young sums in the sequel.
In the same spirit, if ∆ : a = t0 < t1 < · · · < tn = b is a subdivision of [a, b] the

retarded and advanced Riemann-Young sums are defined by

Aret
∆ (X, Y) :=

n−1∑
m=0

Ytm(Xtm+1
− Xtm) and Aadv

∆ (X, Y) :=

n−1∑
m=0

Ytm+1
(Xtm+1

− Xtm)

respectively, and these are again special cases of general Riemann-Young sums
for tagged subdivisions.
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We say that Y is integrable along X if the Riemann-Young sums have a limit
at small mesh, and then the limit is denoted by

∫b

a
Y dX or

∫b

a
Yt dXt. In that case,

we use the term Young-integrable pair for the pair (X, Y). We say that X is the
integrator and Y is the integrand.

Note that we use the word along in “Riemann-Young sum of Y along X” or “Y
is integrable along X”. This is because we view X as a path instead of a function.
This is of course just a question of terminology. It becomes more natural if X and
possibly Y have several components.

If Xt = t for t ∈ [a, b], Riemann-Young sums for (X, Y) reduce to Riemann
sums for Y. Thus in that case

∫b

a
Yt dXt exists in the sense of Young if and only if Y

is Riemann integrable on [a, b] and then the two integrals are equal. We shall see
later more (and more interesting) examples of Young integrability.

It is plain that for given X the space of Ys for which
∫b

a
Y dX exists is a vector

space and the integral is linear in Y. Also, for fixed Y the the space of Xs for which∫b

a
Y dX exists is a vector space and the integral is linear in X. Thus morally (why

only “morally”?)
∫b

a
Y dX is bilinear in (X, Y).

There is one important result for Young integrals that follows from the defini-
tion but has no counterpart for the case of a general Γ .

Anti-symmetry, aka Integration by parts If Y is Young-integrable along the path
X, then X is Young-integrable along the path Y and

∫b

a
Yt dXt +

∫b

a
Xt dYt =

XbYb − XaYa.

The basic nature of this result is combinatorial: if ∆ : a = t0 < t1 < · · · < tn = b is
any subdivision of [a, b] then

Aret
∆ (X, Y) +Aadv

∆ (Y, X) = Aadv
∆ (X, Y) +Aret

∆ (Y, X) = XbYb − XaYa

by a telescopic sum argument. Thus if retarded sums for Y along X converge at
small mesh, then so do advanced sums for X along Y. The case of arbitrary tagged
subdivisions is easy. The details can be found in Appendix D

5.2
Integrals of

the type∫b

a
f(X)dX

We start with a remarkably simple characterization for the existence of
∫b

a
XdX.

When is X integrable along itself? The answer is: if and only if X has vanishing
2-variation on [a, b].

We insist on this elementary result for two main reasons:
– First, 2-variation played an important role in the discussion of the Euler scheme
for dYt = Yt dXt in the motivation section, see Example 1.1 to 1.6. This may come
as no surprise because the first order in the Born expansion leads to retarded
Riemann-Young sum of X along itself.
– This gives another opportunity to stress the difference between pointwise inte-
grals and stochastic integrals via the example of Brownian motion.

The point is that, if ∆ : a = t0 < t1 < · · · < tn = b is a subdivision of [a, b], the
sum Aadv

∆ (X,X) + Aret
∆ (X,X) is telescopic (this is again the combinatorics behind
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integration by parts) while the difference is a sum of squares, namely

Aadv
∆ (X,X) +Aret

∆ (X,X) = X2
b − X2

a Aret
∆ (X,X) −Aadv

∆ (X,X) =

n−1∑
m=0

(Xtm+1
− Xtm)

2.

Thus Aret
∆ (X,X) − Aadv

∆ (X,X) is precisely the 2-variation Q∆ of X with respect to
∆ as introduced in Example 1.1. Hence if X does not have vanishing 2-variation
on [a, b] (i.e.if the 2-variation of X with respect to ∆ is not small when mesh(∆) is
small) there is no hope for the existence of

∫b

a
XdX. Conversely, if X has vanish-

ing 2-variation on [a, b] both advanced and retarded sums go to (X2
b − X2

a)/2 at
small mesh by the telescopic formula for Aadv

∆ (X,X) + Aret
∆ (X,X). Then a simple

argument shows that the same limit is approached for general Riemann-Young
sums.

There are many reasons why Brownian motion cannot have vanishing 2-variation
on any interval. One relies on the well-known fact that for Brownian motion
E (Q∆) = b − a. With a small effort we compute that E

(
(b− a−Q∆)

2
)

=

2
∑n−1

m=0(tm+1 − tm)
2 ≤ 2(b− a)mesh(∆) so that at small mesh Q∆ goes to b− a in

mean square, and then almost surely along appropriate sequences. By the way,
the above estimates are enough to justify the computation of the simplest non-
trivial Itō integral1: when X is a Brownian motion

∫b

a
Xt dXt

Itō
= (X2

b − X2
a)/2− (b−

a)/2.
Returning to functions with vanishing 2-variation, the next step is to integrate

more general functions of X along X. Not surprisingly, there is a naive fundamen-
tal theorem of calculus and change of variable formula. To summarize:

Integrability conditions The integral
∫b

a
Xt dXt exists in the Young sense if and

only if X has vanishing 2-variation on [a, b] and then
∫b

a
Xt dXt = (X2

b−X2
a)/2.

Fundamental theorem of calculus If X has vanishing 2-variation on [a, b], f is a
real function defined on the range of X with Lipschitz first derivative (in
particular if f is C2 on the range of X) then f(X) and f ′(X) have vanishing
2-variation on [a, b], f ′(X) is Young-integrable along X and∫b

a

f ′(Xu)dXu = f(Xb) − f(Xa).

Change of variable formula If X has vanishing 2-variation on [a, b], f is a real
function defined on the range of X with Lipschitz first derivative and g is a
Lipschitz function on the range of Y := f(X) (in particular if g is C1 on the
range of X) then Y, f ′(X), g(Y) and f ′(X)g(f(X)) have vanishing 2-variation
on [a, b] and ∫b

a

g(Yu)dYu =

∫b

a

g(f(Xu))f
′(Xu)dXu.

1Itō’s stochastic integral relies on mean square convergence of retarded sums.
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The proofs are not difficult. They are left here as exercises, but can be found
in Appendix D

This simple theory is nice, but grossly insufficient applications: it is restricted
to the one dimensional setting (X is a path in R). In the multidimensional setting,
there are no simple necessary and sufficient conditions for Young integrability,
but there are useful classes of paths and functions leading to Young integrable
pairs. We turn to this in the next section.

5.3 Young
integrability

via
Hölder-type
conditions

Recall that a function X : [a, b] → R is α-Hölder if there is a constant K such
that, ∀s, t ∈ [a, b], |Xt − Xs| ≤ K|t− s|α. Equivalently, X is α-Hölder if

|X|α-Hölder,[a,b] := sup
s,t∈[a,b],s ̸=y

|Xt − Xs|

|t− s|α
< +∞.

.
We have seen in Chapter 4 that

∫
(δΓ), if it exists, is reparameterization in-

variant. The condition of being α-Hölder is not, so Hölder spaces are not the
most natural places to look Young integrable pairs. However, this is a simple and
convenient setting. Moreover, and though we shall not elaborate on that con-
struction, there is a nice trick to transport results obtained via Hölder spaces to
reparameterization invariant spaces.

The main results are the following:

Young integrability via Hölder-type conditions Let X and Y be two real paths
defined on [a, b]. Assume that X is α-Hölder and Y is β-Hölder on [a, b],
with α+ β > 1.

Then the Young integral
∫b

a
YudXu exists (as the limit of the Riemann-Young

sums A∆(X, Y) when mesh(∆) goes to 0). The integral is bilinear in (X, Y).

Young-Loëve estimate∣∣∣∣∫b

a

YudXu − Ya(Xb − Xa)

∣∣∣∣ ≤ 1

2α+β − 2
|X|α-Hölder,[a,b]|Y|β-Hölder,[a,b](b− a)α+β

holds.

Regularity The function t ∈ [a, b] 7→ ∫t

a
YudXu is α-Hölder.

Integrability is an elementary consequence of the general discussion in Chap-
ter 4. Indeed, a simple computation shows that Γ : [a, b]2 → R, (s, t) 7→ Ys(Xt−Xs)
(which vanishes automatically on the diagonal) is triangular with exponent γ :=
α+ β because such that Γs,t := Ys(Xt − Xs) is such that

Γs,t + Γt,u − Γs,u = Ys(Xt − Xs) + Yt(Xu − Xt) − Ys(Xu − Xs) = (Yt − Ys)(Xu − Xt).
2

2A kind of primitive Yang-Baxter relation!
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The constant in the Young-Loëve estimate is obtained by explicit optimization,
and the regularity then follows from the regularity of X and the triangular in-
equality |

∫t

s
YudXu| ≤ |Ys(Xt − Xs)|+ |

∫t

s
YudXu − Ys(Xt − Xs)|, see p. 67.

The Regularity property has an immediate usefulness for controlled differen-
tial equations. Recall our initial aim, i.e. solving

dYt = V(Yt)dXt for t ∈ [a, b] with initial condition Ya = ya,

or its integrated version.

Yt = ya +

∫ t

a

V(Ys)dXs.

The meaning of such an integral equation is not yet clear, but we explain how
Picard iteration can be defined.

Picard iteration Suppose that X is α-Hölder on [a, b] and f is γ-Hölder on R. If
(γ+1)α > 1 then the Picard iteration sequence for the controlled differential
equation Yt = a+

∫t

a
f(Ys)dXs, namely

Y
(0)
t := ya for t ∈ [a, b] Y

(n+1)
t := ya+

∫ t

0

V(Y(n)
s )dXs for t ∈ [0, T ] and n ∈ N,

where all integrals are in the Young sense, is well-defined.

That (γ + 1)α > 1 is the natural condition is easy to understand: as we have
seen, by Regularity

∫t

0
f(Ys)dXs, if defined, is expected to have the same regular-

ity in t as X does, so that if Y solves Yt =a +
∫t

0
V(Ys)dXs then Y must be α-Hölder,

and then f(Y) is β := γα-Hölder and then the integral
∫
f(Ys)dX is well-defined

if α + β > 1. Of course, the conditions we have given for the Young integral to
exist are only sufficient conditions, so this remark is only heuristic. But it is the
essence of the proof of the lemma.

The detailed argument is by recursion. The zeroth approximation Y(0) is clearly
α-Hölder on [a, b]. Let n ∈ N. If Y(n) is α-Hölder on [a, b] then f(Y(n)) is γα-Hölder
on [a, b], so that, as (γ + 1)α > 1, the integral

∫t

0
f(Y

(n)
s )dXs is well defined as a

Young integral for t ∈ [a, b], an then Y
(n+1)
t := y +

∫t

0
f(Y

(n)
s )dXs is α-Hölder on

[a, b] by Regularity, closing the recursion step.
The question of the convergence of the sequence of Picard approximations

Y(n) towards a solution of the controlled differential equation Yt = y+
∫t

0
f(Ys)dXs

is more delicate than, but in some sense paralel to, its classical counterpart for
differential equation. Naive counting for this simple case is that the integrator
Xs = s is 1-Hölder (α = 1) and the condition put on f to ensure convergence
of the Picard Scheme is that f should be 1-Hölder as well (γ = 1), so the classi-
cal version gives uniqueness for (γ + 1)α = 2, a condition much more stringent
than the mere continuity of f which is enough to have a well-defined Picard iter-
ation sequence, enough to have the existence of solutions (by the Peano scheme
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of approximations) but insufficient in general to have convergence of the Picard
scheme and uniqueness of the solution. For the case of a controlled differential
equation, uniqueness of the solution and convergence of the Picard scheme hold
if f is differentiable and f ′ (not f!) is γ-Hölder on R when (γ + 1)α > 1. With
the additional hypothesis that f, f ′ are bounded, the proof, that we shall not even
sketch, relies on a careful use of the local inequality∣∣∣∫t

s
f(Yu)dXu

∣∣∣
|t− s|

α ≤ |X|α-Hölder,[a,b]

(
∥f∥∞ +

1

2α+β − 2
∥f ′∥∞|Y|β-Hölder,[a,b]|t− s|β

)
.

which is a direct consequence of the proof of Regularity, see p. 69.
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5.A The
Young

integral:
proofs

5.A.1 Basics

Before going to the heart of the results announced in the main text, we quote a
useful set of identities. Recall that if ∆ : a = t0 ≤ t1 · · · ≤ t2n = b is a tagged
subdivision of [a, b] the ∆∗ : a = t0 < t2 · · · ≤ t2n = b is a subdivision of [ab]. The
set {t0, t1 · · · , t2n} defines a subdivision of [a, b] denoted by ∆∗∗: the interpolation
points of ∆, if not already present in ∆∗, are promoted to subdivision points in
∆∗∗. (see Appendix A.1 for details).

Comparison Let X, Y be real functions on the interval [a, b].
i) For t ∈ [a, b]

Ya(Xt − Xa) + Yt(Xb − Xt) − Ya(Xb − Xa) = (Yt − Ya)(Xb − Xt).

ii) Let ∆ : a = t0 ≤ t1 · · · ≤ t2n = b be a tagged subdivision of [a, b]. Then

A∆(X, Y)−Aret
∆∗∗(X, Y) =

n−1∑
m=0

(Yt2m+1
−Yt2m)(Xt2m+1

−Xt2m) = A∆(Y, X)−Aret
∆∗∗(Y, X)

and

Aadv
∆∗∗(X, Y)−A∆(X, Y) =

n∑
m=1

(Yt2m−Yt2m−1
)(Xt2m−Xt2m−1

) = Aadv
∆∗∗(Y, X)−A∆(Y, X).

2This restriction is only to comply with our definition of subdivisions as made of distinct
points. But if we extend the definition to allow clusters of coinciding points, the corresponding
Riemann-Young sums give the same result as the Riemann-Young sums when only one point in
each cluster is kept, because Xt ′′(Xt ′′′ − Xt ′) vanishes if t ′ = t ′′′.
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Proof. Point i) really requires no explanation (but is surprisingly powerful). It is
the one used to show that Γs,t := Ys(Xt − Xs) is triangular with exponent α + β is
X is α-Hölder and X is β-Hölder.

For point ii) we rewrite

A∆(X, Y) =

n−1∑
m=0

Yt2m+1
(Xt2m+2

−Xt2m) =

n−1∑
m=0

Yt2m+1
(Xt2m+1

−Xt2m)+

n−1∑
m=0

Yt2m+1
(Xt2m+2

−Xt2m+1
)

and

Aret
∆∗∗(X, Y) =

2n−1∑
m=0

Ytm(Xtm+1
−Xtm) =

n−1∑
m=0

Yt2m(Xt2m+1
−Xt2m)+

n−1∑
m=0

Yt2m+1
(Xt2m+2

−Xt2m+1
)

The second sums in each expression cancel each other in A∆(X, Y) −Aret
∆∗∗

(X, Y) to
yield

A∆(X, Y) −Aret
∆∗∗(X, Y) =

n−1∑
m=0

(Yt2m+1
− Yt2m)(Xt2m+1

− Xt2m),

an expression which is symmetric in (X, Y). The proof of the comparison formula
with advanced sums is analogous.

Integration by parts Let X, Y be real functions on the interval [a, b]. If Y is Young-
integrable along the path X, then X is Young-integrable along the path Y and∫b

a
Yt dXt +

∫b

a
Xt dYt = XbYb − XaYa.

Proof. The essence of the proof is combinatorial.
First, if ∆ : a = t0 < t1 < · · · < tn = b is any subdivision of [a, b] then

Aret
∆ (X, Y) +Aadv

∆ (Y, X) = Aadv
∆ (X, Y) +Aret

∆ (Y, X) = XbYb − XaYa

by a telescopic sum argument.
Second, let ∆ : a = t0 ≤ t1 · · · ≤ t2n = b be a tagged subdivision of [a, b]. By

symmetry (which follows from Comparison)

A∆(Y, X) − XbYb + XaYa = (A∆(Y, X) −Aret
∆∗∗(Y, X)) +Aret

∆∗∗(Y, X) − XbYb + XaYa

= (A∆(X, Y) −Aret
∆∗∗(X, Y)) −Aadv

∆∗∗(X, Y)

Suppose now that Y is Young-integrable along the path X. Let ε > 0. As mesh(∆∗∗) ≤
mesh(∆) there is δ > 0 such that

∣∣∣A∆(X, Y) −
∫b

a
Yt dXt

∣∣∣, ∣∣∣Aret
∆∗∗

(X, Y) −
∫b

a
Yt dXt

∣∣∣
and

∣∣∣Aadv
∆∗∗

(X, Y) −
∫b

a
Yt dXt

∣∣∣ are all ≤ ε/3 whenever mesh(∆) ≤ δ, so that∣∣∣∣A∆(Y, X) +

∫b

a

Yt dXt − XbYb + XaYa

∣∣∣∣ = ∣∣∣∣A∆(X, Y) −Aret
∆∗∗(X, Y) −Aadv

∆∗∗(Y, X) +

∫b

a

Yt dXt

∣∣∣∣ ≤ ε

whenever mesh(∆) ≤ δ, leading to the announced result: X is Young-integrable
along the path Y and

∫b

a
Xt dYt = XbYb − XaYa −

∫b

a
Yt dXt.
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5.A.2 Integrals of the type
∫b

a
f(X)dX

Recall the definition of 2-variation. Let X : [a, b] → R be a function.

2-variation Let ∆ : a = t0 < t1 < · · · < tn = b be a subdivision of [a, b]. The
2-variation of X along ∆ is Q∆(X) :=

∑n−1
m=0(Xtm+1

− Xtm)
2

Functions with vanishing 2-variation The function X has vanishing 2-variation
on [a, b] if limmesh(∆)↓0 Q∆(X) = 0.

This definition generalizes in an obvious way to p ≥ 1 and X : [a, b] → E where
(E, d) is a metric space, replacing (Xtm+1

−Xtm)
2 by d(Xtm+1

, Xtm)
pin the definition,

leading to the concept of vanishing p-variation.

Exercise 5.1. Show that a function X : [a, b] → E with vanishing p-variation is
continuous.

Composition with Lipschitz functions Let X have vanishing 2-variation on [a, b]
and let f be a real Lipshitz function defined on the range of X (this holds in
particular if f has bounded derivative on the range3of X). Then f ◦ X has
vanishing 2-variation on [a, b].

Proof. Let k be the Lipschitz modulus of f (if f is differentiable k := sup
x∈X([a,b]) |f

′(x)|,
the upper bound for the absolute value of the derivative of f on the range of X).
Then |f(Xt) − f(Xs)| ≤ k|Xt − Xs| for s, t ∈ [a, b] so that, for any subdivision ∆ of
[a, b], Q∆(f ◦ X) ≤ kQ∆(X).

Reparameterization invariance Let φ be an increasing homeomorphism from
[c, d] to [a, b]. Then the pullback map φ∗ : X 7→ X ◦ φ defines a one-to-one
map from functions with vanishing 2-variation on [a, b] to functions with
vanishing 2-variation on [c, d].

Proof. The proof is similar to the proof of the reparameterization invariance of
Γ -Riemann sums and their limit if any, see p. 50.Borrowing the same notation, if
∆ is a subdivision of [c, d] and φ(∆) the image subdivision of [a, b] (a one-to-one
correspondence between subdivisions of [c, d] and of [a, b]), then, for X a path on
[a, b], Qφ(∆)(X) = Q∆(X ◦ φ), and by the uniform continuity of φ on the compact
interval [c, d], the small mesh limit for ∆ and for φ(∆) are the same.

Let X : [a, b] → R be a function. The proof that the Young integral
∫b

a
XdX if

and only if X has vanishing 2-variation on [a, b] was given in the main text, and
we make this assumption in what follows. We prove the results announced in the
main text.

3A closed interval by continuity.
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Fundamental theorem of calculus If X has vanishing 2-variation on [a, b], f is a
real function defined on the range of X with Lipschitz first derivative (in
particular if f is C2 on the range of X) then f(X) and f ′(X) have vanishing
2-variation on [a, b], f ′(X) is Young-integrable along X and∫b

a

f ′(Xu)dXu = f(Xb) − f(Xa).

Proof. As f ′ is Lipschitz on the range of X (a compact interval by continuity), f ′

is bounded on the range of X as well, so that f is C1 with bounded derivative. By
Composition, f(X) and f ′(X) have vanishing 2-variation. Let k be the Lipschitz
modulus of f ′. Then for u, v in the interval of definition of f, f(v)−f(u)−f ′(u)(v−
u) =

∫v

u
(f ′(w) − f ′(u))dw (a Riemann integral!) so |f(v) − f(u) − f ′(u)(v − u)| ≤∫v

u
k|w−u|dw = k

2
(v−u)2 leading to |f(Xt)−f(Xs)−f ′(Xs)(Xt−Xs)| ≤ k

2
(Xt−Xs)

2.
Take a subdivision ∆ : a = t0 < t1 · · · < tn = b of [a, b], and write

f(Xb) − f(Xa) −Aret
∆ (X, f ′(X)) =

n−1∑
m=0

f(Xtm+1
) − f(Xtm) − f ′(Xtm)(Xtm+1

− Xtm).

Apply the previous inequality to each part of ∆ to get

|f(Xb) − f(Xa) −Aret
∆ (X, f ′(X))| ≤ k

2
|X|22-var,∆.

Thus limmesh(∆)↓0 Aret
∆ (X, f ′(X)) exists and its value is f(Xb) − f(Xa). Finally, if ∆ :

a = t0 < t1 · · · < t2n = b is a tagged subdivision of [a, b], by Comparison p. 63:

A∆(X, f
′(X)) −Aret

∆∗∗(X, f
′(X)) =

n−1∑
m=0

(f ′(Xt2m+1
) − f ′(Xt2m))(Xt2m+1

− Xt2m),

so

|A∆(X, f
′(X)) −Aret

∆∗∗(X, f
′(X))| ≤

n−1∑
m=0

k(Xt2m+1
− Xt2m)

2 ≤ k|X|22-var,∆∗∗ .

Thus general Riemann-Young sums are close to retarded Riemann Young sums
and approach f(Xb)− f(Xa) at small mesh. Hence f ′(X) is Young-integrable along
X and ∫b

a

f ′(Xu)dXu = f(Xb) − f(Xa).

This leads to the change of variable formula.
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Change of variable for the Young integral Let X : [a, b] → R have vanishing 2-
variation on [ab]. Let f be a real function defined on the range of X with
Lipschitz first derivative. Let Y be the path Y := f(X) on [a, b]. Let g

be a Lipschitz function on the range of Y. Then Y = f(X), f ′(X), g(Y) and
f ′(X)g(f(X)) have vanishing 2-variation on [ab] and∫b

a

g(Yu)dYu =

∫b

a

g(f(Xu))f
′(Xu)dXu.

Proof. This follows via the standard pattern from the fundamental theorem of
calculus. The function g, being Lipschitz, is Riemann integrable on the range of
Y. Let G be a primitive of g on that range. The function Y = f(X) has vanishing
2-variation on [ab] by the Fundamental theorem of calculus. The function G

has Lipschitz first derivative. Thus we may apply the Fundamental theorem of
calculus to G and Y in place of f and X to get∫b

a

g(Yu)dYu =

∫b

a

G ′(Yu)dYu = G(Yb) −G(Ya).

The composition (when defined) of Lipschitz functions is Lipschitz. The product
of bounded Lipschitz functions is bounded Lipschitz. Hence, (g ◦ f) and (g ◦ f)f ′
are Lipschitz. Thus g(f(X)) and g(f(X))f ′(X) are in C0,2-var([a, b],R) by Composi-
tion, p. 65. We infer that

∫b

a
g(f(Xu))f

′(Xu)dXu is defined. As (g◦f)f ′ = (G◦f) ′ the
function G ◦ f has Lipschitz first derivative and another use of the Fundamental
theorem of calculus yields∫b

a

g(f(Xu))f
′(Xu)dXu =

∫b

a

(G◦f) ′(Xu)dXu = (G◦f)(Xb)−(G◦f)(Xa) = G(Yb)−G(Ya),

establishing the desired equality.

Though this integration theory is quite satisfactory from a formal viewpoint,
it is insufficient for applications. The Hölder theory via the triangular lemma as
summarized in p. 60 has a much broader scope.

5.A.3 Complements

We give a detailed proof of two properties of the Young integral announced on
p. 60: an improved constant for the Young-Löeve estimate and the fact that he
Young integral as a function of the upper bound has the regularity of the integra-
tor.

We start with

Improved triangular lemma Let X and Y be two real paths defined on [a, b]. As-
sume that X is α-Hölder and Y is β-Hölder on [a, b] and let Γ : [a, b]2 →
R, (s, t) → Ys(Xt − Xs). Set γ := α+ β. Then Γ is triangular with exponent γ
and

sup
s,t,u∈[a,b], |s,t,u|>0

|Γs,u − Γs,t − Γt,u|

|s, t, u|γ
≤ |X|α-Hölder,[a,b]|Y|β-Hölder,[a,b].
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Moreover

sup
s,t,u∈[a,b], s≤t≤u,s<u

|Γs,u − Γs,t − Γt,u|

|s− u|γ
≤ ααββ

(α+ β)α+β
|X|α-Hölder,[a,b]|Y|β-Hölder,[a,b],

and

sup
s,u∈[a,b], s<u

|Γs,u − Γs,(s+u)/2 − Γ(s+u)/2,u|

|s− u|γ
≤ 1

2γ
|X|α-Hölder,[a,b]|Y|β-Hölder,[a,b].

Proof. Observe that

Γs,t + Γt,u − Γs,u = Ys(Xt − Xs) + Yt(Xu − Xt) − Ys(Xu − Xs) = (Yt − Ys)(Xu − Xt)

(a nice rearrangement) and

|(Yt − Ys)(Xu − Xt)| ≤ |X|α-Hölder,[a,b]|Y|β-Hölder,[a,b]|t− s|β|u− t|α

by the Hölder properties of X and Y. It is immediate that |t− s|β|u− t|α ≤ |s, t, u|γ

which yields the first inequality and is enough to get that Γ is triangular with
exponent γ. Doing some optimization when the ordering is s ≤ t ≤ u improves
the bound and yields

sup
t,s≤t≤u

(t− s)β(u− t)α ≤ ααββ

(α+ β)α+β
(u− s)γ

(the extremizing t is αs+βu
α+β

), yielding the second inequality. The last inequality is
clear.4

The last point yields as a corollary

Young-Löeve constant∣∣∣∣∫b

a

YudXu − Ya(Xb − Xa)

∣∣∣∣ ≤ 1

2α+β − 2
|X|α-Hölder,[a,b]|Y|β-Hölder,[a,b](b− a)α+β

Proof. As explained in the general theory of the sewing lemma (see p. 55) we
know that

∥
∫b

a

(δΓ) − Γa,b∥E ≤ K̃

1− 21−γ
(b− a)γ,

where K̃ = K̃[a,b](Γ) := sup
s,u∈[a,b], s<u

∥Γs,u−Γs,(s+u)/2−Γ(s+u)/2,u+Γ(s+u)/2,(s+u)/2∥E
|s−u|γ

for a gen-
eral Γ . The above computation shows that for Γs,t = Ys(Xt − Xs) we have K̃ ≤
1
2γ
|X|α-Hölder,[a,b]|Y|β-Hölder,[a,b] which leads to the announced bound.

4From the definition via an extremization problem, ααββ

(α+β)α+β ≥ 1/2α+β, an inequality which
also expresses that fair coin tossing has higher entropy than biased coin tossing.



5.B. THE YOUNG INTEGRAL FOR FINITE VARIATION SPACES 69

Regularity Let X and Y be two real paths defined on [a, b]. Assume that X is α-
Hölder and Y is β-Hölder on [a, b], with α+ β > 1. The Young integral as a
function of the upper bound is α-Hölder, i.e.

Z : [a, b] → R, t 7→ Zt :=
∫t

a
YudXu is α-Hölder.

Proof. We need to show that

sup
a≤s<t≤b

|Zt − Zs|

|t− s|
α < +∞.

This is an easy consequence of the Young-Loëve estimate. Using it for Zt − Zs =∫t

s
YudXu on [s, t] yields

|Zt − Zs| ≤ |Ys(Xt − Xs)|+
1

2α+β − 2
|X|α-Hölder,[s,t]|Y|β-Hölder,[s,t]|t− s|α+β

Thus

|Zt − Zs|

|t− s|
α ≤ |Ys|

|Xt − Xs|

|t− s|
α +

1

2α+β − 2
|X|α-Hölder,[s,t]|Y|β-Hölder,[s,t]|t− s|β.

But |X|α-Hölder,[s,t] ≤ |X|α-Hölder,[a,b], |Y|β-Hölder,[s,t] ≤ |Y|β-Hölder,[a,b] so we infer a
crude bound

|Z|α-Hölder,[a,b] ≤ |X|α-Hölder,[a,b]

(
∥Y∥∞ +

1

2α+β − 2
|Y|β-Hölder,[a,b]|b− a|β

)
< +∞.


