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A tight map is a map with some of its vertices marked, such that every
vertex of degree 1 is marked. We give an explicit formula for the number
N0,n(d1, . . . , dn) of planar tight maps with n labeled faces of prescribed de-
grees d1, . . . , dn, where a marked vertex is seen as a face of degree 0. It
is a quasi-polynomial in (d1, . . . , dn), as shown previously by Norbury. Our
derivation is bijective and based on the slice decomposition of planar maps.
In the non-bipartite case, we also rely on enumeration results for two-type
forests. We discuss the connection with the enumeration of non necessarily
tight maps. In particular, we provide a generalization of Tutte’s classical
slicings formula to all non-bipartite maps.
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1. Introduction

1.1. Tight maps

The main purpose of this paper is to study the enumeration problem for a class of maps,
called tight maps.

Definition 1. A tight map is a map with some of its vertices marked, such that every
vertex of degree 1 is marked. In a tight map, the faces as well as the marked vertices are
called boundaries.

Even though this definition makes sense for maps on arbitrary surfaces, we will restrict
in this paper to the planar case. We refer to [Sch15] and [BGM21] for the standard
definitions and terminology about maps.
Usually, we will endow a tight map with some extra structure, in particular by labeling

its faces and some or all of its marked vertices, or distinguishing one marked vertex.
For instance, we will call pointed tight map a tight map with one distinguished marked
vertex. We will adopt a slightly unusual notion of rooted tight map compared to the
well-established notion of rooting of a map. If e is a distinguished edge in a map m,
there is a natural opening operation O(m, e) consisting in cutting open the edge, thereby
creating a face of degree 2. If m has marked or labeled elements (vertices or faces), then
O(m, e) naturally inherits these elements. We say that a map m with some of its vertices
marked and a distinguished edge e is a rooted tight map if O(m, e) is a tight map. Note
that m may not be a tight map itself, as the distinguished edge may be incident to an
unmarked vertex of degree 1. Finally, a pointed rooted tight map is a rooted tight map
with one distinguished marked vertex. See Figure 1 for examples of tight maps.
We define the length of a boundary in a tight map as being equal to its degree for a

face, and to zero for a marked vertex. In other words, we interpret the marked vertices
as boundaries of length 0.
The terminology of tight maps comes from [BGM21]. Let us discuss it in some detail.

In a general map m, drawn on a surface S, and with some faces and vertices marked,
let us call the marked elements the boundaries, and the unmarked elements the internal
faces and vertices. We let S′ be the space obtained from S by removing one point (i.e.
creating a puncture) inside each of the boundaries of m. A boundary of m is called
tight if its contour path has minimal possible length among all paths in the map that are
freely homotopic to it in S′. When the map has marked vertices, then all such vertices are
automatically tight boundaries, and the previous minimality condition on the contours of
the boundary-faces must be understood in a slightly modified map obtained by blowing
every marked vertex of degree k into a k-cycle with edges of “length 0”, hence creating a
new face in the map, which we view as having degree 0, with one puncture. See Figure
2 for an example.
This being said, it is straightforward to see that a map is tight according to Definition 1,

if and only if it is a map with no internal faces (i.e. all its faces are marked as boundaries),
whose boundaries are all tight. Indeed, starting from a tight map, we see that all its
boundaries are necessarily tight: in the modified map with every marked vertex blown
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Figure 1: On the left, a tight map with 9 boundaries: six faces f1, f2, f3, f4, f5, f6 with
respective degrees 12, 8, 5, 4, 3, 2, and three marked vertices v7, v8, v9, shown
in white. On the right: a rooted tight map, whose opening operation gives
the tight map on the left. As this figure demonstrates, a vertex incident to
the root in a rooted tight map can be of degree 1 without being necessarily
marked. These maps can be also seen as pointed (respectively pointed rooted)
tight maps, for example by distinguishing the marked vertex v9.

Figure 2: Blowing a boundary-vertex into a face of degree 0 with one puncture.

into a degree-0 face, the contour of a given face is in fact the unique non-backtracking
path of edges in its free homotopy class in the punctured surface S′. Conversely, a map
which is not tight contains an unmarked vertex v of degree 1. The contour of the face
f incident to v can be deformed into a strictly shorter path by shortcutting the edge
incident to v, meaning that f is not a tight boundary.

1.2. Lattice count polynomials

For any choice of nonnegative integers d1, d2, . . . , dn not all equal to 0 and for any non-
negative integer g, we let Ng,n(d1, d2, . . . , dn) be the number of tight maps of genus g,
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with n labeled boundaries of respective lengths d1, d2, . . . , dn, and where each map is
weighted by its inverse number of automorphisms. In fact, the latter number is always
1 as soon as n ≥ 3, while the only tight maps with two boundaries having a non-trivial
automorphism group are (genus 0) cycles of length p ≥ 2, with automorphism group
Z/pZ (such maps are thus weighted by 1/p).

The numbers Ng,n(d1, . . . , dn) have been extensively studied in particular by Nor-
bury and Do [Nor10; Nor13; DN11]1. Norbury proved that Ng,n(d1, . . . , dn) is a quasi-
polynomial in the variables d2

1, . . . , d
2
n, depending on their parities. This means that

for every k ∈ {0, 1, . . . , n}, there exists a polynomial N(k)
g,n(x1, . . . , xn) in the variables

x2
1, . . . , x

2
n, symmetric under permutations of the first k variables and of the last n − k

variables, such that, if the numbers d1, . . . , dk are odd and the numbers dk+1, . . . , dn are
even, then

Ng,n(d1, . . . , dn) = N(k)
g,n(d1, . . . , dn) . (1)

For k odd, these polynomials are equal to 0. In fact, the first two papers mentioned above
assume that d1, . . . , dn are all non-zero, while the third paper considers the general case
where some, but not all di may vanish. Definition 2.7 in [DN11] is indeed equivalent to
our definition of tight maps, while Proposition 2.8 therein proves that the extension of
the quasipolynomials to some zero values do solve the enumeration problem of tight maps
with marked vertices. Norbury [Nor10] also proves that evaluating the polynomials at
(0, 0, . . . , 0) gives interesting geometric information, although the combinatorial meaning
of this evaluation is not clear. Note that the theory of enumeration of integer points in
polytopes implies that Ng,n(d1, . . . , dn) is a piecewise quasi-polynomial in d1, . . . , dn, see
for instance the discussion around [Bud20b, Proposition 4] (in the case b = 0). Therefore,
it is surprising that Ng,n(d1, . . . , dn) is actually a genuine quasi-polynomial, furthermore
in the squared variables.
The approach taken in [Nor10; Nor13; DN11] is to prove the wanted properties us-

ing recursions for these polynomials, called lattice count polynomials, that also allows
one to effectively compute them. These recursions are in turn consequences of combina-
torial recursion relations with a geometric flavor, similar to Tutte’s equations used for
instance in [Tut62], and to the topological recursion originating in Eynard and Orantin’s
work [EO07].
In this paper, focusing on the planar case g = 0, our main goal in to show how one

can obtain the above quasipolynomiality results by bijective techniques, which in passing
yield new explicit formulas for the lattice count polynomials. We will use two different
strategies: the first one, discussed in Section 3, is based on a substitution approach using
as an input Tutte’s classical slicings formula [Tut62]. This formula holds however only for
planar maps which are bipartite or quasi-bipartite, namely with a number of faces of odd
degree equal to 0 or 2 respectively. As a consequence, the substitution approach is limited
to the enumeration of planar tight bipartite and quasi-bipartite maps, corresponding to
respectively k = 0 and k = 2 in (1). The second, purely bijective, strategy is based on the
so-called slice decomposition of maps introduced in [BG12], and its extensions developed

1Here, we should warn the reader that these references use the notion of fatgraphs, which is different
but equivalent to the language of maps used in this paper.
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in [BG14; Bou19]. We will first discuss it in Section 4 in the easier case of planar tight
bipartite and quasi-bipartite maps, and then extend it in Section 5 to the general case
of planar tight maps with an arbitrary number k of faces of odd degree. Using then
the substitution approach backwards, our general expression for tight maps allows us to
extend Tutte’s slicings formula to non necessarily tight maps with an arbitrary number
of faces of odd degree.

The paper is organized as follows. Section 2 provides a self-contained presentation of
our main results. Section 2.1 deals with the simpler case of bipartite and quasi-bipartite
tight maps: after introducing and studying in Section 2.1.1 the required basic univariate
and multivariable polynomials, we state our main theorems which connect these polyno-
mials to the numbers of planar tight bipartite maps in Section 2.1.2 (Theorem 4) and
of planar tight quasi-bipartite maps in Section 2.1.3 (Theorem 9). We then state our
enumeration result for general tight maps in Section 2.2 (Theorem 13) after introducing
the appropriate univariate and multivariate quasi-polynomials. Section 3 discusses the
connection with the enumeration of non necessarily tight maps by the substitution ap-
proach: Section 3.1 is devoted to the derivation of Theorems 4 and 9 from Tutte’s slicings
formula, and Section 3.2 uses this approach backwards to obtain from Theorem 13 an
extension of the slicings formula to maps with an arbitrary number of faces of odd degree,
see Theorem 19. We then discuss in Sections 4 and 5 the bijective approach based on the
slice decomposition of maps. Section 4 concentrates again on the simpler bipartite and
quasi-bipartite cases, discussing first tight maps with a single face (Section 4.1), tight
maps with two faces (Section 4.2), pointed rooted tight maps in connection with tight
slices (Section 4.3) and finally tight maps which are neither pointed nor rooted (Sec-
tion 4.4) using the slice decomposition of annular maps. All these bijective results are
then extended to the non-bipartite or quasi-bipartite case in Section 5, which requires
the preliminary enumeration of so-called petal trees (Section 5.1), petal necklaces (Sec-
tion 5.2) and non-bipartite slices (Section 5.3). Our most general enumeration result for
planar tight maps with arbitrary prescribed boundary lengths is given in Section 5.4 by
Theorem 42, which presents a single formula encompassing Theorems 4, 9 and 13. We
gather our concluding remarks in Section 6, while a few appendices detail the derivation
of some technical results.

Acknowledgments. We thank Axel Bacher and Gilles Schaeffer for valuable discussions.
JB acknowledges the hospitality of the Laboratoire de Physique, ENS de Lyon, and
partial financial support from the Agence Nationale de la Recherche via the grants ANR-
18-CE40-0033 “Dimers” and ANR-19-CE48-0011 “Combiné”.

2. Main results

2.1. Polynomials counting planar tight bipartite or quasi-bipartite maps

In this section, we provide explicit expressions for the lattice count polynomials N(0)
0,n and

N
(2)
0,n, which correspond to planar tight bipartite and quasi-bipartite maps, respectively.
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2.1.1. Definition and properties of the polynomials

Let us start by introducing families of polynomials which appear in the explicit expres-
sion of N(0)

0,n. Here, we concentrate on the very definitions of these polynomials and on
their resulting algebraic properties. The connection with tight map enumeration will be
discussed in Section 2.1.2.

Basic univariate polynomials. Our first basic polynomials are functions of a single
variable m and are defined as follows: for any integer k ≥ 0, we set

pk(m) :=
1

(k!)2

k∏
i=1

(
m2 − i2

)
=

(
m− 1

k

)(
m+ k

k

)

qk(m) :=
1

(k!)2

k−1∏
i=0

(
m2 − i2

)
=

(
m

k

)(
m+ k − 1

k

) (2)

with the usual convention p0(m) = q0(m) = 1 for the empty product, and with
(
x
k

)
=

x(x− 1) · · · (x− k + 1)/k! viewed as a polynomial in x.
Clearly, pk and qk are polynomials of degree k in the variablem2, and pk(m) and qk(m)

are integers if m is an integer. The two families of polynomials are linked by the relation

qk(m) = pk(m) + pk−1(m), k ≥ 0 (3)

with the convention p−1 := 0. A combinatorial interpretation of this relation based on
the enumeration of tight maps with a single face will be given in Section 2.1.2. We also
record the identities

(k + 1)pk+1(m) = (m− k − 1)pk(m) +

m−1∑
j=1

(2j)pk(j) (4)

(k + 1)qk+1(m) = (m− k)qk(m) +
m−1∑
j=1

(2j)qk(j) (5)

which are valid for m a positive integer, and which may be checked by induction.

Multivariate polynomials. The above univariate polynomials may be extended to mul-
tivariate polynomials, functions of n variables m1,m2, . . . ,mn as follows: for any integer
k ≥ 0 and any integer n ≥ 1, we set

pk(m1,m2, . . . ,mn) :=
∑

k1,k2,...,kn≥0
k1+k2+···+kn=k

pk1(m1)qk2(m2) · · · qkn(mn),

qk(m1,m2, . . . ,mn) :=
∑

k1,k2,...,kn≥0
k1+k2+···+kn=k

qk1(m1)qk2(m2) · · · qkn(mn).
(6)

(In the right-hand side of the first line, all factors except the first one are qki ’s.)
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Clearly, pk and qk are polynomials of degree k in the variables m2
1,m

2
2, . . . ,m

2
n. Note

that the notation is consistent for n = 1 with (2). From the identity pk(1) = δk,0, we get
the identification:

pk(1,m1,m2, . . . ,mn) = qk(m1,m2, . . . ,mn) (7)

and, by (3), we find that qk = pk + pk−1 for any number of variables.

Proposition 2. For any integer k ≥ 0, pk and qk are symmetric functions. In other
words, for any integer n ≥ 1, pk(m1,m2, . . . ,mn) and qk(m1,m2, . . . ,mn) are symmetric
polynomials in m1,m2, . . . ,mn which satisfy the consistency relation

pk(m1,m2, . . . ,mn, 0) = pk(m1,m2, . . . ,mn),

qk(m1,m2, . . . ,mn, 0) = qk(m1,m2, . . . ,mn).
(8)

Proof. The symmetry of qk(m1,m2, . . . ,mn) is apparent from its very definition in (6). As
for pk(m1,m2, . . . ,mn), its symmetry is also made apparent from the following alternative
and manifestly symmetric expression:

pk(m1,m2, . . . ,mn) =
∑

k0,k1,k2,...,kn≥0
k0+k1+k2+···+kn=k

(
n− 1

k0

)
pk1(m1)pk2(m2) · · · pkn(mn). (9)

To get this latter expression, we use again the relation (3) to write, in the expres-
sion (6) for pk(m1,m2, . . . ,mn), each qki for i = 2 to n as the sum of pki and pki−1

and distribute the two terms in the product so as to get a sum of terms of the form
pk′1(m1)pk′2(m2) · · · pk′n(mn) with summation variables k′1 = k1 and k′i = ki or ki − 1 for
i ≥ 2. The number of terms in the sum having exactly k0 indices i for which k′i = ki − 1
is
(
n−1
k0

)
and, for such terms, the sum rule k1 + k2 + · · · + kn = n in (6) becomes

k0 + k′1 + k′2 + · · ·+ k′n = n. This leads to (9) upon renaming the summation variable k′i
as ki.
As for the consistency relation (8), it is a direct consequence of the identity qk(0) = δk,0

(here and in the following, we will always implicitly assume that k is a non-negative
integer).

Finally, let us state some recursion relations obeyed by the pk’s, which we call the
dilaton and string equations as we shall see later that they correspond to the recursions
obtained in [Nor13] in the bipartite case.

Proposition 3 (Dilaton and string equations). We have the dilaton equation

pk(m1, . . . ,mn, 1)− pk(m1, . . . ,mn, 0) = pk−1(m1, . . . ,mn) (10)

and the string equation, valid for non-negative integer m1, . . . ,mn:

(k + 1)pk+1(m1, . . . ,mn) = (m1 + · · ·+mn − k − 1)pk(m1, . . . ,mn)+

n∑
i=1

mi−1∑
j=1

(2j)pk(m1, . . . ,mi−1, j,mi+1, . . . ,mn) (11)
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Proof. From (7) and Proposition 2, the dilaton equation boils down to the relation qk =
pk + pk−1 noted above. The string equation is nothing but the multivariate extension
of (4), and is obtained by a linear combination of it and (5) (precisely, we take (4) at
k = k1 and m = m1 times qk2(m2) · · · qkn(mn) and add, for i = 2, . . . , n, the relation (5)
at k = ki and m = mi times pk1(m1) · · · qkn(mn) with the factor qki(mi) omitted).

2.1.2. Enumeration results in the bipartite case

We are now ready to state our first enumerative result:

Theorem 4. For n ≥ 3 and for non-negative integers m1,m2, . . . ,mn not all equal to
zero, the number N0,n(2m1, 2m2, . . . , 2mn) of planar tight bipartite maps with n bound-
aries labeled from 1 to n with respective lengths 2m1, 2m2, . . . , 2mn is given by the poly-
nomial

N
(0)
0,n(2m1, 2m2, . . . , 2mn) = (n− 3)! pn−3(m1,m2, . . . ,mn). (12)

Note that the constant term of N(0)
0,n, obtained by setting all the mi’s to zero, is equal

to (n− 3)!pn−3(0, . . . , 0) = (−1)n−3(n− 3)!, and this quantity was interpreted in [Nor10]
as the orbifold Euler characteristic of the moduli spaceM0,n.
By combining Proposition 3 with Theorem 4, we recover the string and dilaton equa-

tions found by Norbury in [Nor10] in the planar bipartite case. Note that, in this refer-
ence, the string equation corresponds to the addition of a face of degree 2, while (11) for
k = n − 3 may be interpreted as the addition of a vertex. Norbury’s original equation
can however be recovered by combining it with the dilaton equation. Note finally that
Proposition 3 holds more generally for any k. When k ≥ n − 3 we can naturally inter-
pret it in terms of adding new marked vertices, but the combinatorial meaning of the
polynomial pk(m1, . . . ,mn) for k < n− 3 is more elusive.
A first derivation of Equation (12) will be presented in Section 3 below by showing

that, up to some appropriate transformation accounting for the tight nature of the maps,
it is actually equivalent to Tutte’s celebrated slicings enumeration formula [Tut62]. We
shall then present in Section 4 a direct bijective proof of Theorem 4 upon using some
canonical slice decomposition of the maps at hand [BG12; BG14; Bou19]. As it appears,
it will be convenient for that purpose to proceed gradually and first derive (12) for a
number a specialized cases before addressing the result in all generality. Let us now start
by discussing these specializations.

Maps with one face. Taking n = k + 3 in (12) with m1 = m 6= 0 and m2 = · · · =
mk+3 = 0, we get

N0,k+3(2m, 0, . . . , 0︸ ︷︷ ︸
k+2

) = k! pk(m, 0, . . . , 0︸ ︷︷ ︸
k+2

) = k! pk(m), k ≥ 0. (13)

Upon dividing by k!, which amounts to considering that all but two of the marked vertices
are unlabeled, we obtain the following combinatorial interpretation of pk(m):

9



Proposition 5. For k ≥ 0 and m ≥ 1, pk(m) is the number of planar tight bipartite maps
with one face of degree 2m and k+ 2 distinct marked vertices, two of them distinguished
and labeled, say as vertex 1 and vertex 2, and the remaining k unlabeled.

Note that a planar map with a single face of degree 2m is nothing but a plane tree with
m edges. It is tight if and only if all its leaves are marked.

Similarly, taking n = k+3 in (12) withm1 = m andm2 = 1 andm3 = · · · = mk+3 = 0,
we now get

N0,k+3(2m, 2, 0, . . . , 0︸ ︷︷ ︸
k+1

) = k! pk(m, 1, 0, . . . , 0︸ ︷︷ ︸
k+1

) = k! qk(m, 0, . . . , 0︸ ︷︷ ︸
k+1

) = k! qk(m), (14)

where we used (7) (and the symmetry in exchanging the variables) to switch from pk to
qk. Dividing by k! and viewing the face of degree 2 as a split root edge, as discussed in
the introduction, we obtain a combinatorial interpretation of qk(m):

Proposition 6. For k ≥ 0 and m ≥ 1, qk(m) is the number of pointed rooted planar
tight bipartite maps with one face of degree 2m and k additional unlabeled marked vertices
(distinct from each other and from the pointed vertex).

Proofs of Propositions 5 and 6 will be presented in Section 4.1 by a direct enumeration
of the trees at hand. From the above interpretations of pk(m) and qk(m), we may now
understand the identity (3), for integer values ofm, in a combinatorial way using the map
language. Indeed, for each tree enumerated by qk(m), we may transfer the marking of its
root edge into a marking of that of its endpoints further away from the pointed vertex.
Let us for clarity label the newly marked vertex as vertex 2 and the pointed vertex as
vertex 1. Note that vertices 1 and 2 are necessarily distinct by construction, but that the
vertex 2 may very well coincide with one of the k additional marked vertices in the map
enumerated by qk(m). The marking transformation is clearly reversible, the root edge
being recovered as the only edge incident to vertex 2 that belongs to the branch from
vertex 2 to vertex 1. We may thus interpret qk(m) as counting plane trees with m edges,
and with two distinct marked vertices 1 and 2 and k other marked vertices distinct from
each other and from the vertex 1. This yields a map enumerated by pk(m) when none
of the k marked vertices coincide with the vertex 2—note that this may happen even if
the vertex 2 is a leaf since, as an endpoint of the root edge, it needs not being marked in
the map enumerated by qk(m). Otherwise, it yields a map enumerated by pk−1(m) by
ignoring the “redundant” additional marking of vertex 2. This yields the desired relation
(3).

Maps with two faces. Taking n = k + 3 in (12) with m1,m2 ≥ 1 and m3 = · · · =
mk+3 = 0, we get

N0,k+3(2m1, 2m2, 0, . . . , 0︸ ︷︷ ︸
k+1

) = k! pk(m1,m2, 0, . . . , 0︸ ︷︷ ︸
k+1

) = k! pk(m1,m2). (15)

Upon dividing by k! we get a combinatorial interpretation of pk(m1,m2):

10



Proposition 7. For k ≥ 0 and m1,m2 ≥ 1, pk(m1,m2) is the number of planar tight
bipartite maps with two faces of respective degrees 2m1, 2m2 and k + 1 distinct marked
vertices, one of them distinguished and labeled, say as vertex 1, and the remaining k
unlabeled.

A direct bijective proof of this proposition will be presented in Section 4.2. More
generally, and although we will not use it in our bijective proof in Section 4, we note the
relation, valid for integers m1,m2,m3 not all equal to 0

N0,k+3(2m1, 2m2, 2m3, 0, . . . , 0︸ ︷︷ ︸
k

) = k! pk(m1,m2,m3) (16)

so that pk(m1,m2,m3) counts planar tight bipartite maps with three labeled boundaries
with lengths 2m1, 2m2, 2m3 and k unlabeled marked vertices. It is relatively straightfor-
ward to adapt the bijective proof of Proposition 7 to prove (16) directly, we leave it as
an exercise to the reader.

Pointed rooted maps. Taking (12) with n→ n+ 2 and specializing to mn+1 = 2 and
mn+2 = 0, we get:

Proposition 8. For n ≥ 1, the number of pointed rooted planar tight bipartite maps with
n labeled boundaries of respective lengths 2m1, . . . , 2mn (in addition to the marked vertex
and to the root edge) is given by

N
(0)
0,n+2, (2m1, 2m2, . . . , 2mn, 2, 0) = (n− 1)! qn−1(m1,m2, . . . ,mn). (17)

Proof. This is a direct application of formula (12), together with the identity pn−1(m1,m2,
. . . ,mn, 1, 0) = qn−1(m1,m2, . . . ,mn) from (7).

The expression (17) will be proved bijectively in Section 4.3 by a direct decomposition
of the maps into slices.

2.1.3. Enumeration results in the quasi-bipartite case

Recall that a planar quasi-bipartite map is a planar map whose all faces but two have
even degree. To give the explicit expression of the corresponding lattice count polynomial
N

(2)
0,n, we need to introduce the following new family of univariate polynomials: for any

integer k ≥ 0, we set

p̃k(m) :=
1

(k!)2

k∏
i=1

(
m2 −

(
i− 1

2

)2
)

=

(
m− 1

2

k

)(
m+ k − 1

2

k

)
(18)

with the convention p̃0(m) = 1. Note that p̃k is again a polynomial of degree k in m2

and that p̃k(m) is an integer if m is a half-integer. It satisfies the following counterpart
of (4)

(k + 1)p̃k+1(m) =
(
m− k − 1

2

)
p̃k(m) +

∑
0<j<m

(2j)p̃k(j) (19)
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where it is understood that m and j are now half-integers.

The multivariate extension of p̃k is then defined for any integer k ≥ 0 and any integer
n ≥ 2 as

p̃k(m1,m2;m3, . . . ,mn) :=
∑

k1,k2,...,kn≥0
k1+k2+···+kn=k

p̃k1(m1)p̃k2(m2)qk3(m3) · · · qkn(mn). (20)

Again, we may append an arbitrary number of 0’s to the arguments of p̃k without chang-
ing its value. Note that p̃k is in general not symmetric in all its variables, but only
in m1 and m2 on the one hand, and in m3, . . . ,mn on the other hand. Note also that
p̃k(m, 1/2) = p̃k(m). The quasi-bipartite analog of Theorem 4 is then:

Theorem 9. For n ≥ 3, for m1,m2 ∈ Z≥0 + 1
2 and m3, . . . ,mn ∈ Z≥0, the number

N0,n(2m1, 2m2, 2m3, . . . , 2mn) of planar tight quasi-bipartite maps with n boundaries la-
beled from 1 to n with respective lengths 2m1, 2m2, 2m3, . . . , 2mn is given by

N
(2)
0,n(2m1, 2m2, 2m3, . . . , 2mn) = (n− 3)! p̃n−3(m1,m2;m3, . . . ,mn). (21)

In particular, for n = k + 3 and m3 = · · · = mk+3 = 0, we get, for m1,m2 half-integers:

N0,k+3(2m1, 2m2, 0, . . . , 0︸ ︷︷ ︸
k+1

) = k! p̃k(m1,m2; 0, . . . , 0︸ ︷︷ ︸
k+1

) = k! p̃k(m1,m2). (22)

Upon dividing by k!, we obtain a combinatorial interpretation of p̃k(m1,m2):

Proposition 10. For k ≥ 0 and m1,m2 ∈ Z≥0 + 1
2 , p̃k(m1,m2) is the number of planar

tight quasi-bipartite maps with two faces of odd degrees 2m1, 2m2 and k+1 distinct marked
vertices, one of them distinguished and labeled, say as vertex 1, and the remaining k
unlabeled.

Setting m2 = 1/2, we obtain a combinatorial interpretation of the univariate polynomial
p̃k(m) = p̃k(m, 1/2), which will be given a direct bijective derivation in Section 4.1:

Proposition 11. For k ≥ 0 and m ∈ Z≥0 + 1
2 , p̃k(m) is the number of planar tight

quasi-bipartite maps with one face of odd degree 2m, one face of degree one, and k + 1
distinct marked vertices, one of them distinguished and labeled, say as vertex 1, and the
remaining k unlabeled.

The polynomials p̃k obey the dilaton equation

p̃k(m1,m2; . . . ,mn, 1)− p̃k(m1,m2; . . . ,mn, 0) = p̃k−1(m1,m2; . . . ,mn) (23)

and the string equation (for mi’s as in Theorem 9)

(k + 1)p̃k+1(m1,m2; . . . ,mn) = (m1 + · · ·+mn − k − 1)p̃k(m1,m2; . . . ,mn)+
n∑
i=1

∑
0<j<m

(2j)p̃k(m1, . . . ,mi−1, j,mi+1, . . . ,mn) (24)

where we sum over half-integer values of j for i = 1 and 2 and over integer values of j
for i ≥ 3. The proof is similar to that of Proposition 3 and uses now (19). Again, this
corresponds to Norbury’s dilaton and string equations in the planar quasi-bipartite case.
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Remark 12. We have the relation p̃k(1/2, 1/2;m1, . . . ,mn) = qk(m1, . . . ,mn) which im-
plies that N0,n+2(2m1, 2m2, 2m3, . . . , 2mn, 1, 1) = N0,n+2(2m1, 2m2, 2m3, . . . , 2mn, 2, 0)
for m1, . . . ,mn integers. The latter equality can be explained via a “slit-slide-sew” bijec-
tion in the spirit of [Bet20].

2.2. Quasi-polynomials counting planar tight maps with more odd faces

In this section, we provide explicit expressions for the lattice count polynomials N
(k)
0,n,

enumerating planar tight maps with k boundaries of odd lengths, and n− k boundaries
of even lengths, for an arbitrary value of k ≥ 3.

To this end, similarly to the bipartite and quasi-bipartite cases discussed in the preced-
ing section, we first need to introduce a two-parameter family of univariate polynomials
which generalizes those introduced above: for k a non-negative integer and e ∈ Z, we
define

pk,e(m) :=
1

(k!)2

k∏
i=1

(
m2 −

(
i− e

2

)2
)

=

(
m+ e

2 − 1

k

)(
m− e

2 + k

k

)
. (25)

We recover the polynomials pk, p̃k, and qk of Section 2.1 for e = 0, 1, 2, respectively. We
will provide combinatorial interpretations of these polynomials in Section 5.
Next, let r, s be non-negative integers and ε ∈ Z be fixed. For m ∈ Z/2, we let

π(ε)
r,s(m) :=

{(
r+s
s

)
pr+s,s+1+ε(m) if m− s+1+ε

2 ∈ Z,
0 otherwise.

(26)

For every choice of r, s, ε, this defines a quasi-polynomial in the variable 2m. For the
purposes of stating the main theorem of this section, only the cases ε ∈ {0, 1} will be of
interest. Note that for m = 0 we have

π(ε)
r,s(0) =

{
δr,0δs,0 if ε = 1,
0 if ε = 0.

(27)

We may now state the main theorem of this section. In (29) below and later, for
ε ∈ {0, 1}, we will write ε̄ := 1− ε to lighten the notation.

Theorem 13. For n ≥ 3, for m1,m2, . . . ,mn ∈ Z≥0/2, with at least three of the mi

being half-integers, the number N0,n(2m1, 2m2, . . . , 2mn) of planar tight maps with n
boundaries labeled from 1 to n with respective lengths 2m1, 2m2, . . . , 2mn is given by the
symmetric quasi-polynomial

N0,n(2m1, 2m2, . . . , 2mn) =∑
(ε1,...,εn
r1,...,rn
s1,...,sn

)
∈In

(
n∑
i=1

ri

)
!

(
n∑
i=1

εisi

)(
n∑
i=1

si − 1

)
!

n∏
i=1

π(εi)
ri,si(mi), (28)
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where In is the (finite) subset of {0, 1}n × Zn≥0 × Zn≥0 defined by

In :=


 ε1, . . . , εn

r1, . . . , rn
s1, . . . , sn

 :

n∑
i=1

εi =
n∑
i=1

ri + 1

n∑
i=1

ε̄i =
n∑
i=1

si + 2
,

n∑
i=1

si ≥ 1

 . (29)

Remark 14. We note that the right-hand side of (28) is equal to 0 when the number k
of faces of odd degree is equal to 0 or 2, so that the formula does not hold in these cases,
which have been respectively dealt with above in Theorems 4 and 9. Theorem 13 yields
a non-trivial result only when k ≥ 4 is an even number, since a map necessarily has an
even number of faces of odd degrees. As a sanity check, it is not difficult to see that the
right-hand side of (28) vanishes when k is odd. Indeed, assume without loss of generality
that 2m1, . . . , 2mk are odd numbers, and that 2mk+1, . . . , 2mn are even. By (26) and
(27), the product term in the sum (28) is non-zero only if si + εi is even for 1 ≤ i ≤ k,
and odd for k + 1 ≤ i ≤ n. On the other hand, the contraints in the definition of the
summation index implies that

∑n
i=1(si + εi) + 2 = n, which after reduction modulo 2,

shows that n−k and n have the same parity, so that k is necessarily even. A fully unified
formula, encompassing Theorems 4, 9 and 13 is given in Theorem 42 below.

The proof of Theorem 13 will follow an architecture similar to the bijective proof of
Theorems 4 and 9, building from elementary examples of maps with explicit enumeration
formulas, to construct general ones. In particular, note that (28) reduces to π(1)

r,s (m) if
we specialize it to n = r + s with m1 = m, m2 = · · · = ms+3 = 1/2 and ms+4 = · · · =

mr+s = 0. However, it is not a priori obvious to obtain an interpretation of π(0)
r,s (m) by

specializing formula (28). For this reason, we will need to investigate in some depth these
quasi-polynomials and relate them to the combinatorial notion of petal trees. This will
be the object of Section 5.1, but let us record right away the definition of this notion so
as to state one important result, Proposition 15, which will be used at the end of Section
3.
We call petal a face of degree 1. A petal tree is a planar map having an exterior face

of arbitrary degree, and such that every other face is a petal. A tight petal tree is just a
petal tree with marked vertices, which is tight as a map.

Proposition 15. For r, s nonnegative integers, m ∈ Z>0/2, and ε ∈ {−1, 0, 1}, the
number of tight petal trees with an exterior face of degree 2m, s + 1 + ε petals, 1 + ε of
which distinguished, and r + 1− ε marked vertices, 1− ε of which distinguished, is equal
to π(ε)

r,s(m).

Remark 16. Proposition 15, which will be proved in Section 5.1, holds for m > 0. It
can be extended to m = 0, provided we restrict the value of ε to the set {0, 1}. Indeed,
in this case, (27) is consistent with Proposition 15 upon understanding the exterior face
of degree 0 as a distinguished marked vertex. For ε = 0 or 1, the only possible map
with such a marked vertex, s + 1 + ε petals (and no other face) and r + 1 − ε other
marked vertices is made of a single loop connecting the distinguished marked vertex and
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separating two petals. It has s+ 1 + ε = 2 and r + 1− ε = 0, hence ε = 1 and r = s = 0
(note that the distinction of the two petals does not create any degeneracy).
Remark 17. The situation above is quite similar to the casem = 1/2, for which we obtain

π(ε)
r,s

(
1

2

)
=


0 if ε = −1,
δr,0δs,0 if ε = 0,
0 if ε = 1.

(30)

This agrees with Proposition 15 since the only possible map with an exterior face of
degree 1, s+1+ε petals and r+1− ε marked vertices is made of a single loop connecting
a unique vertex and separating the exterior face from a unique petal. It has s+ 1 + ε = 1
and r+ 1− ε ≤ 1, hence ε = 0, s = 0 and r = 0 (note that the unique vertex is therefore
marked).

3. Connection with the enumeration of non necessarily tight
maps

3.1. Equivalence with Tutte’s slicings formula in the (quasi-)bipartite case

One of the earliest results in map enumeration is Tutte’s slicings formula [Tut62] which, in
our current terminology, asserts that the numberM(`1, . . . , `n) of planar (non necessarily
tight) bipartite maps with n ≥ 3 labeled faces of prescribed even degrees 2`1, . . . , 2`n is
given by

M(`1, . . . , `n) = (`1 + · · ·+ `n − 1)n−3

n∏
i=1

(
2`i − 1

`i

)
, (31)

where (`)k := `(` − 1) · · · (` − k + 1) denotes the falling factorial. Note that the faces
are assumed unrooted and that the formula extends to the case where some, but not all,
of the `i vanish, with the convention

(−1
0

)
= 1, upon again understanding that a face of

degree 0 is a marked vertex (planar maps with three or more labeled faces or vertices
have no symmetries).
In this section, we explain how Tutte’s slicings formula is related to Theorem 4 giving

a formula for the number of planar tight bipartite maps with n boundaries of prescribed
lengths. As we shall see, the two formulas can be deduced from one another.
The key observation, already made in [Bud20b, Section 4], is that an arbitrary (non

necessarily tight) map, possibly with marked vertices, can be bijectively decomposed
into a tight map (which we call the tight core) and a collection of rooted plane trees
(without marked vertices) attached to the corners of the tight core. See Figure 3 for an
illustration. Precisely, the tight core has the same number of faces and marked vertices
as the arbitrary map, and a face of degree 2` in the arbitrary map yields a face of degree
2m in the tight core, for some m ≤ `, together with a plane forest made of 2m trees
having `−m edges in total. The number of such plane forests is equal to

A`,m :=
2m

2`

(
2`

`−m

)
(32)
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Figure 3: The tight core (thick red edges) of a planar bipartite map with two faces and
one marked vertex (shown in white). The rest of the map consists of rooted
plane trees (possibly empty) attached in the corners of the tight core.

with conventionally A0,0 = 1 and A`,m = 0 for m > `. As a consequence, we have

M(`1, . . . , `n) =

`1∑
m1=0

· · ·
`n∑

mn=0

A`1,m1 · · ·A`n,mnN0,n(2m1, . . . , 2mn) (33)

where N0,n is the number of planar tight bipartite maps with n boundaries of lengths
2m1, . . . , 2mn, as defined in Section 1.2. Note that the matrix (A`,m)`,m≥0 is unitrian-
gular, hence the formula (33) can be inverted as

N0,n(2m1, . . . , 2mn) =

m1∑
`1=0

· · ·
mn∑
`n=0

Bm1,`1 · · ·Bmn,`nM(`1, . . . , `n) (34)

where B is the inverse of A. This inverse is given explicitly by Bm,` = (−1)m−`
(
m+`−1
m−`

)
but we will not use its expression in the following.
Now, let us substitute Tutte’s slicings formula (31) into (34). By the Chu-Vandermonde

identity, we may expand the falling factorial as

(`1 + · · ·+ `n − 1)n−3 = (n− 3)!
∑

k1,k2,...,kn≥0
k1+k2+···+kn=n−3

(
`1 − 1

k1

)(
`2
k2

)
· · ·
(
`n
kn

)
, (35)

which is nothing but an equality between polynomials in `1, . . . , `n. This yields

N0,n(2m1, . . . , 2mn) = (n− 3)!
∑

k1,k2,...,kn≥0
k1+k2+···+kn=n−3

p̂k1(m1)q̂k2(mn) · · · q̂kn(mn) (36)

where p̂k(m) :=
∑m

`=0Bm,`
(
`−1
k

)(
2`−1
`

)
and q̂k(m) :=

∑m
`=0Bm,`

(
`
k

)(
2`−1
`

)
. We recover

Theorem 4, with the multivariate polynomial pn−3(m1,m2, . . . ,mn) defined via (6), pro-
vided that p̂k(m) and q̂k(m) are respectively equal to the univariate polynomials pk(m)
and qk(m) defined in (2). This is ensured by the following:
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Lemma 18. The univariate polynomials pk(m) and qk(m) defined in (2) satisfy

∑̀
m=0

A`,mpk(m) =

(
`− 1

k

)(
2`− 1

`

)
,

∑̀
m=0

A`,mqk(m) =

(
`

k

)(
2`− 1

`

)
. (37)

Proof. These hypergeometric identities can be proved using algorithmic methods, see
[PWZ96] and references therein.
Alternatively, a bijective proof for ` ≥ 1 follows from Propositions 5 and 6, themselves

proved bijectively in Section 4.1. More precisely, the first identity is obtained by counting
in two different ways plane trees with ` edges and k + 2 distinct marked vertices, two
of them distinguished and labeled. Namely, the left-hand side is obtained via the tight
core decomposition and Proposition 5, while the right-hand side is obtained by a direct
enumeration:

(
2`−1
`

)
is the number of plane trees with ` edges and two distinguished

labeled vertices, and
(
`−1
k

)
is the number of ways to choose the k other marked vertices.

The second identity is obtained similarly by counting in two different ways plane trees
with ` edges, one of them marked, and k + 1 distinct marked vertices, one of them
distinguished.

Note that, doing the above reasoning backwards, it is conversely possible to recover
Tutte’s slicings formula from Theorem 4, using (33). We now briefly discuss the quasi-
bipartite case: let `1, `2 be positive half-integers, and `3, . . . , `n be non-negative integers,
n ≥ 3. Then, by [Tut62, Section 6], the number M(`1, . . . , `n) of planar quasi-bipartite
maps with n labeled boundaries of prescribed lengths 2`1, . . . , 2`n reads

M(`1, . . . , `n) = (`1 + · · ·+ `n − 1)n−3

(
2`1 − 1

`1 − 1
2

)(
2`2 − 1

`2 − 1
2

) n∏
i=3

(
2`i − 1

`i

)
. (38)

The tight core decomposition works as before and we find that (33) still holds, upon un-
derstanding that the sums over m1 and m2 should be now taken over half-integer values,
A`,m being still defined by (32) for `,m half-integers. By a slight variant of the reasoning
above, we may deduce Theorem 9 with the multivariate polynomial p̃k(m1,m2;m3, . . . ,
mn) being given by (20). Namely, we modify the expansion (35) of the falling factorial
by replacing `1 − 1 and `2 in the right-hand side by `1 − 1

2 and `2 − 1
2 , respectively, and

we make use of the identity

∑
m∈{ 1

2
, 3
2
,...,`}

A`,mp̃k(m) =

(
`− 1

2

k

)(
2`− 1

`− 1
2

)
(39)

valid for ` a positive half-integer. Again, this identity can be proved either via algorithmic
methods, or via a bijective argument: it is obtained by counting in two different ways
planar maps with one face of odd degree 2`, one face of degree one and k + 1 distinct
marked vertices, one of them distinguished. The left-hand side is obtained by the tight-
core decomposition together with Proposition 11 (which will be derived bijectively in
Section 4.1). As for the right-hand side, note that, by collapsing the face of degree one,
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such maps correspond to rooted plane trees with ` − 1
2 edges:

(
2`−1
`−1/2

)
is the number of

such trees with one distinguished vertex, and
(`−1/2

k

)
is the number of ways to choose

the k other marked vertices.

3.2. A non-bipartite slicings formula

By arguing similarly, we may use Theorem 13 to obtain a generalization of Tutte’s slicings
formula counting planar maps with a prescribed degree sequence. The relevant identity
to use, valid for `− s+1+ε

2 ∈ Z and ε ∈ {0, 1}, is

∑
m∈Z≥0/2

A`,mπ
(ε)
r,s(m) =

(
2`− 1

`− s+1+ε
2 , `− r − s+1−ε

2 , r , s

)
, (40)

where in the left-hand side, we observe by (26) that only the terms for which `−m ∈ Z≥0

contribute, and in the right-hand side, we use a multinomial coefficient notation. To
understand this formula, recall from Proposition 15 that π(ε)

r,s(m) counts tight petal trees,
i.e. tight maps with an exterior face of degree 2m, s + 1 + ε petals, 1 + ε of which are
distinguished, and r+1−ε marked vertices, 1−ε of which are distinguished. By applying
the tight core decomposition, the left-hand side of (40) expresses the number of petal
trees which are not necessarily tight, with an exterior face of degree 2`, and with the same
number of (distinguished) petals and (distinguished) marked vertices as described in the
preceding sentence. Checking that this number equals the right-hand side of (40) is a
straightforward exercise based on the methods used in Section 5.1 to prove Proposition
15, and is simpler due to the absence of the tightness condition.
Formula (33) remains unchanged if `1, . . . , `n are allowed to take half-integer values,

except that the corresponding sums should then run over half-integermi’s as well. Substi-
tuting in (33) the formula of Theorem 13 forN0,n(2m1, . . . , 2mn), we obtain the following:

Theorem 19 (A census of non-bipartite slicings). The number M(`1, . . . , `n) of planar
maps with n labeled faces of degrees 2`1, . . . , 2`n, at least four of which are odd, is given
by

M(`1, . . . , `n) =
∑

(ε1,...,εn
r1,...,rn
s1,...,sn

)
∈In

(
n∑
i=1

ri

)
!

(
n∑
i=1

εisi

)(
n∑
i=1

si − 1

)
!

×
n∏
i=1

(
2`i − 1

`i − si+1+εi
2 , `i − ri − si+1−εi

2 , ri, si

)
, (41)

where In is as in (29), and where it is understood that the multinomial coefficient vanishes
whenever `i − si+1+εi

2 is not an integer. The formula makes sense when some `i vanish,
upon understanding that a face of degree 0 is in fact a vertex.
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Example 20. For `1, . . . , `4 ∈ Z≥0 + 1
2 , performing the sum in (41) yields a number of

planar maps with four labeled faces of odd degrees 2`1, . . . , 2`4 equal to

M(`1, . . . , `4) = (`1 + · · ·+ `4 − 2)
4∏
i=1

(
2`i − 1

`i − 1
2

)
. (42)

In particular, we find M
(

3
2 ,

1
2 ,

1
2 ,

1
2

)
= 2 which, after rooting each face, gives a number

of slicings equal to 6 consistently with [Tut62, Section 6].

To our knowledge, this extension of Tutte’s slicings formula for general non-bipartite
planar maps with prescribed degrees is new. Note that (41) does not hold when the
number of faces of odd degree is zero or two, see the discussion in Remark 14 in the tight
setting. Even though we obtain Theorem 19 as a consequence of Theorem 13, the former
could be proved directly by the approach of Section 5, forgetting about the tightness
constraint.

4. Bijective proofs in the bipartite and quasi-bipartite cases

4.1. Case of maps with one face

In this section, we first present a combinatorial proof of Propositions 5 and 6 by a
direct enumeration of the planar tight bipartite maps with one face considered in these
propositions. Our approach is inspired from the bijective interpretation of Narayana
numbers given in [DZ80, Section 3.2].
More precisely, we wish to enumerate planar bipartite maps with one face of degree 2m,

which are nothing but plane trees with m edges (m ≥ 1), endowed with a distinguished
marked vertex labeled 1, and either a second distinguished marked vertex labeled 2 in
the context of Proposition 5 or with a marked edge (the root edge) in the context of
Proposition 6. These two situations will be referred to respectively as “case (p)” and
“case (q)” in the following, to remind the reader that they concern the combinatorial
interpretation of pk(m) and qk(m) respectively. The trees are finally decorated by the
choice of k additional unlabeled marked vertices (k ≥ 0), with the constraint that all the
leaves of the tree are marked vertices (either labeled or unlabeled), except possibly the
endpoints of the root edge in the case (q) if it happens that such an endpoint is a leaf.
Our proof is based on the classical coding of plane trees by their contour word, here

in terms of the letters U (up) and D (down). The following discussion is illustrated
on Figure 4. Ignoring the k unlabeled vertex markings for now, the coding that we
use here is adapted to trees with both a marked vertex 1 and a marked oriented edge
e whose choice in cases (p) and (q) will be discussed below. For any such tree, the
contour word is obtained as follows: we start from the right of e and visit all the edge
sides counterclockwise around the tree. We then record a letter U if we move away from
vertex 1 on the tree, and a letter D otherwise. After one turn around the tree, we get a
word of 2m letters containing m occurrences of U and m occurrences of D, since the two
sides of any given edge give rise to exactly one U and one D. Viewing the successive U ’s
and D’s as successive up and down steps, the coding may alternatively be represented
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1

2

1

e

e

D◦UD◦D•UUD◦D•UD◦UUUUD◦D•UD◦D◦UUD◦ UUD◦D•UD◦D◦UUD◦D•UD◦D•UUD◦D•UD◦UU

Figure 4: The coding of planar tight maps with one face with degree 2m (herem = 11) by
dressed words with letters U , D◦ and D•. Left: in the context of Proposition 5,
such a map has k + 2 (here k = 7) marked vertices (represented as white, as
in Figure 1), two of them distinguished as vertex 1 and 2 (represented by a
bigger red circle). The associated word, indicated under the map, starts with a
D◦. Right: in the context of Proposition 6, the map has k+ 1 marked vertices,
one of them distinguished as vertex 1, and a root edge (represented in thick
red). The associated word ends with a U . We indicated under each word its
visualization as a lattice path, where the vertex markings have been transferred
to descending steps (as indicated by circles). We also indicated the starting
oriented edge e for the contour word of each map.

as a lattice path of length 2m starting and ending at the same height (a so-called bridge
in the lattice path terminology) and whose nodes correspond to the successive visited
corners around the tree. In this representation, the corners at vertex 1 are associated
with the nodes with minimal height. Setting the minimal height to 0, the height of a
node is nothing but the graph distance to vertex 1 of the vertex incident to the associated
corner. The above coding by words/paths is clearly bijective.
To use this coding in the context of Propositions 5 and 6 where the trees already have

a distinguished vertex 1, we need a canonical prescription for the choice of the oriented
edge e at which we start the contour. In case (p) where the tree is endowed with a second
distinguished vertex 2, we take for e the first edge of the branch between vertex 2 and
vertex 1, oriented towards 1. Clearly the knowledge of e and that of the vertex 2 are
equivalent, but we note that, by construction, the associated word necessarily starts with
a D in case (p).
In case (q), we first orient the root edge away from vertex 1 and take for e the edge

following it along the counterclockwise contour around the tree. The edge e is therefore
incident to the endpoint of the root edge further away from vertex 1 and we orient it away
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from that vertex2. Clearly the knowledge of e and that of the root edge are equivalent,
but we note that, by construction, the last visited edge side in the contour is that of the
root edge itself, going away from vertex 1, hence the associated coding word necessarily
ends with a U in case (q).
It remains to introduce the k additional vertex markings. The markings may be

recorded in the coding word as follows: every vertex v distinct from vertex 1 may be
associated bijectively with a letterD of the coding word. Indeed v is bijectively associated
with the edge e(v) incident to v that belongs to the branch between v and the vertex 1
and exactly one of the two sides of e(v) is coded by the letter D. If v is a marked vertex,
we transfer its marking to the associated letter D, which we denote by D◦ to record the
marking. If v is not a marked vertex, the associated letter D will be denoted by D•, so
that the letter D eventually appears in two flavors D◦ and D•, leading to dressed words
made of the three letters U , D◦ and D•. In case (p), we also transfer the marking of
vertex 2, so that the first letter (which we know is originally a D) is now a D◦. The
numbers of U , D◦ and D• letters are therefore, respectively, m, k + 1 and m− k − 1 in
case (p) and m, k and m− k in case (q).
Apart from possibly vertex 2 (which is marked anyway) in case (p) or possibly an

endpoint of the root edge (which needs not being marked) in case (q), any leaf in the
tree corresponds to a sequence UD in the associated word. Requiring that all leaves be
marked boils down to demanding that any D following a U be marked, i.e. the sequence
UD• is not allowed in the dressed words.
Altogether, a word coding for a tree in case (p) has the canonical form

D◦D
a1
• U

b1D◦D
a2
• U

b2 · · ·D◦D
ak+1
• U bk+1 (43)

where the ai and bi are nonnegative integers such that a1 + a2 + · · ·+ ak+1 = m− k − 1
and b1 + b2 + · · · + bk+1 = m. In other words, the ai and bi form weak compositions of
m− k − 1 and m, respectively, into k + 1 summands. There are respectively

(
m−1
k

)
and(

m+k
k

)
such compositions, hence the number of trees in case (p) is

(
m−1
k

)(
m+k
k

)
= pk(m)

as wanted.
Similarly, a word coding for a tree in case (q) has the canonical form

Da1
• U

b1D◦D
a2
• U

b2D◦ · · ·Dak
• U

bkD◦D
ak+1
• U bk+1U (44)

where the ai and bi form weak compositions of m − k and m − 1, respectively, into
k+ 1 summands3. There are respectively

(
m
k

)
and

(
m+k−1

k

)
such compositions, hence the

number of trees in case (q) is
(
m
k

)(
m+k−1

k

)
= qk(m) as wanted.

This ends the combinatorial proof of Propositions 5 and 6.

2Note that it may happen that the edge e be identical to the root edge itself, but with the opposite
orientation, in which case the first letter of the word is a D. In all other cases the first letter is a U .

3Note that the case a1 = b1 = 0 corresponds to a word starting with a D◦ which, cyclically, comes
after the last letter U . This situation corresponds to the case where the endpoint of the root edge
further away from vertex 1 is a leaf and is marked. The case a1 > 0 corresponds to the case where
this vertex is a leaf and is unmarked and, finally, the case a1 = 0, b1 > 0 corresponds to the case
where this vertex is not a leaf.
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1

e

D•UD◦D•UUD◦D•UD◦UUUUD◦D•UD◦D◦UUD◦

Figure 5: The coding of planar tight maps with one face with odd degree 2m (here m =
23/2) and one face of degree 1 by dressed words with letters U , D◦ and D•. As
in Proposition 11 the map has k+ 1 (here k = 7) marked vertices, one of them
distinguished as vertex 1. We indicated under the map the associated word, of
length 2m− 1, and its visualization as a lattice path. We also indicated on the
map the starting oriented edge e for the contour word.

Quasi-bipartite case. The proof of Proposition 11 is obtained along similar lines, see
Figure 5 for an example. Indeed, we may transform bijectively a planar map with one
face of odd degree 2m (m ∈ Z≥0 +3/2), one face of degree 1 and a distinguished vertex 1
into a plane tree with m−1/2 edges with both a marked vertex 1 and a marked oriented
edge e. This is done by considering the unique vertex incident to the loop formed by the
degree 1 face, by marking its incident edge e lying immediately to the left of that loop,
with e oriented away from the vertex and finally erasing the loop. We can now use our
coding of such pointed rooted trees by words with 2m− 1 letters. Taking the markings
into account gives rise to a dressed word with exactly k occurrences of D◦, m− 1/2− k
occurrences of D• and m − 1/2 occurrences of U , with no occurrence of the sequence
UD•, hence with canonical form

Da1
• U

b1D◦D
a2
• U

b2 · · ·D◦D
ak+1
• U bk+1 (45)

where the ai and bi are nonnegative integers such that a1 + a2 + · · · + ak+1 = m −
k − 1/2 and b1 + b2 + · · · + bk+1 = m − 1/2. In other words, the ai and bi form weak
compositions of m − k − 1/2 and m − 1/2, respectively, into k + 1 summands. There
are respectively

(m−1/2
k

)
and

(m+k−1/2
k

)
such compositions, hence the number of maps at

hand is
(m−1/2

k

)(m+k−1/2
k

)
= p̃k(m) as announced. This holds for m ≥ 3/2. For m = 1/2,

the value p̃k(1/2) = δk,0 is consistent with the fact that there is a unique planar map
with two (distinguished) faces of degree 1 and one marked vertex labeled 1, which is its
unique vertex so that the map cannot host any other marked vertices when k > 0.
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4.2. Case of maps with two faces

Let us now provide a bijective proof of Proposition 7. To this end, we will first need
to reinterpret slightly the objects counted by pk(m), qk(m) that were discussed in the
preceding section.

Definition 21. For given integers a ≥ 1 and b ≥ 0, an (a, b)-forest is a tight map with
exactly two faces f, f∗, such that:

• f∗ is a simple face of degree a+ b and one distinguished incident vertex v∗,

• the a vertices following and including v∗ in counterclockwise order around f∗ are
not marked.

We call the a vertices referred to above as the unmarkable vertices, and the other b
vertices are called themarkable vertices. In the illustrating figures, starting with Figure 6,
the latter will be represented by white squares, while the former will be represented by
crosses. Equivalently, by removing the a+ b edges incident to f∗, we may view an (a, b)-
forest as a linearly ordered collection of a + b rooted plane trees starting from the one
rooted at v∗, whose leaves (non-root vertices of degree 1) are all marked, and such that
the roots of the first a trees are unmarked while those of the remaining b trees may be
marked or not.
The size of an (a, b)-forest is the degree of the face f . If we view it as a collection of

trees as above, then this size is equal to 2e+ a+ b where e is the total number of edges
in the trees composing the forest.
We now describe two simple bijections, illustrated on Figure 7, linking the numbers

pk(m) and qk(m) to the forests discussed above. First, recall from Proposition 5 the
interpretation of pk(m) as counting tight bipartite planar maps with one face f of degree
2m and k+2 distinct marked vertices, of which exactly two are labeled as 1 and 2. There
is a natural operation consisting in cutting open the branch γ linking the distinguished
vertices, into a simple face f∗ of degree 2d, where d ≥ 1 is the graph distance between
these vertices. In doing so, we duplicate the vertices lying on the path γ, except its
extremities, into “left and right” copies, and in case some of these vertices are marked,
we always decide to transfer the mark to the left copy. The vertex initially distinguished
and labeled as 1 is then renamed as v∗ and seen as unmarked, while we remove the
mark and label on the vertex initially labeled 2. The result is then a (d+ 1, d− 1)-forest.
Conversely, given a (d+1, d−1)-forest for some d ≥ 1, we can glue together the r-th edge
of f∗ in counterclockwise order starting from v∗ with the opposite (2d− r+1)-th one, for
r ∈ {1, 2, . . . , d}, relabel v∗ as vertex 1 and the diametrally opposite vertex of f∗, lying
at distance d from v∗, as vertex 2, and finally, after gluing the vertices in pairs along the
contour of f∗, transferring to the newly created vertices the marks carried by all markable
vertices. By construction, every markable vertex is matched to an unmarkable vertex,
and this operation is the inverse of the cutting procedure described above. Finally, these
operations preserve the number k of marked (unlabeled) vertices, and are size-preserving
in the sense that the degree 2m of the unique face of the map to be cut corresponds to
the size of the resulting forest.
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v∗v∗

f∗ f∗f

f

Figure 6: Left: an example of a (4, 2)-forest, with 9 marked vertices and size 28. The
marked vertices are represented as white, as in Figure 1. Note that none of the
first 4 vertices arriving in counterclockwise order after v∗ are marked, while the
following 2 comprise one marked and one unmarked vertex. Right: a schematic,
generic representation of a (4, 2)-forest, where the grey blobs represent tree
components (that may be reduced to a single root vertex) and white squares
represent markable roots, while crosses represent unmarkable roots.

Similarly, recall from Proposition 6 that qk(m) enumerates rooted tight bipartite planar
maps with one face f of degree 2m and k + 1 distinct marked vertices, exactly one of
them being distinguished and labeled as vertex 1. Let v be the vertex incident to the
root edge of such a map, and which is further away from vertex 1. Again, we cut open
along the branch from vertex 1 to v, with length d ≥ 1 say, creating a simple face f∗ of
degree 2d. We transfer the marks along this path to the left copies of the vertices created
in the cutting operation, and if v happens to be marked, we keep this mark. Finally, we
remove the mark on vertex 1 and rename it as v∗. This results in a (d, d)-forest, since
now the vertex diametrically opposite to v∗ in f∗ is a markable vertex. This operation is
clearly invertible by a similar gluing operation as above, and it preserves the number of
marked unlabeled vertices as well as the degree of f . We may conclude with the following
statement.

Proposition 22. For integers m ≥ 1 and k ≥ 0, the number pk(m) (resp. qk(m)) is
the cardinality of the set of (d+ 1, d− 1)-forests (resp. (d, d)-forests) with size 2m and k
marked unlabeled vertices, where d can take any value in Z>0.

Our bijective proof of Proposition 7 will consist in showing that a tight map with two
faces f1, f2 of respective degrees 2m1, 2m2, and with k unlabeled marked vertices and
one extra distinguished marked vertex with label 1 can be decomposed uniquely and
bijectively into a pair of tight maps consisting in

• a (d1 + 1, d1 − 1)-forest with k1 marked vertices
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pk(m) qk(m)

1 1

2

1

f∗
f∗

v∗ v∗

v

Figure 7: The cutting operation turning tight maps with one face into forests. On the
left, tight maps counted by pk(m) are cut into (d+ 1, d− 1) forests, and on the
right, rooted tight maps counted by qk(m) become (d, d)-forests.

• a (d2, d2)-forest with k2 marked vertices

where d1, d2 ≥ 1 and k1 +k2 = k. By Proposition 22 and the definition (6) of pk(m1,m2),
this immediately implies Proposition 7.
Given an (a, b)-forest and an integer c such that 1 ≤ c ≤ min(a − 1, b, (a + b − 1)/2),

the c-partial gluing of the forest is the map obtained by gluing the r-th edge following
v∗ in counterclockwise order around f∗ with the opposite (a + b − r + 1)-th one, for
r ∈ {1, 2, . . . , c}, and transferring any mark on the markable vertices to the resulting
glued vertices. The vertex inherited from v∗ in the new map is distinguished and labeled
as vertex 1, while the last vertex to be glued, lying at distance c from v∗, is distinguished
and called v∗∗. By the assumption that c ≤ (a+ b− 1)/2, the resulting map still has two
faces which we call f, f∗∗, where f∗∗ is the “remnant” of f∗, of degree a+ b− 2c, and we
do not change the name for the exterior face since it has the same contour information
as the original face. Moreover, the assumption that c ≤ min(a− 1, b) implies that every
markable vertex is glued to an unmarkable vertex.
The obtained map is then an (a′, b′)∗-forest with a′ = a − c − 1 and b′ = b − c + 1,

according to the following definition, similar to Definition 21:

Definition 23. For integers a ≥ 0 and b ≥ 1, an (a, b)∗-forest is a tight map with exactly
two faces f, f∗∗, such that:

• f∗∗ is a simple face of degree a+ b,

• there is an extra distinguished vertex labeled 1 incident to the face f , and we let
v∗∗ be the vertex incident to f∗∗ that is closest to 1,

• the a vertices following and excluding v∗∗ in counterclockwise order around f∗∗ are
not marked.
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f∗

v∗

f∗∗

v∗∗

1

Figure 8: The 2-partial gluing of a (5, 3)-forest yielding a (2, 2)∗-forest.

The partial gluing operation is clearly invertible, by cutting along the simple path of
length c from v∗∗ to the distinguished labeled vertex 1. See Figure 8 for an illustration.

Proof of Proposition 7. Letm1,m2, d1, d2 be positive integers, and k1, k2 be non-negative
integers. Suppose we are given a (d1 + 1, d1 − 1) forest f1 with size 2m1 and k1 marked
vertices, and a (d2, d2) forest f2 with size 2m2 and k2 marked vertices. We let v∗,1, v∗,2 be
the distinguished vertices in these maps. As explained above, we wish to use these pieces
to build a planar tight map with two faces of degrees 2m1, 2m2, with k = k1 +k2 marked
unlabeled vertices, and with one extra distinguished vertex. There are three possible
situations, illustrated in Figure 9.
Suppose first that d1 = d2 = d. Then we can glue together the two simple boundaries

of f1 and f2, in such a way that v∗,1 and v∗,2 are glued together into a single distinguished
vertex labeled 1. The next d unmarkable vertices after v∗,1 (resp. the last d−1 markable
vertices) of f1 are then glued to the last d markable vertices (resp. the d− 1 unmarkable
vertices following v∗,2) of f2. The result is a tight map with two faces of degrees 2m1, 2m2,
and with k1 + k2 marked unlabeled vertices as well as a distinguished marked vertex
labeled 1 lying on the boundary of both faces.
Suppose next that d1 > d2. In this case, we first perform the (d1 − d2)-partial gluing

of f1, resulting in a (d2, d2)∗-forest (with distinguished vertex called v∗∗,1), which we glue
along the simple face of f2 by identifying v∗∗,1 and v∗,2. Note that each of the d2 markable
vertices on either side of the gluing is matched with an unmarkable vertex on the other
side. The resulting map has a distinguished labeled vertex incident to f1 but not to f2.
Finally, the case d2 > d1 is similar, except that we now perform the (d2 − d1)-partial

gluing of f2 first, resulting in a (d1−1, d1 +1)∗-forest, whose d1 +1 markable vertices and
d1 − 1 unmarkable vertices are matched with the d1 + 1 unmarkable vertices and d1 − 1
markable vertices of f1. The resulting map has a distinguished labeled vertex incident to
f2 but not to f1.
The above construction can clearly be inverted by the following cutting operation.

Start from a tight map m with two faces f1, f2, k marked vertices and one extra distin-
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guished vertex labeled 1. We observe that such a map is unicyclic, and therefore contains
a unique simple cycle γ, of length 2d ≥ 2 say. We cut along this cycle, separating f1 and
f2. Formally, this means that we associate with m the two maps m1,m2 respectively
obtained by removing all edges and vertices that are incident to f2 but not f1 on the one
hand, and f1 but not f2 on the other hand. Note that for i ∈ {1, 2}, mi is made of the
initial face fi and has an “exterior” simple face f∗,i which is the remnant of the face f3−i.
All marked vertices of m that are not on γ are naturally transferred to either m1 or m2,
and we need a convention to transfer the marked vertices lying on γ.
To this end, we distinguish the cases as above depending on whether the vertex labeled

1 is incident to both f1, f2, to f1 but not f2, or to f2 but not f1. In the first case,
the cutting operation splits the labeled vertex 1 into two copies v∗,1, v∗,2, respectively
belonging to m1 and m2, that we declare unmarkable. The d vertices following v∗,1 in
counterclockwise order around f∗,1 are declared unmarkable, as well as the d− 1 vertices
following v∗,2 in counterclockwise order around f∗,2, and all other vertices incident to
f∗,1 and f∗,2 are declared markable. In this way, every vertex of γ has been split into a a
markable/unmarkable pair in m1 and m2. We then tranfer the marks that were located
on the vertices γ to the unique associated markable duplicate. This gives the wanted
pair (f1, f2) = (m1,m2) of (d+ 1, d− 1)- and (d, d)-forests, of sizes 2m1 and 2m2, which
receive k1 and k2 marked unlabeled vertices with k1 + k2 = k.

In the second case, we let v∗∗ be the vertex incident to f2 that is closest to the dis-
tinguished vertex 1. When cutting along the cycle γ, this vertex is separated into two
copies, one called v∗∗,1 is incident to f∗,1 and is declared markable, as well as the d − 1
vertices preceding it around f∗,1, the other called v∗,2 is incident to f2,∗ and is declared
unmarkable, as well as the d − 1 vertices following it around f∗,2. The map m2 =: f2

is then a (d, d)-forest, while we further cut m1 along the simple path of length d′ ≥ 1
from v∗∗,1 to the distinguished vertex 1, hence creating a (d+ d′+ 1, d+ d′− 1)-forest f1,
attributing the marked vertices in the natural way (this operation is the reverse of the
d′-partial gluing of the resulting forest).
The situation in the third case is similar, with a slightly different convention for the

markable and unmarkable vertices, as illustrated in Figure 9.

Quasi-bipartite case. We now consider the quasi-bipartite case where one assumes
that m1,m2 ∈ Z≥0 + 1/2, that is, 2m1 and 2m2 are odd integers, and aim at proving
Proposition 10. A discussion parallel to the above applies, except that the separating
cycle between the two faces of a tight map with faces of degrees 2m1 and 2m2 will have
an odd length, say 2d− 1 for some d ≥ 1.
In this situation, unfolding the above argument mutatis mutandis, there is now a

canonical decomposition of a planar tight map with two faces of degrees 2m1, 2m2, with
k marked unlabeled vertices and one extra distinguished vertex labeled 1 into a pair
formed of a (d1, d1 − 1)-forest and a (d2, d2 − 1)-forest, for some d1, d2 ≥ 1, respectively
with sizes 2m1 and 2m2 and with k1 and k2 marked vertices, where k1 + k2 = k. The
situation is therefore more symmetric since the glued forests are of the same nature and
have the same numbers of markable vertices.
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By performing the (di − 1)-partial gluing of the (di, di − 1)-forest of size 2mi with ki
marked vertices, we see that such objects are in bijection with tight maps with one face of
degree 2mi, one face of degree 1, and ki marked vertices, which are precisely counted by
p̃ki(mi), as discussed in Section 4.1. Together with the above, this shows that p̃k(m1,m2)
indeed enumerates the wanted quasi-bipartite planar tight maps with two faces, as stated
in Proposition 10.

4.3. Case of pointed rooted maps via slices

We now aim at proving Proposition 17, interpreting (n − 1)! qn−1(m1,m2, . . . ,mn) as
the number of pointed rooted planar tight bipartite maps with n labeled boundaries of
respective lengths 2m1, . . . , 2mn, where m1, . . . ,mn are integers not all equal to zero.
To this end, we will need the slice decomposition developed in [BG12; BG14]. Here, we
follow closely the presentation of [Bou19, Section 2.2] and adapt it to the tight setting.
A slice is a planar map with one distinguished exterior face, whose contour carries

three distinguished (but not necessarily distinct) corners A, B and C appearing in this
counterclockwise order around the map, that split the contour in three parts:

• the contour segment AB, called the left boundary4, which is a geodesic path,

• the contour segment AC, called the right boundary, which is the unique geodesic
path between its two endpoints, and intersects the left boundary only at A,

• the contour segment BC, called the base.

The length of the base (i.e. the number of edges on the corresponding contour segment,
counted with multiplicity) is called the width of the slice. The length of the left boundary
is called the depth, and the depth minus the length of the right boundary is called the
tilt. The corner A is called the apex.
A slice of width 1 is called elementary. The tilt of an elementary slice is necessarily in
{1, 0,−1}. By the uniqueness property of the right boundary, there is a unique elementary
slice of tilt −1, called the trivial slice, which consists of a single edge with extremities
A = B and C. The trivial slice differs from the empty slice consisting in a single edge
with extremities B and A = C, which has tilt +1. If we restrict our attention to bipartite
maps, as is the case in this section, there are no slices with tilt 0.
Finally, a tight slice is a slice, elementary or not, that carries some marked vertices, in

such a way that

• all vertices of degree 1 distinct from those incident to A,B and C are marked,

• the right boundary carries no marked vertices.

Note that the vertex incident to B may possibly be marked, but not those incident to A
and C, even if those vertices have degree one. In particular, the empty slice comes with

4Note that, in the accepted denominations “left boundary” and “right boundary”, the term “boundary”
has a meaning different from that in the rest of the paper.
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v∗,1
v∗,2

f1

f2

v∗∗,1

1

f1

f2

v∗,2

v∗,1
v∗∗,2

f1

f2

1

m1
m1

m1

m2 m2

m2

Figure 9: Decomposition of a tight map with two faces f1, f2, k marked unlabeled vertices
and one extra distinguished labeled vertex, into two forests. The top left,
top right, and bottom pictures represent respectively the situations where the
distinguished labeled vertex belongs to the common boundary of f1 and f2,
is incident to f1 but not f2, and is incident to f2 but not f1. We denote by
2d the length of the cycle separating f1 and f2. In the first case, the map is
decomposed into a (d+1, d−1) forest glued to a (d, d) forest. In the second case,
the map is decomposed into the (d1−d)-partial gluing of a (d1 +1, d1−1)-forest
with a (d, d)-forest, and in the third case, it is instead a (d+1, d−1)-forest glued
to the (d2−d)-partial gluing of a (d2, d2)-forest. Note that, on this picture, the
counterclockwise order along the face f∗,2, which is the “exterior” simple face
of m2, appears to be clockwise, since f∗,2 is the unbounded face in the plane
embedding.
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A = B
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B
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A = C

A = C

Figure 10: The different types of tight elementary slices, with marked vertices shown in
white. Left: the trivial slice. Center: the empty slice, in its unmarked and
marked versions. Right: a non-empty tight elementary slice

two tight versions, depending on whether the vertex incident to B is marked or not, and
we will call the marked version the marked empty slice, which will play an important role
later on. See Figure 10 for an illustration of the different types of tight elementary slices.

Pointed rooted maps and elementary slices. There is a simple one-to-one correspon-
dence between pointed rooted planar bipartite maps on the one hand5, and non-empty,
bipartite elementary slices of tilt 1 on the other hand. Starting from a pointed rooted
bipartite map m with root e and distinguished vertex v, we can perform the opening
operation O(m, e) that opens the edge e into an exterior face of degree 2. We let b and
c be the two corners incident to this new face, where c is closest from v. We then cut
open the map along the leftmost geodesic6 γ from c to v, hence enlarging the exterior
face. The resulting map is an elementary bipartite slice of tilt 1, if we let B be the corner
inherited from b, A be the unique corner of the exterior face incident to v, and C be the
corner immediately following B as we walk with the exterior face on the right (so that C
is one of the two duplicates of c created after cutting). The fact that the right boundary
AC is the unique geodesic between these two extremities comes from the fact that γ
was chosen to be leftmost, and the slice is non-empty because it has at least one inner
face, inherited from the map we started with. Conversely, starting from a non-empty
elementary bipartite slice of tilt 1, we may glue “isometrically” together the left and right

5Here, as for tight maps, we use the slightly unusual convention that a rooted map is a map with a
distinguished, non oriented edge.

6See for instance [Bou19, Figure 2.1] for a careful definition of the leftmost geodesic from a corner to
a vertex.
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boundaries starting from the apex. This results in a bipartite map pointed at the vertex
v incident to the apex, and with a face of degree 2 whose contour is made of the base
and of the first edge of the left boundary incident to B, which are necessarily distinct
since the slice is non-empty. We may finally glue these two edges together into a single
edge e, at which we root the resulting map.
These two operations are inverse of one another. They specialize to a correspondence

between pointed rooted planar tight bipartite maps and non-empty tight bipartite slices
of tilt 1, if we take the convention that the marks of marked vertices in m that belong
to the leftmost geodesic γ considered above should systematically be transferred to the
left boundary of the slice.

Decomposing a slice into a path decorated with elementary slices. Next, we discuss
the decomposition of a bipartite slice s of width w ∈ Z>0 and tilt t ∈ Z into a collection
of elementary slices. We list the corners of the base as c0 = B, c1, . . . , cw = C, walking
with the exterior face on the right. We let `i = d(c0, A) − d(ci, A) for i ∈ {0, 1, . . . , w},
where d is the graph distance in s, and the distance between two corners is defined
as the distance between their incident vertices. In particular, `w = t is the tilt of s,
and L = (`0, `1, . . . , `w) is a walk on Z with increments `i − `i−1 ∈ {−1,+1}, that
we will systematically identify with the lattice path made of the union of segments
[(i− 1, `i−1), (i, `i)], 1 ≤ i ≤ n in the plane.

For every i ∈ {0, 1, . . . , w}, we let γi be the leftmost geodesic from ci to the apex
A. In particular, γ0 and γw are respectively the left and right boundary of s. For
i ∈ {1, 2, . . . , w}, we let v′i be the first vertex common to γi−1 and γi. Then the map s′i
delimited by these two geodesics is an elementary bipartite slice with base ci−1ci, with
apex A′i incident to v

′
i, and with tilt ti = `i − `i−1. If ti = −1, in which case we say that

i is a down step, then s′i is trivial, while if ti = +1, in which case we call i an up step,
then s′i is non-trivial. It may however be the empty slice, precisely when the geodesic
γi−1 starts by following the base edge from ci−1 to ci.

With a bipartite slice s with width w and tilt t, we have associated a lattice path
L from (0, 0) to (w, t) with increments ±1, where each of the (w + t)/2 up steps i is
decorated with a bipartite elementary slice s′i of tilt 1, while all the (w− t)/2 down steps
are decorated with the trivial slice, so that these last decorations are in fact irrelevant
and can be omitted.
We can invert this decomposition: given a lattice path from (0, 0) to (w, t) whose up

steps i are decorated with bipartite elementary slices s′i of tilt 1 (and where s′i is the
trivial slice if i is a down step), we may associate a slice of width w in the following way.
For every down step i, we identify the segment si = [(i − 1, `i−1), (i, `i)] of the lattice
path with the associated trivial slice s′i, hence color it in red as in Figure 10. Next, for
every up step i, we consider an embedding of s′i in the plane in which the base edge is
the segment si, and so that the left boundary (resp. the right boundary) is represented
as a curve, monotone in its two coordinates, that starts from (i−1, `i−1) (resp. (i, `i)), is
entirely contained in [i− 1, i]× [`i−1,∞) (resp. [i− 1, i]× [`i,∞)), and such that its r-th
vertex, starting from the base, has its ordinate equal to `i−1 + r − 1 (resp. `i + r − 1).

31



By convention, the edges of the left boundaries of the slices s′i are declared blue, while
the edges of the right boundaries are declared red. Note that if s′i is an empty slice,
then the above operation simply consists in coloring the segment si in blue. Then, every
red element (either an edge lying on the right boundary of some slice, or the segment
associated with a down step of the lattice path), lying in some square [i−1, i]× [`−1, `],
attempts to be matched to the first available blue edge in some square [j−1, j]× [`−1, `]
for some j > i, and all matched edges are glued together. After this gluing is performed,
we obtain a bipartite slice of width w and tilt t, where the unmatched edges, i.e. the blue
edges which are not preceded by red edges at the same ordinate, and the red edges that
are not followed by a blue edge at the same ordinate, form respectively the left and right
boundaries.
Let us now discuss how this decomposition behaves with respect to the tightness con-

straint. We first observe that it associates with a tight bipartite slice s of width w ≥ 1 and
tilt t a lattice path L from (0, 0) to (w, t) with ±1 steps decorated with tight elementary
bipartite slices. The only ambiguity that should be lifted is how we transfer the marks of
marked vertices that belong to the union of leftmost geodesics γi defined above to exactly
one of their duplicates. We choose the duplicate that belongs to the left boundary of the
slice s′i, where i is the maximal index such that the marked vertex at hand belongs to
γi−1. Note that such a maximal index i always exists, since, by definition, tight slices
carry no marked vertices on their right boundaries, and that the duplicate of the vertex
is different from the apex of s′i by maximality of i. With these conventions, all the slices
s′i, 1 ≤ i ≤ w, with transferred marks, are tight slices.
Moreover, there is an additional restriction on the family L, (s′i, 1 ≤ i ≤ w) that

guarantees that the original slice be tight, i.e. that it contains no undesired unmarked
vertices of degree 1. Observe that, in the above correspondence, the vertex incident to a
corner ci, i ∈ {1, . . . , w − 1} of the base distinct from the extremities will have degree 1
precisely in the situation where i is a down step and i + 1 is an up step decorated with
the empty slice. Indeed, if the vertex vi incident to ci has degree 1, then the vertices
vi−1 and vi+1 incident to the corners ci−1 and ci+1 are the same vertex, and therefore the
geodesics γi and γi+1 delimit the empty slice, since γi meets γi+1 after one single step.
Conversely, in the gluing procedure, if a down step i is immediately followed by an up
step i+1, then the “red” segment [(i−1, `i−1), (i, `i−1−1)] associated with the down-step
i will be matched to the first edge of the left boundary of the slice s′i+1. This will result
in a vertex of degree 1 precisely when this first edge is equal to the base edge, and the
only elementary slice of tilt 1 with this property is the empty slice. Consequently, in a
tight slice, every such up step i + 1 should never be decorated with the empty slice s′i,
unless its base vertex B is marked, i.e. it may be decorated with the marked empty slice.
By forgetting the redundant information of up steps that are decorated with unmarked

empty slices, that is, by letting (sj , 1 ≤ j ≤ k) be the sequence (s′i, 1 ≤ i ≤ w) whose
trivial and unmarked empty elements have been removed, we obtain the following result.

Proposition 24. There is a one-to-one correspondence between tight bipartite slices of
width w and tilt t on the one hand, and pairs of the form (L, (sj , 1 ≤ j ≤ k)) on the
other hand, where:
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• L is a lattice path from (0, 0) to (w, t) with ±1 steps, that has k marked up steps,
in such a way that every up step immediately following a down step is marked,

• for 1 ≤ j ≤ k, sj is either the marked empty slice or a tight bipartite elementary
slice with at least one inner face.

Now observe that if s is a non-empty bipartite slice with tilt 1, then the base edge is
incident to an inner face. Calling 2m > 0 the degree of this face, and after removing the
base edge, we obtain a bipartite slice with width 2m−1 and tilt 1. This simple operation
preserves the tight characters of the maps at hand, which implies the following:

Corollary 25. There is a one-to-one correspondence between non-trivial, non-empty
tight bipartite elementary slices, whose inner face incident to the base edge has degree
2m > 0 on the one hand, and pairs of the form (L, (sj , 1 ≤ j ≤ k)) on the other hand,
where k is some non-negative integer and:

• L is a lattice path from (0, 0) to (2m − 1, 1) with ±1 steps, that has k marked
up steps, in such a way that every up step immediately following a down step is
marked,

• for 1 ≤ j ≤ k, sj is either the marked empty slice or a tight bipartite elementary
slice with at least one inner face.

Finally, by convention, we extend the above correspondence by associating with the
marked empty slice the pair ({(0, 0)},∅) consisting of the trivial lattice path of length
zero, with no marks.
By iterating the decomposition of this corollary, i.e. inductively replacing each non-

empty elementary slice in the above decomposition by a lattice path with some marked
up steps, and an ordered family of as many elementary slices, we obtain a plane tree
(where the plane order is induced by the order of the up steps to which the slices are
connected). See Figure 12 for an illustration. For integers m1, . . . ,mn not all equal to 0,
let T (m1, . . . ,mn) be the family of pairs (t, (Li)1≤i≤n) where:

• t is a rooted plane tree with vertices labeled by {1, 2, . . . , n}, and, denoting by ki
the number of children of the vertex labeled i in t,

• if mi > 0 then Li is a lattice path from (0, 0) to (2mi − 1, 1) with ki marked up
steps, such that all up steps immediately following a down step are marked,

• if mi = 0 then Li is the trivial path {(0, 0)}, in which case necessarily ki = 0.

Corollary 26. For every choice of non-negative integers m1, . . . ,mn not all equal to 0,
the iterated slice decomposition yields a one-to-one correspondence between pointed rooted
planar tight maps with n labeled boundaries of respective lengths 2m1, . . . , 2mn, and the
set T (m1, . . . ,mn).
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Figure 11: Illustration of the decomposition of a non-empty elementary tight slice of tilt 1
into a lattice path decorated with elementary slices. The middle picture shows
the decomposition along the leftmost geodesics started from the corners of the
inner face incident to the base. The right-hand side shows the result of the
decomposition. Note that the trivial and empty slices s′2, s

′
4 and s′5 may be

discarded, at the price of transferring their color to the corresponding step
of the lattice path, while the two other slices are non-empty and therefore
correspond to marked up steps. Note also that the second up step, which is
consecutive to the first down step, is marked, as is required.

We are now in position to prove Proposition 17. Note that the number of lattice paths
of length 2m− 1 from 0 to 1 that has exactly k marked up steps, including all up steps
immediatly following down steps, is precisely the number qk(m). Indeed, they are exactly
counted by the words discussed in Section 4.1, with m − 1 letters U , m − k letters D•
and k letters D◦, with forbidden subword UD• (up to flipping upside down the lattice
paths to better match the interpretation of the letters U,D). In fact, this even holds
for m = k = 0 since in this case qk(0) = δk0, so we interpret q0(0) combinatorially as
counting the unique marked empty slice.
We now proceed to enumerating the elements of the set T (m1, . . . ,mn). By [BM14,

Section 5, Equation (18)], for a given n-uple (k1, . . . , kn) of non-negative integers, if
k1 + · · · + kn = n − 1 then there are exactly (n − 1)! rooted labeled plane trees on the
vertex set {1, 2, . . . , n} such that vertex i has ki children for all i = 1, . . . , n, and there
are no such tree otherwise. For any such tree t, there are

∏n
i=1 qki(mi) possible choices

of marked lattice paths Li, 1 ≤ i ≤ n such that (t, (Li)1≤i≤n) belongs to T (m1, . . . ,mn).
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Figure 12: Iterating the slice decomposition yields a plane tree whose vertices are dec-
orated by marked paths. On this picture, we do not represent the lattice
paths, but encode them using a color code on polygons drawn around the
vertices of t, where black/blue correspond to marked/unmarked up steps and
red to down steps. Note that some of the terminal nodes of t correspond
to non-trivial paths with no marked steps, while some others correspond to
the trivial path, represented as white dots, and are associated in turn to the
marked vertices of the original tight slice.

This finally explains the wanted formula

N0,n+2(2m1, . . . , 2m2, 2, 0) = (n− 1)!
∑

k1,...,kn≥0
k1+···+kn=n−1

n∏
i=1

qki(mi)

= (n− 1)! qn−1(m1, . . . ,mn) ,

(46)

which concludes the proof.

4.4. General case

We will now prove Theorem 4 in all generality, as well as its quasi-bipartite analog,
Theorem 9. As the case of maps with one face was already treated in Section 4.1, it
suffices to treat the case where the first and second boundaries are faces, that is when
m1,m2 > 0. To this end, we will combine the ideas of Sections 4.2 and 4.3 via the
following:
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Proposition 27. Let m1,m2 be positive integers or half-integers and let m3, . . . ,mn be
non-negative integers (n ≥ 3). Then, there is a bijection between the set of planar tight
maps with n boundaries labeled from 1 to n with respective lengths 2m1, 2m2, . . . , 2mn,
and the set of pairs (m12, s) such that there exists k ∈ {0, . . . , n− 3} for which:

• m12 is a planar tight two-face map, with two faces of respective degrees 2m1 and
2m2, and k + 1 distinct marked vertices, one of them distinguished,

• s = (s1, . . . , sk+1) is a (k + 1)-tuple of slices such that:

– for each j = 1, . . . , k+1, sj is either the marked empty slice or a tight bipartite
elementary slice with at least one inner face, whose inner faces and marked
vertices are labeled by integers in {3, . . . , n},

– each i ∈ {3, . . . , n} appears in exactly one sj and labels an inner face of degree
2mi for mi > 0, or a marked vertex for mi = 0,

– the label 3 appears in the first slice s1.

Before proving this proposition, let us see how it implies Theorems 4 and 9. We start
with the former: our purpose is to enumerate the pairs (m12, s) of the proposition when
m1 and m2 are integers. For a fixed k ∈ {0, . . . , n − 3}, the number of possible maps
m12 is equal to pk(m1,m2) by Proposition 7, which we proved in Section 4.2. As for
the number of possible s, it is given by a slight variant of the reasoning in Section 4.3.
Indeed, by recursively decomposing each slice sj into a tree of lattice paths, we see that
the set of possible (k + 1)-tuples s is in bijection with the set Fk+1(m3, . . . ,mn) defined
as the set of pairs (f , (Li)3≤i≤n) where:

• f is a plane forest with k + 1 connected components, i.e. a (k + 1)-tuple of rooted
plane trees, whose vertices are labeled by {3, . . . , n}, the label 3 appearing in the
first component,

• denoting by ki the number of children of the vertex labeled i in f :

– if mi > 0 then Li is a lattice path from (0, 0) to (2mi−1, 1) with ki marked up
steps, such that all up steps immediately following a down step are marked,

– if mi = 0 then Li is the trivial path {(0, 0)}, in which case necessarily ki = 0.

Note that F1(m3, . . . ,mn) is nothing but the set T (m3, . . . ,mn) as defined in Section 4.3.
By Proposition 44 of Appendix A below, for a given n-uple (k3, . . . , kn), if k3 + · · ·+kn =
n− 3− k then there are exactly (n− 3)! plane forests on the vertex set {3, . . . , n} with
k + 1 components, the first of which contains the label 3, and such that vertex i has ki
children for all i = 3, . . . , n, and there are no such forests otherwise. For any such forest
f , there are

∏n
i=3 qki(mi) possible choices of marked lattice paths Li, 3 ≤ i ≤ n such that

(f , (Li)3≤i≤n) belongs to Fk+1(m3, . . . ,mn). This gives

Card (Fk+1(m3, . . . ,mn)) = (n− 3)!
∑

k3,...,kn≥0
k3+···+kn=n−3−k

n∏
i=3

qki(mi)

= (n− 3)! qn−3−k(m3, . . . ,mn).

(47)
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Figure 13: Sketch of an annular map m (left) and of its universal cover m̃ (right). The
external face 1 and the central face 2 of m lift respectively to the lower face
1̃ and to the upper face 2̃ of m̃, which have infinite degrees (marked corners
are represented by arrows). All the other faces form the grey region. The
innermost minimal separating cycle γ lifts to a biinfinite geodesic γ̃.

Thus, multiplying by pk(m1,m2), summing over k and using (6), we get

N0,n(2m1, 2m2, 2m3 . . . , 2mn) = (n− 3)!

n−3∑
k=0

pk(m1,m2)qn−3−k(m3, . . . ,mn)

= (n− 3)! pn−3(m1,m2,m3, . . . ,mn)

(48)

as wanted. This concludes the proof of Theorem 4 assuming Proposition 27.
If we now assume that m1,m2 are half-integers, the only change we have to do in the

above reasoning is that, for a fixed k, the number of possible maps m12 is now equal to
p̃k(m1,m2) by Proposition 10 (also proved in Section 4.2). Thus, by (6) and (20), we
now have

N0,n(2m1, 2m2, 2m3 . . . , 2mn) = (n− 3)!
n−3∑
k=0

p̃k(m1,m2)qn−3−k(m3, . . . ,mn)

= (n− 3)! p̃n−3(m1,m2;m3, . . . ,mn)

(49)

which establishes Theorem 9.
The remainder of this section is devoted to the proof of Proposition 27. It uses the

slice decomposition of annular maps which was introduced in [BG14, Section 9.3], see also
[Bou19, Section 2.2] for another exposition. Here we will give yet another, modernized,
exposition which, following [BGM21], makes use of the key notion of Busemann function.

Decomposing an annular map into a pair of paths decorated with elementary slices.
Let m be an annular map, that is a planar map with two distinguished faces labeled 1
and 2. For now, we do not assume that m is a tight map, but we assume that every face
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other than 1 and 2 has even degree. Denoting by 2m1 and 2m2 the respective degrees
of 1 and 2, m is either bipartite when m1 and m2 are integers, or quasi-bipartite when
they are half-integers.
Let us choose a representation of m in the complex plane such that face 1 is the

unbounded face, and such that the origin (point of affix zero) lies in face 2. We then
consider the preimage m̃ of m by the mapping z 7→ exp(2iπz): it is an infinite map
which we call the universal cover of m (upon viewing 0 and ∞ as “punctures”). We
refer to [BGM21] for a detailed discussion of the properties of the universal cover of a
map drawn on the triply-punctured sphere, it can be adapted without difficulty to the
simpler case considered here of a map drawn on the doubly-punctured sphere. For our
purposes, we simply note that the faces 1 and 2 lift in m̃ to unique faces 1̃ and 2̃, which
have infinite degrees, while all the other faces and vertices of m lift to infinitely many
preimages in m̃ with the same finite degree. In particular, m̃ is bipartite. See Figure 13
for an illustration.
Let s denote the separating girth of m, that is the minimal length (number of edges) of a

closed path in m winding around the origin. We call such path a separating cycle and say
that it isminimal if it has length s. Let then γ be the innermost minimal separating cycle,
which is defined as the contour of the intersection of the interiors of all minimal separating
cycles. We consider the path γ̃ = (γ̃(t))t∈Z obtained by following γ counterclockwise
infinitely many times and lifting this biinfinite path in m̃. The parametrization of γ̃
depends on a choice of a vertex γ̃(0) whose projection belongs to γ, but we will see that
the outcome of our construction does not depend on it. By [CE10, Proposition 2.5], γ̃ is
a biinfinite geodesic in m̃, i.e. we have

d̃(γ(t), γ(t′)) = |t− t′| (50)

for any t, t′ ∈ Z, where d̃ denotes the graph distance in m̃. We now define the Busemann
function Bγ̃ from the vertex set Ṽ of m̃ to Z by

Bγ̃(v) := lim
t→∞

d̃(v, γ(t))− t, v ∈ Ṽ . (51)

By the triangle inequality, one easily checks that the limit indeed exists and is attained for
t large enough. Furthermore, for any two adjacent vertices v, v′ we have Bγ̃(v)−Bγ̃(v′) =
±1 (since m̃ is bipartite), and every vertex v has a neighbor v′ for which this difference
is +1 (i.e. Bγ̃ has no local minimum). Let us denote by T the automorphism of m̃
corresponding to the translation z 7→ z+1 of the complex plane (it corresponds to making
one turn counterclockwise around the origin in m): we then have Bγ̃(Tv) = Bγ̃(v) − s
as a consequence of the relation T γ̃(t) = γ̃(t+ s).
Now, let us denote by (ci)i∈Z and (c′i)i∈Z the successive corners incident to the faces 1̃

and 2̃, respectively, as we follow their contours walking with the face at hand to the right.
This depends on a choice for the corners c0 and c′0, whose influence will be discussed later.
We have Tci = ci+2m1 and Tc′i = c′i−2m2

for all i.
We then set, for any i ∈ Z, `i := Bγ̃(c0) − Bγ̃(ci) and `′i := Bγ̃(c′0) − Bγ̃(c′i) (these

differences do not depend on the choice of γ̃(0), as claimed). Observe that the definition
of `i is analogous to that used in Section 4.3 for the decomposition of a slice into a path
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Figure 14: Sketch of the decomposition of the universal cover of an annular map into
slices. The leftmost infinite geodesics (shown in dotted lines) eventually merge
with the biinfinite geodesic γ̃ (shown in dashed lines). These geodesics delimit
slices σi and σ′i, i ∈ Z. In the situation displayed here, the slices σ2, σ7, σ′1,
etc, are trivial slices (reduced to an edge).

decorated with elementary slices: the distance to the apex d(·, A) is just replaced by
the Busemann function Bγ̃(·). The sequences ` = (`i)i∈Z and `′ = (`′i)i∈Z form infinite
lattice paths (with increments ±1) which are periodic: indeed, we have `i+2m1 = `i + s
and `′i+2m2

= `′i− s for all i. Thus, these sequences are entirely determined by their data
in a fundamental domain: L := (`0, `1, . . . , `2m1) and L′ := (`′0, `

′
1, . . . , `

′
2m2

) form lattice
paths connecting (0, 0) to respectively (2m1, s) and (2m2,−s).
With each corner ci, we associate the leftmost infinite geodesic γi = (γi(t))t≥0 defined

inductively as follows. We let γi(0) be the vertex incident to ci and, assuming that γi(t)
is known, we let γi(t+ 1) be the leftmost vertex such that Bγ̃(γi(t+ 1)) = Bγ̃(γi(t))− 1,
using the edge γi(t − 1)γi(t) (or the corner ci for t = 0) as a reference. We define in
the same way the leftmost infinite geodesic γ′i starting at c′i. We may check that each
of these leftmost geodesics eventually merges with γ̃ (for γ′i, this uses the fact that we
chose γ to be the innermost minimal separating cycle).
Let σi (resp. σ′i) be the map delimited by γi−1 and γi (resp. γ′i−1 and γ′i), which we

stop at their first common vertex vi (resp. v′i). It is an elementary bipartite slice with
base ci−1ci (resp. c′i−1c

′
i). As in Section 4.3, the slice is trivial whenever i corresponds

to a down step of ` (resp. `′), and is non-trivial otherwise (but may be empty). By
periodicity, we have σi = σi+2m1 and σ′i = σ′i−2m2

(in the sense of equality as maps).
Note that every finite face, edge and vertex of m̃ belongs to exactly one slice σi or σ′i
deprived of its right boundary.
Let us finally discuss the roles of the reference corners c0 and c′0. Changing the reference

corner c0 amounts to translating the lattice path `, and to reparametrizing the sequence
σ = (σi)i∈Z by a translation of i. In particular, both ` and σ are invariant if we change
c0 into one its translates T kc0, thus they only depend on the choice of a corner incident
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to face 1 in m. Similarly, `′ and σ′ = (σ′i)i∈Z only depend on the choice of a corner
incident to face 2 in m.

If we assume that the map m has a third distinguished element (face, edge or vertex)
labeled 3, which will be the case in our application, then it is possible to choose corners
incident to faces 1 and 2 in a canonical way. Namely, we pick a preimage 3̃ of 3 in m̃: 3̃
belongs to precisely one slice σi or σ′i deprived of its right boundary. If 3̃ belongs to a
σi, then by changing the reference corner c0 we can ensure that it belongs to σ1. Then,
we choose c′0 in such way that Bγ̃(c′0) = Bγ̃(c0): this is possible because the function
Bγ̃(·) has ±1 increments along the contour of 2̃ and decreases by s over a translation T ,
hence it is surjective. There might exist several such c′0, in which case we may pick, say,
the “rightmost” one. If 3̃ belongs to a σ′i, we proceed in the same way upon exchanging
the roles of c0 and c′0.

Lemma 28. The above construction is a bijection between:

• the set of maps m with two marked faces of degrees 2m1, 2m2 ∈ Z>0 and all other
faces of even degree, and separating girth s ∈ Z>0,

• the set of quadruples (L,L′,σ,σ′), where L and L′ are lattice paths connecting (0, 0)
to respectively (2m1, s) and (2m2,−s), where σ and σ′ are sequences of elementary
slices of respective periods 2m1 and 2m2, such that for every i = 1, . . . , 2m1 (resp.
i = 1, . . . , 2m2) the tilt of σi and (resp. σ′i) is equal to `i − `i−1 (resp. `′i − `′i−1).

To prove this lemma, we now describe the inverse procedure which consists in assem-
bling an annular map m from a quadruple (L,L′,σ,σ′).

Assembling an annular map from a pair of paths decorated with elementary slices.
Using the lattice path L and the sequence of slices σ restricted to a period, we may use
the inverse of the decomposition described in Section 4.3 to obtain a slice Σ of width
2m1 and tilt s. We then perform the operation described in [BG14, Section 7.1] and
called wrapping in [Bou19, Section 2.2]. It consists in gluing “isometrically” the left
and right boundaries of Σ together, but unlike the gluing performed in Section 4.3 to
obtain a pointed rooted map, we now start from the two endpoints of the base of Σ
which we identify together, and perform the gluing from there (see the illustrations in
the aforementioned references). As the tilt s is positive, the s edges of the left boundary
closest to the apex remain unglued. This produces an annular map m1 whose two
distinguished faces have respective degrees 2m1 and s, the latter resulting from the
unglued edges, the former resulting from the base, whose two identified endpoints yield
a distinguished corner denoted c.
Similarly, the lattice path L′ and the sequence of slices σ′ yield a slice Σ′ of width 2m2

and tilt −s, whose wrapping produces an annular map m2 with two distinguished faces
of respective degrees 2m2 and s (since the tilt of Σ′ is negative, it is now the s edges
closest to the apex on the right boundary that form this latter face), the former having
a distinguished corner denoted c′.
The annular map m is then obtained by gluing the two annular maps m1 and m2

together along the contours of their distinguished faces of degree s. The contour then
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becomes a separating cycle γ, which can be shown to have minimal length. Note that
there are a priori s ways to glue m1 and m2 together, however only one way is compatible
with the prescription that, in the universal cover m̃ of m, the corners c and c′ admit
respective lifts c0 and c′0 such that Bγ̃(c0) = Bγ̃(c′0) where γ̃ is the infinite geodesic
constructed by lifting γ.
We may check that the assembling procedure is indeed the inverse of the decomposition

described above. The most subtle point is to show that any quadruple (L,L′,σ,σ′) is
left invariant if we assemble it then decompose the resulting annular map. This requires
to check that the boundaries of the slices become, in the annular map, precisely the
leftmost geodesics that we use in the decomposition. More details can be found in
[BG14, Section 7].

Application to tight maps and end of the proof of Proposition 27. So far, all our
discussion holds without the assumption that m is tight. Adding this constraint amounts
to two restrictions on the corresponding quadruple (L,L′,σ,σ′), which are similar to
those encountered in Section 4.3. First, every σi and σ′i must be a tight elementary slice.
Here, we use the natural convention that the mark of a marked vertex is transferred to
its copy in the unique slice deprived of its right boundary that contains it (in particular,
marked vertices lying on the separating cycle γ have their marks transferred to σi’s and
not to σ′i’s). Second, the lattice paths ` and `′ (which are the periodic extensions of L
and L′) must be such that every up step immediately following a down step cannot be
decorated with an unmarked empty slice.
To complete the proof of Proposition 27, we assume that m has n ≥ 3 boundaries,

labeled 1 to n. By the slice decomposition, the labels 3, . . . , n get distributed among
the σi and σ′i. Let i1 ≤ · · · ≤ ij be the indices i between 1 and 2m1 such that σi is
neither the unmarked empty slice nor the trivial slice, i.e. contains at least one label.
Let i′1 ≤ · · · ≤ i′j′ be similarly the indices i between 1 and 2m2 such that σ′i contains
at least one label. We set k = j + j′ − 1 and note that 0 ≤ k ≤ n − 3 since there are
n − 2 labels in total to distribute among the slices. Recall that, by the aforementioned
prescription for choosing the reference corners, the label 3 is either in σ1 or σ′1. If
it is in σ1, we set (s1, . . . , sk+1) := (σi1=1, . . . ,σij ,σ

′
i′1
, . . . ,σ′i′

j′
). Otherwise, we set

(s1, . . . , sk+1) := (σ′i′1=1, . . . ,σ
′
i′
j′
,σi1 , . . . ,σij ). This defines the (k + 1)-tuple of slices s

of the proposition.
As for the two-face map m12, it is obtained as follows. Let ω and ω′ be the sequences

obtained from respectively σ and σ′ by replacing every slice different from the unmarked
empty slice and from the trivial slice with the marked empty slice. Then, m12 is the
annular map obtained by assembling the quadruple (L,L′,ω,ω′). It is by construction
a tight two-face map with k + 1 marked vertices, and we distinguish the marked vertex
coming from the marked empty slice which replaces the slice containing the label 3.
We check that the mapping m 7→ (m12, s) is a bijection by exhibiting the inverse bijec-

tion. Let (m12, s) be a pair as in the proposition, and let (L,L′,ω,ω′) be the quadruple
obtained by decomposing the two-face map m12, its distinguished marked vertex playing
the role of the third distinguished element labeled 3 used in the construction of page 40.
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By construction the sequences ω and ω′ consist only of empty or trivial slices, with a num-
ber k+ 1 of marked empty slices. Replacing these marked empty slices with s1, . . . , sk+1,
we obtain two sequences σ and σ′ such that the assembling of the quadruple (L,L′,σ,σ′)
gives the tight map m we are looking for. This ends the proof of Proposition 27.
Remark 29. It might seem a priori more direct to attempt to enumerate the quadruples
(L,L′,σ,σ′). But, since the paths L and L′ have a height variation depending on the
separating girth s, this leads to an expression involving a sum over s. The trick of
“recombining” L and L′ into a two-face map allows to circumvent this issue.

5. Bijective proofs for non necessarily bipartite maps

In this section, we explain how the bijective approach of Section 4 may be extended so
as to enumerate planar tight maps which are not necessarily bipartite.
Recall from Section 2.2 that a petal is a face of degree one. The key idea to extend our

construction to the non bipartite case is to realize that petals play a role very similar to
marked vertices. Mimicking the organization of Section 4, we will first enumerate tight
maps with a single non-petal face in Section 5.1, then tight maps with just two non-petal
faces in Section 5.2, and finally tight maps with an arbitrary number of non-petal faces in
Section 5.4. A prerequisite to this latter enumeration will be that of tight non necessarily
bipartite slices in Section 5.3.
Before we start our discussion, let us recall from Section 2.2 the definition of the

polynomials

pk,e(m) :=
1

(k!)2

k∏
i=1

(
m2 −

(
i− e

2

)2
)

=

(
m+ e

2 − 1

k

)(
m− e

2 + k

k

)
(52)

for k ∈ Z≥0. For m− e
2 ∈ Z, we may interpret pk,e(m) as counting words of the form (43)

where the ai and bi are nonnegative integers such that a1 +a2 + · · ·+ak+1 = m+ e
2−k−1

and b1 +b2 + · · ·+bk+1 = m− e
2 (i.e. the word has length 2m, k+1 occurrences of D◦ and

e more D’s than U ’s). This interpretation holds a priori only for m ≥ max
(
k + 1− e

2 ,
e
2

)
but this domain may be extended to m ≥ max

(
1− e

2 ,
e
2 − k

)
since pk,e(m) vanishes in

the additional domain.
Remark 30. Even though we will not use it in the sequel, let us mention that, by a
variation of the arguments of Section 4.1, we may show that, for m as above, pk,e(m) is
the number of two-face tight maps with one face of degree 2m, one simple face of degree
|e| and k + 1 marked vertices, one of them distinguished, with the condition that for
e < 0 no marked vertex is incident to the face of degree e. Note that such maps are
closely related with the notion of (a, b)∗-forests of Definition 23: for e > 0, pk,e(m) counts
(0, e)∗-forests with size 2m and k+ 1 marked vertices including the distinguished vertex.

5.1. Petal trees

We recall that a petal tree is a planar map having an exterior face of arbitrary degree,
and such that every other face is a petal. A tight petal tree is just a petal tree with
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marked vertices, which is tight as a map.
We also recall, for r, s ∈ Z≥0, ε ∈ Z andm ∈ Z/2, the definition of the quasi-polynomial

π(ε)
r,s(m) :=

{(
r+s
s

)
pr+s,s+1+ε(m) if m− s+1+ε

2 ∈ Z,
0 otherwise.

(53)

Our goal in this section is to prove Proposition 15, showing that, for m ∈ Z>0/2 and
ε ∈ {−1, 0, 1}, π(ε)

r,s(m) enumerates tight petal trees with one exterior face of degree
2m, s + 1 + ε petals (excluding the exterior face when m = 1/2), 1 + ε of which are
distinguished, and r+1− ε marked vertices, 1− ε of which are distinguished. The reason
for the ε-dependence in the statement is that we must distinguish two elements among
marked vertices and petals. For this reason, there are three situations to consider: we
may distinguish two marked vertices (ε = −1), two petals (ε = 1), or one of each type
(ε = 0).
We note that, upon “labeling” the undistinguished elements, Proposition 15 is equiva-

lent to the more symmetric statement:

Proposition 31. For 0 ≤ e ≤ k+ 2 and m ∈ Z>0/2, the number of tight petal trees with
an exterior face of degree 2m, with e petals and k + 2− e marked vertices, all labeled, is
given by:

N0,k+3(2m, 1, . . . , 1︸ ︷︷ ︸
e

, 0, . . . , 0︸ ︷︷ ︸
k+2−e

) =

{
k!pk,e(m) if m− e

2 ∈ Z,
0 otherwise.

(54)

More precisely, Proposition 31 is recovered from Proposition 15 by setting k = r + s
and e = s+1+ε (hence k+2−e = r+1−ε). The petal trees considered in Proposition 15
have s (repectively r) non-distinguished petals (respectively marked vertices) which we
may label in s! (repectively r!) ways. Using s!r!

(
r+s
s

)
= (r + s)! = k!, we obtain (54) for

1 + ε ≤ e ≤ k + 1 + ε, hence for the whole range 0 ≤ e ≤ k + 2 by letting in ε vary in
{−1, 0, 1}.

Proof of Proposition 15. Let us first discuss how we may code petal trees using words,
or equivalently lattice paths, as we did in Section 4.1 for ordinary trees. Note first that
petal trees have two types of edges: “tree-type” edges whose both sides are incident to
the exterior face and “petal-type” edges with one edge side incident to a petal and the
other to the exterior face. In particular, the tree-type edges have distinct endpoints and
they form a plane tree (i.e. a map with a single face), which we call the “wood” of the
petal tree. Here the coding that we shall use applies to rooted petal trees, i.e. petal trees
where we distinguish a corner (the root corner) in the exterior face (note that this also
induces a rooting of the wood tree). Starting from this root corner and following the
contour of the exterior face going counterclockwise around the tree (i.e. with the exterior
face on the right), we record a letter U (respectively D) for each tree-type edge visited
while going away from (respectively towards) the root and a letter E for each visited
petal-type edge. The obtained three-letter word may alternatively be visualized as a
lattice path with three types of elementary steps: up, down and horizontal, associated
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respectively to the letters U , D and E. This path is a Motzkin path of length equal to
the degree 2m′ of the exterior face, i.e. it goes from (0, 0) to (2m′, 0) and stays above
the x-axis. Indeed, the ordinates of the path record graph distances to the root vertex
incident to the root corner. The number s′ of occurrences of the letter E in the coding
word is nothing but the number of petals, and is such that m′− s′

2 , which is the number
of U ’s (or equivalently of D’s), is a nonnegative integer.
Let us now consider a rooted petal tree with marked vertices, where the root vertex is

unmarked, and such that all non-root leaves are marked. Every non-root vertex being
bijectively associated with its parent tree-type edge in the wood tree, hence with a letter
D, we record the markings as in Section 4.1 by replacing each D by a D◦ if the associated
vertex is marked and by a D• otherwise. We end up with a word made of four letters,
U , D◦, D• and E, associated with a “dressed” Motzkin path, with k′ occurrences of D◦
and m′ − s′

2 − k
′ occurrences of D• if the petal tree has k′ marked vertices. As before,

requiring that all non-root leaves be marked simply amounts to forbidding the sequence
UD• in the coding words.
Returning to the setting of Proposition 15 and assuming thatm− s+1+ε

2 ∈ Z, recall that
pr+s,s+1+ε(m) counts three-letter words of the form (43) with r+s+1 occurrences of D◦,
m−r− s+1−ε

2 occurrences of D• and m− s+1+ε
2 occurrences of U . As already mentioned,

the property holds for the extended range m ≥ max
(
1− s+1+ε

2 , 1− r − s+1−ε
2

)
, hence

for all positive m in the current setting where r, s ≥ 0 and ε ∈ {−1, 0, 1}. We now
transform the three-letter word into a four-letter word coding for a sequence of petal
trees as follows: we first remove the first letter D◦, which leaves us with r+s occurrences
of D◦, and pick s of them that we transform into E’s. This transformation can be done
in
(
r+s
s

)
ways, hence the obtained four-letter words are counted by

(
r+s
s

)
pr+s,s+1+ε(m).

By construction, these words have s occurrences of E, r occurrences of D◦, m − s+1+ε
2

occurrences of U and m−r− s+1−ε
2 occurrences of D•. These correspond to lattice paths

of length 2m − 1 and height difference −ε, say from (0, 0) to (2m − 1,−ε), hence with
minimal height −` for some ` ≥ max(0, ε). Any such path is canonically decomposed into
a sequence of 2`+1−ε dressed Motzkin paths (possibly of length 0), obtained by cutting
out the first elementary down steps reaching height −j for j = 1, 2, . . . , ` and the last
elementary up steps reaching height −j′+1 for j′ = `, `−1, . . . , ε+1, see Figure 15. Each
Motzkin path component codes for a marked petal tree whose root vertex is unmarked,
and we decide to mark it if this Motzkin path is followed by a D◦ in the original path.
By doing so, we both ensure that the total number of marked vertices in the petal tree
sequence is r and that the four-letter word can be recovered bijectively from the petal
tree sequence (since we know the nature D•, D◦ or U of all the removed steps). Note that
by construction, only the first ` petal trees may have their root vertex marked. All in all,(
r+s
s

)
pr+s,s+1+ε(m) enumerates pairs (F�,F×) made of a sequence F� of ` petal trees

with marked vertices whose root vertex is markable, and a sequence F× of `+ 1− ε petal
trees with marked vertices whose root vertex is unmarked, for some arbitrary integer
` ≥ max(0, ε), with a total of s petals, r marked vertices, and m − ` − s+1−ε

2 tree-type
edges, and with all the non-root leaves in the petal trees marked. As a final step, the
pairs (F�,F×) are transformed into the desired tight petal trees by attaching the roots
of the ` (respectively ` + 1 − ε) petal trees in the sequence F� (respectively F×) by
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2m−1

−ε

` {̀
+ 1− ε

{
−`

Figure 15: Schematic picture of the decomposition of a lattice path of length 2m − 1,
height difference −ε, and minimal height −` into a sequence of 2` + 1 − ε
Motzkin paths, where the squares indicate that the underlying descending step
may be marked (if associated with a D◦) or not (if associated with a D•). For
j = 1, 2, · · · , `, the j-th Motzkin path is followed by the first elementary down
step reaching height −j. These `Motzkin paths code for an ordered set F� of `
rooted petal trees whose root vertex are marked or not according to the nature
of the following elementary down step. For j = `+ 2, `+ 3, · · · , 2`+ 1− ε, the
j-th Motzkin path is preceded by the last elementary up step reaching height
j − 1 − 2`. Together with the (` + 1)-th Motzkin path, these Motzkin paths
code for an ordered set F× of `+ 1− ε rooted petal trees whose root vertex is
unmarked. The ordered sets F� and F× are drawn here with additional edges
connecting the successive roots of their petal tree components, represented
schematically by grey blobs with a black boundary, with a root vertex drawn
as a square if markable and a cross if not.

additional edges and gluing them along a spine of length `− ε as displayed in Figure 16.
Note that a markable root vertex is always matched to an unmarked one: the markings
of root vertices may thus be transferred without ambiguity after gluing, with no risk of
double markings along the spine. Let us detail the three possibilities ε = −1, 0, 1.
For ε = −1, the sequence F× has two more petal trees than F� so that the root vertices

of its two extremal petal trees remain unmatched. We decide to mark these vertices and
distinguish them as vertices 1 and 2: the resulting object is a tight petal tree with s
petals and r+ 2 marked vertices, two of which distinguished. The construction is clearly
reversible by cutting along the branch between vertices 1 and 2, and holds for any ` ≥ 0
(for ` = 0, vertices 1 and 2 are incident). The degree of the exterior face is easily found
equal to 2(m− `− s+2

2 ) + s+ 2(`+ 1) = 2m as wanted.
For ε = 0, the sequence F× has one more petal tree than F� so that the root vertex

of its first petal tree remains unmatched. We decide to mark this vertex and to add an
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`+1
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{ε = −1 ε = 0 ε = +1

1 2
21

F�

F×

Figure 16: The gluing of a sequence F� of ` petal trees with markable roots and a se-
quence F× of `+ 1− ε petal trees with unmarked roots into a tight petal tree
with 1 − ε distinguished marked vertices (represented by circles) and 1 + ε
distinguished petals (represented by small empty loops), for ε = −1 (left), 0
(center) and 1 (right).

additional, distinguished petal to mark the corner inbetween the last two glued petal
trees at the end of the spine: the resulting object is a tight petal tree with s+ 1 petals,
one of which distinguished, and r + 1 marked vertices, one of which distinguished. The
construction is clearly reversible by cutting along the branch between the distinguished
marked vertex and the distinguished petal, eventually removing this petal, and holds for
any ` ≥ 0 (for ` = 0, the distinguished vertex is incident to the distinguished petal). The
degree of the exterior face is 2(m− `− s+1

2 ) + s+ 1 + 2` = 2m as wanted.
Finally, for ε = 1, the sequences F× and F� have the same number ` ≥ 1 of petal tree

components and their gluing is made reversible by adding a petal inbetween the glued
petal trees at each extremity of the spine, that we distinguish as petals 1 and 2: the
resulting object is a tight petal tree with s + 2 petals, two of which distinguished, and
r marked vertices. The construction is clearly reversible by cutting along the branch
between petals 1 and 2, eventually removing these petals, and holds for any ` ≥ 1 (for
` = 1, the distinguished petals are incident to the same vertex). The degree of the
exterior face is 2(m− `− s

2) + s+ 2 + 2(`− 1) = 2m as wanted. This ends the proof of
Proposition 15.
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5.2. Petal necklaces

We now consider petal necklaces, namely planar maps having two distinguished faces of
arbitrary degrees, and such that any other face is a petal. Again, a tight petal necklace
is just a petal necklace with marked vertices, which is tight as a map. We have the
following enumeration result:

Proposition 32. For r, s nonnegative integers not both zero and m1,m2 ∈ Z>0/2, let

Πr,s(m1,m2) := N0,r+s+2(2m1, 2m2, 0, . . . , 0︸ ︷︷ ︸
r

, 1, . . . , 1︸ ︷︷ ︸
s

) (55)

be the number of tight petal necklaces with two distinguished faces of degrees 2m1 and
2m2, with r marked vertices and s petals, all labeled. Then, for r ≥ 1 we have

Πr,s(m1,m2) = (r−1)!s!
∑

r1,r2,s1,s2≥0
r1+r2=r−1
s1+s2=s

(
π(−1)
r1,s1(m1)π(1)

r2,s2(m2) + π(0)
r1,s1(m1)π(0)

r2,s2(m2)
)

(56)

and, for s ≥ 1,

Πr,s(m1,m2) = r!(s−1)!
∑

r1,r2,s1,s2≥0
r1+r2=r
s1+s2=s−1

(
π(0)
r1,s1(m1)π(1)

r2,s2(m2) + π(1)
r1,s1(m1)π(0)

r2,s2(m2)
)

(57)

where π(ε)
r,s is the univariate quasi-polynomial defined in (26).

This proposition admits a “partially unlabeled” equivalent, which will be useful later
on.

Proposition 33. Given r0, s0 ∈ Z≥0 and m1,m2 ∈ Z>0/2, the number of tight petal
necklaces with two distinguished labeled faces of degrees 2m1, 2m2, one distinguished
marked vertex, r0 other unlabeled marked vertices, and s0 unlabeled petals, is equal to

π(0)
r0,s0(m1,m2) :=

∑
r1,r2,s1,s2≥0
r1+r2=r0
s1+s2=s0

(
π(−1)
r1,s1(m1)π(1)

r2,s2(m2) + π(0)
r1,s1(m1)π(0)

r2,s2(m2)
)
, (58)

while the number of tight petal necklaces with two distinguished labeled faces of degrees
2m1, 2m2, one distinguished petal, s0 other unlabeled petals, and r0 unlabeled marked
vertices, is equal to

π(1)
r0,s0(m1,m2) :=

∑
r1,r2,s1,s2≥0
r1+r2=r0
s1+s2=s0

(
π(0)
r1,s1(m1)π(1)

r2,s2(m2) + π(1)
r1,s1(m1)π(0)

r2,s2(m2)
)
. (59)
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ε1 = 0
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`2 ≤ `1
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Figure 17: The partial and mutual gluings of the segments S1 (oriented from left to right)
and S2 (oriented from right to left) connecting the petal tree components of the
sequences F1 and F2 respectively, here for `2 ≤ `1. The vertex identifications
are indicated by arrows. Top: in the case ε1 = −1, ε2 = +1, the partial gluing
of S1 amounts to pulling in its (`1 + 1)-th vertex, creating a branch of length
`1− `2 + 1 in f1 with a distinguished vertex 1 at its end. Bottom: in the case
ε1 = 0, ε2 = +1, the partial gluing of S1 amounts to pulling in its `1-th edge,
creating a branch of length `1 − `2 in f1 with a distinguished petal 1 at its
end. In both cases, the mutual gluing generates a loop of even length 2`2.
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Propositions 32 and 33 are indeed equivalent to one another, since the petal neck-
laces considered in the latter have three distinguished boundaries hence no symmetries.
Namely, we pass from (58) to (56) by taking r = r0 + 1 and s = s0, and from (59) to
(57) by taking r = r0 and s = s0 + 1. In both cases, we multiply by r0!s0! to label
the unlabeled marked vertices/petals in all possible ways. For later use we record the
following:

Remark 34. Given a petal necklace m12 with a distinguished marked vertex/petal as
considered in Proposition 33, it is possible to label the marked vertices and petals in a
canonical way from 1 to r0 +s0 +1, with the label 1 assigned to the distinguished marked
vertex/petal. The precise labeling procedure is irrelevant, as long as it is deterministic7.

Proof of Proposition 33. Our proof is a direct generalization of that of Proposition 7
given in Section 4.2. Still, rather than recoursing to (a, b)- and (a, b)∗-forests or gener-
alizations thereof, we will instead use the related notion of pairs of petal tree sequences,
as introduced in the proof of Proposition 15. More precisely, we have seen there that,
for r1, s1 nonnegative integers, m1 ∈ Z>0/2, and ε1 = −1, 0, 1, the quantity π(ε1)

r1,s1(m1)
defined in (26) enumerates pairs (F�,F×) of sequences of respectively `1 and `1 + 1− ε1
rooted petal trees for some arbitrary integer `1 ≥ max(0, ε1). The petal trees have a total
of r1 marked vertices, with all their non-root leaves marked, a total of s1 petals, and a
total of m1 − `1 − s1+1−ε1

2 tree-type edges. Finally, only the petal trees in F� may have
their root vertex marked. The enumeration statement above holds even if m1 − s+1+ε1

2
is a half-integer, as the number of sequence pairs is trivially 0 in this case, and so is
π

(ε1)
r1,s1(m1) by definition.
To construct a petal necklace, we first merge the two sequences F� and F× into a single

sequence F1 of 2`1 +1− ε1 petal trees, which we transform into a single connected object
by adding edges connecting the successive roots of the petal tree components and forming
a linear segment S1 of length 2`1−ε1 – see Figure 17 for a schematic representation. This
first connected object will code for the face of degree 2m1 of our necklace. The coding
of the face of degree 2m2 is performed via a second sequence F2, taken now in the set
enumerated by π(ε2)

r2,s2(m2). The sequence F2 has the same properties, mutatis mutandis,
as the sequence F1, with now 2`2+1−ε2 petal trees, and a total of r2 marked vertices and
s2 petals. Again F2 is transformed into a connected object by adding a linear segment
S2 of 2`2 − ε2 edges connecting its successive petal tree roots. To obtain the desired
necklace, we will simply, by some “partial gluing” process reminiscent of that for (a, b)-
forests, squeeze the largest of the two segments S1 and S2 so as to get two segments of the
same length min(2`1− ε1, 2`2− ε2) which can then be glued together, head to tail, into a

7For instance, calling f1 and f2 the two distinguished faces, a possible algorithm consists in picking
the vertex v on the boundary between f1 and f2 lying on the same branch (possibly of length 0) in
the petal necklace as the distinguished marked vertex/petal. Following the contour of f1 clockwise,
starting from the leftmost corner at v in this face, and doing then the same for f2, we label the marked
vertices and petals, including the distinguished element, by successive integers from 1 to r0 + s0 + 1
at the first visit of such marked vertex (encountered via an incident corner) or petal (encountered
via a petal-type edge). We then perform a cyclic permutation of the labels so that the distinguished
element receives the label 1.
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map with a spine that, after closing by some additional edge, forms the cycle separating
the two distinguished faces of the necklace. Let us discuss in detail how we perform the
partial and mutual gluing processes. An important property of both processes is that
we always identify a markable vertex to an unmarked one. By transferring the possible
marking of their markable copy, this guarantees that all the vertices obtained by gluing
are markable and marked or not without ambiguity (and without double markings).
Consider first the case where, say ε1 = −1 and ε2 = +1 so that S2 has length 2`2 − 1,

with some `2 ≥ 1 and S1 has length 2`1 + 1 for some `1 ≥ 0. Assume first that `2 ≤ `1:
we may then squeeze S1 by “pulling in” its (`1 + 1)-th vertex, namely by gluing the
(`1 + 1 − i)-th (markable) vertex along S1 to the (`1 + 1 + i)-th (unmarked) one for
i = 1, . . . , `1 − `2 + 1. This results in a segment S′1 of the same length as S2, with `2
markable vertices followed by `2 unmarked ones, together with a branch (attached to
the `2-th vertex of S′1) of length `1 − `2 + 1 with all its vertices markable but the last
one, corresponding to the former (`1 + 1)-th vertex along S1. This vertex was unmarked
and we decide to mark and distinguish it, say with the label 1. We finally glue the two
segments S′1 and S2, head to tail, into a linear spine that we close with an additional
edge into a cycle of length 2`2 separating two faces f1 and f2 – see Figure 17-top. Again
every markable vertex of S2 is matched to an unmarked vertex of S′1 and vice versa,
so that all the vertices along the cycle are markable. It is easily checked that f1 and
f2 have respective degrees 2m1 and 2m2 and we end up with a petal necklace with
an additional marked vertex incident to f1 but not to f2. For `2 ≥ `1 + 2, a similar
construction consisting now in squeezing the segment S2 by pulling in its (`2 + 1)-th
vertex generates a necklace where the separating cycle has length 2(`1 + 1) and where
the additional marked vertex 1 is incident to f2 but not to f1. Finally, if `2 = `1 + 1,
S1 and S2 have the same length and no squeezing is necessary: the faces f1 and f2 are
then separated by a cycle of length 2`2 = 2(`1 + 1) and the vertex 1 (obtained by gluing
the (`1 + 1)-th vertex of S1 to the (`2 + 1)-th vertex of S2) lies along this cycle, i.e. is
incident to both faces. The construction is clearly reversible by a cutting procedure
along the separating cycle and along the branch leading from this cycle to vertex 1. We
deduce that π(−1)

r1,s1(m1)π
(1)
r2,s2(m2) counts petal necklaces with s1 unlabeled petals and r1

unlabeled marked vertices in its distinguished face f1 of degree 2m1, s2 unlabeled petals
and r2 unlabeled marked vertices in its distinguished face f2 of degree 2m2, and with an
additional marked vertex (distinct from all the others) distinguished as vertex 1 and lying
anywhere in the map (the map hence has a total of r1 +r2 +1 ≥ 1 marked vertices). The
necklaces are easily seen to be tight, since the petal tree components have no unmarked
leaves and no unmarked leaf was created in the process. Still, as apparent from the above
discussion, a restriction applies to these necklaces since, by construction, the length of
the cycle separating their distinguished faces is always even. It is easily seen that the
missing set of necklaces is enumerated by π

(0)
r1,s1(m1)π

(0)
r2,s2(m2): indeed, repeating the

above construction on the corresponding pairs of petal tree sequences F1 (with 2`1 + 1
petal trees) and F2 (with 2`2 + 1 petal trees), we get necklaces whose separating cycle
now has the odd length 2 min(`1, `2) + 1 (for some arbitrary `1, `2 ≥ 0), again with an
additional marked vertex distinguished as vertex 1. We finally obtain (58) by summing
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over r1 and r2 with r1 + r2 = r0, and over s1 and s2 with s1 + s2 = s0, to account for
the dispatching of the marked vertices and petals among f1 and f2.
An alternative construction consists in starting from ε1 = 0 and ε2 = +1 so that S2

still has length 2`2 − 1, with some `2 ≥ 1 while S1 has length 2`1 for some `1 ≥ 0. As
before, we assume first that `2 ≤ `1: we may then squeeze S1, now by “pulling in” its
`1-th connecting edge, namely by gluing the (`1 + 1 − i)-th (markable) vertex along S1

to the (`1 + i)-th (unmarked) one for i = 1, . . . , `1 − `2 + 1. This results in a segment
S′1 of the same length as S2, with `2 markable vertices followed by `2 unmarked ones,
together with a branch (attached to the `2-th vertex of S′1) of length `1 − `2 with all
its vertices markable, having now a petal at its end corresponding to the former `1-th
edge along S1. This newly created petal is adjacent to f1 but not to f2 and we decide
to distinguish it with the label 1. Gluing S′1 and S2 and closing, we end up with a
cycle of even length 2`2 separating two faces f1 and f2, see the bottom of Figure 17.
For `2 ≥ `1 + 1, squeezing now the segment S2 by pulling in its `2-th edge generates a
necklace with a separating cycle of odd length 2`1 + 1 and where the additional petal is
now adjacent to f2. To get the missing necklaces, namely those with an odd separating
cycle and a distinguished petal adjacent to f1, and those with an even separating cycle
and a distinguished petal adjacent to f2, we have, as clear by symmetry, to supplement
the above family of necklaces enumerated by π(0)

r1,s1(m1)π
(1)
r2,s2(m2) by that enumerated by

π
(1)
r1,s1(m1)π

(0)
r2,s2(m2). We finally obtain (59) by summing over r1 and r2 with r1+r2 = r0,

and over s1 and s2 with s1+s2 = s0, to account for the dispatching of the marked vertices
and petals among f1 and f2.

Remark 35. The consistency of the two expressions (56) and (57) for Πr,s(m1,m2) when
r, s ≥ 1 may be checked directly by setting s! = (s−1)!(s1+s2) in (56), r! = (r−1)!(r1+r2)
in (57), and upon using the identifications∑

r1,r2,s1,s2≥0
r1+r2=r−1
s1+s2=s

s1π
(−1)
r1,s1(m1)π(1)

r2,s2(m2) =
∑

r1,r2,s1,s2≥0
r1+r2=r
s1+s2=s−1

r1π
(0)
r1,s1(m1)π(1)

r2,s2(m2) (60)

∑
r1,r2,s1,s2≥0
r1+r2=r−1
s1+s2=s

s2π
(−1)
r1,s1(m1)π(1)

r2,s2(m2)
(∗)
=

∑
r1,r2,s1,s2≥0
r1+r2=r−1
s1+s2=s

s2π
(1)
r1,s1(m1)π(−1)

r2,s2(m2) (61)

=
∑

r1,r2,s1,s2≥0
r1+r2=r
s1+s2=s−1

r2π
(1)
r1,s1(m1)π(0)

r2,s2(m2) (62)

∑
r1,r2,s1,s2≥0
r1+r2=r−1
s1+s2=s

s1π
(0)
r1,s1(m1)π(0)

r2,s2(m2) =
∑

r1,r2,s1,s2≥0
r1+r2=r
s1+s2=s−1

r1π
(1)
r1,s1(m1)π(0)

r2,s2(m2) (63)

∑
r1,r2,s1,s2≥0
r1+r2=r−1
s1+s2=s

s2π
(0)
r1,s1(m1)π(0)

r2,s2(m2) =
∑

r1,r2,s1,s2≥0
r1+r2=r
s1+s2=s−1

r2π
(0)
r1,s1(m1)π(1)

r2,s2(m2) . (64)
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Here all equalities follow from the identity sπ
(ε)
r,s(m) = (r + 1)π

(1+ε)
r+1,s−1(m) for s ≥ 1,

apart from that marked with a (∗) which follows from the identity π(1)
r,s (m) = π

(−1)
r,s (m) +

π
(−1)
r−1,s(m) for any r ≥ 0 (with the convention π(−1)

−1,s(m) = 0), see (95) in Appendix B for
similar so-called transmutation relations.

5.3. Tight slices

As in the case of bipartite maps, a key ingredient in the derivation of a general formula
for the number of tight general non-bipartite maps is the enumeration of tight slices.
Recall the basic definitions pertaining to (tight) slices from Section 4.3, and note that we
do not assume anymore that the face degrees be even integers. In this general context,
it is still true that the only elementary slice of tilt −1 is the trivial slice, but a major
difference is that the set of elementary slices of tilt 0 is now non-empty.
As discussed in Section 4.3, a (tight) slice s with width w ≥ 1 and tilt t can be

decomposed into a collection of w (tight) elementary slices. This discussion applies
without change in our general context: we cut the slice along the leftmost geodesics
started from the consecutive corners c0, c1, . . . , cw incident to the base, and record the
lattice path L = (`0, `1, . . . , `w) where `i = d(c0, A) − d(ci, A), and A is the apex of s.
The only difference is that the tilt ti = `i − `i−1 of the slice s′i with base ci−1ci can
take any value {−1, 0, 1} rather than only {−1, 1}. As before, the tightness condition
requires that, for i ∈ {2, . . . , w}, if ti = +1 and ti−1 = −1, then the slice s′i is either
the marked empty slice, or a tight elementary slice with at least one inner face. For
i ∈ {1, . . . , w}, if ti = −1 then the slice s′i is necessarily trivial, while if ti = 0 then
the slice s′i automatically has at least one inner face of odd degree. We may forget the
redundant information of all down steps, as well as up steps decorated with unmarked
empty slices, by letting sj , 1 ≤ j ≤ k be the sequence (s′i, 1 ≤ i ≤ w) whose trivial and
unmarked empty elements have been removed. This gives:

Proposition 36. There is a one-to-one correspondence between tight slices of width w
and tilt t on the one hand, and pairs of the form (L, (sj , 1 ≤ j ≤ k)) on the other hand,
where:

• L = (`0, . . . , `w) is a lattice path from (0, 0) to (w, t) with increments in {−1, 0, 1},
that has k marked steps 1 ≤ i1 < i2 < · · · < ik ≤ w with `ij − `ij−1 ∈ {0, 1}, in
such a way that every up step immediately following a down step is marked, and
every horizontal step is marked,

• for 1 ≤ j ≤ k, sj is a tight elementary slice of tilt `ij − `ij−1, and in the case where
this tilt is 1, sj is either the marked empty slice, or has at least one inner face.

We obtain the following generalization of Corollary 25.

Corollary 37. For m ∈ Z>0/2, there is a one-to-one correspondence between non-empty
tight elementary slices of tilt ε ∈ {0, 1}, whose inner face incident to the base edge has
degree 2m on the one hand, and pairs of the form (L, (sj , 1 ≤ j ≤ k)) on the other hand,
where k is a non-negative integer, and:
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• L = (`0, . . . , `2m−1) is a lattice path from (0, 0) to (2m − 1, ε) with increments
in {−1, 0, 1}, that has k marked steps 1 ≤ i1 < i2 < · · · < ik ≤ 2m − 1 with
`ij − `ij−1 ∈ {0, 1}, in such a way that every up step immediately following a down
step is marked, and every horizontal step is marked,

• for 1 ≤ j ≤ k, sj is a tight elementary slice of tilt `ij − `ij−1, and in the case where
this tilt is 1, sj is either the marked empty slice, or has at least one inner face.

By iterating the decomposition of this corollary, we obtain an encoding of tight ele-
mentary slices by plane trees, where every vertex may be associated with a slice of tilt in
{0, 1}. Let m1, . . . ,mn be integers or half integers, not all equal to 0, and ε ∈ {0, 1}. Let
Tε(m1, . . . ,mn) be the family of pairs (t, (Li)1≤i≤n), satisfying the following conditions.

• t is a rooted plane tree with n vertices labeled by {1, 2, . . . , n}.

• Each vertex receives a type in {0, 1}, and the root has type ε. We let εi ∈ {0, 1}
be the type of vertex i and (w

(i)
1 , . . . , w

(i)
ki

) be the types of the ki children of vertex
i in t in planar order.

• For i ∈ {1, 2, . . . , n} such that mi > 0, Li = (`
(i)
0 , . . . , `

(i)
2mi−1) is a lattice path

from (0, 0) to (2mi− 1, εi) with increments in {−1, 0, 1}, and with ki marked steps
1 ≤ j1 < · · · < jki ≤ 2mi− 1, such that `(i)jr − `

(i)
jr−1 = w

(i)
r for every r ∈ {1, . . . , ki}.

In particular, only up or horizontal steps may be marked. We further require
that every up step of Li immediately following a down step is marked, and every
horizontal step of Li is marked.

• For i ∈ {1, 2, . . . , n} such that mi = 0, we have εi = 1, ki = 0 and Li is the trivial
path {(0, 0)}.

This leads to the following generalization of Corollary 26.

Corollary 38. For ε ∈ {0, 1} and every choice of integers or half-integers m1, . . . ,mn

not all equal to 0, the iterated slice decomposition yields a bijection between the set of
elementary tight slices with n labeled boundaries of respective lengths 2m1, . . . , 2mn with
tilt ε and the set Tε(m1, . . . ,mn).

It turns out that, in order to prove Theorem 13 in Section 5.4, we will need an extension
of this corollary associating sequences of slices with sequences of trees, namely forests.
Still, as a warm-up, let us first consider the enumeration of Tε(m1, . . . ,mn), which is done
based on that of two-type trees, obtained as a special case of Proposition 46 of Appendix
A. Note that the types 1 and 0 considered in the present section correspond to types A and
B respectively in the notation of the appendix. We count the elements (t, (Li)1≤i≤n) of
Tε(m1, . . . ,mn) by fixing the types ε1, . . . , εn of the vertices 1, . . . , n of t (so that εi = w

(i)
0

in the notation of Appendix A) with the constraint that the root vertex should have type
ε, as well as the sequence of types w(i)

1 , . . . , w
(i)
ki

of the consecutive children (in planar
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order) of vertex i. These sequences must satisfy the consistency conditions (80) and (81)
of Appendix A, which in this context are rewritten as

n∑
i=1

εi = ε+
n∑
i=1

ri and
n∑
i=1

ε̄i = ε̄+
n∑
i=1

si , (65)

where we let η̄ = 1− η for η ∈ {0, 1}, and where ri =
∑ki

j=1w
(i)
j and si =

∑ki
j=1 w̄

(i)
j are

the numbers of type-1 and type-0 children of vertex i. These consistency relations simply
express in two different ways the number of type 1 (resp. 0) vertices in the tree t. Note
that the number of type-0 (resp. type-1) vertices that are the children of type-1 (resp.
type-0) vertices (those are respectively the numbers bA and aB considered in Appendix
A) is given by

n∑
i=1

εisi

(
resp.

n∑
i=1

ε̄iri

)
. (66)

Finally, by Proposition 46 (in the notation therein, we have aO = ε and bO = ε̄, expressing
the fact that we are counting “forests” made of only one tree with root of type ε), we see
that the number of possible trees t contributing to Tε(m1, . . . ,mn), with types given by
ε1, . . . , εn and given a consistent type array (w

(i)
j )i=1...,n

j=1,...,ki
, is equal to(

ε
n∑
i=1

εisi + ε̄
n∑
i=1

ε̄iri

)(
n∑
i=1

εi − 1

)
!

(
n∑
i=1

ε̄i − 1

)
! (67)

where
∑n

i=1 εi and
∑n

i=1 ε̄i are the numbers of vertices of types 1 and 0 respectively. In
the case where either one of these numbers is equal to 0, we should replace the whole
formula by (n− 2)!.
It now remains to enumerate, for a given consistent array (w

(i)
j )i=1,...,n

j=1,...,ki
, and for a given

tree t as above, the number of possible lattice paths Li, 1 ≤ i ≤ n so that (t, (Li)1≤i≤n)

is an element of Tε(m1, . . . ,mn). As before, we let ri =
∑ki

j=1w
(i)
j and si =

∑ki
j=1 w̄

(i)
j =

ki − ri. If mi = 0 then by definition of Tε(m1, . . . ,mn), this requires Li = {(0, 0)},
ri = si = 0 and εi = 1: by (27), this is precisely counted by π(εi)

ri,si(0) = δri,0δsi,0δεi,1.
If mi > 0, Li should be a lattice path from (0, 0) to (2mi − 1, εi), with increments in
{−1, 0, 1}, in which ki up or horizontal steps are marked, say 1 ≤ j1 < · · · < jki ≤ 2mi−1,
with increments at these steps respectively given by w(i)

1 , . . . , w
(i)
ki
, and in such a way that

all horizontal steps are marked, as well as all the up steps immediately following a down
step. As explained in the proof of Proposition 15 (and up to changing the up steps into
down steps and vice versa), the number of such paths is equal to pri+si,si+1+εi(mi) if
mi− si+1+εi

2 ∈ Z, and to zero otherwise. In particular, this number depends on the array
(w

(i)
j )i=1,...,n

j=1,...,ki
only through the values of ri, si. Noting that for a given value of ri, si,

there are
(
ri+si
si

)
possible choices of (w

(i)
j , 1 ≤ j ≤ ki) inducing these values, and recalling

that π(εi)
ri,si =

(
ri+si
si

)
pri+si,si+1+εi(mi), we finally obtain the following result.
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Proposition 39. For ε = 0, 1 and for every choice of integers or half-integers m1, . . . ,mn

not all equal to 0, the cardinality of Tε(m1, . . . ,mn), and hence the number of elementary
tight slices with n labeled boundaries of respective lengths 2m1, . . . , 2mn and tilt ε, is given
by

Card (Tε(m1, . . . ,mn)) =∑
ε1,...,εn=0,1

r1,...,rn,s1,...,sn≥0
ε1+···+εn=ε+r1+···+rn
ε̄1+···+ε̄n=ε̄+s1+···+sn

(
ε

n∑
i=1

εisi + ε̄

n∑
i=1

ε̄iri

)(
n∑
i=1

εi − 1

)
!

(
n∑
i=1

ε̄i − 1

)
!

n∏
i=1

π(εi)
ri,si(mi) ,

(68)

where the first three factors in the sum should be replaced by (n − 2)! whenever the
argument in either of the two factorials equals −1.

This proposition has interesting consequences for certain evaluations of lattice count
polynomials. Proceeding similarly to Section 4.3, we may indeed associate bijectively
tight maps with elementary tight slices of tilt in {0, 1}. Precisely, starting from an
elementary tight slice of tilt 0, we may glue isometrically the left and right boundaries to
obtain a tight map with one marked petal (delimited by the base edge of the slice) and
one marked vertex (given by the apex). This construction can be inverted by cutting
along the leftmost geodesic from the marked petal to the pointed vertex. Similarly,
starting from an elementary tight slice of tilt 1, we may glue isometrically the left and
right boundaries starting from the base (rather than from the apex as was done in Section
4.3) to obtain a tight map with two marked petals (one being delimited by the base edge
of the slice, and the other one by the edge of the left boundary incident to the apex).
The inverse construction is more involved, but is in fact a particular case of the slice
decomposition of annular maps.
These bijections imply that for every m1, . . . ,mn ∈ Z≥0/2 not all equal to zero, and

for ε ∈ {0, 1}, we have

N0,n(2m1, . . . , 2mn, 1, ε) = Card(Tε(m1, . . . ,mn)) . (69)

Finally, from the discussion of [BG12, Appendix A], we obtain the identity

N0,n(2m1, . . . , 2mn, 2, 0) = Card (T1(m1, . . . ,mn))

+
∑

{1}⊂I({1,...,n}

Card (T0 ((mi)i∈I)) Card (T0 ((mi)i/∈I)) . (70)

5.4. General maps

We are now ready to get a general enumeration formula for planar tight maps. Our
approach will be parallel to that of Section 4.4, and we start by stating the following
analog of Proposition 27:
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Proposition 40. Let m1, . . . ,mn be non-negative integers or half-integers (n ≥ 3) with
m1,m2 > 0. Then, there is a bijection between the set of planar tight maps with n
boundaries labeled from 1 to n with respective lengths 2m1, 2m2, . . . , 2mn, and the set of
pairs (m12, s) such that there exist r0, s0 ≥ 0 with r0 + s0 ∈ {0, . . . , n− 3} for which the
following holds.

• m12 is a tight petal necklace with two distinguished faces of degrees 2m1, 2m2, with
one extra distinguished element being either a marked vertex or a petal, and with
r0 other marked vertices and s0 other petals.

• s = (s1, . . . , sr0+s0+1) is a (r0 + s0 + 1)-tuple of slices such that:

– each sj (j = 1, . . . , r0+s0+1) is a tight elementary slice of tilt 0 or 1 containing
at least one inner face or marked vertex,

– the inner faces and marked vertices of these slices are labeled by integers in
{3, . . . , n},

– each i ∈ {3, . . . , n} appears in exactly one sj and labels an inner face of degree
2mi for mi > 0, or a marked vertex for mi = 0,

– the label 3 appears in the first slice s1.

• m12 and s are compatible in the sense that, if we label the marked vertices and
petals of m12 in a canonical way from 1 to r0 + s0 + 1 as in Remark 34, and for
j = 1, . . . , r0 + s0 + 1 we set w(0)

j = 1 (resp. w(0)
j = 0) if label j is on a marked

vertex (resp. petal), then sj has tilt w(0)
j . Note that r0 =

∑r0+s0+1
j=2 w

(0)
j .

The proof of this proposition follows exactly the same lines as that of Proposition 27
in Section 4.4. In particular, Lemma 28 admits a direct non-bipartite extension in which
the maps m may have all their faces of arbitrary degrees, the lattice paths L,L′ may
contain horizontal steps, and consistently the sequences σ,σ′ may contain slices of tilt
0. Further details are left to the reader. We deduce the following enumerative result:

Proposition 41. For n ≥ 3 and for non-negative integers or half-integers m1, . . . ,mn

with, say, m1,m2 > 0, we have

N0,n(2m1, . . . , 2mn) =∑
ε3,...,εn=0,1

r1,...,rn,s1,...,sn≥0∑n
i=3 εi=

∑n
i=1 ri+1∑n

i=3(1−εi)=
∑n
i=1 si

(
n∑
i=1

ri

)
!

(
ε3(s1 + s2) +

n∑
i=3

εisi

)(
n∑
i=1

si − 1

)
! (71)

×
(
π(−1)
r1,s1(m1)π(1)

r2,s2(m2) + π(0)
r1,s1(m1)π(0)

r2,s2(m2)
) n∏
i=3

π(εi)
ri,si(mi)
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+
∑

ε3,...,εn=0,1
r1,...,rn,s1,...,sn≥0∑n

i=3 εi=
∑n
i=1 ri∑n

i=3(1−εi)=
∑n
i=1 si+1

(
n∑
i=1

si

)
!

(
(1− ε3)(r1 + r2) +

n∑
i=3

(1− εi)ri

)(
n∑
i=1

ri − 1

)
!

×
(
π(0)
r1,s1(m1)π(1)

r2,s2(m2) + π(1)
r1,s1(m1)π(0)

r2,s2(m2)
) n∏
i=3

π(εi)
ri,si(mi)

where π(ε)
r,s is the univariate quasi-polynomial defined in (26) and where it is understood

that (ε3(s1 + s2) +
∑n

i=3 εisi)(
∑n

i=1 si − 1)! is equal to 1 if all the si are zero, and that
((1− ε3)(r1 + r2) +

∑n
i=3(1− εi)ri)(

∑n
i=1 ri − 1)! is equal to 1 if all the ri are zero.

Proof. We need to enumerate the compatible pairs (m12, s) of Proposition 40. Note first
that, given r0 and s0, the number of possible petal necklaces m12 is given by Propo-
sition 33. Turning now to the number of possible s compatible with a given petal
necklace m12, it is given by a direct extension of Corollary 38 as follows: by decom-
posing recursively each elementary tight slice sj (with tilt w(0)

j ) into a tree of lattice
paths, we see that the set of possible (r0 + s0 + 1)-tuples s is in bijection with the
set F

(w
(0)
1 ,...,w

(0)
r0+s0+1)

(m3, . . . ,mn) defined as the set of pairs (f , (Li)1≤i≤n) satisfying the

following conditions.

• f is a plane forest with r0 + s0 + 1 connected components, i.e. a (r0 + s0 + 1)-tuple
of rooted plane trees, and with a total of n− 2 vertices labeled by {3, . . . , n}, the
label 3 appearing in the first component.

• Each vertex receives a type in {0, 1}, and the root vertex of the j-th tree component
in the forest has type w(0)

j . For i ∈ {3, . . . , n}, we let εi ∈ {0, 1} be the type of

vertex i, ki be its number of children, and (w
(i)
1 , . . . , w

(i)
ki

) be the types of these
children (numbered in planar order in the rooted tree component at hand). We
also set ri :=

∑ki
j=1w

(i)
j the numbers of those children which are of type 1 and

si := ki − ri the numbers of those children which are of type 0.

• For i ∈ {3, . . . , n}:

– if mi > 0, Li = (`
(i)
0 , . . . , `

(i)
2mi−1) is a lattice path from (0, 0) to (2mi − 1, εi)

with increments in {−1, 0, 1}, and with ki marked steps 1 ≤ j1 < · · · < jki ≤
2mi − 1, such that `(i)jr − `

(i)
jr−1 = w

(i)
r for every r ∈ {1, . . . , ki}. In particular,

only up or horizontal steps may be marked, and we further require that every
horizontal step of Li is marked, as well as every up step immediately following
a down step,

– if mi = 0, we have εi = 1, ki = ri = si = 0, and Li is the trivial path {(0, 0)}.

We may now obtain the number of elements of F
(w

(0)
1 ,...,w

(0)
r0+s0+1)

(m3, . . . ,mn) from the

results of Appendix A for the enumeration of two-type forests, where the types A and B
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therein correspond to types 1 and 0 in the present setting. For fixed εi and ki, i = 3, . . . , n

and for fixed (w
(i)
j )i=3,...,n

j=1,...,ki
, the number of forests f is non-zero only if the two consistency

relations (80) and (81) are satisfied, namely

n∑
i=3

εi = w
(0)
1 + r0 +

n∑
i=3

ri and
n∑
i=3

ε̄i = w̄
(0)
1 + s0 +

n∑
i=3

si (72)

where, as before, we use the shorthand notation η̄ := 1 − η for η ∈ {0, 1}. Again, these
identities simply express in two different ways the number of vertices of type 1 (first
identity) and of type 0 (second identity), corresponding respectively to the quantities
denoted by a and b in Appendix A. When these conditions are satisfied, we may use
the constrained enumeration result (85), with the correspondence aO = w

(0)
1 + r0, bO =

w̄
(0)
1 + s0, aB =

∑n
i=3 ε̄iri and b

A =
∑n

i=3 εisi: if the vertex 3 is of type 1, i.e. ε3 = 1, the
number of forests f is given by

(
s0 +

n∑
i=3

εisi

)(
r0 +

n∑
i=3

ri

)
!

(
s0 +

n∑
i=3

si − 1

)
! if w(0)

1 = 1,(
n∑
i=3

ε̄iri

)(
r0 +

n∑
i=3

ri − 1

)
!

(
s0 +

n∑
i=3

si

)
! if w(0)

1 = 0,
(73)

with, in the first line, the convention (s0 +
∑n

i=3 εisi) × (s0 +
∑n

i=3 si − 1)! = 1 if
s0 +

∑n
i=3 si = 0, i.e. when s0 and all the si’s for i ≥ 3 are zero. Note that, in the second

line, the quantity r0 +
∑n

i=3 ri− 1 is always nonnegative since, from the first consistency
relation, it is equal to

∑n
i=4 εi. By symmetry, if the vertex 3 is of type 0, i.e. ε3 = 0, the

number of forests f is given by
(
r0 +

n∑
i=3

ε̄iri

)(
s0 +

n∑
i=3

si

)
!

(
r0 +

n∑
i=3

ri − 1

)
! if w(0)

1 = 0,(
n∑
i=3

εisi

)(
s0 +

n∑
i=3

si − 1

)
!

(
r0 +

n∑
i=3

ri

)
! if w(0)

1 = 1,
(74)

with, in the first line, the convention (r0 +
∑n

i=3 ε̄iri) × (r0 +
∑n

i=3 ri − 1)! = 1 if r0 +∑n
i=3 ri = 0, i.e. when r0 and all the ri’s for i ≥ 3 are zero. Again, in the second line,

the quantity s0 +
∑n

i=3 si − 1 is always nonnegative since, from the second consistency
relation, it is equal to

∑n
i=4 ε̄i. Both cases ε3 = 1 or 0 above may be summarized into

the enumeration formulas
(
ε3s0 +

n∑
i=3

εisi

)(
s0 +

n∑
i=3

si − 1

)
!

(
r0 +

n∑
i=3

ri

)
! if w(0)

1 = 1,(
ε̄3r0 +

n∑
i=3

ε̄iri

)(
r0 +

n∑
i=3

ri − 1

)
!

(
s0 +

n∑
i=3

si

)
! if w(0)

1 = 0,
(75)

with the conventions that (ε3s0 +
∑n

i=3 εisi)(s0 +
∑n

i=3 si − 1)! = 1 if s0 and all the si’s
for i ≥ 3 are zero and that (ε̄3r0 +

∑n
i=3 ε̄iri)(r0 +

∑n
i=3 ri − 1)! = 1 if r0 and all the ri’s

for i ≥ 3 are zero.
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It remains to enumerate, for a given array (w
(i)
j )i=3,...,n

j=1,...,ki
satisfying the consistency

relations (72), and for a given two-type forest f as above, the number of families of lattice
paths (Li)3≤i≤n so that (f , (Li)3≤i≤n) is an element of F

(w
(0)
1 ,...,w

(0)
r0+s0+1)

(m3, . . . ,mn).

Repeating the counting argument in the proof of Proposition 39, this number is simply
equal to

∏n
i=3 π

(εi)
ri,si(mi). Combining with (75), and recalling the consistency relations

(72), we obtain in the case w(0)
1 = 1

Card

(
F

(w
(0)
1 =1,w

(0)
2 ,...,w

(0)
r0+s0+1)

(m3, . . . ,mn)

)
=

∑
ε3,...,εn=0,1

r3,...,rn,s3,...,sn≥0∑n
i=3 εi=r0+

∑n
i=3 ri+1∑n

i=3 ε̄i=s0+
∑n
i=3 si

(
r0 +

n∑
i=3

ri

)
!

(
ε3s0 +

n∑
i=3

εisi

)(
s0 +

n∑
i=3

si − 1

)
!

n∏
i=3

π(εi)
ri,si(mi) ,

(76)

and in the case w(0)
1 = 0

Card

(
F

(w
(0)
1 =0,w

(0)
2 ,...,w

(0)
r0+s0+1)

(m3, . . . ,mn)

)
=

∑
ε3,...,εn=0,1

r3,...,rn,s3,...,sn≥0∑n
i=3 εi=r0+

∑n
i=3 ri∑n

i=3 ε̄i=s0+
∑n
i=3 si+1

(
s0 +

n∑
i=3

si

)
!

(
ε̄3r0 +

n∑
i=3

ε̄iri

)(
r0 +

n∑
i=3

ri − 1

)
!

n∏
i=3

π(εi)
ri,si(mi) .

(77)

Note that these expressions do not depend on the precise sequence (w
(0)
1 , . . . , w

(0)
r0+s0+1)

but only on the values of r0 =
∑r0+s0+1

j=2 w
(0)
j , of s0 =

∑r0+s0+1
j=2 w̄

(0)
j and of w(0)

1 . This is

expected since permuting the terms of the sequence (w
(0)
j )j=2,...,n at fixed r0 and s0 simply

amounts to changing the order of the last r0+s0 trees in the forest f , a harmless operation
as far as enumeration is concerned. We may therefore use the counting formulas (58) and
(59) for petal necklaces m12 with fixed r0, s0 and with a fixed value w(0)

1 = 1 and w(0)
1 = 0

respectively. The expression (71) for N0,n(2m1, . . . , 2mn) is obtained by inserting (76)
into (58) and (77) into (59), adding these two contributions and finally summing over r0

and s0, which trivially amounts to replacing in (76) and (77) each occurrence of r0 by
r1 + r2 and each occurrence of s0 by s1 + s2, and summing over r1, r2, s1, s2 ≥ 0. This
ends the proof of Proposition 41.

Even though it is not apparent, the right-hand side of (71) turns out to be, as expected,
symmetric upon permuting the mi’s for i in the whole set {1, . . . , n} . This property
is shown in Appendix B where, after some algebraic manipulations, this quantity is
given a manifestly symmetric form, see for instance (89) or (99). Using this result, we
arrive at the following unified theorem encompassing all the main theorems of the paper
(Theorems 4, 9 and 13):
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Theorem 42. For n ≥ 3 and m1,m2, . . . ,mn ∈ Z≥0/2, not all equal to zero, the number
N0,n(2m1, 2m2, . . . , 2mn) of planar tight maps with n boundaries labeled from 1 to n with
respective lengths 2m1, 2m2, . . . , 2mn is given by the symmetric quasi-polynomial

N0,n(2m1, 2m2, . . . , 2mn) =∑
(ε1,...,εn
r1,...,rn
s1,...,sn

)
∈In

(
n∑
i=1

ri

)
!

(
n∑
i=1

εisi

)(
n∑
i=1

si − 1

)
!

n∏
i=1

π(εi)
ri,si(mi)

+(n− 3)!
∑

(r1,...,rn)∈Zn≥0
r1+···+rn=n−3

∑
1≤j<`≤n

π
(0)
rj ,0

(mj)π
(0)
r`,0

(m`)
n∏
i=1
i 6=j,`

π
(1)
ri,0

(mi)

+(n− 3)!
∑

(r1,...,rn)∈Zn≥0
r1+···+rn=n−3

π
(−1)
r1,0

(m1)

n∏
i=2

π
(1)
ri,0

(mi).

(78)

with π(ε)
r,s(m) as in (26) and In as in (29). Note that the sum in the third line is equal

to the symmetric polynomial (n− 3)!pn−3(m1, . . . ,mn) when all mi are integers, and to
zero otherwise, hence it is symmetric.

Proof. Since N0,n(2m1, 2m2, . . . , 2mn) is (by definition) symmetric in m1,m2, . . . ,mn

and so is the right-hand side of (78), we may assume without loss of generality that
m1 > 0 and either m2 > 0 or m2 = · · · = mn = 0. In the first case, Proposition 41
and the identification the right-hand sides of (71) and (78) proved in Proposition 48 of
Appendix B allows to conclude. In the second case, both sides of the equation reduce to
the univariate quasi-polynomial (n− 3)!π

(−1)
n−3,0(m1), equal to (n− 3)!pn−3(m1) if m1 is a

positive integer, and to zero otherwise.

Let us now explain how to recover Theorems 4, 9 and 13 from Theorem 42. As in
Remark 14, let us denote by k the number of half-integers among m1, . . . ,mn. From the
general property that π(εi)

ri,si(mi) is non-zero only if mi − si+1+εi
2 ∈ Z, we see that the

sum in the third line of (78) is non-zero if and only if all the mi’s are integers, i.e. the
map is bipartite (k = 0), in which case it reduces precisely to (n− 3)!pn−3(m1, . . . ,mn).
Similarly, the sum in the second line is non-zero if and only exactly two of the mi’s, say
for i = i1 and i = i2 (1 ≤ i1 < i2 ≤ n), are half-integers, i.e. the map is quasi-bipartite
(k = 2), in which case it reduces to (n− 3)!p̃n−3(mi1 ,mi2 ;m1, . . . , m̌i1 , . . . , m̌i2 , . . . ,mn)
where m̌i` means that the argument mi` is omitted. Therefore, for k = 1 and k ≥ 3, the
only possibly non-zero term is the sum in the first line, which matches precisely the right
hand side of (28). This proves Theorem 13 (where in practice, only even values of k yield
a non-zero result, as it should). In order to recover Theorems 4 and 9, it only remains to
check that the sum in the first line of (78) vanishes in the bipartite and quasi-bipartite
cases. Note that if mi is an integer, π(εi)

ri,si(mi) is non-zero only if si and 1 − εi have the
same parity, a property which, for si ≥ 0 and 1−εi ∈ {0, 1} implies that si ≥ 1−εi. If all
the mi’s are integers, the required constraint

∑n
i=1(1− εi) =

∑n
i=1 si+2 in the definition
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of the set In cannot be fulfilled, hence the sum vanishes. If exactly two of themi’s, say for
i = i1 and i = i2, are half-integers, this same constraint imposes that εi1 = εi2 = 0 and
si1 = si2 = 0 while si = 1− εi for all i 6= i1, i2, hence (

∑n
i=1 εisi) =

∑
i 6=i1,i2(1− εi)εi = 0

and the first sum again vanishes. To summarize, for an even value of k, exactly one of the
three lines in the right-hand side of (78) is not identically zero. Each line corresponds to
one of the mutually exclusive situations k ≥ 4 (first line), k = 2 (second line) and k = 0
(third line), corresponding to Theorem 13, 9 and 4 respectively.

6. Conclusion

In this paper, we have provided an explicit expression for the planar lattice count quasi-
polynomial N0,n(2m1, . . . , 2mn), by extending the slice decomposition to the case of
planar tight maps. Note that, in contrast with previous work such as [BG14; Bud20b], our
approach is not based on generating functions but rather on direct bijective enumeration
techniques.
We note that our most general formula, stated in Theorem 42, still involves a compli-

cated sum over a no less complicated set In. As discussed in the Appendix B, there are
in fact many identities that can be used to rewrite it, and it is not impossible that it
admits a significantly simpler expression yet to be unveiled. A similar remark applies to
our extension of Tutte’s slicings formula given in Theorem 19.
We believe that the methodology of Sections 4 and 5 is quite robust and may be

adapted to other map enumeration problems. A first problem one may think of is a model
of maps with continuous edge lengths, whose set can be associated with a natural volume
measure. The volumes of such measures have been considered by Kontsevich [Kon92],
and, as noted by Norbury, they correspond to the homogeneous top degree part of the
lattice count polynomials, see [Nor10, Theorem 3]. Combining with our Theorem 4, we
immediately obtain the following result (see Norbury’s paper for the definition of V0,n).

Corollary 43. The genus zero volume polynomial V0,n reads explicitly

V0,n(b1, . . . , bn) =
(n− 3)!

22n−7

∑
k1,...,kn≥0

k1+···+kn=n−3

(
bk11 · · · bknn
k1! · · · kn!

)2

. (79)

Still, a direct construction of maps with continuous edge lengths, using continuous
paths and mimicking the above discrete paths encoding for slices, should also be possible
and interesting, and we plan to investigate this question in future work. A second exten-
sion is motivated by the work of Budd [Bud20b] who generalized Norbury’s results to the
case of irreducible maps, i.e. maps with a girth constraint. The slice decomposition of
these maps was discussed in [BG14] in the non-tight case, and we expect it to be adapt-
able to the tighness constraint. Finally, combining these two ideas, namely, passing to
maps with continuous edge lengths and adding an irreducibility constraint, one obtains
irreducible metric maps which have been considered by Budd [Bud20a], who showed that
their volumes are related to the Weil-Petersson volumes of hyperbolic surfaces. We plan

61



to investigate the slice decomposition of these maps, which might shed new light on these
questions.
In another direction, the bijective techniques presented in this paper should pave the

road to the study of continuum limits of random planar tight maps, when the number of
faces tends to infinity. We believe in particular that, as soon as the face degrees are well-
behaved in a certain sense, the Gromov-Hausdorff limit of appropriately renormalized
planar tight maps, seen as discrete metric spaces, should be given by the Brownian sphere.
To this purpose, the recent approach by Marzouk [Mar18; Mar21], dealing with limits
of planar non necessarily tight maps with prescribed face degrees, should be particularly
relevant.
Note that our approach is currently restricted to the planar (i.e. genus 0) case. This

is a current limitation of the slice decomposition. We hope however that this limitation
will be challenged by further investigations. A first result in this vein is the bijective
study of pairs of pants (planar maps with three boundaries) done in [BGM21], and the
fact that general surfaces can be decomposed into pairs of pants gives some support to
our hope.

A. Enumeration of one- and two-type labeled plane forests

This appendix lists the forest enumeration results that we need in this paper. We consider
plane forests (sequences of rooted plane trees) which are labeled (distinct labels are
assigned to the vertices). We start with the case of forests with one type of vertices.

Proposition 44. Let n, k1, . . . , kn be non-negative integers such that k1 + · · ·+ kn < n.
Then, there are exactly (n− 1)! plane forests with n vertices labeled {1, . . . , n}, such that
vertex i has ki children for all i = 1, . . . , n and such that vertex 1 appears in the first
tree. (Such forests consist necessarily of k0 := n− k1 − · · · − kn trees.)

Proof. The case of trees (k0 = 1) is given explicitly in [BM14, Section 5, Equation (18)].
It implies the general case since, for k0 > 1, there is a straightforward bijection between
the set of forests at hand and the set of labeled plane trees such that vertex 1 has
k1 + k0 − 1 children, the number of children of the other vertices being unmodified.

Remark 45. Proposition 44 can alternatively be proved directly by exhibiting a bijection
between the set of forests at hand and the set of cyclic orders on {1, . . . , n}. Such a
bijection is obtained by simply listing the vertex labels of a labeled plane forest in depth-
first order, giving a linear, hence a cyclic, order on {1, . . . , n}. Conversely, from a cyclic
order and the data of the ki’s, we construct a conjugacy class of Łukasiewicz words—see
e.g. [Sta99, Section 5.3]—whose letters are labeled and which contains exactly one word
coding for a plane forest having vertex 1 in the first tree.

We now turn our attention to labeled plane forests with two types of vertices, say A
and B. Our purpose is to enumerate such two-type forests in which, for every vertex, we
prescribe not only its type but also the sequence formed by the types of all its children,
read in the planarity order. Similar counting problems, for an arbitrary number of types,
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have been previously considered in the literature—see e.g. [BS13; BM14; CL16] and
references therein—but since the general formulas are quite complicated we provide a
self-contained derivation for two types. Our approach is closely related with that of
Chottin [Cho81] who treated the case of two-type trees. Handling forests with several
components however involves an extra difficulty, which we circumvent by specializing the
general multitype approach of Bacher and Schaeffer [BS13]. Note that the latter two
references consider plane forests which are unlabeled, but adding vertex labels does not
fundamentally change the problem since plane forests have no symmetries.
To state our result we need some definitions and notation. Let us consider a two-type

plane forest whose vertices are labeled {1, . . . , n}. For every vertex i = 1, . . . , n, we
denote by ki its number of children, and we let w(i) = (w

(i)
0 , w

(i)
1 , . . . , w

(i)
ki

) ∈ {A,B}ki+1

be the sequence such that w(i)
0 is the type of i and such that, for every j = 1, . . . , ki,

w
(i)
j is the type of the j-th child of i in the planarity order. We also define a sequence

w(0) = (w
(0)
0 , w

(0)
1 , . . . , w

(0)
k0

) where k0 is the number of trees of the forest, w(0)
0 is a third

type denoted O and, for j = 1, . . . , k0, w
(0)
j is the type of the j-th root, i.e. of the root

vertex of the j-th tree of the forest. In this sense, 0 can be seen as the label of a super-root
of type O, which is the parent of all the roots (which have the usual types A or B).
The collectionw = (w(0), w(1), . . . , w(n)) is called the type array of the forest. Denoting

by [·] the Iverson bracket ([P ] is equal to 1 if P is true, and to 0 otherwise), we have
necessarily

n∑
i=1

[
w

(i)
0 = A

]
=

n∑
i=0

ki∑
j=1

[
w

(i)
j = A

]
:= a (80)

as seen by expressing in two different ways the number a of type A vertices. Similarly,
the number b of type B vertices is given by

n∑
i=1

[
w

(i)
0 = B

]
=

n∑
i=0

ki∑
j=1

[
w

(i)
j = B

]
:= b. (81)

Note that, by adding these two equations, we obtain the relation n = k0 + k1 + · · · +
kn already seen in the context of one-type forests in Proposition 44. An array w =

(w
(i)
j )i=0,...,n

j=0,...,ki
with w(0)

0 = O and w(i)
j ∈ {A,B} for i, j not both zero is said consistent if

it satisfies (80) and (81).

Proposition 46. Let w be a consistent array, and let a and b be as defined in (80) and
(81), respectively. Define furthermore the integers

aO :=

k0∑
j=1

[
w

(0)
j = A

]
, aB :=

n∑
i=1

ki∑
j=1

[
w

(i)
0 = B

] [
w

(i)
j = A

]
, (82)

bO :=

k0∑
j=1

[
w

(0)
j = B

]
, bA :=

n∑
i=1

ki∑
j=1

[
w

(i)
0 = A

] [
w

(i)
j = B

]
, (83)
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namely aO and bO correspond to the number of type A and type B roots, respectively,
while aB is the number of type A vertices with a type B parent, and vice versa for bA.
Then, we have the following enumerative formulas.

• (General enumeration) The number of two-type labeled plane forests of type array
w—thus containing a type A and b type B vertices—is equal to

(aObO + aObA + aBbO)(a− 1)!(b− 1)! if a > 0 and b > 0,
aO(a− 1)! if a > 0 and b = 0,
bO(b− 1)! if a = 0 and b > 0,
1 if a = 0 and b = 0.

(84)

• (Constrained enumeration) Assume that, say, a > 1 and w(1)
0 = A, i.e. vertex 1 has

type A. Then, the number of two-type labeled plane forests of type array w such
that vertex 1 is in the first tree is equal to

(bO + bA)(a− 1)!(b− 1)! if b > 0 and w(0)
1 = A,

aB(a− 1)!(b− 1)! if b > 0 and w(0)
1 = B,

(a− 1)! if b = 0.
(85)

(The first and second cases correspond to a first root of type A and B, respectively.)

Proof. Let us first note that the cases where a or b vanish follow immediately from
Proposition 44 (for the general enumeration, we perform a circular permutation of the
trees to lift the constraint that vertex 1 is in the first tree, giving the extra factor aO or
bO). Hence, we assume from now on that a and b are both positive.
We claim that the general enumeration formula follows from the constrained one.

Indeed, we may partition the set of forests of type array w according to the index
j = 1, . . . , k0 of the tree containing vertex 1. Upon doing a circular permutation of the
trees, we deduce from (85) that, for w(1)

0 = A, the number of forests with a given value
of j is equal to (bO + bA)(a−1)!(b−1)! if w(0)

j = A, and to aB(a−1)!(b−1)! if w(0)
j = B.

As the first (resp. second) case occurs for aO (resp. bO) values of j, summing over j gives
the first line of (84). The case w(1)

0 = B is deduced by exchanging the roles of A and B.
It remains to prove the constrained enumeration formula. We will do so by giving an

algorithm to construct any forest of type array w, where it will be manifest that the
number of possibilities is given by (85). The algorithm is easier to visualize if, instead
of working with labels 0, 1, . . . , n, we relabel the vertices as O,A1, . . . , Aa, B1, . . . , Bb
to make their type apparent (as the type array w is fixed, this may be done by fixing
a bijection between {0, 1, . . . , n} and {O,A1, . . . , Aa, B1, . . . , Bb} hence does not change
the counting problem). The general idea, illustrated on Figure 18, is to proceed in several
stages, by first “assembling” the type B vertices together, before dealing with the types
A and O vertices. Let us describe the different stages of the algorithm in detail.
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Figure 18: Construction of a two-type forest in the case w(1)
0 = B. See the main text

for a precise description of the stages I-V. We display the type A (resp. B)
vertices and dangling A-edges (resp. B-edges) with squares (resp. circles). The
distinguished dangling edges are indicated with arrows.

I. We start with isolated vertices O,A1, . . . , Aa, B1, . . . , Bb, to which we attach se-
quences of dangling A-edges and B-edges: these dangling edges will be connected
later to type A and B vertices, respectively. The type array w tells us precisely
the sequence which we have to attach to each vertex. We define a total order on
the dangling edges by listing those incident to O, then those incident to A1, etc.
We distinguish the first edge incident to O: it has type w(1)

0 . We then distinguish
another dangling edge of the opposite type:

– if w(1)
0 = A, then we distinguish a B-edge incident either to O or to a type A

vertex: there are bO + bA possible choices,

– if w(1)
0 = B, then we distinguish an A-edge incident to a type B vertex: there

are aB possible choices.

II. We form a plane forest with the vertices B1, . . . , Bb, by attaching them together
via their incident B-edges. By Proposition 44, there are (b − 1)! ways to do so
(with B1 in the first tree). A simple computation shows that the resulting forest
is made of bO + bA trees. If w(1)

0 = B, we permute the trees circularly so that the
tree containing the distinguished A-edge comes first.

III. We attach the roots of the forest constructed at stage II to the B-edges (in number
bO + bA) dangling from O,A1, . . . , Aa. Precisely, we attach the root of the first
tree to the distinguished B-edge, and we then proceed circularly using the order
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on dangling edges defined at stage I. Note that all the B-edges have now been
matched to type B vertices. We end up with a sequence of supernodes, which are
trees with roots O,A1, . . . , Aa, subtrees made of type B vertices, and dangling A-
edges. Observe that the distinguished A-edge always belongs to the supernode with
root O (precisely, the first edge incident to O is either the distinguished A-edge
when w(1)

0 = A, or leads to a subtree which contains it when w(1)
0 = B).

IV. Viewing the supernodes as compound vertices, we form a plane forest with aO trees
by assembling the supernodes with roots A1, . . . , Aa via their dangling A-edges.
Note that the number of “children” of a supernode is prescribed by its number of
dangling A-edges. By Proposition 44, there are (a− 1)! ways to do so (with A1 in
the first tree).

V. We then complete the construction by attaching these trees to the A-edges of
the supernode with root O, starting with the first tree which we attach to the
distinguished A-edge, and then proceeding circularly using the order of stage I.
All dangling edges have now been matched, and vertex 1 is in the first tree by
construction.

It is plain from stage I that we obtain a forest of type array w. Furthermore, each such
forest is obtained in precisely one way, as we may check that it is obtained for a unique
choice of the second distinguished dangling edge at stage I 8 and of the one-type forests
at stages II and IV.

Remark 47. The factor aObO +aObA +aBbO in (84) corresponds to a sum over the three
Cayley trees on the set {O,A,B}. For k types of vertices there would be as many terms
as Cayley trees on a set with k + 1 elements [BS13].

B. Symmetrizing the planar lattice count quasi-polynomials

Let us fix an integer n ≥ 3 and denote by Π(m1, . . . ,mn) the right-hand side of (71). It
is manifest that it is a quasi-polynomial in 2m1, . . . , 2mn of degree n − 3, since π(ε)

r,s(m)
is a univariate quasi-polynomial in 2m of degree r + s. The purpose of this appendix
is to show that Π(m1, . . . ,mn) is in fact symmetric in m1, . . . ,mn, which we will do by
rewriting it in a manifestly symmetric form. Note that the expression (71) displays a
symmetry in m4, . . . ,mn only. Here we assume only that mi ∈ Z/2, i = 1, . . . , n without
further restriction.
It is useful to introduce compact notations for the high-dimensional sums appearing

8Precisely, if w(0)
1 = A then the distinguished B-edge corresponds to the edge closest to B1 attached

to a parent not of type B, and if w(0)
1 = B then the distinguished A-edge corresponds to the parent

edge of the oldest type A ancestor of A1.
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in (71). Let I be the finite subset of {0, 1}n × Zn≥0 × Zn≥0 defined by

I :=


 ε1, . . . , εn

r1, . . . , rn
s1, . . . , sn

 :

n∑
i=1

εi =
n∑
i=1

ri + 1

n∑
i=1

(1− εi) =
n∑
i=1

si + 2

 . (86)

Given a tuple in I, we set

r :=
n∑
i=1

ri, s :=
n∑
i=1

si, (87)

and note that r+ s = n− 3 by the definition of I. Let Ir≥1, Ir=0, Is≥1, and Is=0, be the
subsets of I consisting of tuples such that r ≥ 1, r = 0, s ≥ 1, and s = 0, respectively.
Note that the set In introduced in (29) corresponds in our present notations to Is≥1.
Note also that Ir=0 consists of tuples such that ri = 0 for all i, exactly one εi is equal to
1, and s1 + · · · + sn = s = n − 3. Similarly, Is=0 consists of tuples such that si = 0 for
all i, exactly two εi are equal to 0, and r1 + · · ·+ rn = r = n− 3.
For e1, e2 ∈ {0, 1}, we let I(e1,e2) be the subset of I consisting of tuples such that

ε1 = e1 and ε2 = e2. We also allow for the value e1 = −1, which means that we consider
tuples such that ε1 = −1, keeping the sum condition in (86) unchanged. The notations
I

(e1,e2)
r≥1 , etc, should hopefully be self-explanatory. Note that I(−1,1)

s=0 consists of tuples
such that si = 0 for all i, ε1 = −1 and εi = 1 for all i ≥ 2, and r1 + · · ·+ rn = r = n− 3.
We finally use, for ε ∈ {0, 1}, the shorthand notation ε̄ := 1 − ε (which we shall never
use for ε = −1).
Armed with all these notations, we can rewrite Π(m1, . . . ,mn)9 as

Π(m1, . . . ,mn) =
∑

I
(−1,1)
s≥1 ∪I(0,0)s≥1

r!(s− 1)!

ε3(s1 + s2) +
n∑
j=3

εjsj

 n∏
i=1

π(εi)
ri,si(mi)

+
∑

I
(0,1)
r≥1 ∪I

(1,0)
r≥1

(r − 1)!s!

ε̄3(r1 + r2) +
n∑
j=3

ε̄jrj

 n∏
i=1

π(εi)
ri,si(mi)

+
∑

I
(−1,1)
s=0 ∪I(0,0)s=0 ∪I

(0,1)
r=0 ∪I

(1,0)
r=0

r!s!
n∏
i=1

π(εi)
ri,si(mi).

(88)

Here, the first (resp. second) sum corresponds to the first (resp. second) sum in (71)
when at least one of the si’s (resp. one of the ri’s) is non zero, hence when s ≥ 1
(resp. r ≥ 1); the third sum accounts for the conventional values in (71): (ε3(s1 + s2) +∑n

i=3 εisi)(
∑n

i=1 si − 1)!→ 1 = s! when all the si’s are zero (or equivalently s = 0) and
(ε̄3(r1 +r2)+

∑n
i=3 ε̄iri)(

∑n
i=1 ri−1)!→ 1 = r! when all the ri’s are zero (or equivalently

r = 0).
9Here we use the shorthand notation

∑
J

(·) for
∑(ε1,...,εn

r1,...,rn
s1,...,sn

)
∈J

(·).
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The main result of this appendix is:

Proposition 48. The quasi-polynomial Π(m1, . . . ,mn) is symmetric in m1, . . . ,mn and
admits the expression

Π(m1, . . . ,mn) =∑
Is≥1

r!(s− 1)!

 n∑
j=1

εjsj

 n∏
i=1

π(εi)
ri,si(mi) +

∑
I
(−1,1)
s=0 ∪Is=0

r!s!
n∏
i=1

π(εi)
ri,si(mi). (89)

Note that the sum over I(−1,1)
s=0 is equal to (n − 3)!

∑
r1+···+rn=n−3

π
(−1)
r1,0

(m1)
n∏
i=2

π
(1)
ri,0

(mi)

which is equal to the symmetric polynomial (n − 3)!pn−3(m1, . . . ,mn) when all mi are
integers, and to zero otherwise, hence it is symmetric like the rest.

The expression above for Π(m1, . . . ,mn) is precisely the right-hand side of (78). In-
deed, we already noticed that Is≥1 is nothing but the set In defined in (29), hence the
sum over Is≥1 gives the first term in the right-hand side of (78). Furthermore, the set
Is=0 consists of tuples such that si = 0 for all i, exactly two εi are equal to 0, and
r1 + · · · + rn = r = n − 3, hence the sum over Is=0 corresponds to the second term in
(78). Finally, the sum over I(−1,1)

s=0 corresponds to the third term in (78).

In order to prove Proposition 48, we will first record the following:

Proposition 49. The univariate polynomials π(ε)
r,s(m) satisfy the relations

sπ(ε)
r,s(m) = (r + 1)π

(ε+1)
r+1,s−1(m), (90)

π(1)
r,s (m) = π(−1)

r,s (m) + π
(−1)
r−1,s(m), (91)

sπ(1)
r,s (m) = (r + 1)π

(0)
r+1,s−1(m) + rπ

(0)
r,s−1(m), (92)

valid for all r, s ≥ 0 and all integer ε, with the convention that π(ε)
−1,s = π

(ε)
r,−1 = 0.

Proof. The first relation follows immediately from the mere definition (26) of π(ε)
r,s(m).

For the two other ones, we make use of the “dilaton-like” equation

kpk,e+2(m) = kpk,e(m) + (k − e)pk−1,e(m) (93)

which can be checked from the definition (25) of pk,e(m) and is valid for all k ≥ 0, with
the convention that p−1,e(m) = 0. This dilaton-like equation implies immediately (91),
and to get (92) we first apply (90) at ε = 1 then the dilaton-like equation to go back
from π(2)’s to π(0)’s.

Lemma 50 (Transmutation relations). For any j = 1, . . . , n, we have

∑
Is≥1

r!(s− 1)!(ε̄jsj)
n∏
i=1

π(εi)
ri,si(mi) =

∑
Ir≥1

(r − 1)!s!(εjrj)
n∏
i=1

π(εi)
ri,si(mi). (94)
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We also have the four identities

∑
I
(−1,1)
s≥1

r!(s− 1)! ε3s1

n∏
i=1

π(εi)
ri,si(mi) =

∑
I
(0,1)
r≥1

(r − 1)!s! ε3r1

n∏
i=1

π(εi)
ri,si(mi),

∑
I
(−1,1)
s≥1

r!(s− 1)! ε3s2

n∏
i=1

π(εi)
ri,si(mi)

(∗)
=
∑
I
(1,−1)
s≥1

r!(s− 1)! ε3s2

n∏
i=1

π(εi)
ri,si(mi)

=
∑
I
(1,0)
r≥1

(r − 1)!s! ε3r2

n∏
i=1

π(εi)
ri,si(mi),

∑
I
(1,0)
s≥1

(r − 1)!s! ε̄3r1

n∏
i=1

π(εi)
ri,si(mi) =

∑
I
(0,0)
r≥1

r!(s− 1)! ε̄3s1

n∏
i=1

π(εi)
ri,si(mi),

∑
I
(0,1)
s≥1

(r − 1)!s! ε̄3r2

n∏
i=1

π(εi)
ri,si(mi) =

∑
I
(0,0)
r≥1

r!(s− 1)! ε̄3s2

n∏
i=1

π(εi)
ri,si(mi).

(95)

Finally, for j ≥ 3 we have

∑
I
(−1,1)
s≥1

r!(s− 1)!(εjsj)

n∏
i=1

π(εi)
ri,si(mi) =

∑
I
(1,1)
r≥1

(r − 1)!s!(ε̄jrj)
n∏
i=1

π(εi)
ri,si(mi). (96)

Proof. In the left-hand side of (94), the only contributing tuples are those with εj = 0.
By applying the relation (90) to the factor sjπ

(0)
rj ,sj (mj) appearing in the product, and

by performing the change of variables ε̄j → εj , rj + 1 → rj , sj − 1 → sj (leaving all
other elements of the tuples unchanged), we obtain precisely the nonzero terms of the
right-hand side.
The proof of the first and third identities in (95) is entirely similar, applying now (90)

to the factor s1π
(ε1)
r1,s1(m1) (with ε1 = −1, 0) appearing in the left-hand side of the first

identity (with ε1 = −1) and in the right-hand side of the third one (with ε1 = 0) . For
the second and fourth identities, we proceed in the same way (now with ε2 = −1, 0), after
noting that that it is possible to first replace I(−1,1)

s≥1 by I(1,−1)
s≥1 in the second identity (as

indicated by the
(∗)
= sign) using (91) and appropriate changes of variables.

For (96), we apply (92) to the factor sjπ
(1)
rj ,sj (mj) in the left-hand side (as only the

tuples with εj = 1 contribute), and we apply (91) to the factor π(1)
r1,s1(m1) in the right-

hand side. Appropriate changes of variables then show that the difference vanishes.

Proof of Proposition 48. Note that the left-hand sides of (95) all appear in (88), up to ε3
or ε̄3 prefactors. Changing them into the associated right-hand sides in (95), and using
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ε3 + ε̄3 = 1, allows to write (88) as

Π(m1, . . . ,mn) =
∑
I
(−1,1)
s≥1

r!(s− 1)!

 n∑
j=3

εjsj

 n∏
i=1

π(εi)
ri,si(mi)

+
∑
I
(0,0)
s≥1

r!(s− 1)!

s1 + s2 +

n∑
j=3

εjsj

 n∏
i=1

π(εi)
ri,si(mi)

+
∑

I
(0,1)
r≥1 ∪I

(1,0)
r≥1

(r − 1)!s!

 n∑
j=1

ε̄jrj

 n∏
i=1

π(εi)
ri,si(mi)

+
∑

I
(−1,1)
s=0 ∪I(0,0)s=0 ∪I

(0,1)
r=0 ∪I

(1,0)
r=0

r!s!

n∏
i=1

π(εi)
ri,si(mi).

(97)

By the transmutation relation (96), we may replace the sum over I(−1,1)
s≥1 in the first

line by a sum over I(1,1)
r≥1 in the third line. This gives a sum over I(0,1)

r≥1 ∪ I
(1,0)
r≥1 ∪ I

(1,1)
r≥1

which we can rewrite as a sum over Ir≥1 minus a sum over I(0,0)
r≥1 . We claim that this

latter sum will almost cancel the sum over I(0,0)
s≥1 in the second line. Indeed, by writing

s1 +s2 +
∑n

j=3 εjsi = s−
∑n

j=3 ε̄jsj in the sum over I(0,0)
s≥1 , and

∑n
j=1 ε̄jrj = r−

∑n
j=3 εjrj

in the sum over I(0,0)
r≥1 , we see using the transmutation relation (94) that their difference

evaluates to∑
I
(0,0)
s≥1

−
∑
I
(0,0)
r≥1

 r!s!
n∏
i=1

π(εi)
ri,si(mi) =

∑
I
(0,0)
r=0

−
∑
I
(0,0)
s=0

 r!s!
n∏
i=1

π(εi)
ri,si(mi). (98)

Observe that the sum over I(0,0)
s=0 precisely cancels the one appearing in the last line

of (97), and the sums over I(0,0)
r=0 , I(0,1)

r=0 and I(1,0)
r=0 combine to form a sum over Ir=0. We

arrive at the expression

Π(m1, . . . ,mn) =∑
Ir≥1

(r − 1)!s!

 n∑
j=1

ε̄jrj

 n∏
i=1

π(εi)
ri,si(mi) +

∑
I
(−1,1)
s=0 ∪Ir=0

r!s!
n∏
i=1

π(εi)
ri,si(mi) (99)

which is interesting on its own, since it is already symmetric in m1, . . . ,mn, see again
the remark below (89). To obtain the wanted final expression, we write

∑n
j=1 ε̄jrj =

r−
∑n

j=1 εjrj in the sum over Ir≥1 and apply again the transmutation relation (94) and
the identity (98), changing the sum over Ir≥1 and that over Ir=0 into the sum over Is≥1

and that over Is=0 of (89), leaving the sum over I(−1,1)
s=0 unchanged.
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