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Abstract

The spectrum of dileptons produced by the quark-gluon plasma in an ultrarelativistic nucleus-nucleus collision depends
only, to a good approximation, on the transverse massMt of the dilepton. This scaling is exact as long as transverse flow
is negligible, and the system is in local thermal equilibrium. We implement a state-of-the-art modelization of kinetic and
chemical equilibration in the early stages of the evolution to study the modifications of the spectrum. Violations of Mt

scaling resulting from these effects are evaluated as a function of the shear viscosity to entropy ratio (η/s) that controls
the equilibration time. We determine the dependence of the spectrum on system size, centrality, rapidity, and collision
energy. We show that the quark-gluon plasma produces more dileptons than the Drell-Yan process up to invariant masses
of order M ∼ 4 GeV. Due to different kinematics, for a given Mt, the dependence of the dilepton yield on M is opposite
for the two processes, so that experiment alone can in principle determine which process dominates.

1. Introduction

An ultrarelativistic nucleus-nucleus collision produces
strongly-interacting matter which rapidly thermalizes into
a hot quark-gluon plasma (QGP) [1]. This plasma expands
freely into the vacuum and eventually cools down into a gas
of hadrons. Electron-positron and muon-antimuon pairs,
referred to as dileptons, are created throughout the history
of the QGP by quark-antiquark annihilation. Once pro-
duced, they reach the detector without any further inter-
action, so that they probe the entire space-time dynamics,
including the early stages of the collision. In particular,
they carry unique information about the thermalization
of the QGP [2]. Dileptons produced by the QGP can be
separated from those produced later on in the hadronic
phase using the invariant mass, M , of the pair as a selec-
tion criterion. Specifically, the contribution of the QGP
dominates for M & 1.2 GeV [3, 4].

This QGP dilepton production can be studied not only
as a function of the invariant mass M , but also as a
function of the momentum of the dilepton. It has long
been known [5] that at a given rapidity y, the spectrum
dN l+l−/d4K, where K is the 4-momentum of the dilep-
ton, should depend only on the transverse mass Mt ≡√
M2 + k2

t , where kt is the transverse momentum of the
dilepton, provided that the QGP is in local equilibrium,
and that the production occurs early enough that trans-
verse flow is negligible. We improve over this seminal
work by implementing a state-of-the-art treatment of pre-
equilibrium dynamics [6], still neglecting transverse flow.
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We study the effect of kinetic and chemical equilibration
on the Mt spectrum, and the deviations from Mt scaling
that they induce.

In Sec. 2, we explain when and why Mt scaling is ex-
pected, and we rederive the expression obtained by McLer-
ran and Toimela for the Mt distribution [5]. In Sec. 3,
we discuss qualitatively, using dimensional analysis, the
effects of pre-equilibrium dynamics. Quantitative results
are presented in Sec. 4. The setup of our calculation is
the same as in our previous work [6], in which we only
calculated the mass spectrum of dileptons, integrated over
momentum. We first briefly recall this setup, and we show
our results for the QGP dilepton spectrum in Pb+Pb col-
lisions at

√
sNN = 5.02 TeV. We show how the shear vis-

cosity over entropy ratio η/s at early times, which governs
the thermalization of the QGP, can be extracted from the
spectrum. In Sec. 5, we evaluate the dilepton spectrum
resulting from the Drell-Yan process, i.e, the annihilation
of quarks and antiquarks belonging to incoming nuclei [7],
and we compare this background with the QGP spectrum.

2. Transverse mass scaling

It has long been known that in a hadronic gas in ther-
mal equilibrium, the transverse momentum spectra of all
identified hadrons fall on the same curve when plotted
as a function of their transverse mass Mt [8, 9, 10, 11].
This follows from the fact that the phase-space distri-
bution of particles within the gas is a Boltzmann factor
dN/d3pd3x = exp(−E/T ), where E is the energy of the
particle, T the temperature, and we have neglected the
small effects of quantum statistics. Writing E =Mt cosh y,
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where y is the rapidity, and integrating over the rapidity,
the resulting distribution only depends on Mt.

This argument does not immediately apply to dileptons
because they cease to interact as soon as they are pro-
duced. Therefore, dileptons produced by an equilibrated
QGP are not themselves in thermal equilibrium. How-
ever, transverse mass scaling still holds, for reasons which
we now explain.

Dilepton production occurs through the production of a
virtual photon, which then decays into a lepton-antilepton
pair. What one calls the 4-momentum of the dilepton,
K, is actually the 4-momentum of the virtual photon. To

leading order in perturbation theory, the production of
the virtual photon occurs through a 2 → 1 process: The
annihilation of a quark, with 4-momentum P1, and an an-
tiquark, with 4-momentum P2, into a virtual photon with
4-momentum K = P1 + P2. We denote the phase space
distributions of quarks and antiquarks by fq(x,p1) and
fq̄(x,p2), respectively, where x denotes space-time coor-
dinates. The rate of dilepton production is obtained by
integrating the transition rate over all possible values of
p1 and p2, taking energy-momentum conservation into ac-
count:

dN l+l−

d4xd4K
=

∫
d3p1

(2π)32p1

d3p2

(2π)32p2
fq(x,p1)fq̄(x,p2)|A|2(2π)4δ(4)(P1 + P2 −K), (1)

where A is the Lorentz-invariant amplitude of the process, which is not modified by the thermal medium to leading
order in perturbation theory. We have neglected quark masses so that the invariant phase-space element is just d3pi/pi,
with i = 1, 2, and pi ≡ |pi|. In a baryonless thermal fluid at rest, fq(x,p) = fq̄(x,p) = exp(−p/T (x)) (assuming
Boltzmann statistics), where T (x) is the temperature at space-time point x. Conservation of energy then implies
fq(x,p1)fq̄(x,p2) = exp(−k0/T (x)), which can be moved outside the integral:

dN l+l−

d4xd4K
= e−k

0/T (x)

∫
d3p1

(2π)32p1

d3p2

(2π)32p2
|A|2(2π)4δ(4)(P1 + P2 −K). (2)

The pre-factor on the right-hand side is the Boltzmann
factor corresponding to the dilepton, and the rest is a
non-trivial kinematic integral involving the scattering am-
plitude, which could in principle depend on the four-
momentum K. We show that it is in fact independent
of K.

First, one notes that the integrand is a Lorentz scalar.
If one neglects quark and lepton masses, the only Lorentz-
invariant scale is the invariant mass M = (KµKµ)

1/2 of
the dilepton, hence the integral can only depend on M .
This dependence can be obtained through dimensional
analysis. The left-hand side of Eq. (2) is dimensionless
in natural units ~ = c = 1, therefore, the integral in the
right-hand side is also dimensionless. This implies that it
is actually independent of M .

For a fluid at rest, we have demonstrated that

dN l+l−

d4xd4K
= C exp

(
− k0

T (x)

)
, (3)

where C is a dimensionless constant. Now, since
dN l+l−/d4xd4K is a Lorentz scalar, the result for a mov-
ing fluid is identical, provided that one replaces k0 with
the dilepton energy in the rest frame of the fluid.

The dilepton spectrum is obtained by integrating the
production rate over the space-time coordinates xµ. We
assume that the QGP is invariant under longitudinal
boosts [12]. Then, its space-time volume can be rewritten
as d4x = d2x⊥τdτdyf , where x⊥ is the transverse position,
τ ≡

√
t2 − z2 the proper time and yf = artanh(z/t) the

fluid rapidity. Finally, we neglect transverse flow. Then,

the dilepton energy in the fluid rest frame is Mt cosh(y −
yf ). The dilepton spectrum is:

dN l+l−

d4K
= C

∫
dx⊥

∫ ∞
0

τdτ

∫ +∞

−∞
dyf exp

(
−Mt cosh(y − yf )

T (x⊥, τ)

)
.

(4)
It is independent of y, as a consequence of the assumed
longitudinal boost invariance. It depends on kt and M
only through Mt, which is the property of transverse mass
scaling. As can be seen from the above argument, Mt

scaling is a robust property of the leading-order dilepton
production, which is independent of the detailed dynam-
ics, and simply follows from symmetry and dimensional
analysis. One expects it to be broken by next-to-leading
order perturbative corrections, which are smaller than the
leading-order contribution [13], and by non-perturbative
dynamics [14, 15]. For leading-order production, an ex-
plicit calculation gives the expression of the proportional-
ity constant C in Eq. (3) [6, 16]:

C =
Ncα

2

12π4

∑
f

q2
f , (5)

where Nc = 3 is the number of quark colors, α is the fine
structure constant,

∑
f denotes the summation over quark

flavors, qf is the quark electric charge, 2
3 for u and − 1

3 for
d and s.

We now derive the explicit form of the Mt spectrum
assuming that the equation of state of the QGP is con-
formal [17], which is approximately true at high tempera-
tures, and implies that τT (x⊥, τ)3 is independent of τ [12].
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Then, the integral over τ in Eq. (4) can easily be done ana-
lytically using the change of variables τ = x3. The integral
over the fluid rapidity yf can also be done analytically. We
further simplify the problem (although this simplification
is not essential) by assuming that the temperature profile
is uniform within a transverse area A⊥, that is, T (x⊥, τ)
is independent of x⊥. We obtain:(

dN l+l−

d4K

)
ideal

=
32Ncα

2
∑
f q

2
f

π4

A⊥(τT
3)2

M6
t

, (6)

which is the McLerran-Toimela M−6
t spectrum [5]. The

subscript ideal refers to the fact that local equilibrium
holds at all times, which in turn implies that the expansion
is ruled by ideal hydrodynamics.

Note that the Mt spectrum is a power law. This seems
to contradict the expectation from lower energies that
the Mt spectrum should be exponential, with the inverse
slope measuring the effective temperature probed by dilep-
tons [18, 19, 20, 21]. The contradiction is only apparent.
Larger values of Mt are produced at earlier times, when
the temperature is higher. Therefore, the effective tem-
perature depends on Mt:

Teff(Mt) ≡ −

[
d

dMt
ln

(
dN l+l−

d4K

)]−1

=
Mt

6
. (7)

It is the integration over time which converts the exponen-
tial spectrum into a power law [5].

The constant τT 3 in Eq. (6) is proportional to the
charged multiplicity per unit rapidity [22], and inversely
proportional to A⊥ [6]. Our estimates for Pb+Pb colli-
sions at

√
sNN = 5.02 TeV near mid-rapidity in the 0−5%

centrality range are:

A⊥ = 104 fm2 = 2670 GeV−2

τT 3 = 10.3 fm−2 = 0.40 GeV2. (8)

These values will be used in Sec. 4, where we show that
our numerical results smoothly converge to Eq. (6) when
the viscosity over entropy ratio η/s, which controls the
deviations from equilibrium, goes to zero.

Finally, the spectrum (6) can be integrated over Mt for
fixedM . The resulting invariant mass spectrum is propor-
tional to M−3 [5]:(

dN l+l−

dMdy

)
ideal

= 2πM

∫ ∞
M

MtdMt

(
dN l+l−

d4K

)
ideal

=
16Ncα

2
∑
f q

2
f

π3

A⊥(τT
3)2

M3
. (9)

3. Pre-equilibrium dynamics: qualitative discus-
sion

We now discuss qualitatively the effects of pre-
equilibrium dynamics. Several effects must be taken into
account:

• The time dependence of the temperature is modified
due to the anisotropy of the momentum distribution
of quarks and gluons.

• The quark momentum distribution entering the pro-
duction rate (1) is anisotropic.

• Quarks are underpopulated relative to gluons.

The first two effects correspond to kinetic equilibration,
while the third corresponds to chemical equilibration. At
the end of this section, we also discuss the qualitative ef-
fects of transverse flow, which is not included in our nu-
merical results.

For this qualitative discussion, we model the depar-
ture from local thermal equilibrium by replacing ideal hy-
drodynamics with Navier-Stokes viscous hydrodynamics.
The relative order of magnitude of viscous corrections can
then be derived on the basis of dimensional analysis. The
largest term in the energy-momentum tensor of an ideal
fluid is proportional to ε+P = Ts [23]. The correction in-
volving the shear viscosity η is a gradient [17]. In the early
stages of the collision, due to the fast longitudinal expan-
sion, the largest gradient is the time derivative, which is
of order 1/τ for dimensional reasons. Hence, the viscous
term is of order η/τ , while the ideal term is of order Ts.
The ratio of the two is the inverse Reynolds number, which
depends on τ :

Re−1(τ) ≡ η

s

1

τT (τ)
. (10)

Now, dileptons with a transverse mass Mt are dominantly
produced when the temperature T (τ) is of the order ofMt.
This occurs at a time τ proportional to (τT 3)/M3

t , where
we recall that τT 3 is approximately constant. Inserting
these orders of magnitude of T (τ) and τ into Eq. (10), we
obtain the order of magnitude of the relevant Reynolds
number, which now depends on Mt:

Re−1(Mt) ≡
η

s

M2
t

τT 3
. (11)

The relative correction to the dilepton yield due to pre-
equilibrium dynamics is of the order of Re−1(Mt). As we
shall see in Sec. 4, this dimensional reasoning is confirmed
by numerical calculations.

We now discuss, still at the qualitative level, the break-
ing of Mt scaling which is expected when the plasma is
not in local equilibrium. The first effect is that the quark
momentum distribution is no longer isotropic. Due to the
fast longitudinal expansion, longitudinal momenta in the
comoving frame are typically much smaller than tranverse
momenta [2]. In order to evaluate the qualitative effect
of this momentum anisotropy on dilepton emission, we
consider the extreme case where quark distributions are
purely transverse, still assuming, for simplicity, that they
are Boltzmann distributions:

fq,q̄(x,p) ∝ δ(pz) exp(−p/T (x)), (12)
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where the proportionality factor has dimension of energy.
Inserting this expression into Eq. (1), and dropping the
constant proportionality factors, one obtains

dN l+l−

d4xd4K
∝ e−k

0/T (x)δ(kz)

∫
d2p1

p1

d2p2

p2
|A|2δ(3)(P1 + P2 −K),

(13)
where the integration only runs over the transverse mo-
menta, and we have factored out δ(kz), so that the Dirac
constraint inside the integral is now in 2+1 dimensions
(transverse momentum and energy). The integrand is in-
variant under Lorentz transformations in 2+1 dimensions,
which again implies that the integral can only depend on
the invariant mass of the dilepton, M . Dimensional anal-
ysis of Eq. (1) shows that the scattering amplitude A is
dimensionless, such that the integral in Eq. (13) has the
mass dimension −1, and is therefore proportional to 1/M.
Explicitly, the integral evaluates to 2π|A|2/M . The factor
δ(kz) can be rewritten as (1/Mt)δ(y), where y is the ra-
pidity of the dilepton. In a reference frame where the fluid
has rapidity yf , this becomes (1/Mt)δ(y − yf ). Finally,
since kz = 0, the energy of the dilepton coincides with its
transverse mass, and one obtains:

dN l+l−

d4xd4K
∝ exp

(
− Mt

T (x)

)
1

Mt
δ(y − yf )

1

M
. (14)

The dilepton spectrum is obtained by integrating over the
space-time history of the fluid, as in Eq. (4). One obtains

dN l+l−

d4K
∝ 1

MtM

∫
dx⊥

∫ ∞
0

τdτ exp

(
− Mt

T (x⊥, τ)

)
.

(15)
Mt scaling is broken by the factor 1/M , which results from
the reduced dimensionality of the phase-space integral in
Eq. (13). For a givenMt, dN l+l−/d4K is smaller for larger
values of M . As we shall see in Sec. 4, this hierarchy is
borne out by numerical calculations.

The other effect of pre-equilibrium dynamics is that
the relative abundances of quarks and antiquarks are
smaller than thermal abundances in the early stages of
the collision. The collision between the incoming nuclei
creates mostly gluons [24]. Quark-antiquark pairs are
then gradually produced by collisions between gluons [25].
Since dileptons are produced by quark-antiquark annihi-
lation, quark suppression implies a suppression of dilep-
ton production [26]. In our kinetic theory description,
the viscosity over entropy ratio η/s also controls the ap-
proach to chemical equilibration. Therefore, the suppres-
sion of dilepton production due to quark suppression fol-
lows the above dimensional analysis, and should scale like
Re−1(Mt) in Eq. (11). It depends only on Mt, so that
quark suppression by itself should not break Mt scaling.
However, it occurs in the early stages where the largest
breaking ofMt scaling is expected. Therefore, one expects
the breaking to be milder when quark suppression is in-
cluded. We will check this in Sec. 4.

The last effect which breaks Mt scaling is transverse
flow. The transverse fluid velocity is proportional to τ
at early times [23, 27, 28]. Therefore, transverse flow be-
comes more and more important as time goes by. Since the
time of dilepton production decreases with Mt like M−3

t ,
one expects that effects of transverse flow become negli-
gible if Mt is large enough [19]. The qualitative effect of
transverse flow on Mt scaling is the following [29]: For
a given Mt, the transverse boost enhances dilepton pro-
duction for larger kt or, equivalently, smaller values of M .
Note that this effect is qualitatively similar to the effect
of pre-equilibrium dynamics discussed above. It has been
seen experimentally by the NA60 Collaboration [30]. We
do not model transverse flow, therefore, we cannot assess
quantitatively the breaking of Mt scaling resulting from
it. However, we will estimate in Sec. 4 the range of Mt for
which transverse flow is likely to be important.

4. Pre-equilibrium dynamics: quantitative results

We now present quantitative estimates of QGP dilepton
production in Pb+Pb collisions at

√
sNN = 5.02 TeV. The

calculation is essentially the same as in Ref. [6], therefore
we only recall the essential steps. Compared to the cal-
culation of Sec. 2, the main difference lies in the quark
momentum distribution fq,q̄(p) in Eq. (1). The momen-
tum anisotropy is modeled by carrying out the following
replacement [2] in the Boltzmann1 distribution:

|p| →
√
p2
t + ξ2p2

z, (16)

where ξ > 1 is the anisotropy parameter. Note that this
ansatz implicitly assumes that the tail of the momentum
distribution is exponential. Therefore, our modelization
does not take into account the possibility that the falloff at
large momentum is slower than exponential, corresponding
to the presence of an increased number of high-momentum
partons in the early stages, usually referred to as “minijets”
[31]. Note that, on the other hand, some choices of initial
conditions inspired by the color glass picture imply a falloff
at large momentum which is faster than exponential [32].

We take quark suppression into account by multiplying
the Boltzmann distribution by a global “quark suppres-
sion” factor, which is smaller than unity. The anisotropy
parameter ξ and the quark suppression factor are com-
puted as a function of time using QCD kinetic theory [33].
More precisely, we use QCD kinetic theory to evaluate
the pressure anisotropy and the fraction of energy den-
sity carried by quarks. We then match the anisotropy

1The only difference with Ref. [6] is that we use Boltzmann dis-
tributions instead of Fermi-Dirac distributions in Eq. (1). The ad-
vantage of this simplification is that our results converge to the
McLerran-Toimela spectrum (6) as η/s→ 0, which is a useful bench-
mark. We have checked that the dilepton yields decrease only by a
few percent if one uses Fermi-Dirac instead of Boltzmann.
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parameter and the quark suppression factor to these re-
sults. Note that we could have used QCD kinetic theory
to calculate directly the quark distribution. The reason
why we choose not to do so is the following. There is by
now strong theoretical evidence that the evolution of the
pressure anisotropy is fairly universal [34, 35] and does not
depend on the details of the microscopic dynamics [36]. We
therefore believe that the results we obtain in this indirect
way, through a minimal distortion of the Boltzmann distri-
bution, provide an efficient, transparent and robust way to
investigate the dilepton spectrum. The only free parame-
ter in the calculation is the viscosity over entropy ratio η/s,
which is assumed constant, and fixes the normalization of
collision rates in the kinetic theory calculation.

The other difference with the calculation of Sec. 2 is
that the temperature decreases more slowly than τ−1/3

at early times, due to the smaller longitudinal pressure.
One recovers the τ−1/3 dependence at late times. The
temperature is determined by matching the value of τT 3

at late times to the observed multiplicity. That is, the
value of τT 3 at late times is the same as in the ideal case.

Our numerical calculations are carried out for Pb+Pb
collisions at

√
sNN = 5.02 TeV in the 0-5% centrality range,

and the corresponding normalizations are given by Eq. (8).
We have carried out calculations with and without quark
suppression, for four different values of η/s: 0.04, 0.08 (not
shown), 0.16, and 0.32. The expected value for QCD, in
the temperature range spanned by the early evolution, typ-
ically lies between 0.16 and 0.32 [37]. Smaller values 0.04
and 0.08 ' 1

4π [38] have also been implemented, in order
to check numerically that our results converge smoothly
to McLerran-Toimela spectrum (6) in the limit η/s→ 0.

The results with η/s = 0.04 are displayed in Fig. 1 for
five equally-spaced values of the invariant mass M .2 We
have divided the spectrum calculated numerically with the
analytic result for ideal hydrodynamics, Eq.(6). The ra-
tio is smaller than unity, which confirms the expectation
that pre-equilibrium effects inhibit dilepton emission. It
is naturally smaller when quark suppression is taken into
account, as can be seen by comparing closed symbols with
open symbols. The ratio is very close to unity for small
Mt. The deviation from unity increases as a function of
Mt as expected from the larger deviations from equilib-
rium at the time of production in Eq. (11). For a fixed
Mt, the yield decreases as the invariant mass M increases,
in line with the expectation from Eq. (15).

The dependence of the dilepton yield on the parameters
η/s, Mt and M is well captured by the following formula:

dN l+l−

d4K
'

(
dN l+l−

d4K

)
ideal

(
1 + a

η
sM

2
t /n

)−n
√
1 + b

η
sM

2

(17)

2The lowest value M = 1 GeV is shown only for the sake of
illustration, as hadronic production, which we do not consider, is
significant for M < 1.2 GeV.
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Figure 1: (Color online) Ratio of the dilepton spectrum, evaluated
with η/s = 0.04, to the McLerran-Toimela spectrum (6), as a func-
tion of the transverse mass of the dilepton Mt, for several values of
the invariant mass M . Calculations are for 0 − 5% central Pb+Pb
collisions at

√
sNN = 5.02 TeV. Closed symbols correspond to our

numerical calculations with all pre-equilibrium effects taken into ac-
count. Open symbols correspond to calculations where chemical
equilibrium is assumed at all times, i.e., quark suppression is not
taken into account. The thin lines are the global fit of our results
using Eq. (17) (see text).

where the first term in the right-hand side is the McLerran-
Toimela spectrum (6), and a, b, n are adjustable param-
eters. The parameter a quantifies the dependence of the
suppression on Mt, according to Eq. (11). The param-
eter b quantifies the breaking of Mt scaling due to pre-
equilibrium dynamics. The functional form (17) guaran-
tees that the deviations from ideal hydrodynamics are lin-
ear in η/s in the limit η/s → 0, as implied by the di-
mensional analysis in Sec. 3. The fact that this functional
form gives a satisfactory fit of our numerical results for a
wide range of values of η/s is a clear indication that our
dilepton spectrum converges smoothly to the McLerran-
Toimela spectrum in the limit η/s→ 0. The parameter n
specifies the dependence of pre-equilibrium effects on the
Reynolds number, in the non-linear regime where these ef-
fects are large. Note that the mass spectrum dN l+l−/dM
obtained by integrating Eq. (17) over Mt is a much better
approximation of our numerical results than Eq. (28) of
[6].

The parametrization (17) implies that the spectrum is
proportional to 1/M in the limit of large η/s, in agreement
with Eq. (15). However, the calculation leading to Eq. (15)
is not strictly equivalent to our quantitative calculation for
the following reason. The hypothesis leading to Eq. (15) is
Eq. (12), namely, that the momentum distribution has zero
width in pz and is exponential in pt. In the quantitative
calculation, the width of the pz distribution also goes to 0
in the limit of large η/s, but it is not strictly exponential
in pt (it is a Bessel function K0(pt/T )). Nevertheless, the
dependence of the dilepton spectrum on M ends up being
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essentially the same in both cases.
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Figure 2: (Color online) Full symbols: Expected dilepton invari-
ant yield per event in 0 − 5% central Pb+Pb collisions at

√
sNN =

5.02 TeV, in the central rapidity window |y| < 1, as a function of the
transverse mass, for several values of the invariant mass M , and two
values of the shear viscosity over entropy ratio η/s. The thick line is
the McLerran-Toimela spectrum (6). The thin lines are the global fit
of our results using Eq. (17). Open symbols: Dilepton yield from the
Drell-Yan process. We only plot the central value of the NLO+NLL
calculation (see Sec. 5). Uncertainties are shown in Fig. 3.

For each setup of our calculation, i.e., with or without
quark suppression taken into account, we have carried out
a global fit of all our results for 1.5 < Mt < 7 GeV using
Eq. (17). The best-fit values with quark suppression are
a = 0.61 GeV−2, b = 1.6 GeV−2, n = 3.1. Without quark
suppression, they are a = 0.07 GeV−2, b = 2.4 GeV−2,
n = 1.2.3 As expected from the discussion of Sec. 3, the
breaking ofMt scaling is larger without quark suppression,
resulting in a larger value of b. The parameter a is an order
of magnitude smaller without quark suppression, which

3The error on n is large for the results without quark suppression.
If one fixes the value of n to the same value as with quark suppres-
sion, the fit is almost as good, and the parameters a and b are not
significantly modified, so that the smaller value of n returned by the
fit seems of little significance.

means that 90% of the pre-equilibrium effects on the Mt

spectrum come from chemical equilibration. Note that
from mere dimensional analysis, by comparing Eq. (17)
with Eq. (11), one expects a ∼ b ∼ 1/(τT 3) ∼ 2.5 GeV−2,
where the numerical estimate is given by Eq. (8). The
values of b returned by the fit are comparable, while those
of a are significantly smaller, in particular when quark
suppression is not implemented.

Fig. 2 displays the dilepton yield per event for two val-
ues of the viscosity which roughly span the expected range
in QCD [37]. By comparing with the McLerran-Toimela
spectrum, one sees that pre-equilibrium dynamics sup-
presses dilepton production by at least a factor 10 for
Mt > 5 GeV. The dilepton yield is still mostly determined
by Mt, and the breaking of Mt scaling is a modest effect.

We now evaluate the robustness of our results with re-
spect to transverse flow, which we have neglected. Trans-
verse flow develops gradually over a time of the order of
the nuclear radius. It becomes important for τ & 5 fm/c.
If the fraction of the dileptons produced after 5 fm/c is
small, the dilepton yield is likely to have little sensitivity
to transverse flow. We have calculated this fraction numer-
ically and found that it only depends on Mt. It is roughly
25% for Mt = 2 GeV, but only 4% for Mt = 3 GeV. We
conclude that for Mt . 2 GeV, sizable corrections from
transverse flow are to be expected. At RHIC, it has been
argued on the basis of simple dimensional arguments that
these corrections are small in the intermediate mass re-
gion [19]. However, hydrodynamic calculations have shown
that they are visible up to Mt = 2.5 GeV [29]. Effects of
transverse flow are larger at LHC than at RHIC. We intend
to study them in a future publication.

The dilepton spectrum is often characterized by its ef-
fective temperature Teff , defined as the inverse slope of the
Mt spectrum (Eq. (7)). It is interesting to note that the
spectrum depends on M only through a global factor in
Eq. (17), so that Teff still solely depends on Mt, as long
as transverse flow can be neglected.4 In the limit of small
η/s, Eq. (17) gives:

Teff(Mt) '
Mt

6 + 2a
η
sM

2
t

, (18)

where a ' 0.61 GeV−2. This equation shows that pre-
equilibrium dynamics decreases the effective temperature,
and that the shear viscosity over entropy ratio at early
times η/s can be extracted from the inverse slope. Note
that the inverse slope obtained in Ref. [4] using the
Parton-Hadron String Dynamics (PHSD) model exceeds
the McLerran-Toimela value (7) already at RHIC ener-
gies. We believe that this is due to the presence of hard
particles of jets/mini-hets in the PHSD Monte Carlo sim-
ulations. This source of large invariant mass dileptons
warrants further investigation.

4The rise and fall of Teff as a function ofM observed by NA60 [18,
39] in the low-mass region can be ascribed to transverse flow.
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We now discuss the centrality and system-size depen-
dence of QGP dilepton production. This dependence is
encapsulated in the transverse area, A⊥, and in the value
of τT 3 at late times. Both quantities satisfy simple scal-
ing laws as a function of the charged hadron multiplicity
per unit pseudorapidity, dNch/dη ∝ A⊥τT

3. The obser-
vation that the mean transverse momentum of hadrons
〈pt〉 depends weakly on centrality and system size [40] im-
plies that A⊥ varies approximately like (dNch/dη)

2/3 [41]
as a function of centrality and system size for fixed ra-
pidity and collision energy. This in turn implies that
τT 3, which is proportional to (dNch/dη)/A⊥ [6], scales
like (dNch/dη)

1/3. Eq. (6) then shows that the McLerran-
Toimela spectrum varies like (dNch/dη)

4/3. In other
words, the dilepton yield scales like the space-time vol-
ume, while the hadron yield scales like the volume at
freeze-out. The time component explains the extra fac-
tor (dNch/dη)

1/3.
Eq. (11) then shows that the relative modification of

the dilepton yield due to pre-equilibrium dynamics varies
with system size and centrality like (dNch/dη)

−1/3. This
implies that the parameters a and b in Eq. (17) are also
proportional to (dNch/dη)

−1/3. However, note that local
event-to-event fluctuations of the initial density [42], which
we neglect, will break this simple scaling.

Similar dimensional arguments can be used to pre-
dict the dependence of QGP dilepton production on the
collision energy

√
sNN. For a given collision system,

the transverse area A⊥ is approximately independent of√
sNN, while the hadron multiplicity dNch/dη increases

with
√
sNN [43]. Therefore, τT 3 scales with energy like

dNch/dη. This implies that the McLerran-Toimela spec-
trum (6) is proportional to (dNch/dη)

2. On the other
hand, the coefficients a and b, which govern the modifi-
cations due to pre-equilibrium effects, are proportional to
the inverse Reynolds number (11), i.e., to (dNch/dη)

−1.
Finally, the dependence on rapidity y follows the

same scaling rules as the dependence on collision
energy, up to the replacement of dNch/dη with
dNch/dy.5 The McLerran-Toimela spectrum is propor-
tional to (dNch/dy)

2, while a and b are proportional to
(dNch/dy)

−1. The dilepton spectrum is therefore maxi-
mum at mid-rapidity, where dNch/dy is maximum [44].

5. Background from the Drell-Yan process

The main backgrounds to QGP dilepton production in
the intermediate mass region, besides the large J/ψ peak
around M ' 3.1 GeV, are semileptonic decays of heavy
quark hadrons, and Drell-Yan production in the initial
state. The number of dileptons from charm hadron de-
cays is expected to exceed the QGP dilepton yield for

5Our calculation setup assumes longitudinal boost invariance, but
the results can still be applied if the multiplicity depends on rapidity,
since the longitudinal pressure gradient has a negligible effect at LHC
energy [23].
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Figure 3: (Color online) Comparison between the dilepton yield from
production in the QGP and from the Drell-Yan process for two fixed
values of the invariant mass M = 3.5 GeV (top) and M = 4.5 GeV
(bottom). Lines: QGP production with pre-equilibrium dynamics
and quark suppression taken into account, for η/s = 0.16 (upper
line) and η/s = 0.32 (lower line). Dark shaded band: Drell Yan pro-
cess, with uncertainty from the parton distribution function. Light
shaded band: uncertainty on Drell-Yan from the renormalization and
factorization scales. Both bands are obtained by taking the envelope
of the results obtained by varying the model parameters.

√
sNN > 40 GeV [4]. Charm decays are indeed observed to

be the dominant source of dileptons at LHC energies [45].
This source of background can be rejected based on the fi-
nite lifetime of the heavy quark hadrons since the leptons
from this source do not originate from the primary vertex.
Despite the small lifetime of charm hadron ground states
of cτ ≈ 50-410 µm, the partial rejection of these decay
leptons in heavy-ion collisions is feasible and will strongly
improve with the future detector projects LHCb Upgrade
2 [46] and ALICE 3 [47]. We consider in this phenomeno-
logical publication only the irreducible background from
the Drell-Yan process.

We compute the production of dileptons by the Drell-
Yan process using the Drell-Yan Turbo software pack-
age [48]. The cross section is evaluated at Next-to-Leading
Order (NLO) in the strong coupling constant αS . In ad-
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dition, the calculation employs a resummation at small
transverse momentum at next-to-leading logarithm (NLL).
For the non-perturbative contribution to the form factor,
the same Gaussian form is chosen as in [48]. We evaluate
the uncertainty on the Drell Yan spectrum in the following
way: We vary the renormalization and factorization scales
by a factor two independently resulting in 8 variations with
respect to the default choice. We take into account the un-
certainty on the parton distribution function in the EPPS
parametrization [49].

The central value of our calculation is plotted in Fig. 2
for two values of the invariant mass M . The slope of the
Drell-Yan Mt spectrum is roughly similar to that of the
QGP spectrum, albeit slightly flatter. The main differ-
ence between the two spectra is the normalization, which
depends on the invariant mass M . Drell-Yan production
is enhanced for larger values of M at a given Mt, contrary
to QGP production. The physical explanation is that the
momenta of the incoming quark and antiquark responsible
for Drell-Yan production are mostly longitudinal, so that
smaller values of the transverse momentum kt (correspond-
ing to larger values of M at a given Mt) are preferred.
The kinematics of early QGP production is opposite, in
the sense that longitudinal momenta in the QGP are typ-
ically smaller than transverse momenta. This means that
the breaking of Mt scaling alone provide a handle to dis-
tinguish between QGP and Drell-Yan production.

Drell-Yan gradually takes over QGP production as M
increases. In order to evaluate where the transition oc-
curs, we compare both spectra in Fig. 3 for two values
of M above the J/ψ peak, and for the two values of η/s
used in Fig. 2. The uncertainty on the Drell-Yan spec-
trum from the renormalization and factorization scales is
displayed as a light shaded band. The uncertainty from
parton distribution function is displayed as a dark shaded
band. One sees that the scale is the dominant source of
uncertainty. The top panel shows that QGP production is
likely to dominate over Drell-Yan for M up to 3.5 GeV, at
least for the lowest values of Mt. Looking at the bottom
panel, it seems unlikely that QGP dileptons can be iso-
lated above M = 4.5 GeV. The precise value of M above
which Drell-Yan dominates over QGP production depends
on the value of η/s at early times.

The calculations displayed in the figures are carried out
at mid-rapidity. The rapidity dependence of the Drell-Yan
is milder than that of the QGP spectrum and goes in the
opposite direction: Its minimum is at midrapidity. On
the other hand, the background from semileptonic decays
of heavy quarks is easier to eliminate at larger rapidities
because the secondary vertex is farther from the collision
point.

6. Conclusions

We have calculated the spectrum of dileptons produced
by the quark-gluon plasma in ultrarelativistic heavy-ion
collisions for invariant masses larger than 1.2 GeV, with

input from state-of-the-art QCD kinetic theory to model
the kinetic and chemical equilibration of the QGP at
early times. The invariant spectrum dN l+l−/d4K depends
mostly on the transverse mass Mt. The underpopulation
of quarks at early times results in a steeper Mt spectrum.
The viscosity over entropy ratio, which determines the
equilibration time of the QGP, can be inferred by mea-
suring the slope of the spectrum.

The anisotropy of the momentum distribution at early
times breaks transverse mass scaling, by suppressing the
production of higher invariant masses M . Interestingly,
the trend is opposite for dileptons produced by the Drell-
Yan process, which is enhanced for larger M . There-
fore, one can distinguish experimentally QGP production
from Drell-Yan production by studying the variation of the
dilepton yield as a function of M at fixed Mt.

We have introduced a simple parametrization (17), from
which one can infer the dependence of QGP dilepton pro-
duction on centrality, system size, rapidity, and collision
energy. Our modelization can be improved in several ways.
For the larger values of Mt, the contribution of mini-
jets [4, 31] warrants additional study. For the smaller val-
ues ofMt, one should take transverse flow into account, as
its effect on dilepton production is likely to be significant
for transverse masses Mt . 2 GeV. It has been studied
in detail in the low-mass region [50]. In the intermediate
mass region, detailed studies of transverse flow have been
carried out [51, 52]. However, the effect of transverse flow
on the slope on the Mt spectrum has only been studied at
RHIC energy [29], and deserves further studies at higher
energies.
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