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Abstract. We consider an infinite, planar, Delaunay graph Gε which is ob-
tained by locally deforming the coordinate embedding of a general, isoradial
graph Gcr, with respect to a real deformation parameter ε. This entails a
careful analysis of Whitehead edge-flips induced by the deformation and the
Delaunay constraints. Using R. Kenyon’s exact and asymptotic results for the
Green’s function on an isoradial graph, we calculate the leading asymptotics
of the first and second order terms in the perturbative expansion of the log-
determinant of the Beltrami-Laplace operator ∆(ε), the David-Eynard Kähler
operator D(ε), and the conformal Laplacian ∆(ε) on the deformed Delaunay
graph Gε. We show that the scaling limits of the second order bi-local term for
both the Beltrami-Laplace and David-Eynard Kähler operators exist and co-
incide, with a shared value independent of the choice of initial isoradial graph
Gcr. Our results allow us to define a discrete analogue of the stress energy
tensor for each of the three operators. Furthermore we can identify a central
charge (c = −2) in the case of both the Beltrami-Laplace and David-Eynard
Kähler operators. While the scaling limit is consistent with the stress-energy
tensor and value of the central charge for the Gaussian free field (GFF), the
discrete central charge value of c = −2 for the David-Eynard Kähler operator
is, however, at odds with the value of c = −26 expected by Polyakov’s theory
of 2D quantum gravity; moreover there are problems with convergence of the
scaling limit of the discrete stress energy tensor for the David-Eynard Kähler
operator. The second order bi-local term for the conformal Laplacian involves
anomalous terms corresponding to the creation of discrete curvature dipoles
in the deformed Delaunay graph Gε; we examine the difficulties in defining a
convergent scaling limit in this case. Connections with some discrete statistical
models at criticality are explored.
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1. Introduction

1.1. Laplacians in continuous and discrete metrics.

Laplacian and Dirac operators in 2 dimensional metrics are interesting in physics
and in mathematics: index theorems, Seeley-DeWitt heat kernel expansions and
local curvature properties, trace formulas, as well as in theoretical physics: con-
formal field theories, quantum gravity, string theory, statistical mechanics (SAW,
SLE, CLE), etc. Beyond heat-kernels and Green functions, functional Determinants
can be suitably defined (for instance by QFT inspired renormalization methods of
infinite dimensional Gaussian integrals).

The continuous Beltrami-Laplace operator ∆ (acting on scalar functions φ over
a Riemannian manifold M with metric gµν) is

(1.1) ∆ = − 1
√
g
∂µ
√
g gµν ∂ν

with ∂µ the standard derivative w.r.t. the local coordinate xµ. Its normalized
determinant can be properly defined, for example, by the functional integral for a
massless scalar Gaussian Free Field φ (GFF), i.e. the partition function written
schematically as

(1.2) Z = det(∆)−
1
2 =

ˆ
D[φ] e−φ ·∆φ

which depends explicitely on the metric g. In two dimensions, the GFF is a two
dimensional conformal theory (2D CFT). The effect of varying the metric is en-
coded into the stress-energy tensor. For 2D CFT’s its non zero components are its
holomorphic components T = T zz and its anti-holomorphic component T = T z̄z̄

(in suitable complex coordinates), which encode the effect of metric changes under
infinitesimal anti-holomorphic diffeomorphisms

(1.3) z → z + ε F (z̄) =⇒ gzz → gzz + ε ∂F̄

Many properties of CFTs follows from the short distance operator product expan-
sion (OPE) of T . The OPE for the product T (z)T (z′) implies that the second
variation of the logarithm of partition function logZ under 1.3 is

(1.4)
c

4π2

¨
d2u d2v

∂̄F (u) ∂̄F (v)

(u− v)4
+
∂F̄ (u) ∂F̄ (v)

(ū− v̄)4
+ contact terms

where c is the central charge of the CFT. The central charge of the GFF is c = 1.
Another functional determinant, which is important in string theory and quantum
gravity, is the Faddeev-Popov determinant of the differential operator associated to
the conformal gauge fixing gauge in Polyakov’s theory of two dimensional quantum
gravity (a.k.a. non critical string theory). It is associated to a 2D CFT involving
(b, c) ghost-antighost field system, with central charge c = −26, and is related to
the celebrated Liouville CFT.

Discretizations of continuous geometries by simplicial graphs or lattices (locally s
in 2D) are ubiquitous in pure and applied mathematics, in computer science as well
as in theoretical physics, from classical and quantum gravity to condensed matter.
Thus defining and studying discretized analogs of differential operators such as
the Laplacian ∆ or the Dirac operator /D, on such graphs, and of their functional
determinants, is important and there is a large literature on these problems.
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In two dimensions a specific but especially important class of planar graphs is
the class of isoradial regular graphs embeddings. On such graphs, the concept of
discrete analyticity and discrete analytic functions can be properly defined (this
allows to define discrete analogs of 2D CFT’s). In particular, in [Ken02], Kenyon
showed how these properties allow to compute explicitely the determinant and the
Green function (the inverse) of the discrete ∂-operator (the Dirac operator), as well
as for the discrete critical Laplacian ∆ = ∂∂̄. As we shall see the class of isoradial
graphs is an analogue of flat metrics.

In this work we study (for reason to be explained later) the deformation of these
isoradial lattices into Delaunay triangulations, and the effect of such deformations
on several discretized Laplacian-like differential operators and their determinants.

1.2. The random Delaunay triangulation model.

Delaunay graphs. Delaunay triangulations in the plane are models of discrete
space which has been studied by many authors, in particular in high energy physics
[CFL82] and well as in statistical physics, condensed matter and soft matter physics.
Anticipating the precise definitions and details given in section 1.2, we recall that
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Figure 1. To be explained, maybe redrawn

a polyhedral graph G is a planar graph (with finitely or infinitely many vertices)
equipped with an embedding z : V(G) −→ C of its vertex set V(G) such that
edges are mapped to straight line segments and faces are mapped to convex, cyclic
polygons. Accordingly we can associate with each face f of G the circumcircle Cf,
the circumdisk Df, and the corresponding circumradius R(f) of its cyclic polygon
with respect to the embedding. A polyhedral graph G is a Delaunay graph if under
the embedding, (1) the interior of the circumdisk of each face of G contains no
vertices, and (2) no two faces share the same circumdisk. Equivalently the dual of
Delaunay graph G is the Voronoi complex V associated to the set of (embedded)
vertices of G. We say that a polyhedral graph G is a weak Delaunay graph as long
as condition (1) is satisfied. A (weak) Delaunay triangulation T is just a (weak)
Delaunay graph whose faces are all triangles.
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Each edge e in a polyhedral graph G has an associated conformal angle θ(e)
defined as follows [DE14]. To an oriented edge ~e = (u, v) of G we associate “north”
and “south” faces fn and fs together with angles θn(~e ) = ∠vuon and θs(~e ) = ∠osuv

where on and os are the circumcenters of fn and fs respectively, as depicted in
fig. 1. Reversing the orientation of ~e interchanges the roles of north and south. The
conformal angle associated to the unoriented edge e is θ(e) = (θn(~e )+θs(~e ))/2. The
Delaunay condition ensures that 0 < θ(e) < π while the weak Delaunay condition
ensures that 0 ≤ θ(e) < π.

Finally, as explained in [DE14] and in section 2, to each plane Delaunay graph
G we can associate an abstract “rhombic surface” S♦

G
obtained by gluing rhombi

♦(e) associated to the edges e of G according to the incidence relations of G. Each
rhomb ♦(e) has unit edge length and has a corresponding rhombus angle 2θ(e). We
view S

♦
G

as a discretized Riemann surface with curvature concentrated at certain
vertices. This rhombic surface S♦

G
will be “flat”, i.e. can be isometrically embedded

in the plane, if and only if for each face f of G, the sum of the conformal angles
of the edges e which form the boundary of f equals π/2

(1.5)
∑
e∈∂f

θ(e) = π/2

Equivalently, the Delaunay graph G is isoradial, i.e. the circumradii R(f) are all
equal. Alternatively a Delaunay graph G is isoradial if and only if S♦

G
coincides

with the planar bipartite kite graph G♦ discussed in section 2.1. Isoradial Delaunay
graphs are also referred to as “flat” or “critical” graphs.

The David-Eynard random Delaunay model. The David-Eynard model [DE14]
is (schematically) a theory of random (finite) Delaunay graphs which are sampled
(with Lebesgue measure) according to the conformal angle values of the correspond-
ing edges. By the Voronoi construction, a configuration of N + 3 distinct marked
points in the plane {xv + iyv | 1 ≤ v ≤ N + 3} is equivalent to a Delaunay graph G
with vertex set V(G) = [1, . . . , N + 3] and embedding z(v) := xv + iyv. Three of
these points can be fixed by the action of PSL2(C) as the model is conformally in-
variant. Under this formulation the relevant measure on the space of configurations
of marked points is

(1.6)
N∏

v=1

dxv dyv det′D

where D is the David-Eynard discrete Kähler operator of the graph G as defined
in 1.9 below, and det′D is a reduced determinant (i.e. the leading N ×N principle
minor) which suppresses the effect of the zero modes ofD, see [DE14]. The Delaunay
graph of a generic configuration of points will be a triangulation while the subset of
non-triangulations has measure zero. For this reason we speak of the David-Eynard
model as a theory of random triangulations. As shown in [CDE19], the measure in
1.6 coincides with the Weil-Petersson measure onM0,N .

The three operators on Delaunay graphs. In this paper, we are interested in
the three discrete operators defined on generic polyhedral graphs G: the Beltrami-
Laplace operator ∆, the conformal Laplacian ∆, and the David-Eynard Kähler
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operator D. All three operators act on the space CV(G) consisting of complex
valued functions supported on the vertices V(G) of the graph G.

• The discrete Beltrami-Laplace operator ∆ is defined for φ ∈ CV(G) by

(1.7) ∆φ(u) =
∑

edges ~e=(u,v)

c(~e )(φ(u)−φ(v)) , c(~e ) =
1

2

(
tan θn(~e )+tan θs(~e )

)
This is a standard discretization of the Laplacian in the plane, both in physics (see
e.g. [CFL82]) and in mathematics.

• The conformal Laplacian ∆, that we introduce here, is defined as

(1.8) ∆φ(u) =
∑

edges ~e=(u,v)

tan θ(e)
(
φ(u)− φ(v)

)
It is invariant under global conformal transformations z g7→ az+b

cz+d of the graph em-
bedding z : V(G) −→ C for g ∈ PSL2(C). It’s worth noting that ∆ can be viewed
as the discrete Laplace-Beltrami operator defined not on the planar graph G, but
rather on the image of G inside the rhombic surface S♦

G
(i.e. the black vertices of S♦

G

where two black vertices are joined by an edge if and only if they lie on a common
rhomb. We point the reader a related construction in [Mer01]. As such, ∆ is a
discretization of the Beltrami-Laplace operator on a Riemann surface with respect
to a non-flat metric.

• The Kähler operator D has been introduced in [DE14]. It is defined in term of
the geometry of the graph G as

(1.9) Dφ(u) =
∑

edges ~e=(u,v)

1

2

(
tan θn(~e ) + i

R2
n(~e )

+
tan θs(~e )− i

R2
s (~e )

)(
φ(u)− φ(v)

)
where Rn(~e ) and Rs(~e ) are the circumradii of the north and south faces fn and fs

adjacent to ~e respectively. Although not obvious from this definition 1.9, the op-
erator D transforms covariantly under global conformal PSL(2,C) transformations
of the graph embedding, and defines a Kähler metric dzuDuvdz̄v on the space of
Delaunay graphs in the plane.

These three operators can be defined for any polyhedral graph G. The weak De-
launay condition on G ensures that the three operators are positive semi-definite.

Note that if G is isoradial, then ∆, ∆ and R2D (with R the common circum-
radius) all coincide, and agree with the critical Laplacian considered in [Ken02],
where it is shown that the Green’s function on G (the inverse of the critical lapla-
cian) can be written explicitely in terms of the graph local structure; furthermore,
the log-determinant of the critical Laplacian can be computed as a finite sum of
local contributions if in addition one assumes the graph is periodic.

1.3. Why study deformations of critical graphs ? This work is an extension
of [DE14] and [CDE19] and aims at studying the properties of the measure 1.6 in
the David-Eynard model. Ideally one would like to understand if it is possible to
define precisely a continuum limit for this discrete model of random plane geometry,
and what is its relation with the well known continuum models of quantum two-
dimensional geometry, in particular the Liouville CFT. As a first step, we attempt to
study how the measure deforms under small variations of the positions of the points
in the plane, starting from initial configurations of points which form critical graphs,
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i.e. isoradial Delaunay graphs. Indeed for these critical configurations of points,
the properties of D are very well known, in particular through [Ken02]. While
our motivating concern is the Kähler operator D, we study in parallel the simpler
Laplace operators ∆ (corresponding to a discretisation of the Laplace-Beltrami
operator in the plane) and ∆ (corresponding to the Laplace-Beltrami operator in a
discretized curved metric, sharing PSL(2,C) properties with D). The operator ∆ is
related to a CFT, namely the GFF, and we can ask which CFT properties of ∆ are
shared by ∆ and D, in particular whether theres exists a respective stress-energy
tensor and corresponding operator product expansion for each of these operators
(see Appendix A).

1.4. Results. We consider a Delaunay graph Gε obtained by deforming the em-
bedding of a fixed isoradial Delaunay graph Gcr, with radius Rcr. Specifically for
an isoradial, Delaunay graph Gcr we define a mapping zε : V(Gcr) −→ C by

(1.10) zε(v) := zcr(v) + ε F (v)

where ε ≥ 0 is a deformation parameter, where zcr : V(Gcr) −→ C is the initial
embedding, and where F : V(Gcr) −→ C is a function with finite support ΩF ⊂
V(Gcr). By definition, the vertex sets V(Gε) and V(Gcr) coincide while the edges of
the graph Gε are determined by imposing Delaunay constraints on the configuration
of points

{
zε(v)

∣∣ v ∈ V(Gε)
}
. Finally, it will be convenient to introduce the lattice

closure ΩF of ΩF defined (for generic polyhedral graph G) as

(1.11) ΩF = {v ∈ V(G) : v shares a face f ∈ F (G) with a vertex u ∈ ΩF }

The following technical lemma allows us regulate the behaviour of the perturba-
tion by introducing a bound on the deformation parameter. Specifically

Lemma 1. Let Gcr be an isoradial Delaunay graph, and F a deformation function
as above. There is a threshold ε̃F > 0 such that whenever 0 ≤ ε < ε̃F

(1) zε : V(Gcr) −→ C is an embedding
(2) there is an inclusion of edge sets E(Gcr) ⊆ E(Gε)
(3) the edge sets are stable, i.e. E(Gε1) = E(Gε2) whenever 0 < ε1, ε2 < ε̃F

Conditions (1) and (3) ensure the existence of a right-sided limit graph which is
both isoradial and (weakly) Delaunay, namely

Definition 1. The isoradial refinement G0+ of Gcr determined by F is the
isoradial (weak) Delaunay graph with vertex set V(G0+) := V(Gcr) and embedding
z0+ := zcr whose edge set is given by

E(G0+) := lim
ε→0+

E(Gε)

Note that G0+ will be a weak Delaunay graph precisely when the inclusion
of edge sets is strict, otherwise G0+ and Gcr will coincide. It will be convenient
to complete G0+ to a (weak) Delaunay triangulation Ĝ0+ by maximally saturating
E(G0+) with additional non-crossing edges. The choice of these additional edges will
not affect our calculations; this is because the weights assigned to these edges (or
chords as defined in 5) by the operators ∆, D, and ∆ always vanish. In particular O
defined over Ĝ0+ , O defined over G0+ , and O defined over Gcr all coincide whenever
O is ∆, ∆, or D. We want to emphasize that Ĝ0+ = G0+ = Gcr whenever Gcr is a
triangulation.
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Definition 2. In this paper we shall mostly consider smooth local deformations
defined as follows. We restrict a smooth (in general non-holomorphic) function
F : C −→ C with compact support Ω ⊂ C to the graph Gcr by declaring

(1.12) F (v) := F
(
zcr(v)

)
where v ∈ V(Gcr) is a vertex. Moreover, we shall consider the family of rescaled
smooth local deformations F` defined as

(1.13) F`(v) := ` F
(
zcr(v)/`

)
and where ` > 0 is a scaling parameter (used for defining a continuum limit). Using
the construction above, we obtain a deformed embedding zε,` and a Delaunay graph
Gε,` together with an attending isoradial refinement G0+,` and completion Ĝ0+,`.

Let ∆cr (respectively Dcr = ∆cr/R
2
cr) denote the critical laplacian (respectively

the Kähler operator) on the initial isoradial triangulation Gcr. Let O denote either
the Beltrami-Laplace operator ∆, the conformal laplacian ∆, or the Kähler operator
D of the perturbed triangulation Gε and let Ocr be the corresponding operator on
Gcr. We denote the variation δO = O −Ocr. It is of order O(ε). Formally we may
expand the log-determinant log detO using the Green’s function O−1

cr of the critical
operator as

(1.14) log detO = log detOcr + tr
[
δO · O−1

cr

]
− 1

2
tr
[
(δO · O−1

cr )2
]

+ · · ·

The trace terms occuring on the righthand side of equation 1.14 are well defined
owing to the fact that support of the perturbation is compact; consequently the
difference log detO − log detOcr is a well defined value. Our main results concerns
the second order term tr

[
(δO·O−1

cr )2
]
and, more precisely, the cross term contribu-

tion coming from variations δO at two distant sites of perturbation. These results
are summarized in the following theorem:

Theorem 1. Consider two complex functions F1(z) and F2(z) whose supports Ω1 =
suppF1 and Ω2 = suppF2 in the vertex set V(Gcr) are finite and disjoint (hence at
finite distance), and a bi-local deformation of the embedding

zcr(v) 7→ zcr(v) + ε1F1

(
v
)

+ ε2F2

(
v
)

The ε1ε2 cross-term of the perturbative expansion of log det ∆ is obtained from
tr
[
(δ∆ ·∆−1

cr )
2] and takes the asymptotic form

c

π2

∑
triangles
x1,x2

A(x1)A(x2)

(
Re

[
∇F1(x1)∇F2(x2)(
zcr(x1)− zcr(x2)

)4
]

+ O
( ∣∣zcr(x1)− zcr(x2)

∣∣−5
))(1.15)

where xi ∈ F(Ĝ0+) is a triangle having at least one vertex in Ωi, whose center has
coordinate zcr(xi), and whose area is A(xi) with i = 1, 2. Moreover c = −2.
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Theorem 2. The ε1ε2 cross-term of the perturbative expansion of log detD is ob-
tained from tr

[
(δD · D−1

cr )
2] and takes the same asymptotic form as formula 1.15.

In particular c = −2.

Remark 1. The Beltrami-Laplace operator ∆ and the David-Eynard Kähler op-
erator D have the same central charge c = −2. This is expected for the Beltrami-
Laplace operator. In the case of the David-Eynard Kähler operator this result con-
flicts with the value of −26 anticipated by the continuous theory.

Remark 2. As noted earlier, the left hand side of equation 1.15 is independent of
the choice of triangulation Ĝ0+ used to refine G0+ because both graphs share Gcr as a
common regularization (and the three operators O which we consider depend only on
the graph regularization). The right hand side, on the other hand, is independent of
Ĝ0+ in light of a discretized version of Green’s theorem 4 and corollary 1 as detailed
in Subsection 3.2.

Remark 3. In general, Theorem 1 is not valid for the conformal Laplacian ∆.
Specifically, formula 1.15 fails to hold when the isoradial refinement G0+ contains
chords; see 5 for a proper definition. “Anomalous” chord-to-edge and chord-to-chord
terms must be added to Formula 1.15 in order to obtain a valid asymptotic formula
for the ε1ε2 cross-term of tr

[
δ∆·∆−1

cr

]2. See section 6.3 .

Formula 1.15 makes use of discrete derivative operators ∇,∇ : CV(T) −→ CF(T)

introduced in [DE14] for a general polyhedral triangulation T; see Section 4 for
a definition. The following estimate (see Appendix A for proof) explains why ∇
and ∇ should be considered as discrete analogues of the holomorphic and anti-
holomorphic derivatives ∂ and ∂.

Lemma 2. Given a smooth function φ : C −→ C and a triangle f with vertices
z1, z2, z3 (listed in counter-clockwise order), circumcenter z(f), and circumradius
R(f), we have the following estimate

(1.16)
∣∣∣∇φ(f)−∂φ(z(f))

∣∣∣ ≤ R(f)

(
3

2
sup
z∈Bf

∣∣∂2φ
∣∣ + 2 sup

z∈Bf

∣∣∂∂φ∣∣ +
1

2
sup
z∈Bf

∣∣∂2
φ
∣∣)

where Bf is the disk bounded by the circumcircle of f

(1.17) Bf = {z ; |z − z(f)] ≤ R(f)}

Using Lemma 2 we are able to formulate a smooth version of Theorem 1 involving
a scaling parameter ` > 0 as in equation 1.13 whose continuum limit coincides with
formula 1.4. More specifically:

Theorem 3. Consider two smooth complex functions F1(z) and F2(z) whose sup-
ports Ω1 = suppF1 and Ω2 = suppF2 in the plane are compact and disjoint(hence
at finite distance), and a bi-local deformation of the embedding given by

zcr(v) 7→ zcr(v) + ε1 ` F1

(zcr(v)

`

)
+ ε2 ` F2

(zcr(v)

`

)
where ` > 0 is a scaling parameter. For i = 1, 2 set Fi;`(z) := `Fi(z/`) then
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(1.18)

lim
`→∞

c

π2

∑
triangles
x1,x2

A(x1)A(x2)

(
Re

[
∇F1;`(x1)∇F2;`(x2)(
zcr(x1)− zcr(x2)

)4
]

+ O
( ∣∣zcr(x1)− zcr(x2)

∣∣−5
))

=
c

π2

¨
Ω1×Ω2

dx2
1 dx

2
2 Re

[
∂F1(x1) ∂F2(x2)

(x1 − x2)4

]

We stress that the limit value in formula 1.18 is independent of the isoradial, De-
launay graph Gcr. As in Theorem 1 the coefficient c in 1.18 is found to be equal to
c = −2, both for ∆ and D.

Remark 4. The sum 1.18 is taken over pairs of triangles x1 and x2 in Ĝ0+,` such
that the coordinate of at least one vertex of xi is contained in the scaled support
Ωi(`) := suppFi;` for i = 1, 2. These two domains are disjoints and separated by a
distance of order O(`). Formula 1.18 is the discrete analog of 1.4.

Remark 5. The `→∞ scaling limit of the bi-local formula for the ε1ε2 cross-term
in tr

[
δ∆ ·∆−1

cr

]2 of the conformal Laplacian ∆ (as presented in section 6.3) agrees
with the limit value in formula 1.18 of Corollary 3 whenever G0+,` contains finitely
many chords. In this case the central charge of the conformal Laplacian ∆ takes
the expected value of c = −2 as well.

Theorem 1 makes use of a sharpened version of a Kenyon’s asymptotical formula
for the long-range behaviour of the Green function ∆−1

cr of the critical Laplacian:

Proposition 1. For any pair of vertices u and v in an isoradial Delaunay graph
G

(1.19)[
∆−1

cr

]
u,v

= − 1

2π

(
log
(

2
∣∣p1(u, v)

∣∣)+ γeuler +
Re
[
p3(u, v)

]
6
∣∣p1(u, v)

∣∣3 + O

(
1∣∣p1(u, v)

∣∣4
))

where γeuler is the Euler-Mascheroni constant, where p1(u, v) = zcr(v)− zcr(u), and
where p3(u, v) is a term defined in section 4. It depends on the local geometry of
the graph T between u and v, but is bounded uniformly and linearly by∣∣p3(u, v)

∣∣ ≤ 3
∣∣zcr(u)− zcr(v)

∣∣
Remark 6. Proposition 1 sharpens Kenyon’s Theorem 7.3 in [Ken02] by identi-
fying and obtaining a uniform bound on the first non-constant (indeed quadratic)
subdominant term

1

6

∣∣zcr(u)− zcr(v)
∣∣−3

Re
[
p3(u, v)

]
≤ 1

2

∣∣zcr(u)− zcr(v)
∣∣−2

In fact in Sect. 4 we obtain explicit expressions and uniform bounds for all terms
of the large distance asymptotic series expansion of the Green’s function.
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1.5. Plan of the paper. This paper is organised as follows:
Section 1 was the introduction.

Section 2 presents basic concepts about the geometry of planar graphs which are
relevant to the paper. Most of the material is standard, however we introduce the
notion of a chord (see Definition 5) which allows us to slightly broaden the definition
of an isoradial triangulation (given in [Ken02]) to accomodate configurations with
four or more cocyclic vertices. Section 2.1 gives definitions and sets notation for
polyhedral graphs, edges and chords, (weak) Delaunay graphs, isoradial graphs,
etc. and makes precise the notions of abstract rhombic surface S♦

G
associated to

a polyhedral graph G alluded in Section 1.2. Section 2.2 addresses geometrical
concepts and properties of rhombic graphs associated to isoradial graphs, mainly
following [Ken02] and [KS14]. In order to help establish the asymptotic formula
in Proposition 1 we undertake in Proposition 3 a careful analysis of the interval of
possible angles taken by any path in the rhombic graph of an isoradial Delaunay
graph.

In section 3 we review the ∇ and ∇ operators of [DE14] and how they are used to
obtain a “local factorization” of the Laplace-Beltrami and Kähler operators ∆ and
D for a general polyhedral triangulation; see remarks 3.19 and 3.18. We remark
that the conformal Laplacian ∆ however does not admit a simple, local factor-
ization. Following this, we recall two approaches used to define the (normalised)
log-determinant of a Laplace-like operator such as ∆, D, and ∆ for infinite polyhe-
dral graphs which are either (1) doubly periodic or (2) obtained as a nested limit
of finite graphs each with Dirichlet boundary conditions. Formulae 3.22 and 3.23
serve respectively as definitions in these two cases. We end the section by discussing
Kenyon’s local formula in [Ken02] for the normalised log-determinant of the criti-
cal laplacian for doubly periodic, isoradial, (weak) Delaunay graphs, as well as its
formal extension to the non-periodic case.

In section 4 we derive the long range asymptotic formula for the Green’s function
of the critical laplacian (associated to an isoradial Delaunay graph) stated in Propo-
sition 1 of Section 1. We rely on the methods of [Ken02] along with some added
improvements, in particular for infinite non-periodic graphs. Among other things
our analysis provides uniform bounds on the coefficients of the asymptotic expan-
sion (see 5 and 4.11) thus sharpening the results and approximations in [Ken02].

Section 5 addresses deformations of critical isoradial Delaunay graphs and corre-
sponding operators. In section 5.1 we study the first order variation of the Laplace-
Beltrami and Kähler operators, when the underlying polyhedral triangulation is
subject to a formal deformation given by 1.10 without imposing Delaunay con-
straints. Results are given in propositions 5 and 6 respectively. The conformal
Laplacian ∆ does not admit a local factorization of the kind presented in prop. 5
and 6 and for this reason there isn’t an analogous formula for its first order varia-
tion. Section 5.2 sets up notation. In sections 5.3 and 5.4 we carefully discuss the
effect of a geometric deformation on a Delaunay graph Gcr, where the incidence
relations of the perturbed graph Gε are controlled by Delaunay constraints. We
explain in lemma 8 how to regulate the deformation parameter ε ≥ 0 so that edges
of initial graph Gcr are stable and do not undergo Whitehead “flips”. A generic
deformation however can break the cyclicity of faces of Gcr having four or more
vertices and whenever this happens Gε will contain “new edges” which subdivide
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these faces. Nevertheless these additional edges are shown to be stable as the
deformation parameter varies, provided the deformation parameter is bounded ap-
propriately. These results are detailed in lemmas 9 and 10. We show the existence
of an isoradial (weak) Delaunay limit graph G0+ together with an isoradial (weak)
Delaunay triangulation Ĝ0+ which refines G0+ and which is compatible with the
deformation.

The calculations of the first and second order variations of the log-determinant for
the Beltrami-Laplace operator, the Kähler operator, and the conformal Laplacian
are undertaken Section 6. The first order variation formulae are entirely local, i.e.
expressed as sums of weights of edges. The second order variations, on the other
hand, involve long-range effects of the critical Green’s function ∆−1

cr associated to
pairs of distant vertices and, in principle, register aspects of the global geometry of
the initial isoradial Delaunay graph Gcr.

In Propositions 7 and 9 of Section 6.1 we present first order variation formulas
for the Beltrami-Laplace and Kähler operators which are valid uniformly for all
isoradial Delaunay graphs. The first order formula for the conformal Laplacian
incorporates an additional term which accounts for the effect made by chords in
G0+ and is given in Proposition 8. The second order formulae for the variation of
the log-determinant of the Beltrami-Laplace and Kähler operators are calculated
separately in Propositions 10 and 11 of Section 6.2 respectively; this is the content
of Theorems 1 and 2. In both cases, our approach relies on the asymptotics of
the Green’s function in Proposition 1 and Lemma 12 — the latter makes use of the
operator factorisations in Propositions 5 and 6 as well as a novel estimate presented
in Lemma 11.

Formula 1.15 of Theorems 1 and 2 is not valid for the conformal Laplacian and
it must be modified by defect terms which take into account the effect of chords
in G0+ . See formulae 6.58 and 6.59. We propose that this defect is indicative of
a discrete curvature anomaly arising from the perturbation; this is examined in
Section 6.4.

Section 7 deals with the existence and value of the scaling limit of formula 1.15
for the Beltrami-Laplace and Kähler operators. We begin section 7.2 by addressing
some technical points about bi-local deformations, scaling limits, and re-summation.
In Section 7.3 we prove the existence of the scaling limit of 1.15 in the case of a
continuous bi-local deformation and settle Theorem 3. The basic idea is to interpret
1.15 as a Riemann sum with a mesh controlled by the scaling parameter. The scaling
limit considered in Section 7.3 is taken with respect an isoradial refinement Ĝ0+,`

associated to a (scaled) deformation of our initial, isoradial Delaunay graph Gcr.
In effect the result is a calculation of a nested limit: First we take the deformation
parameter limit ε1, ε2 → 0 (bringing us to Ĝ0+,`) and then we subsequently take
the `→∞ scaling limit.

In section 7.4 we ask whether these two limits can be interchanged. This question
is related to whether the scaling limit in Theorem 3 exists for a Delaunay graph
(not necessarily isoradial) which is obtained as a small deformation of an isoradial
Delaunay graph. We return to this issue in Section 8.

Section 7.5 addresses issues of uniform convergence in the “flip problem” for
smooth, scaled deformations. In Lemma 14 we introduce a geometrical constraint
on isoradial, Delaunay triangulations ensuring that no flips occur whenever the
deformation parameter ε is bounded above by a threshold ε̌F which is uniform both
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with respect to the scaling parameter and a proper subclass of isoradial, Delaunay
triangulations.

In Section 8 we drop the constraints on the deformation parameter(s) stipulated
by Lemma 9 and we instead work with general geometric deformations Gε of an
isoradial, Delaunay graph Gcr which may incur flips. We look for uniform bounds on
the variation of the corresponding operators ∆(ε) and D(ε) for small but non-zero
values of the deformation parameters. In order to get bounds uniform with respect
to the choice of initial, critical graph Gcr we estimate the growth of the radius
R(fε) of an arbitrary triangle fε of Gε as parameter ε varies in formal deformation.
We deduce strong results on the uniform convergence of the scaling limit for ∆
(Prop. 15) and of the scaling limit of the second order bi-local term (leading to
the OPE) (Prop. 16); the later result depends on a conjectural, uniform estimate
(Conj. 1) on ∇p3(f) and ∇̄p3(f) in terms of the radius R(f) of a face f and the
scaling parameter. We finish the section by showing that there is a qualitative
difference between ∆ and D, and we obtain a weaker but interesting “simultaneous
convergence” result for the scaling limit of the second order bi-local term for D
(Prop. 20).

Section 9 summarizes our results, and presents them from a more statistical
physics point of view. After reviewing the aims of the paper in 9.1 we discuss in
9.2 the first order variation of the log-determinant for the three operators ∆, ∆
and D vis-à-vis the Gaussian Free Field. We show that formula 6.4 for the Laplace-
Beltrami operator ∆ can be re-expressed in terms of the vacuum expectation value
of a discrete stress-energy tensor T∆ for a Grassmann free field theory (for conve-
nience we opt for a fermionic analogue of the Massless Free Field (GFF)) supported
on Gcr and whose scaling limit coincides with the standard continuous free field.
This is not a surprise. Our results for D and ∆ are similarly expressed using dis-
crete stress-energy tensors TD and T∆ however neither formulae 6.8 nor 6.5 have a
simple/obvious continuous limit relating it to the continuous free field.

In 9.3 we discuss the bi-local second order variation formula and the universal
form of its scaling limit for ∆ and D in terms of their respective discrete stress-
energy tensors. Furthermore we address the (in general) non-existence of a scaling
limit for ∆.

In 9.4 we discuss the relation and differences between: (i) the model and the
questions addressed for Delaunay graphs in our work, and (ii) previous studies
made by Chelkak et al. on the O(n) model and by Hongler et al. on the GFF and
the Ising model on the hexagonal and square lattices respectively.

Finally in 9.5 we briefly list some open questions and some possible extensions
of this work.

Some standard material, technical derivations of results and matters not central
to this work are relegated to appendices.

Appendix A present some standard reminders about the stress-energy tensor in
QFT and CFT.

Appendix B gives the derivation of Lemma 2, which is instrumental for Theo-
rem 3 and the scaling limit.

Appendix C examines the conformal Laplacian ∆ on a particular critical De-
launay graph G as well as the anomalous terms associated to chords in G0+ which
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arise in the second order variation of the log-determinant formula for ∆ addressed
in 6.3. The graph G is sufficiently regular and G0+ has a sufficient density of chords
to insure that these anomalous terms have a convergent scaling limits, which are
computed explicitly in Claim 2.
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2. Planar graphs and rhombic graphs

2.1. The basic objects.

Notations.
In this work we shall deal with plane triangulations, and their extensions: embed-
ded planar graphs (or plane graphs) whose faces are cyclic polygons. Let us first
introduces the notations that we shall use (most are standard).

Definition 3.

An embedded planar graph will be – for the purpose of this article – a graph
G, given by a set of vertices V(G) and set of edges E(G), together with an injective
map z : V(G) −→ C. For a vertex v ∈ V(G) we shall denote its complex coordinate
by z(v); if there is no risk of confusion we shall sometimes denote the complex
coordinate by the vertex label v itself. Each edge e = uv is embedded as a straight
line segment joining its end-points z(u) and z(v) while the oriented edge ~e = (u, v)
corresponds to the displacement vector z(v) − z(u). We require that for any pair
of edges the corresponding line segments are non-crossing (i.e. do not share any
interior points). The embedding determines an abstract set of faces F(G) and we
require that each face f ∈ F(G) is embedded as a convex polygon endowed with
a counter-clockwise orientation (so that no face is folded onto an adjacent face).
Furthermore the set of faces must cover the plane and they must not accumulate
in any finite region of the plane (i.e. each open disk must contain only finitely
many faces). We shall sometimes elide between the description of G as a abstract
combinatorial entity (i.e. vertices, edges, faces and their incidence relations) and
its description as an embedding object in the plane (points, segments, and polygons
with the geometrical restrictions described above).

Definition 4.

A polyhedral graph will be an embedded planar graph such that each face is a
cyclic polygon, i.e. all the vertices of the face lie on a circle (the circumcircle Cf of
the face f), in cyclic order. At that stage two faces may have the same circumcircle.

Definition 5.

An edge e ∈ E(G) of a polyhedral graph G is a chord if the two faces f and g

of G adjacent to e share the same circumcircle (i.e. the circumcenters of f and g

coincide). An edge which is not a chord is said to be a regular edge of G. If no
ambiguity arise, we shall use the term edge for regular edges only, and chords for
the others.

Definition 6.

A chordless polyhedral graph is a polyhedral graph without chords, i.e. no
pair of faces share the same circumcircle. Obviously chordless polyhedral graphs
correspond to a special class of circle patterns in the plane. In a general polyhedral
graph, a face which does not share its circumcircle with another face will be said
to be a chordless face.

Definition 7.

A weak Delaunay graph is a polyhedral graph G such that for any face f, the
interior of the circumdisk Df (the closed disk whose boundary is the circumcircle



PERTURBING ISORADIAL TRIANGULATIONS 17

Cf) contains no vertex of G. The circumcircle itself contains the vertices of f, and
possibly other vertices. A Delaunay graph is a chordless weak Delaunay graph.

Definition 8.

A triangulation is an embedded planar graph T such that each face is a tri-
angle. Obviously, a triangulation is a polyhedral graph. A (weak) Delaunay
triangulation is a triangulation which is a (weak) Delaunay graph.

Definition 9.

An isoradial graph is a polyhedral graph G such that the circumradii R(f)
(the radius of the circumcircle Cf of f) of all the faces of G are equal.

Definition 10.

Following [Ken02], a face f whose circumcenter is inside or on the border of f
(considered as a cyclic polyhedron) is called a regular face. A polyhedral graph
such that all its faces are regular is called a regular graph.

Remark 7. Given an oriented edge ~e of a polyhedral graph we define the corre-
sponding north and south angles θn(~e ) and θs(~e ) through figure ?? in the in-
troductory section 1.2. By the inscribed angle theorem θn(~e ) does not depend upon
the choice of vertex n ∈ fn in the north face. Likewise θs(~e ) is independent of the
vertex s ∈ fs in the south face. Note that reversing the orientation of ~e exchanges
the roles of north and south and so the conformal angle θ(e) := (θn(~e )+θs(~e ))/2
independent of the choice of edge orientation, hence the notation θ(e).

Remark 8. If e = uv for vertices u, v ∈ V(G) then the value of the conformal angle
θ(e) equals the argument of the following cross-ratio involving the (coordinates of
the) vertices u, v, n, s:

(2.1)

θ(e) = log
[
z(u), z(v) ; z(n), z(s)

]
where

[
z1, z2 ; z3, z4

]
=

(z1 − z3) · (z2 − z4)

(z1 − z4) · (z2 − z3)

Consequently the conformal angle is SL2(C)-invariant owing to the fact that cross-
ratio is.

Remark 9. We want to reiterate the comments in the introductory section 1.2, and
stress that the Delaunay condition as stated in def. 7 is equivalent to the condition
that for any oriented edge ~e of a polyhedral graph the corresponding north and
south angles θn(~e ) and θs(~e ) are both strictly positive. Alternatively, the Delaunay
condition holds for a polyhedral graph if and only if for any edge e of the graph
0 < θ(e) < π. The weak Delaunay condition, on the other hand, holds if and only
if for any oriented edge ~e of a polyhedral graph either θn(~e ) and θs(~e ) are both
strictly positive or else θn(~e ) = −θs(~e ). Equivalently the weak Delaunay condition
holds for a polyhedral graph if and only if for any edge e of the graph 0 ≤ θ(e) < π.

Remark 10. Note that π−2θ(e) is the intersection angle between the c.w. oriented
north and south circumcircles Cn and Cs. We have θ(e) > 0 iff z(n) is outside Cs,
or equivalently if z(s) is outside the circumcircle Cn, while θ(e) = 0 iff z(n) ∈ Cs

or equivalently iff z(s) ∈ Cn.
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Some properties. Regular graphs will be useful when discussing the discussion with
the rhombic graphs of [Ken02] discussed in next section 2.1, thanks to the following
simple result.

Lemma 3. Let Gcr be a planar, isoradial Delaunay graph with common circumra-
dius Rcr. Then Gcr is regular.

Proof. Suppose by contradiction there exists an irregular face f ∈ F(Gcr). There
exits an edge e ∈ ∂f with an orientation ~e such that f = fs and such that face
fs is contained in the intersection of the disks of circles Cs and C where C is the
circle of radius Rcr obtained by reflecting Cs about the line determined by the edge
e. In virtue of isoradiality, the vertices v ∈ ∂fn with v /∈ ∂e must all lie either (1)
on the portion of the circle C residing in the interior of the disk of circumcircle
Cf or else (2) on the circumcircle Cs. Case (1) is impossible because then any
vertex v of this kind would violate the Delaunay property with respect to the face
fs because edge e would form a chord between faces fn and fs. Likewise case (2)
is impossible because edge e would form a chord between faces fn and fs. So Gcr

must be regular. �

of of

ee
ff

C C

C C

s s

vv :#

Figure 2. Cases (1) and (2) in the proof of Lemma 3

To any polyhedral graph G we associate a chordless polyhedral graph G• obtained
by removing its chords. This is particularly interesting for Delaunay graphs. Hence
we define

Definition 11 (Regularized graph). Given a polyhedral graph G, let G• be the
graph with the same vertex set V(G•) = V(G), the same embedding z• = z, and
with edge set E(G•) = E(G)−chords(G), where chords(G) is the set of all chords in
G. We call G• the regularized graph of G. Clearly G• is made of the regular edges
of G. By Lemma 3 the graph G• is an isoradial, regular Delaunay graph whenever
G is isoradial and weakly Delaunay.
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Rhombic graphs and abstract rhombic surfaces. We now consider the bipartite kite
graph built from the vertices and the face centers of a Delaunay graph, as well as
the associated concept of rhombic surface.

Definition 12 (Kite graphs G♦). For a Delaunay graph G let G♦ denote the
bipartite graph whose vertex set consists of all vertices v of G (the black vertices •)
together with all circumcenters of of faces f of G (the white vertices ◦), and whose
edges correspond precisely to those pairs {v, of} for which v ∈ ∂f. We extend
the embedding z : V(G) −→ C to V(G♦) by setting z(v) := z(v) for each vertex
v ∈ V(G) and z(of) := z(f) for each face f ∈ F(G) where
(2.2)

z(f) :=
1

4i

|z(u)|2(z(v)− z(w)) + |z(v)|2(z(w)− z(u)) + |z(w)|2(z(u)− z(v))

z(v)z(u)− z(u)z(v) + z(w)z(v)− z(v)z(w) + z(u)z(w)− z(w)z(u)

is the complex coordinate of the circumcenter of the face f ∈ F(G) with u, v, w ∈ ∂f
any choice of three vertices appearing in counter-clockwise order. As constructed,
each face of the graph G♦ is quadrilateral (in fact a kite) ♦(uv) = (u, os, v, on)
corresponding to a unique unoriented edge uv of the graph.

Remark 11. For any weak Delaunay graph G we define G♦ := (G•)♦. Clearly
G

♦
1 = G

♦
2 if and only if G•1 = G

•
2 for any two weak Delaunay graphs G1 and G2.

Definition 13 (Rhombic surface S♦
G
). Following [DE14], a rhombic surface S♦

G

can be constructed from a Delaunay graph G in the following way: Assign to each
unoriented edge e = uv a rhombus ♦(e) = ũõsṽõn with unit edge lengths l = 1 and
rhombus angle ∠õsũõn = 2θ(e) as depicted in fig. 3.

If two edges e1 and e2 of the graph share a common vertex and simultaneously
belong to a common face then rhombi ♦(e1) and ♦(e2) are glued together along their
common edge. In this way we obtain an abstract rhombic surface S♦

G
.

u

v

o

on

s

~

~

~

~

on

os

v

u
θ2 θ2EY

"

:••

I
µµ

§⇒#⑧&
Figure 3. An edge e = uv of G and the associated kite in the
plane (left), and the associated rhombus ♦(e) of S♦

G
(right)

A simple example is depicted in the figure 4 below. In this example an explicit
isometric embedding as a tesselated rhombic surface in R3 is possible. (a) is a piece
of an Delaunay graph G, in blue, with the kites associated to each edge (in orange);
(b) is the associated kite graph G♦ (in orange). (c) is an isometric embedding in
R3 of the associated rhombic surface S♦

G
. In this particular example, the conformal

angles θ(e) for each edge of G equals π/2, and so the faces of S♦
G
are in fact squares,
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Figure 4. An example (in blue) of a Delaunay graph G (a) the
associated kite graph G♦ (b) the rhombic surface S♦

G
consisting of

square rhombs embedding in R3 (c) as discussed in the text.

and the embedding (c) is a surface in Z3. In general the rhombic surface S♦
G
cannot

be embedded isometrically and rigidly into R3.
A rhombic surface is flat at each vertex ũ associated to a vertex u of G but has

a potential curvature defect at each vertex õf corresponding to a circumcenters of
of a face f of G, with scalar (Ricci) curvature Rscal defined by

(2.3) Rscal(õf) := 4π − 2
∑
e∈∂f

(
π − 2θ(e)

)
If Rscal(õf) = 0 for every face f of the graph, G is said to be flat. It is easy to
see that this is equivalent to saying that the Delaunay graph is isoradial, namely
that all circumradii are equal to some R. Note that for every oriented edge ~e of an
isoradial, polyhedral graph either θn(~e ) = θs(~e ) = θ(e) > 0 or θn(~e ) = −θs(~e ) in
which case θ(e) = 0.



PERTURBING ISORADIAL TRIANGULATIONS 21

When G is isoradial (with common circumradius R) each kite ♦(uv) will be a
rhombus with side length R; in this case we shall refer to G♦ as a rhombic graph.
Up to a global rescaling R→ 1 we have G♦ = S

♦
G
. This corresponds to the rhombic

graphs discussed in [Ken02].

Remark 12. Isoradial Delaunay graphs are in bijection with the rhombic graphs
of [Ken02].

Figure 5. Fragments of an isoradial Delaunay graph Gcr (on the
left) and its rhombic graph G♦

cr (on the right).

2.2. Geometry on rhombic graphs. In the following discussion Gcr will be an
isoradial Delaunay graph with embedding zcr : V(Gcr) −→ C and, if not specified
otherwise, we shall assume for simplicity that the value of the common circumradius
is Rcr = 1.

Let us recall some geometrical concepts of [Ken02] and [KS14], with some more
material needed in this paper.

Paths on rhombic graphs. A path in G♦
cr is a finite sequence of vertices v =

(
v0, . . . , vk

)
such that for each 1 ≤ j ≤ k the vertices vj−1 and vj are joined by an edge ej of
G

♦
cr; in this case we say v is a path of length k from v0 to vk. Let ~ej = (vj−1, vj)

be the oriented edge corresponding to ej , let ~E(v) = (~e1, · · · ,~ek) be the sequence
of oriented edges of v, and E

(
v
)

=
⋃
j{ej} the set of edges of v. To each edge ~ej of

v is associated a phase eiθj := zcr(vj)− zcr(vj−1). We denote by θ(v) =
(
θ1, . . . , θk

)
the sequence of angles of these phases.

We can regard the rhombic graph G♦
cr as a cellular decomposition of the plane;

accordingly vertices, oriented edges, and oriented faces of G♦
cr can be viewed re-

spectively as 0, 1, and 2-chains of a cellular complex X with Z-coefficients. For a
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Figure 6. Path v =
(
v0, . . . , vk

)
in the rhombic graph G♦

cr

path v, let ~v denote the 1-chain ~e1 + · · · + ~ek in C1

(
X ; Z

)
. Two paths v1 and v2

are said to differ by an oriented rhomb ♦	 if ~v2 = ~v1 + ∂♦	; see figure 7 for an
example. The vanishing of H1

(
X ; Z

)
is equivalent to the fact that any two paths ~v1

and ~v2 both from a vertex u to a vertex v must differ by a sum of oriented rhombs.

Figure 7. Paths u =
(
u0, . . . , u4

)
and v =

(
v0, . . . , v6

)
differ by a rhomb.

For an integer n together with an oriented edge ~e joining a vertex u to a vertex
v set b~e cn := einθ where eiθ = zcr(v) − zcr(u) is the phase of the difference of the
coordinates of the vertices; extend this by linearity to 1-chains in C1

(
X ; Z

)
, and
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thus define
⌊∑

j aj~ej

⌋
n

:=
∑
j aj b~ejcn. Notice that b♦	cn = 0 for any oriented

rhomb ♦	 whenever n is an odd integer. It follows that for any path v, and for any
odd integer n = 2d+ 1, b~v cn depends only on the two end-points (v0, vk) of v.

Definition 14. For any pair of vertices u and v of G♦
cr and for any odd integer

n = 2d+ 1, we define pn(u, v) := b~vcn where v is any path from u to v.

Note that p1(u, v) = zcr(v)− zcr(u). In addition pn(u, v) = −pn(v, u).

Proposition 2. For any pair of vertices u and v in G♦
cr, there is a finite set of angles

Θ ⊂
(
θ0 − π, θ0 + π

)
where θ0 = arg

(
zcr(v) − zcr(u)

)
together with multiplicities

mϑ ∈ Z>0 for ϑ ∈ Θ such that for any odd integer n = 2d+ 1

(2.4) pn
(
u, v
)

=
∑
ϑ∈Θ

mϑ e
inϑ

Moreover Θ is contained in an open subinterval whose length is smaller than π, i.e.
max Θ−min Θ < π.

In fact the phases
{
eiϑ
∣∣ϑ ∈ Θ

}
form a subset of the set of phases

{
eiθ1 , . . . , eiθk

}
of

any path v going from u to v. These results can probably be found in the litterature,
at least implicitly. For completeness we give a short derivation, which relies on the
essential concept of train-tracks on rhombic graphs.

Train-tracks.

Definition 15 (train-track). A train-track in the rhombic graph G♦
cr is an infinite

sequence of rhombs t =
(
♦n
∣∣n ∈ Z

)
whose consecutive rhombs ♦n and ♦n+1 are

incident along a common edge en for each n ∈ Z and for which the edges en and
en+1 are parallel for each n ∈ Z. We shall denote these parallel edges “train-track
tie”, or in short “tie”. We consider train-tracks up to shift and inversion, i.e.
t(1) =

{
♦(1)
n

∣∣n ∈ Z
}
is equivalent to t(2) =

{
♦(2)
n

∣∣n ∈ Z
}
if ♦(2)

n = ♦(1)

±n+d for some
d ∈ Z. Let Ties(t) =

{
en
∣∣n ∈ Z

}
denote this set of edges. A train-track t has

inclination θt ∈ [0, π) if the ties en are parallel to the phase exp
(
iθt

)
.

Clearly any train-track is determined (but not uniquely) by an initial rhomb ♦0

together with a choice of one of its edges e0. For any choice of initial edge e0 in
t the distance of each edge en from the axis determined by e0 is monotonically
increasing with n; i.e. the train-track must move forward in the axis perpendicular
to e0.

We say two train-tracks t(1) =
{
♦(1)
n

∣∣n ∈ Z
}
and t(2) =

{
♦(2)
n

∣∣n ∈ Z
}
intersect if

♦(1)
m = ♦(2)

n for some m,n ∈ Z. Two important features of any rhombic-graph G♦
cr

are

Fact 1. No train-track can intersect itself, i.e. if t =
{
♦n
∣∣n ∈ Z

}
then ♦m 6= ♦n

for all integers m 6= n.

Fact 2. Any two distinct train-tracks are either disjoint or else intersect once.
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Figure 8. Train-track t.

The notion of train-track is amenable to any quad-graph (a planar graph consisting
entirely of quadrilateral faces) and these two properties characterize rhombic graphs
within the broader class of quad-graphs; specifically any quad-graph satisfying these
two properties is a deformation of a rhombic graph (see [KS14]).

Intersections of train-tracks with paths.
A train-track t partitions the vertex set V

(
G

♦
cr

)
into two disjoint subsets V1 and

V−1. Specifically, the edge set E
(
G

♦
cr

)
− Ties(t) defines a disconnected subgraph

of G♦
cr with two disjoint components; V−1 and V1 are the respective vertex sets of

these components. Accordingly, we say that two vertices u and v are separated
by t if they lie in different components; furthermore we say t separates the path
v if the end-points of the path v0 and vk are separated by t.

Given a path v =
(
v0, . . . vk

)
and a train-track t let I(v; t) :=

{
1 ≤ j ≤ k

∣∣ ej ∈
Ties(t)

}
be the set of indices of edges common to both v and t. If t separates v

then its cardinality
∣∣I(v; t)

∣∣ must be odd due to the fact the path must begin on
one side of t and end on the other. If on the other hand t does not separate v then∣∣I(v; t)

∣∣ is even (and may in fact be zero if there is no intersection at all).
The edges ej for j ∈ I(v; t) are clearly parallel (since they all inhabit the train-

track t) but the oriented edges ~ej for j ∈ I(v; t) must alternate in direction and
so their phases eiθj for j ∈ I(v; t) must must alternate in sign. Consequently, if
I(v; t) =

{
j1 < · · · < jd

}
and n is odd then

(2.5)
d∑
s=1

einθjs =

{
einθj1 whenever t separates v
0 otherwise

If t separates v their intersection angle is defined as ϑ(v, t) := θj1 and Θ(v) ={
ϑ(v, t)

∣∣ t intersects v
}

is the set of intersections angles of all train-tracks that
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separate the path v. For ϑ ∈ Θ(v) define its multiplicity as the cardinality of set
mϑ :=

∣∣{t separates v
∣∣ϑ = ϑ(v, t)

}∣∣.
It follows from equation 2.5 that for odd n

(2.6) b~v cn =

k∑
j=1

einθj =
∑

train-tracks t
separating v

einϑ(v,t) =
∑

ϑ∈Θ(v)

mϑe
inϑ

For obvious topological reasons the set
{

t separates v
∣∣ϑ = ϑ(v, t)

}
only depends

on the end-points v0 and vk of the path v. As immediate consequence of Proposition
3 is that if ϑ ∈ Θ(v) then ϑ+π /∈ Θ(v) — this means that if two distinct train-tracks
t1 and t2 share the same inclination and both separate v then ϑ(v, t1) = ϑ(v, t2).
Consequently the set Θ(v) together with the multiplicities mϑ for ϑ ∈ Θ(v) must
only depend on the end-points v0 and vk of the path v as well. This observation is
consonant with the fact that the value of b~v cn depends only on end-points of v.

Let v be a path in G♦
cr with starting and ending points u and v respectively.

Let t be a train-track separating v, and θ = θ(v, t) their angle of intersection. Let
Ru
θ = zcr(u) + R>0e

iθ be the ray (half-line) starting from zcr(u) in the direction θ,
and Rv

θ+π = zcr(v)+R>0e
i(θ+π) be the ray starting from zcr(v) in the direction θ+π.

It is geometrically clear, as depicted in fig. 9, that t must intersect the righthand
sides of rays Ru

θ and R
v
θ+π, without back tracking in the direction orthogonal to Ru

θ

(and without intersecting the opposite rays Ru
θ+π and Rv

θ). See fig. 9.

u

v

Ru
θ

-θ
vR

¥0

④

Figure 9. Vertices u and v separated by a train-track t.

For completeness, one should consider the case where the lozenges in t becomes
infinitely flat, so that t goes to infinity in the θ direction before intersecting Ru

θ (see
Fig. 2.2). Then one can consider that t crosses Ru

θ at infinity.

Proposition 3. Let v =
(
v0, . . . , vk

)
be a path in G♦

cr, let the direction of the path
be θ0 = arg

(
zcr(vk)− zcr(v0)

)
. Let us fix the determinations of the angles ϑ ∈ Θ(v)

as real numbers in

(2.7) ϑ ∈ (θ0 − π, θ0 + π]

and let

(2.8) α = max{ϑ ∈ Θ(v)} , β = min{ϑ ∈ Θ(v)}



26 FRANÇOIS DAVID AND JEANNE SCOTT

u

v

Ru
θ

θ+π
vR

⑥

n

¥4
But

⑧

*

*

⑧

@

¥

*

•
⑥

8¥

8£

@

@

99
of

0

@

&
I

@
a

Figure 10. Vertices u and v asymptotically separated by a train-track.

Figure 11. Semicircle

Then

(2.9) α− β < π and β ≤ θ0 ≤ α
In other words, the set Θ(v) and the angle θ0 are contained in the open subinterval(
θv − π

2 , θv + π
2

)
where θv = 1

2 (α− β).

Proof. Set θ0 = arg
(
zcr(vk) − zcr(v0)

)
∈
[
0, π
)
. Each ϑ ∈ Θ(v) is the intersection

angle of at least one train-track t whose inclination equals ϑ (modulo π) and which
separates the vertices v0 and vk.

First let us note that the angle θ0 + π cannot be an element of Θ(v). Were this
the case, there would be train-track joining the righthand sides of the rays Ru

θ0+π

and Rv
θ0

without backtracking. This is impossible, as depicted in figure 12.
Consequently the angles in Θ(v) are in the interval (θ0 − π, θ0 + π). Consider

α = max Θ(v) and β = min Θ(v). It is enough to prove that α − β ≤ π. Indeed,
suppose instead that α − β > π. Both α and β are intersection angles for two
respective train-tracks t1 and t2 which separate u := v0 and v := vk. If we attempt
to draw t1 and t2 bearing in mind monotonicity and their requisite intersections
with the rays Ru

α, Ru
β , R

v
α+π, and Rv

β+π we will observe that the two train-tracks
will be forced to intersect at least three times (as depicted on figure 13). Since
two distinct train-tracks may intersect at most once we are forced to conclude that
α− β ≤ π.
Finally, by equation 2.6, the difference zcr(v)− zcr(u) can be written as

zcr(v)− zcr(u) =
∑

ϑ∈Θ(v)

mϑ e
iϑ with mϑ ∈ Z>0
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Figure 12. A track separating u and v with orientation θ0 + π
must backtrack
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Figure 13. Two train-tracks separating u and v cannot have sep-
arating angles differing by more that π

Any positive combination of phases eiϑ for ϑ ∈ Θ(v) must lie in the positive cone{
aeiα + beiβ

∣∣ a, b ∈ R>0

}
because α− β < π. It follows that β < θ0 < α. �
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3. Laplacians and their determinants

3.1. Laplacians and the critical laplacian.

The laplacians.
Given a polyhedral graph G, we denote by CV(G), CE(G), and CF(G) the vector
spaces of complex-valued functions supported respectively on the vertices, edges,
and faces of G.

The operators associated to a general planar triangulation G have been intro-
duced in section 1, namely: The Laplace-Beltrami operator ∆, the conformal lapla-
cian ∆ and the Kähler operator D. Each operator is a linear map CV(G) → CV(G)

defined respectively by

(3.1) ∆φ(u) =
∑

edge ~e=(u,v)

c(~e )
(
φ(u)−φ(v)

)
, c(~e ) =

1

2

(
tan θn(~e ) + tan θs(~e )

)

(3.2) ∆φ(u) =
∑

edge ~e=(u,v)

tan θ(e)
(
φ(u)− φ(v)

)
and

(3.3) Dφ(u) =
∑

edge ~e=(u,v)

1

2

(
tan θn(~e ) + i

R2
n(~e )

+
tan θn(~e )− i

R2
s (~e )

)(
φ(u)− φ(v)

)
θn(~e), θs(~e) and θ(e) are respectively the north, south and conformal angles asso-
ciated to the oriented edge ~e = (u, v) while Rn(~e ) and Rs(~e ) are the circumradii
of the respective north fn and south fs faces associated to ~e (see figure 1).

Remark 13. The definitions of the Beltrami-Laplace operator ∆, of the conformal
laplacian ∆, and of the David-Eynard Kähler operator D given in 1.2 by 1.7, 1.8
and 1.9 for generic triangulations extend naturally to case of a polyhedral graph
G. Moreover, the operators thus defined coincide with the operator defined on its
chordless regularized graph G•.

Indeed, we can start from a polyhedral graph G, and “fill up” its faces which
have k > 3 edges by chords, until we get a triangulation T. Similarity, we can
remove the chords of G until we get G

•
. If an edge e = uv of T is a chord of G

then θn(~e ) + θs(~e ) = θ(e) = 0. Moreover the circumradii of the north and south
faces are equal Rn(~e ) = Rs(~e ). This implies from 1.7, 1.8 and 1.9 that the matrix
elements ∆u,v and [∆]u,v and Du,v are zero.

Areas, angles and circumradii.

We recall some basic geometrical formula for these quantities. Let f = (v1, v2, v3)
be a c.c.w. oriented triangle with vertices labelled v1, v2, v3 and respective coordi-
nates z1, z2, z3 then the area A(f) of the triangle is

(3.4) A(f) =
1

4i
(z2z̄1 − z1z̄2 + z3z̄2 − z2z̄3 + z1z̄3 − z3z̄1)
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The circumcenter z(f) of the triangle is given by

(3.5) z(f) =
z1z̄1(z2 − z3) + z2z̄2(z3 − z1) + z3z̄3(z1 − z2)

4iA(f)

and the circumradius R(f) of the triangle is given by the trigonometric relation

(3.6) R(f) =
|z1 − z2||z2 − z3||z3 − z1|

4A(f)

while the north angle associated to the oriented edge ~e = (v1, v2) is

θn(~e ) =
1

2i
log

(
− (z̄2 − z̄3)(z1 − z3)

(z2 − z3)(z̄1 − z̄3)

)
(3.7)

Furthermore tan2 θn(~e ) can be written explicitly in coordinates as

tan2 θn(~e ) =
2 + z2−z3

z̄2−z̄3
z̄1−z̄3
z1−z3 + z1−z3

z̄1−z̄3
z̄2−z̄3
z2−z3

2− z2−z3
z̄2−z̄3

z̄1−z̄3
z1−z3 −

z1−z3
z̄1−z̄3

z̄2−z̄3
z2−z3

= 4
|z(f)− z12|2

|z2 − z1|2
with z12 =

z2 + z1

2

(3.8)

The derivatives of A(f), R(f) and of the angles θn(~e ) under a variation of a
vertex coordinate are easy to calculate, using for instance

(3.9) ∂z1A(f) =
1

4i
(z̄3 − z̄2) , ∂z1 |z1 − z2| =

1

2

z̄1 − z̄2

|z1 − z2|
with ∂z1 =

∂

∂z1

and will be discussed later.

The critical Laplacian.

Definition 16. Let Gcr be an isoradial Delaunay graph. The Beltrami-Laplace
operator ∆, the conformal laplacian ∆, and the normalized David-Eynard Kähler
operator R2D of Gcr coincide. This common operator is called the critical Lapla-
cian of Gcr and is denoted ∆cr.

3.2. Factorization of laplacians using ∇ and ∇ operators.
If these explicit representations in term of angles and circumradii are sufficient, an
alternate representation of the operators ∆ and D is convenient for the calculations.
We follow the definition and the notations of [DE14].

Definition 17. The operators ∇ and ∇ are linear operators from the space of
complex-valued functions over the set of vertices V(T) of T, onto the space of
complex-valued functions over the set of triangles (faces) F(T) of T.

CV(T) ∇−→ CF(T) , CV(T) ∇−→ CF(T)

∇ is defined as follows. Given a triangle f (a face of the triangulation T) with
vertices v1, v2, v3 (listed in ccw order) and complex coordinates zj := z(vj) for
1 ≤ j ≤ 3 together with a function φ ∈ CV(T) define

(3.10) ∇φ(f) = i
φ(v1)(z̄2 − z̄3) + φ(v2)(z̄3 − z̄1) + φ(v3)(z̄1 − z̄2)

4A(f)

∇ corresponds to a discrete linear derivative w.r.t. the embedding v 7→ z(v) because

(3.11) ∇z = 1 , ∇z̄ = 0
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Similarily, its conjugate ∇ is defined as

(3.12) ∇φ(f) = −i
φ(v1)(z2 − z3) + φ(v2)(z3 − z1) + φ(v3)(z1 − z2)

4A(f)

and satisfies

(3.13) ∇z = 0 , ∇z̄ = 1

The transpose of these operators are defined accordingly:

CF(T) ∇>−→ CV(T) , CF(T) ∇>−→ CV(T)

Remark 14. It follows from definitions 3.10 and 3.12 and the area formula 3.4
that

(3.14) φ(v1)− φ(v2) = (z1 − z2)∇φ(f) + (z1 − z2)∇φ(f)

where φ ∈ CV(T) is a function.

Note that the discrete derivatives ∇ and ∇ are defined for general triangulations.
Even when to triangulation is isoradial, ∇ and ∇ do not coincide with the discrete
holomorphic and discrete antiholomorphic derivatives ∂ and ∂̄ considered in [Ken02]
for isoradial bipartite graphs. Indeed ∇ and ∇ do not even act on the same space
of functions than ∂ and ∂̄.

Nevertheless, we shall need to bound the difference between the ∇φ and the
ordinary continuous derivative ∂φ in the case of a smooth complex-valued function
φ : C −→ C with compact support and its restriction to V(T) given by φ(v) :=
φ(z(v)) where z : V(T) −→ C is the embedding of T. This estimate is explained in
Lemma 2 of the introduction and proven in Appendix B.

In addition, the ∇-operator satisfies a discrete analogue of Green’s Theorem
¨

Ω

∂φ(z, z̄) dz dz̄ =

˛
∂Ω

φ(z, z̄) dz̄

in complex coordinates, namely:

Lemma 4. Let T be a polyhedral triangulation with embedding z : V(T) −→ C,
let Ω ⊂ F(T) be a finite collection of triangular faces (each taken with a counter-
clockwise orientation), let ∂Ω ⊂ E(T) be the finite subset of (oriented) edges cor-
responding to the boundary of Ω, and let φ ∈ CV(T) be a complex-valued function,
then

(3.15)
∑
x∈Ω

A(x)∇φ(x) =
∑

(u,v)∈ ∂Ω

(
z(v)− z(u)

) φ(v) + φ(u)

4i

The polyhedral condition can in fact be dropped but we assume it to keep the
exposition simple. Lemma 4 implies the following corollary which is relevant to our
results.

Corollary 1. Let T1 and T2 be two polyhedral triangulation which share a common
regularized graph G := T

•
1 = T

•
2. Given a face f ∈ F(G) with vertex set V(f) let

Ωi(f) be the set of triangular faces of Ti each of whose vertices are in V(f) then

(3.16)
∑

x1 ∈Ω1(f)

A(x1)∇φ(x1) =
∑

x2 ∈Ω2(f)

A(x2)∇φ(x2)

for any complex-valued function φ ∈ CV(G).
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Definition 18. The diagonal operators A = diag({A(f); f ∈ F(G)}) and R =
diag({R(f); f ∈ F(G)}) map CF(G) → CF(G) and are defined as

(3.17) Aψ(f) = A(f)ψ(f) , Rψ(f) = R(f)ψ(f)

Remark 15. The Laplace-Beltrami operator ∆ can be factored as

(3.18) ∆ = 2
(
∇>A∇+∇>A∇

)
The derivation is left to the reader.

Remark 16. The D can be factored as

(3.19) D = 4∇> A
R2
∇

See [DE14] for details.

Remark 17. No similar decomposition holds for the conformal Laplacian ∆, since
the weight associated to an oriented edge ~e depends non-additively on the north and
south angles θn(~e ) and θs(~e ).

3.3. Making sense of the log-determinant for infinite lattices.

The problems. As explained in the introduction, we are interested in studying the
variation of the log detO under a variation of the coordinates of the triangulation
T, where O is any of the laplace-like operators ∆, ∆ and D. Two potential dangers
arise: (1) These operators have zero modes and some care is needed in imposing
boundary conditions in order to exclude them. (2) We consider infinite polygonal
graphs — and so by any naive account, the log-determinant will infinite. There
is a host of standard methods used to handle these issues; below we discuss two
situations where problem (1) and (2) can be side stepped.

Using periodic triangulations: Consider a polyhedral graph G which is periodic with
respect to a lattice Z + τZ with Im τ > 0. This means there is an action of the
additive group Λ = Z2 on V(G) denoted v 7→ v + (a, b) such that

(1) z
(
v + (a, b)

)
= z(v) + a+ τb

(2) u + (a, b) and v + (a, b) are joined by an edge whenever u and v

are joined by an edge (moreover the weights of these edges agree)

for all u, v ∈ V(G) and (a, b) ∈ Λ. Given a choice of an additive subgroup Λmn :=
mZ×nZ of Λ with m,n ∈ Z>0 form the quotient graph G/Λmn, which we can view
as a finite graph embedded in the torus Tmn := C/(mZ + τnZ). Since the edge
weights are periodic, the operator O descends to an operator Omn on the quotient
graph G/Λmn; moreover if we identify the vertices of G/Λmn with the subset Vmn

consisting of vertices v ∈ V(G) for which z(v) ∈
{
s+tτ

∣∣ (s, t) ∈ [0,m)×[0, n)
}
then

Omn is a finite dimensional operator acting on vector space of dimension
∣∣Vmn

∣∣.
We define the reduced log-determinant log det′Omn as the sum of the logarithms

of the non-zero eigenvalues of O (the non-zero part of the spectrum is real and pos-
itive since O will be a positive operator in the cases we consider). The normalized
reduced log-determinant log det′O is defined as

(3.20) log det′∗Omn =
1

|Vmn|
log det′Omn
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The normalized log-determinant of O, acting on the entire graph G (see discus-
sion in 1 ) can be defined simply as

(3.21) log det∗O = lim
m,n→∞

log det′∗Omn

So log det∗O corresponds to an “effective action” density (free energy density) per
vertex on the infinite lattice. In fact the limit in formula 3.21 exists and coincides
with the following description in terms of matrix-valued symbols: Choose complex
parameters z and w and define the space of quasi-periodic functions

Fmn(z, w) =

{
φ : V(G) −→ C

∣∣∣∣∣ φ
(
v + (am, bn)

)
= zawbφ(v)

for all v ∈ V(G) and a, b ∈ Z

}

This is a finite dimensional vector space of dimension dimFmn(z, w) =
∣∣Vmn

∣∣.
Clearly Oφ ∈ Fmn whenever φ ∈ Fmn. and consequently the operator O restricts
to a finite dimensional linear operator σOmn on Fmn(z, w) which is called the symbol
of O. As a matrix the entries of σOmn are Laurent polynomials in z and w and for
generic values of z and w it will be invertible; indeed work of Kassel and Kenyon
[KK12] implies that its determinant detσOmn is non-negative for values of z and w
each having unit modulus. One checks that the average value of the log-determinant
of this symbol agrees with normalized log-determinant of O:

(3.22) log det∗O =
1

4π2

1∣∣Vmn

∣∣ ˆ 2π

0

ˆ 2π

0

dζ dω log detσOmn
(
eiζ , eiω

)
Remark 18. The value of the right hand side of 3.22 can be evaluated using
Jensen’s formula (twice) and is independent of the choice of m,n ∈ Z>0.

Using Dirichlet boundary conditions: Alternatively, for a arbitrary polygonal graph
G (not necessarily periodic) one can consider a sequence of truncated operators On
obtained from a nested sequence of domains Ω1 ⊂ · · · Ωn ⊂ Ωn+1 ⊂ · · · whose union
is C. For instance, the sequence of 2n× 2n squares Ωn = {z; |Re(z)| < n, |Im(z)| <
n} where On is the restriction of the operator O to the subset of vertices Vn = {v ∈
V(G) | z(v) ∈ Ωn} with Dirichlet boundary conditions imposed on the complement
of Ωn; this amounts to setting all matrix elements of O to zero which involve vertices
v with z(v) /∈ Ωn. As a matrix On will zero outside a |Vn|×|Vn| submatrix without
zero modes. The normalized ∞-volume log-determinant is expected to be equal to
the limit

(3.23) log det∗O = lim
n→∞

1

|Vn|
log detOn

of such a nested family of graphs (with Dirichlet conditions) in the case of non-
periodic graph G which is sufficiently “regular/homogeneous” (e.g. a quasi-periodic
lattice).

Local variation of ∞-volume determinants. Defining properly the finite variation
of ∞-volume determinants (by themselves infinite) under local deformation can be
done in the two schemes that we have presented above. Let’s explain the idea in
the Dirichlet boundary scheme. We begin with a polyhedral graph G and make
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perturbation G → G
′ by moving some of its vertices inside a finite size compact

domain Ω. The operator O changes accordingly

O → O′ = O + δO
If the incidence relations of G do not change, the variation δO will be an opera-
tor supported on the finite set Ω̄ consisting of all vertices in Ω plus their nearest
neighbouring vertices (any vertex which shares a common face with a vertex in
Ω) Considering a nested sequence of domains Ω1 ⊂ Ω2 · · · ⊂ Ωn ⊂ · · · → C such
that Ω̄ ⊂ Ω1, it is clear that one can write the variation series expansion for the
restriction of O in each Ωn

(3.24) log detO′n = log detOn + tr
[
δOn · O−1

n

]
− 1

2
tr
[ (
δO · O−1

)2 ]
+ · · ·

In the n → ∞ limit, since the δOn extended to G are equals to δO, each term in
the expansion will converge to its ∞-volume limit

(3.25) tr
[ (
δOn · O−1

n

)K ] → tr
[ (
δO · O−1

)K ]
so that, although log detO′ and log detO are formally infinite, the difference is
finite and one can write

(3.26) log detO′ = log detO + tr
[
δO · O−1

]
− 1

2
tr
[ (
δO · O−1

)2 ]
+ · · ·

We shall study the perturbation around an isoradial, Delaunay graph Gcr, where
we have seen that O−1

cr (the Greens function) can be expressed in a simple contour
integral form. Moreover we shall consider infinitesimal transformations 5.1, and
study the general form of the first order term in 3.26, and some especially interesting
terms in the second order term.

3.4. Kenyon’s local formula for log det ∆cr.

Kenyon’s formula for a periodic infinite lattice. Kenyon derived an explicit
formula for the normalized log-determinant of ∆cr for periodic, isoradial, Delaunay
triangulations Tcr. The proof of this result relies only on the structure of the
corresponding rhombic graph T♦

cr and indeed works for any rhombic graph. For
this reason Kenyon’s formula implicitly extends to all periodic, isoradial, Delaunay
graphs Gcr.

(3.27) log det∗∆cr =
2

π |V11|
∑

edges e
of Gcr/Λ

L
(
θ(e)

)
+ L

(π
2
−θ(e)

)
+ θ(e) log tan θ(e)

Extension to general isoradial (weak) Delaunay graphs. Kenyon’s formula
can be formally extended to express the un-normalized log-determinant log det ∆cr

for a general isoradial, Delaunay graph Gcr as a sum over all edges e ∈ E(Gcr),
namely:

(3.28) log det ∆cr =
2

π

∑
e∈E(Gcr)

L(θ(e))

with the function L of the conformal angles θ(e) given by

(3.29) L(θ(e)) = L
(
θ(e)

)
+ L

(π
2
− θ(e)

)
+ θ(e) log tan θ(e)
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where L is the Lobachevsky function (related to the Clausen function Cl2)

(3.30) L(x) = −
ˆ x

0

dy |2 log(y)| = Cl2(2x)/2

We may further generalize this formula to any isoradial weak Delaunay graph Gd

obtained from Gcr by adding chords inside the faces of Gcr, i.e. any graph such
that G•d = Gcr. Indeed, if e is a chord in Gd then θn(~e ) = −θs(~e ) and L(θn(~e )) =
−L(θs(~e )) where the function L(θ) is analytically extended to an odd function of θ
over (−π, π). For any isoradial weak Delaunay graph Gd of this kind, formula 3.28
becomes

(3.31) log det ∆cr =
1

π

∑
e∈E(Gd)

L(θn(~e )) + L(θs(~e ))

since the contribution of any chord is zero. This is true in particular for the isoradial,
weak Delaunay graphs G0+ and Ĝ0+ mentioned in definition 1 of the introduction.
Note that the derivative of L is

(3.32) L′(θ) =
d

dθ
L(θ) =

θ

sin θ cos θ
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4. The critical Green’s function and its asymptotics

4.1. Kenyon’s formula for the critical Green’s function.

The Green’s function ∆−1
cr studied by Kenyon in [Ken02] is a right-inverse of the

critical laplacian ∆cr characterized uniquely by the following three conditions
1) ∆cr ∆−1

cr = 1

2)
[
∆−1

cr

]
u,v

= O
(

log |zcr(u)− zcr(v)|
)
for |zcr(u)− zcr(v)| � 0

3)
[
∆−1

cr

]
u,u

= 0

Here Gcr is an isoradial Delaunay graph with embedding zcr and G♦
cr its associated

rhombic graph (its embedding is also denoted zcr). Kenyon showed that this critical
Green function ∆−1

cr on Gcr is expressed by the explicit integral

(4.1)
[
∆−1

cr

]
u,v

= − 1

8π2i

˛
C

dw

w
log(w) Eθ(v)(w)

where v =
(
v0, . . . , vk

)
is any choice of path from v0 = u to vk = v on G♦

cr and where
θ(v) =

(
θ1, . . . , θk

)
is the associated sequence of angles. Eθ(w) is the meromorphic

function in w

(4.2) Eθ(w) :=

k∏
j=1

w + eiθj

w − eiθj

The value of Eθ(w) depends only on the end points v0 and vk of the path; this
follows from an argument similar to the proof in demonstrating that the value of
bvcn for odd positive integers n also depends only on the end points v0 and vk
of the path. If we fix v0 and allow the end point v = vk of the path to vary
then the mapping v 7→ Eθ(w) is an example of a discrete analytic function on G♦

cr

as discussed in [Ken02]. By Lemma 6 the restriction of this mapping to vertices
v ∈ V(Gcr) may be viewed as a lattice approximation of the continuous exponential
function

z 7→ exp
{

2w
[
z − zcr(v0)

]}
provided |w| < 1. For this reason Eθ(w) is referred to as discrete exponential
function. Finally C is any closed, counter-clockwise oriented contour enclosing the
finite set of phases Φ(v) :=

{
eiϑ
∣∣ϑ ∈ Θ(v)

}
. As explained in Proposition 3 the

set of angles Θ(v), and thus Φ(v), are finite and depend only on the end-points u
and v of the path v. The set of poles of the integrand in formula 4.1 is precisely
Φ(v) and e−iθ0 /∈ Φ(v), so a contour C can be choosen which avoids the branch cut
−θ0 = arg

(
zcr(u)− cr(v)

)
of the logarithm; see subsection 4.3 below for details.

Remark 19. Formula (12) is invariant under both global translation and rotation
of the graph Gcr.

Remark 20. As a special case, Kenyon obtains a simple expression of the Green
function for neighbouring vertices u and v of Gcr sharing a common rhombus ♦ of
G

♦
cr (i.e. two “black” vertices joined by a diagonal of the lozenge). It takes the form

(4.3)
[
∆−1

cr

]
u,v

= − 1

π
θ(e) cot θ(e)
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with θ(e) = θ(uv) the angle associated to the edge e = uv. This is a crucial step
in the derivation of 3.27. This result is in fact valid for any pair of vertices u, v
sharing a common cyclic face f of an isoradial Delaunay graph Gcr, even when the
vertices u, v are not joined by an edge of Gcr, as depicted in fig 14. The result reads

(4.4)
[
∆−1

cr

]
u,v

= − 1

π
θn(uv) cot θn(uv) = − 1

π
θs(uv) cot θs(uv)

This result is valid whenever u, v are joined by an edge so that θn(uv) = θs(uv) or
else joined by a chord of the cyclic face f so that θn(uv) = −θs(uv) = θ(uv) (the
former is the case one recover Kenyon’s result).

Figure 14.

Proof. Select the path v = (u, of, v) with of the circumcenter of f (see fig 14).
Set eiθ1 = zcr(f) − zcr(u) and eiθ2 = zcr(v) − zcr(f) (with Rcr = 1) and note that
θn(uv) = (θ1 − θ2)/2. Then[

∆−1
cr

]
u,v

= − 1

8π2i

˛
C

dw

w
log(w)

w + eiθ1

w − eiθ1

w + eiθ2

w − eiθ2

= − 1

4π

(
2eiθ1

eiθ1 + eiθ2

eiθ1 − eiθ2

log
(
eiθ1
)

eiθ1
+ 2eiθ2

eiθ2 + eiθ1

eiθ2 − eiθ1

log
(
eiθ2
)

eiθ2

)

= − 1

4π

(
2i(θ1 − θ2)

eiθ1 + eiθ2

eiθ1 − eiθ2

)
= − 1

π

θ1 − θ2

2
cot

(
θ1 − θ2

2

)(4.5)

�

4.2. Expansion and bounds for the discrete exponential.

Lemma 5. Consider a finite sequence of angles
(
θ1, . . . , θk

)
contained in the closed

interval of the form
[
ϑ − π

2 , ϑ + π
2

]
centered about some fixed angle ϑ. Let (by

similarity to Def. 14 and Prop. 2)

(4.6) p2n+1 :=

k∑
j=1

ei(2n+1)θj

Then we have the uniform bound

(4.7)
∣∣ p2n+1

∣∣ ≤ (2n+ 1)
∣∣ p1

∣∣.
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Proof. Clearly it is enough to verify the lemma in the case of ϑ = 0, otherwise we
have p2n+1 = e−iϑp̃2n+1 where p̃2n+1 =

∑k
j=1 e

i(2n+1)θ̃j and where θ̃j = θj − ϑ ∈[
− π

2 ,
π
2

]
.

Begin with the following polynomial q2n+1(w) := 2w2
(
w2n − (−1)n

)(
w2 + 1

)−1

and notice that

q2n+1(iw) := 2
(
iw
)2((iw)2n − (−1)n(

iw
)2

+ 1

)
=
(
− 1
)n

2w2 w
2n − 1

w2 − 1

=
(
− 1
)n

2
(
w2n + w2n−2 + · · ·+ w2 + 1

)
therefore q2n+1(w) =

(
− 1
)n

2
(

1− w2 + w4 − w6 + · · ·+
(
− 1
)n
w2n

)

For w = eiθ with θ ∈
[
− π

2 ,
π
2

]
the function θ 7→ q2n+1

(
eiθ
)
is clearly continu-

ous and its modulus takes maximal value
∣∣∣q2n+1

(
± i
)∣∣∣ = 2n and so

∣∣q2n+1

∣∣
∞ =

2n. By construction ei(2n+1)θ = cos(θ) q2n+1

(
eiθ
)

+ (−1)neiθ and so p2n+1 =∑k
j=1 cos(θj) q2n+1

(
eiθj
)

+ (−1)np1. We now proceed with a yoga of inequalities:

∣∣p2n+1

∣∣ ≤ ∣∣∣ ∑
1≤j≤k

cos(θj) q2n+1

(
eiθj
) ∣∣∣ +

∣∣ p1

∣∣
≤

∑
1≤j≤k

∣∣∣ cos(θj) q2n+1

(
eiθj
) ∣∣∣ +

∣∣ p1

∣∣
≤

∑
1≤j≤k

cos(θj)
∣∣∣ q2n+1

(
eiθj
) ∣∣∣ +

∣∣ p1

∣∣ (
Note that cos(θj) ≥ 0
because −π2 ≤ θj ≤

π
2

)
≤

∑
1≤j≤k

cos(θj)
∣∣ q2n+1

∣∣
∞ +

∣∣ p1

∣∣
≤ 2nRe

[
p1

]
+
∣∣ p1

∣∣
≤
(
2n+ 1

) ∣∣ p1

∣∣ (
since 0 ≤ Re

[
p1

]
≤
∣∣ p1

∣∣ )
�

Lemma 6. Given a finite sequence of angles θ =
(
θ1, . . . , θk

)
and |w| < 1 the

following expansions of Eθ(w) are valid:

(4.8) Eθ(w) =
(
− 1
)k ∏

n odd

exp

(
2

n
wn pn

)
where pn =

∑
1≤j≤k

einθj .
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Proof.
k∏
j=1

w + eiθj

w − eiθj
=
(
− 1
)k k∏

j=1

1 + we−iθj

1− we−iθj

=
(
− 1
)k

exp

k∑
j=1

log

(
1 + we−iθj

1− we−iθj

)

=
(
− 1
)k

exp

k∑
j=1

2

(
we−iθj +

1

3
w3e−3iθj +

1

5
w5e−5iθj · · ·

)

=
(
− 1
)k

exp

(
2w

k∑
j=1

e−iθj +
2

3
w3

k∑
j=1

e−3iθj +
2

5
w5

k∑
j=1

e−5iθj · · ·

)

=
(
− 1
)k ∏

n odd

exp

(
2

n
wn pn

)

=
(
− 1
)k

exp
(
2w p1

)
·

(
1 +

∑
N≥3

wN cN

)
�

Remark 21. Let θ =
(
θ1, . . . , θn

)
be a finite sequence of angles contained in an

interval of the form
[
ϑ− π

2 , ϑ+ π
2

]
where n is a positive odd integer. Define

(4.9) un =
1

n

pn
p1

and u(w) =
∑
odd
n≥3

unw
n

By Lemma 5 each |un| ≤ 1 and u(w) is analytic in the unit disk and Eθ(w) =(
− 1
)k · exp

(
2p1w

)
· exp

(
2p1u(w)

)
. Furthermore we have, through the standard

combinatorial vinyasas,

(4.10) Eθ(w) =
(
− 1
)k · exp

(
2p1w

)
·

(
1 +

∞∑
m=1

m∑
d=1

w2m+d
(
2p1

)d
cm,d

)
with the coefficients cm,d given by

(4.11) cm,d =
∑
r`m

#(r)=d

∏
s≥1

1

(rs)!
(u1+2s)

rs

and where the sum is taken over infinite tuples r =
(
r1, r2, r3, . . .

)
∈ ZN

≥0 with∑
s≥1 rs = d and such that

∑
s≥1 s rs = m.

Let u and v be distinct vertices of Gcr and let v =
(
v0, . . . , vk

)
be a path from

u to v. Translation and rotation invariance of the Green’s function allows us to
assume without loss of generality that u is situated at the origin and that the
phases eiθj := zcr(vj)− zcr(vj−1) of the path lie in the open interval

(
−π2 ,

π
2

)
; if not

the embedding of Gcr may be shifted z 7→ z− zcr(u) and rotated z 7→ z exp
(
− iθv

)
to achieve these features; see Proposition 3 for a definition of θv.



PERTURBING ISORADIAL TRIANGULATIONS 39

4.3. Contour integral for the expansion. In [Ken02] Kenyon handles the as-
ymptotic behaviour of the Green’s function with respect to the distance |u−v| using
a keyhole contour C with a corridor of width ε > 0 avoiding the cut of the logarithm
arg(θ) = −π. Paraphrasing Kenyon, this contour Cε runs counter-clockwise along
the circle of radius R about the origin (connecting −R± iε), then travels horizon-
tally above the x-axis from −R + iε to −r + iε, runs clockwise along the circle of
radius r about the origin (connecting −r± iε), and finally returns horizontally from
−r− iε to −R− iε below the x-axis. Here R� |u− v| and r � |u−v|−1; see figure
15. The following lemma allows us to compute the Green’s function by integrating
along the cut of the logarithm provided we subtract off the logarithmic divergences.

>

<

>

<
Rr

0
1

eiθj

/\

\/

ε > 0

A. if

1
than MAY

BE ⇒E
§←

' '

q ⑥ )

I
wmEs*

4µm

← to

Figure 15. keyhole contour C.

Lemma 7. Let F(w) be a function which is holomorphic on the extended complex
plane C ∪ {∞} outside a subset S contained in the interior of keyhole contour C
for some values of R, r, and ε, and such that F (0) = F (∞) = 1 then

(4.12)
˛
C

dw

w
log(w) F(w) = −2πi

ˆ ∞
0

(
F(−t)− 1

) dt
t
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Proof.

˛
C

dw

w
log(w) F(w) = lim

r→0
R→∞

lim
ε→0

˛
C

dw

w
log(w) F(w)

= lim
r→0
R→∞



i

ˆ −π
π

log
(
reiφ

)
F
(
reiφ

)
dφ

integral (1):
contribution of
circle radius r

+

2πi

ˆ −r
−R

F(t)
dt

t

integral (2):
contribution
along the cut

+

i

ˆ π

−π
log
(
Reiφ

)
F
(
Reiφ

)
dφ

integral (3):
contribution of
circle radius R

= lim
r→0
R→∞



−2πi log(r)− 2πi
∑
N≥1

1

N

(
−r
)N
aN

+

−2πi

ˆ R

r

F(−t) dt
t

+

2πi log(R) + 2πi
∑
N≥1

1

N

(
−R
)−N

bN

= −2πi

ˆ ∞
0

dt

t

(
F(−t)− 1

)

where 1 +
∑
N≥1 aNw

N and 1 +
∑
N≥1 bNw

N are the power series expansions of
F(w) at 0 and ∞ respectively. �

Corollary 2. For vertices u and v in Gcr the value of the Green’s function is

(4.13)
[
∆−1

cr

]
u,v

=
1

2π
Re

ˆ 1

0

(
Eθ(v)(−t) − 1

) dt
t

Proof. We begin with the observation that Eθ
(
w−1

)
=
(
− 1
)k

Eθ(w) for any finite
sequence of angles θ =

(
θ1, . . . , θk

)
. Since u and v are vertices in Gcr, the length

k of any path v =
(
v0, . . . , vk

)
from v0 = u to vk = v in G♦

cr must be even. Thus
Eθ
(
w−1

)
= Eθ(v)(w).
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[
∆−1

cr

]
u,v

= − 1

8π2i

˛
C

dw

w
log(w) Eθ(v)(w)

=
1

4π

ˆ ∞
0

(
Eθ(v)(−t)− 1

) dt
t

=
1

4π

ˆ 1

0

(
Eθ(v)(−t)− 1

) dt
t

+
1

4π

ˆ ∞
1

(
Eθ(v)(−t)− 1

) dt
t

=
1

4π

ˆ 1

0

(
Eθ(v)(−t)− 1

) dt
t

+
1

4π

ˆ 1

0

(
Eθ(v)(−t)− 1

) dt
t

=
1

2π
Re

[ ˆ 1

0

(
Eθ(v)(−t)− 1

) dt
t

]

�

Remark 22. Since |t| < 1 in formula 4.13 we may use the presentation of Eθ(v)(t)
given in Remark 21 and write

[
∆−1

cr

]
u,v

=
1

2π
Re

ˆ 1

0

(
exp

(
− 2p1t

)
· exp

(
2p1u(−t)

)
− 1

) dt
t

We shall adopt the view that p1 and p1 are an independent variables on the plane
and that

[
∆−1

cr

]
u,v

is a smooth function of p1 and p1.

4.4. The general asymptotics.

Proposition 4. The Green’s function
[
∆−1

cr

]
u,v

has a series expansion at ∞ given
by:

(4.14) − 1

2π

(
log
(
2|p1|

)
+ γeuler −

∑
m≥d≥1

(
−1
)d(

2m+d−1
)
!Re

[
cm,d

(
2p1

)−2m
])

where the coefficients cm,d are defined in equation 4.11 in terms of the u1+2s defined
by 4.9 and bounded by 5.

Proof.

[
∆−1

cr

]
u,v

=
1

2π
Re

[ ˆ 1

0

(
Eθ(v)(−t)− 1

) dt
t

]

=



1

2π
Re

[ ˆ 1

0

(
exp

(
−2p1t

)
− 1
) dt
t

]

+

1

2π

∑
m≥d≥1

Re

[
cm,d

(
2p1

)d ˆ 1

0

−
(
−t
)2m+d−1

exp
(
−2p1t

)
dt

]
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=



− 1

2π
Re

[
log
(
2p1

)
+ γeuler +

ˆ ∞
2p1

exp(−t) dt
t︸ ︷︷ ︸

null power series
development at ∞

]

+

− 1

2π

∑
m≥d≥1

Re

[
cm,d

(
−1
)d (

2p1

)−2m
2m+d−1∑
i=0

(
2m+ d−1

)
!

i!

(
2p1t

)i
exp

(
−2p1t

)︸ ︷︷ ︸
null power series
development at ∞

] ∣∣∣∣∣
1

0

= − 1

2π

(
log
(
2|p1|

)
+ γeuler −

∑
m≥d≥1

(
−1
)d(

2m+ d− 1
)
!Re

[
cm,d

(
2p1

)−2m
])

(4.15)

�
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5. Variations of operators under small deformations

5.1. Formal deformations of triangulations and variations of operators.
We now consider a formal deformation of the embedding z : V(T) −→ C of a
polygonal triangulation T and the corresponding deformations of the Laplace-like
operators ∆, D, and ∆ which are induced. Let F ∈ CV(T) be a complex-valued
function on the set of vertices of T,

F : V(T)→ C

and ε a formal parameter. The deformed embedding is defined by

(5.1) zε(v) := z(v) + ε F (v) , v ∈ V(T)

The combinatorics of the triangulation T is not affected, i.e. the vertex, edge, and
face sets of T remain unchanged. We may introduce deformed discrete differential
operators ∇ε,∇ε : CV(T) −→ CF(T) as well as deformed area and radius operators
Aε, Rε : CF(T) −→ CF(T) simply by making the substitution z 7→ zε in formulae 3.10,
3.12, 3.4, and 3.6 respectively. This allows us to unambiguously define deformed
versions ∆(ε) and D(ε) of the Beltrami-Laplace and discrete Kähler operators using
the factorizations 3.18 and 3.19, namely:

(5.2) ∆(ε) = 2
(
∇>εAε∇ε +∇>εAε∇ε

)
and D(ε) = 4∇>ε

Aε
R2
ε

∇ε

We emphasize the purely formal nature of this deformation: Indeed the mapping
v 7→ zε(v) may fail to be an embedding of T when the deformation parameter ε
is specialized to any positive real number. Furthermore, upon specialization, the
deformed coordinates zε(u), zε(v), and zε(w) of a given triangle f = (u, v, w) in T
may become colinear, causing the area to vanish and rendering ∇ε(f) and ∇̄ε(f)
ill-defined. In spite of these difficulties, we may work over the power series ring
C[[ε]] and expand all the relevant operators as series in ε. Up to first order in
ε, the terms in these developments can be compactly expressed using the discrete
derivatives ∇F and ∇F with respect to the triangulation T.

Proposition 5. The variation of the Laplace-Beltrami operator is

(5.3) ∆(ε) = ∆− 4ε
(
∇>(A∇F )∇+∇>(A∇F̄ )∇

)
+ O(ε2)

Proposition 6. The variation of the Kähler operator is

D(ε) = D − 4ε

[
∇> A

R2

(
∇F +∇F̄ + C∇F + C̄∇F̄

)
∇

+ ∇> A

R2
(∇F )∇+∇> A

R2
(∇F̄ )∇

]
+ O(ε2)

(5.4)

with the diagonal function C ∈ CF(T) and its conjugate C̄ are defined for a triangle
f = (u, v, w) by

(5.5) C(f) =

(
z̄(u)− z̄(v)

z(u)− z(v)
+
z̄(v)− z̄(w)

z(v)− z(w)
+
z̄(w)− z̄(u)

z(w)− z(u)

)
, C̄(f) = C(f)
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Proof: From 3.14, for a pair of vertices u and v of a triangle f = (u, v, w) in F(T)

zε(u)− zε(v) = z(u)− z(v) + ε
(

(z(u)− z(v))∇F (f) + (z̄(u)− z̄(v))∇F (f)
)

z̄ε(u)− z̄ε(v) = z̄(u)− z̄(v) + ε
(

(z(u)− z(v))∇F̄ (f) + (z̄(u)− z̄(v))∇F̄ (f)
)

(5.6)

Inserting this in 3.4 gives the variation of the area of the triangle f

(5.7) Aε(f) = A(f) + εA(f)
(
∇F (f) +∇F̄ (f)

)
+ O(ε2)

that we rewrite in compact form with the diagonal operators A, ∇F and ∇F̄ , acting
as CF(T) → CF(T)

(5.8) Aε = A+ εA(∇F +∇F̄ ) + O(ε2)

Note that the exact formula is in Appendix 8. Using 3.6 we can write the variation
of the circumradius Rf) of the face f. We write only the leading term of order O(ε)
with the same compact notation and with C, and C̄ defined by 5.5

(5.9)
Aε
R2
ε

=
A

R2
− ε A

R2

(
C∇F + C̄∇F̄

)
+ O(ε2)

Similarily, we get the variation of the matrix elements of the ∇ operator. It is at
first order

(5.10)
[
∇ε
]
f,v

= ∇f,v − ε
(
∇F (f)∇f,v +∇F̄ (f)∇f,v

)
+ O(ε2)

This, and its complex conjugate, read in compact operator form

∇ε = ∇− ε
(
∇F ∇+∇F̄ ∇

)
+ O(ε2)

∇ε = ∇− ε
(
∇F̄ ∇+∇F ∇

)
+ O(ε2)

(5.11)

Combining this with 5.2 and the Leibnitz product rule we get 5.3 and 5.4. �

Remark 23. There is no such a compact expression for the variation of the con-
formal Laplacian ∆ in the general case. In particular, the variation of the weight
associated to an edge e = uv will depend on the discrete derivatives of F both at the
north triangle fn and the south triangle fs of the oriented edge ~e = (u, v), which
are a priori independent (see figure 1).

We can of course make the substitution z 7→ zε in formula 3.7 for the north south
angles and formally define

(5.12)

θn(~e, ε) :=
1

2i
log

(
− (z̄ε(v)− z̄ε(n))(zε(u)− zε(n))

(zε(v)− zε(n))(z̄ε(u)− z̄ε(n))

)

θs(~e, ε) :=
1

2i
log

(
− (z̄ε(u)− z̄ε(s))(zε(v)− zε(s))

(zε(u)− zε(s))(z̄ε(v)− z̄ε(s))

)
whose power series development up to first order in ε are

(5.13)
θn(~e, ε) = θn(~e ) + ε

i

2

(
∇F (fn) En(~e )−∇F̄ (fn) En(~e )

)
+ O(ε2)

θs(~e, ε) = θs(~e ) + ε
i

2

(
∇F (fs) Es(~e )−∇F̄ (fs) Es(~e )

)
+ O(ε2)
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where n ∈ fn and s ∈ fs are the respective north and south vertices and where

(5.14)

En(~e ) :=
z(v)− z(n)

z(v)− z(n)
− z(u)− z(n)

z(u)− z(n)
=

−4A(fn)(
z(v)− z(n)

)(
z(u)− z(n)

)
Es(~e ) :=

z(u)− z(s)

z(u)− z(s)
− z(v)− z(s)

z(v)− z(s)
=

−4A(fs)(
z(v)− z(s)

)(
z(u)− z(s)

)
5.2. Generic notation for variations/derivatives under graph deforma-
tions. Further on, we shall use the following compact notation for the derivatives
and the variations of general objects Obj associated to the deformation of a tri-
angulation T → Tε (or more generally of a polygonal graph G → Gε) under the
deformation of the embedding z → zε = z + ε F of the vertices of the graph (as in
5.1), without changing the connectivity of the triangulation, i.e. keeping its edges
unchanged E(Tε) = E(T).

The objects Obj can be local quantities such as the angles θ, θn, θs associated to
oriented edge ~e of T or the area A and circumradius R of a face f. Other objects
of interest include the Laplace-like operator ∆, ∆ and D.

If Obj is the object defined on the unperturbed graph G, the corresponding object
on the perturbed graph G(ε) is denoted

(5.15) Obj(ε) or sometimes Objε (for clarity or compactness)

This is consistent with the notations of the previous section 5.1. The variation of
Obj for finite ε is denoted

(5.16) δObj(ε) = Obj(ε)− Obj

The first derivatives w.r.t. ε are denoted

(5.17)
∂

∂ε
Obj(ε) = dεObj(ε) ,

∂2

∂ε2
Obj(ε) = dεεObj(ε) , etc.

so that

(5.18)
∂

∂ε
Obj(ε)

∣∣∣∣
ε=0

= dεObj ,
∂2

∂ε2
Obj(ε)

∣∣∣∣
ε=0

= dεεObj , etc.

Obviously the Taylor expansion of Obj reads

(5.19) Obj(ε) = Obj + ε dεObj +
1

2
ε2 dεεObj + O(ε3)

The terms of order ε obtained in the previous section 5.1 give the explicit formula
of the first derivatives dε for the objects considered there. We do not rewrite them
explicitly.

5.3. Setup and problems for deformations of isoradial Delaunay graphs.
Here we consider a geometric deformation of a fixed, initial isoradial, Delaunay
graph Gcr, and the induced deformations of the Laplace-like operators Op = ∆, ∆
and D defined on this initial graph Gcr. The vertex coordinates are transformed
according to 5.1

(5.20) zε(v) := zcr(v) + ε F (v)
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except that the displacements F (v) ∈ C are implemented by a complex-valued
function F ∈ CV(Gcr) with finite support, i.e. a finite subset ΩF ⊂ V(Gcr) such
that v ∈ ΩF ⇐⇒ F (v) 6= 0.

Unlike subsection 5.1, the deformation parameter ε is not a formal variable, but
rather is allowed to take sufficiently small non-negative real values. The deformed
graph Gε is the Delaunay graph built out of the set of embedded vertices v in the
plane with coordinates zε(v). The deformed operators ∆, ∆, and D are now defined
with respect to the Delaunay graph Gε. There are two issues that must addressed:
(i) the deformed mapping zε : V(Gcr) −→ C may fail to be an injective map; (ii)
the deformed edge set E(Gε) may differ from the initial critical edge set E(Gcr).
As we shall now argue, these two issues can be controlled for values of ε which are
small enough.

Lemma 8 of the next section proves that the requirement that F has finite
support insures there is a strictly positive bound ε′F > 0, depending on F and on
Gcr, which guarantees that the mapping zε : V(Gcr) −→ C is an embedding (i.e. an
injective map) as long as 0 ≤ ε ≤ ε′F .

The second issue is more tricky. By construction, the vertex sets of the deformed
and critical graphs agree, i.e. V(Gε) = V(Gcr). On the other hand, the edge set
E(Gε) is uniquely and independently determined by the Delaunay construction as
applied to the deformed coordinates zε(v) for vertices v ∈ V(Gε). Consequently
E(Gε) may in fact differ from the critical edge set E(Gcr).

We show in Lemma 9 that there is a second strictly positive bound εF such that
for values of the deformation parameter which are “small enough” 0 ≤ ε < εF ≤ ε′F
the deformation 5.20 will not force any Lawson edge flips to occur, and so the edges
of Gcr will remain edges in Gε, i.e. E(Gcr) ⊂ E(Gε). In particular the edge sets
E(Gε) and E(Gcr) are equal in the case that Gcr is a triangulation. Complications
arise however if Gcr is not a triangulation, and instead contains cyclic polygonal
faces which are not triangles. For arbitrarily small ε > 0 the deformation 5.20
may introduce new edges which subdivide each of these non-triangular faces. For
displacements v 7→ F (v) which are sufficiently generic, each subdivision induced by
the deformation will form a triangulation of the corresponding face; however it can
happen that a subdivision consists of faces some of which are still non-triangular
cyclic polygons. An example of such a deformation is depicted in Fig. 16.

It turns out that for values of the deformation parameter ε > 0 regulated by
the bounds given in Lemma 9, chordal flips inside these non-triangular cyclic faces
f ∈ F(Gcr) may still occur. This means that for ε1 > 0 and ε2 > 0 which are both
small but distinct, it may happens that E(Tε1) 6= E(Tε2), even though both contain
E(Gcr) as a subset. As we shall see in Lemma 10, there is a tighter bound ε̃F > 0
under which no Lawson flips occur, and thus E(Tε) does not change for values
of the deformation parameter within the range 0 < ε < ε̃F . This implies that
as ε → 0+ from the right, the Delaunay graph Gε continuously transforms into a
graph G0+ , defined properly in lemma 10. This graph G0+ shares the same vertices
with the original Delaunay graph Tcr, but its edge set E(G0+) will be in general
larger than E(Tcr), since it may contains chords of Tcr. Thus G0+ will be a weak
Delaunay graph, which can substitute as an initial graph to perform a perturbative
expansion in ε > 0. Furthermore any triangulation Ĝ0+ which completes G0+ in the
sense of Remark 27 is subject to the results of section 5 concerning the variation



PERTURBING ISORADIAL TRIANGULATIONS 47

−→

Figure 16. Example of deformation of a general cyclic face of a
Delaunay graph Td into several cyclic faces; here a cyclic octogon
f (n = 8) splits into 3 cyclic polygons h1, h2 an h3, a triangle
(n1 = 3), a pentagon (n2 = 5) and a quadrilateral (n3 = 4).

of the operators ∆, ∆ and D in the linearized approximation (first order in ε > 0),
without having to consider flips.

In the next section 5.4, we made these assertions precise, and get explicit values
for the bounds over ε > 0, when such bounds exist.

In appendix 8, we extend the discussion to the cases where flips can occurs for
small values of the perturbation parameter ε > 0, so that the linear approximation
in ε is not valid anymore. In some cases one may still expect some control on the
variation of the operators. This will be useful when discussing the scaling limit.

5.4. ε bounds for keeping control on deformations.

Some care is needed to insure that vertices do not collide under the perturbation;
otherwise the mapping v 7→ zε(v) will not be an embedding. This can be achieved
by placing an upper bound on the deformation parameter ε > 0, through this simple
lemma.

Lemma 8. For any for pair of distinct vertices u, v ∈ Gcr the corresponding per-
turbed coordinates zε(u) and zε(v) will always remain distinct provided

(5.21) 0 ≤ ε < ε′F = M−1
F

where

(5.22) MF = max
u6=v

∣∣∣dF (uv)∣∣∣ and dF
(
u, v
)

=
F (u)− F (v)

zcr(u)− zcr(v)

Proof. The mapping v 7→ F (v) has finite support, so MF is well-defined. The
coordinates zε(u) and zε(v) are distinct provided 1 + ε dF (u, v) is non-zero; the
later is clearly the case whenever ε ≤M−1

F . �

Unlike the vertex set, the edge set E(Gε) evolves with the deformation parameter
ε > 0 according to the Delaunay condition. Nevertheless, we may restrict the
deformation parameter by an additional upper bound εF > 0 to insure that the edge
set of the critical graph is stable under deformation, i.e. to force E(Gcr) ⊂ E(Gε)
whenever 0 ≤ ε < εF .
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Recall that two vertices u, v ∈ V(G) in a Delaunay graph G with embedding z :
V(G) −→ C are joined by an edge uv ∈ E(G) if and only if there exists a circle Cuv

passing through z(u) and z(v) such that the closed disk of Cuv does not contain
z(w) for any third vertex w 6= u, v. Equivalently, there exists an auxiliary point
z(uv) 6= z(u), z(v) such that

(5.23)

Im
[
z(u), z(v) ; z(w), z(uv)

]
> 0 for all vertices w /∈ {u, v}

— or —

Im
[
z(u), z(v) ; z(uv), z(w)

]
> 0 for all vertices w /∈ {u, v}

where
[
z1, z2 ; z3, z4

]
denotes the cross-ration defined by

[
z1, z2 ; z3, z4

]
:=

(
z1 − z3

)
·
(
z2 − z4

)(
z1 − z4

)
·
(
z2 − z3

)
The edge condition 5.23 simplifies in the case of the critical graph Gcr in virtue of
the isoradial property. Specifically we may choose the circle Cuv centered at the
midpoint of the line segment joining zcr(u) and zcr(v) which passes through zcr(u)
and zcr(v). In term of the cross-ratio this means

Im
[
zcr(u), zcr(v) ; zcr(w), z(uv)

]
= Re

[
zcr(u)− zcr(w)

zcr(v)− zcr(w)

]
> 0

for any third vertex w 6= u, v where z(uv) is any point on the circle Cuv, for example

z(uv) :=
zcr(v) + zcr(u)

2
+ i

zcr(v)− zcr(u)

2

For ε ≥ 0, an edge uv ∈ E(Gcr) and a vertex w 6= u, v define

(5.24) κε
(
uv ; w

)
:= Re

[
zε(u)− zε(w)

zε(v)− zε(w)

]
which is clearly positive when ε = 0 for all vertices w 6= u, v.

Lemma 9. Let F : V(Gcr) −→ C be a non-zero, complex-valued function on the
set of vertices having finite support Ω̄F . Define the extrema

ϑF := min
{
θ(uv)

∣∣∣ uv ∈ E(Gcr) ∩ Ω̄F

}
which exists and is positive since F has finite support and is non-zero. Define the
following deformation threshold

(5.25) εF =
sin
(
ϑF
)

2MF

(
1 +MF

)
then E(Gcr) ⊂ E(Gε) whenever 0 ≤ ε < εF .

Proof. We need to show that κε
(
uv ; w

)
> 0 for all edges uv ∈ E(Gcr) and all vertices

w 6= u, v provided the deformation is within the range 0 ≤ ε < εF . Let us begin by
assuming (provisionally) that ε < (1 +MF )−1 then
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(5.26)∣∣∣κε(uv ; w
)
− κ0

(
uv ; w

)∣∣∣ = ε

∣∣∣∣Re

[
zcr(u)− zcr(w)

zcr(v)− zcr(w)
· dF (u, w)− dF (v, w)

1 + εdF (v, w)

]∣∣∣∣
≤ ε

∣∣∣∣zcr(u)− zcr(w)

zcr(v)− zcr(w)

∣∣∣∣ · ∣∣∣∣dF (u, w)− dF (v, w)

1 + εdF (v, w)

∣∣∣∣
≤ ε

∣∣∣∣zcr(u)− zcr(w)

zcr(v)− zcr(w)

∣∣∣∣ · |dF (u, w)|+ |dF (v, w)|
1− ε|dF (v, w)|

≤ ε
∣∣∣∣zcr(u)− zcr(w)

zcr(v)− zcr(w)

∣∣∣∣ · 2MF

1− εMF

≤ ε
∣∣∣∣zcr(u)− zcr(w)

zcr(v)− zcr(w)

∣∣∣∣ · 2MF

(
1 +MF

)

Clearly κε
(
uv ; w

)
> 0 whenever

∣∣κε(uv ; w
)
−κ0

(
uv ; w

)∣∣ < κ0

(
uv ; w

)
the later being

achieved (in view of the preceding chain of inequalities) provided

ε < κ0

(
uv ; w

)
·
∣∣∣∣zcr(v)− zcr(w)

zcr(u)− zcr(w)

∣∣∣∣ (2MF

(
1 +MF

))−1

< cos
(
�vwu

)
·
(

2MF

(
1 +MF

))−1

By the inscribed angle theorem we know that the angle measure �vwu can exceed
neither π/2−θn( ~uv) nor π/2−θs( ~uv). Accordingly we many simultaneously guaran-
tee the positivity of κε

(
uv ; w

)
for for all edges uv ∈ E(Gcr) and all vertices w 6= u, v

by bounding the deformation parameter by

ε < cos
(π

2
− ϑF

)
·
(

2MF

(
1 +MF

))−1

where

ϑF := min
{
θ(uv)

∣∣∣ uv ∈ E(Gcr) ∩ Ω̄F

}
which is non zero

�

Any additional edge uv ∈ E(Gε) which is not present in E(Gcr) for values of the
deformation parameter within the range 0 < ε < εF corresponds to a pair of non-
adjacent vertices u, v ∈ V(Gcr) which reside on a common cyclic face; i.e. such an
edge uv would form a chord were it included in the critical edge set E(Gcr). The
following result establishes that these additional edges are stable for all values of
the deformation parameter ε > 0 which are sufficiently small.

Lemma 10. There exists a deformation threshold ε̃F > 0 such that E(Gε1) =
E(Gε2) for all 0 < ε1, ε2 < ε̃F . As a consequence, the limit when ε → 0+ of the
Delaunay graph Gε is unambiguously defined, and is denoted G0+

(5.27) G0+ = lim
ε→0+

Gε
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Figure 17. A cyclic quadrilateral face Q of Gcr, as considered
in the proof of Lem. 10 (left), and the two possible triangulations
arising from generic deformations (right).

G0+ is a weak-Delaunay graph with the same set of vertices as Gcr, and such that
G
•
0+ = Gcr.

Proof. Let Q =
(
u, s, v, n

)
be a quadrilateral inscribed in a face of Gcr, i.e. a

quadruple of four distinct vertices in a face of Gcr listed in cyclic (counter-clockwise)
order in the face; in particular neither the vertices u, v nor the vertices n, s are
joined by an edge in the critical graph (see fig. 17).

For ε ≥ 0 real we consider the deformed conformal angle for the edge uv in the
quadrangle Q, given by

θε
(
u, v ; n, s

)
= Arg ([zε(u), zε(v); zε(n), zε(s)])

= Im log


(

1 + ε dF
(
u, n
))
·
(

1 + ε dF
(
v, s
))(

1 + ε dF
(
u, s
))
·
(

1 + ε dF
(
v, n
))
(5.28)

which vanishes when ε = 0 since then uv is a chord (Q is a cyclic quadrangle).
θε
(
u, v ; n, s

)
can clearly be extended from a function of real ε into an analytic

function of complex ε in the disc |ε| < M−1
F . Therefore, either θε

(
u, v ; n, s

)
vanishes

identically as a function of ε ≥ 0, or there exists a positive integer k ≥ 1 such
that it’s first derivatives at the origin vanishes, but the kth is non-zero, namely
θ

(k)
0

(
u, v ; n, s

)
6= 0 and θ(j)

0

(
u, v ; n, s

)
= 0 for all 1 ≤ j < k where

(5.29) θ
(k)
0

(
u, v ; n, s

)
:=

dk

dεk

∣∣∣∣∣
ε=0

θε
(
u, v ; n, s

)
In fact this k is 1 ≤ k ≤ 4 (see Remark 24). By continuity and the positiv-
ity of

∣∣θ(k)
0

(
u, v ; n, s

)∣∣ we can find ε̄F
(
u, v ; n, s

)
> 0 such that θε

(
u, v ; n, s

)
is ei-

ther entirely non-negative or else entirely non-positive within the range 0 ≤ ε <
ε̃F
(
u, v ; n, s

)
. The same result can be made uniform by replacing ε̄F

(
u, v ; n, s

)
with the minimum ε̄F > 0 of the thresholds ε̃F

(
u, v ; n, s

)
as
(
u, s, v, n

)
varies over

all quadruples of vertices within all cyclic faces of the critical graph Gcr, such that
θε
(
u, v ; n, s

)
is not identically zero (this implies that at least one of the four vertices

lies in Supp(F ), so this set is finite). Now we consider

(5.30) ε̃F = min(εF , ε̄F )
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Let Eε(f) := {uv ∈ E(Gε) | u, v ∈ V(f)} and Ecε(f) := Eε(f) − E(f). For 0 ≤
ε < εF the Lawson flip algorithm implies there exists a triangulation Tε(f) of each
face f ∈ F(Gcr) such that: (1) E(f) ⊂ E(Tε(f)) and (2) whenever 4	

n = (u, v, n)
and 4	

s = (v, u, s) are adjacent triangles in F(Tε(f)) the deformed conformal angle
θε
(
u, v ; n, s

)
is non-negative. In principle a triangulation Tε(f) of this kind need

not be unique; nevertheless the subset of edges uv ∈ E(Tε(f)) − E(f) for which
θε
(
u, v ; n, s

)
is positive will always equal Ecε(f). We have established that each

conformal angle θε
(
u, v ; n, s

)
is either identically zero or else remains positive for

any value of the deformation parameter within the range 0 ≤ ε < ε̃F . Consequently
if Tε(f) satisfies conditions (1) and (2) for a particular value of ε = ε1 within the
range 0 < ε1 < ε̃F then it will clearly satisfy these conditions for any other choice
ε = ε2 in this range. Therefore Ecε1(f) = Ecε2(f) for each face f ∈ F(Gcr) for any
pair of deformation values 0 < ε1, ε2 < ε̃F . Clearly Ec(Gε) =

⋃
f∈F(Gcr)

Ecε(f) and
so the claim is settled. �

Remark 24. In the proof of lemma 10, it it mentioned that for a quadrilateral
(u, s, v, n) if the conformal angle θε(u, v; n, s) and its first fourth derivatives w.r.t.
ε vanishes at ε = 0, then θε(u, v; n, s) = 0 for all ε. Let C+ be the subset of C, {ε :
θε(u, v; n, s) = 0}. It is a subset of the curve C = {ε : [zε(u), zε(v); zε(n), zε(s)] ∈ R}.
Using 5.28 this condition can be written

Re
(
(1 + ε dF (u, n))(1 + ε dF (v, s))(1 + ε̄ dF (u, s))(1 + ε̄ dF (v, n))

)
= 0

so that C is a quadric curve in the real plane (x, y) ∈ R2, z = x + iy, solution of
equation

(5.31) P4(x, y) = 0 , P4 a degree 4 real polynomial

The quartic C contains the origin (0, 0) (i.e. ε = 0), and can cross the real axis
R = {(x, y); y = 0} (i.e. ε real) at at most 4 points. If θε and its first 4 derivatives
vanishes at the origin, x = 0 must be a zero of degree ≥ 5 of the equation P4(x, 0) =
0. This is only possible if P4(x, 0) ≡ 0. �

Remark 25. As discussed in appendix 8, the bound ε̃F (which defines an interval
0 < ε < ε̃F where no flips occur) may be much smaller than εF . In fact even for
a fixed Gcr and a generic deformation F , the threshold ε̃F may be arbitrarily small
w.r.t. εF . This point will become relevant when discussing the scaling limit and the
problem of obtaining uniform bounds with respect to the choice of Gcr.

Remark 26. Since for 0 ≤ ε < ε̃F , the set of edges of Gε is unchanged E(Gε) =
E(G0+), and since the faces of G0+ stay cyclic polygons, the conformal angle θε(e)
of any edge e ∈ E(Gε) is unambiguously defined and strictly positive in the interval,
although Gε need not be a triangulation.

Remark 27. When Gε is not a triangulation, it will be convenient to construct a
triangular completion Ĝε by maximally adjoining pairwise non-crossing chords
inside each of the non-triangular cyclic faces of Gε. By design Ĝ0+ is a weak De-
launay triangulation such that Ĝ

•
ε = Gε. Clearly such a completion need not be

unique, as it will depend on the choice of chords. Nevertheless the choice can be
made consistently so that V(Ĝε) and E(Ĝε) are stable for all values of the deforma-
tion parameter within the range 0 < ε < ε̃F . As before, the right sided limit

Ĝ0+ = lim
ε→0+

Ĝε
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makes sense and is a triangular completion of G0+ which is isoradial and weakly
Delaunay. Clearly the formulation of the deformed operators ∆, ∆ and D in term
of a triangulation in sect. 3.2 do not depend on the choice of completion.
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6. Variations of log-determinants

6.1. First order variations of determinants.

The setup. Here we compute the first order term in the expansion in ε > 0 of the
(formally infinite) logarithm of the determinant of O. This first order term is on
general grounds

(6.1) δ tr logO = tr
[
δO · O−1

cr

]
The results are each expressed as a sum of local terms over the weak Delaunay graph
G0+ arising from the critical graph Gcr and the displacement function F . For both
the Laplace-Beltrami and Kähler operators, there is a local term associated to each
edge of G0+ ; there is an additional local term attached to each face of G0+ for the
Kähler operator. In the case of the conformal Laplacian the local terms associated
to chords of G0+ differ from local terms of the regular edges of G0+ . For this reason
formula 6.5 is expressed as two sums: one over the regular edges e ∈ E(G•0+) =
E(Gcr) and another over the set of chords e ∈ C(G0+) = E(G0+)\E(Gcr).

The results for first order variations. We first give the results. Their derivation is
given in the next sections.

Proposition 7. Laplace-Beltrami. For the Laplace-Beltrami Laplace operator
∆, the first order variation of tr log ∆ under the deformation 5.20 can be expressed
simply in terms of the variations of the north and south angles θn(~e, ε) and θs(~e, ε)
of edges e ∈ E(G0+).

(6.2) tr
[
δ∆ ·∆−1

cr

]
=

ε

π

∑
edges
e∈G0+

dεθn(~e )L′(θn(~e ))+dεθs(~e )L′(θs(~e )) + O(ε2)

The function L′, given by 3.32, is the derivative of the function L given by 3.29.
θn(~e, ε) and θs(~e, ε) are given by 5.13.

Remark 28. Owing to the extended form 3.31 of Kenyon’s result for log det ∆cr,
it is interesting to note that, up to terms of order ε2, log det ∆ for the deformed
lattice can still be written as a sum of local terms involving the local geometry of
the deformed Delaunay graph Gε, similar to Kenyon’s result although the graph is
not isoradial

(6.3) log det ∆ =
1

π

∑
edges
e∈G0+

L
(
θn(e, ε)

)
+ L

(
θs(~e, ε)

)
+ O(ε2)

Remark 29. Equivalently, it can be written in terms of the displacement function
F as a sum over the triangles f of any triangulation Ĝ0+ which is a completion of
G0+ (see Remark 27).

(6.4) tr
[
δ∆ ·∆−1

cr

]
= −4 ε

∑
faces
f∈Ĝ0+

A(f)
(
∇F (f)Q(f) + c.c.

)
+ O(ε2)

where Q(f) = [∇∆−1
cr ∇>]ff is a diagonal matrix entry. The result is independent

of the completion.
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Proposition 8. Conformal Laplacian. For the conformal Laplacian ∆, the
first order variation of tr log ∆ under the deformation 5.20 can also be expressed
simply in terms of the variations of the north and south angles θn(~e, ε) and θs(~e, ε)
of edges e ∈ E(G0+). However, we must distinguish between the contributions made
by regular edges versus chords in G0+ . Keep in mind that the set of regular edges
E(G•0+) coincides with the edge set E(Gcr) of the critical graph.

tr
[
δ∆ ·∆−1

cr

]
=

2 ε

π

∑
edges
e∈Gcr

dεθ(e)L′
(
θ(e)

)
+
ε

π

∑
chords
e∈G0+

dεθn(~e )H′
(
θn(~e )

)
+ dεθs(~e )H′

(
θs(~e )

)
+ O(ε2)

(6.5)

with H′(θ) = θ cot θ the derivative of the function

(6.6) H(θ) = 2 θ log(2 sin θ) + L(θ)

Remember that θ(e) = (θn(~e ) + θs(~e ))/2 is the conformal edge angle for general
triangulations.

Remark 30. Up to order ε2, log det ∆ for the deformed lattice can still be written
as a sum of local terms involving the local geometry of the weak Delaunay graph
G0+ . (see 5.3).

log det ∆ =
2

π

∑
edges
e∈Gcr

L
(
θ(e, ε)

)

+
1

π

∑
chords
e∈G0+

H
(
θn(e, ε)

)
+H

(
θs(~e, ε)

)
+ O(ε2)

(6.7)

Proposition 9. Kähler operator. For the Kähler operator D, a local formula
also holds at order ε. It involves the variations of the angles θn(~e, ε) and θs(~e, ε)
for edges e ∈ E(G0+), but also the variations of the circumradii R(f, ε) for faces
f ∈ F(G0+). We note that R(f, ε) = Rcr + δR(f) = Rcr + ε δεR(f) + O(ε2).

tr
[
δD · D−1

cr

]
=

ε

π

∑
edges
e∈G0+

dεθn(~e )L′(θn(~e )) + dεθs(e)L′(θs(~e ))

− ε
∑
faces
f∈G0+

dεR(f)

Rcr
+ O(ε2)

(6.8)

Remark 31. Up to order ε2, log detD for the deformed lattice can still be written
as a sum of local terms involving the local geometry of G0+

log detD =
1

π

∑
edges
e∈G0+

L
(
θn(e, ε)

)
+ L

(
θs(e, ε)

)
−

∑
faces
f∈G0+

logR(f, ε) + O(ε2)
(6.9)
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Proof of Proposition 7. We first consider the variation of the Laplace-Beltrami
operator ∆ under a deformation of the form 5.20. One can use 5.3 to compute
explicitly the first order variation of log det ∆, but it is simpler to start from its
definition in terms of angles 1.7. For an edge e = uv of Gε

(6.10) ∆uv = −c(e, ε) = − tan θn(~e, ε) + tan θs(~e, ε)

2

This implies that the variation is

(6.11) δ∆uv = − ε
2

(
dεθn(~e ) sec2 θn(~e ) + dεθs(~e ) sec2 θs(~e )

)
+ O(ε2)

where dεθn(~e ) and dεθn(~e ) are of order O(1). The limit graph G0+ is weakly De-
launay and isoradial so either θn(~e ) = θs(~e ) or θn(~e ) = −θs(~e ). In both case
sec2 θn(~e ) = sec2 θs(~e ) so that at first order

(6.12)
δ∆uv = −ε dεθn(~e ) + dεθs(~e )

2
sec2 θn(~e ) + O(ε2)

= −ε dεθn(~e ) + dεθs(~e )

2
sec2 θs(~e ) + O(ε2)

It remains to combine this with the propagator
[
∆−1

cr

]
vu

which for regular edges
e = uv of G•0+ = Gcr is

(6.13)
[
∆−1

cr

]
vu

= − 1

π
θ(e) cot θ(e)

A similar relation is in fact valid for chords of G0+

(6.14)
[
∆−1

cr

]
vu

= − 1

π
θn(~e ) cot θn(~e ) = − 1

π
θs(~e ) cot θs(~e )

Thus the first order variation is

tr
[
dε∆ ·∆−1

cr

]
=

∑
vertices
u,v∈G0+

dε∆uv

[
∆−1

cr

]
vu

=
1

π

∑
edges
e∈G0+

dεθn(~e )θn(~e ) cot θn(~e ) sec2 θn(~e ) + δθs(~e )θs(~e ) cot θs(~e ) sec2 θs(~e )

=
1

π

∑
edges
e∈G0+

dεθn(~e )
θn(~e )

sin θn(~e ) cos θn(~e )
+ dεθs(~e )

θn(~e )

sin θs(~e ) cos θs(~e )

=
1

π

∑
edges
e∈G0+

dεθn(~e )L′
(
θn(~e )

)
+ dεθs(~e )L′

(
θn(~e )

)

= dε

 1

π

∑
edges
e∈G0+

L
(
θn(~e, ε)

)
+ L

(
θs(~e, ε)

)

(6.15)

This, together with 3.31, leads to 6.3, and this ends the proof of Proposition 7.
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Again, we obtain a nice local expression involving the local angles θn(~e ) and
θs(~e ) and the local circumradii R(f). As for the conformal Laplacian, the global
conformal invariance properties of the Kähler operator are no transparent in the
result. Hovever, cocyclic configurations and chords do not play any special role.

Proof of Proposition 8. For an edge e = uv of Gε the matrix element the conformal
Laplacian ∆ is

(6.16)
[
∆
]
uv

= − tan θ(e, ε) , θ(e, ε) =
θn(~e, ε) + θs(~e, ε)

2

This implies that the variation is

(6.17)
[
δ∆
]
uv

= −ε dεθn(~e ) + dεθs(~e )

2
sec2

(
θn(~e ) + θs(~e )

2

)
+ O(ε2)

Keep in mind that the limit graph G0+ is weakly Delaunay and isoradial and so
either θn(~e ) = θs(~e ) or θn(~e ) = −θs(~e ). The first case corresponds to a regular
edge, while the second case corresponds to a chord. Thus to first order in ε the
matrix entry is

(6.18)

[
dε∆

]
uv

=


− dεθn(~e ) sec2 θn(~e ) + dεθs(~e ) sec2 θs(~e )

2
if θn(~e ) = θs(~e )

− dεθn(~e ) + dεθs(~e )

2
if θn(~e ) = −θs(~e )

=


[
dε∆

]
uv

if θn(~e ) = θs(~e )

[
dε∆

]
uv

+
dεθn(~e ) tan2 θn(~e ) + dεθs(~e ) tan2 θs(~e )

2
if θn(~e ) = −θs(~e )

The first order variation of the log-determinant reads as a sum over the edges of
G0+ , but it is different for the edges in G•0+ = Gcr and the chords of G0+ . Combining
with 6.13 we get at first order

tr
[
dε∆ ·∆−1

cr

]
=

∑
vertices
u,v∈G0+

[
dε∆

]
uv

[
∆−1

cr

]
vu

=
2

π

∑
edges
e∈Gcr

dεθ(e)L′(θ(e)) +
1

π

∑
chords
e∈G0+

dεθn(~e )H′(θn(~e )) + dεθs(~e )H′(θs(~e ))

(6.19)

with the function H(θ) given by

(6.20) H(θ) =

ˆ θ

0

dt t cot(t) = 2θ log(2 sin θ) + L(θ)

This leads to 6.7 and the proof of Proposition 8.
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Proof of Proposition 9. The variation of the Kähler operator D starts from the
expression of the matrix elements Du,v of an edge ~e = (u, v) in terms of the angles
θn(~e, ε) and θs(~e, ε) and of the circumradii Rn(~e, ε) and Rs(~e, ε) given by 1.8, namely

(6.21) Duv = −1

2

(
tan θn(~e, ε) + i

R2
n(~e, ε)

+
tan θs(~e, ε)− i

R2
s (~e, ε)

)
Its variation is therefore

δDuv = dεD(1)
uv + dεD(2)

uv + O(ε2)

dεD(1)
uv = −

(
1

2R2
n(~e )

dε tan θn(~e ) +
1

2R2
s (~e )

dε tan θs(~e )

)
dεD(2)

uv =

(
tan θn(~e ) + i

R3
n(~e )

dεRn(~e ) +
tan θs(~e )− i

R3
s (~e )

dεRs(~e )

)(6.22)

For an isoradial triangulation (critical case), Rn(~e ) = Rs(~e ) = Rcr, therefore one
has Dcr = R−2

cr ∆cr. Thus in the critical case, the first term in 6.22 contributes to
the variation as

(6.23) dεD(1)
uv = R−2

cr dε∆uv =⇒ tr
[
dεD(1) · D−1

cr

]
= tr

[
dε∆ ·∆−1

cr

]
The second term contributions can be reorganized as a sum over faces of Ĝ0+ , i.e.
counter-clockwise oriented triangles f = (u, v, w)

tr
[
dεD(2) · D−1

cr

]
=

∑
vertices
u,v∈G0+

dεD(2)
uv

[
D−1

cr

]
vu

=
∑

triangles
f= (u,v,w)

in Ĝ0+

dεR(f)

R3
cr

 (tan θn( # —uv) + i)
[
D−1

cr

]
vu

+ (tan θs(
# —vu)− i)

[
D−1

cr

]
uv

+(tan θn( # —vw) + i)
[
D−1

cr

]
wv

+ (tan θs(
# —wv)− i)

[
D−1

cr

]
vw

+(tan θn( # —wu) + i)
[
D−1

cr

]
wu

+ (tan θs(
# —uw)− i)

[
D−1

cr

]
wu



(6.24)

Using the fact that θn( # —uv) = θs(
# —vu) and that for the critical case[

D−1
cr

]
vu

=
[
D−1

cr

]
uv

= − 1

π
R2

cr θn( # —uv) cot θn( # —uv)

and the fact that for a triangle f = (u, v, w), one has

θn( # —uv) + θn( # —vw) + θn( # —wu) = π/2

we obtain

(6.25) tr
[
dεD(2) · D−1

cr

]
= −

∑
faces
f∈ Ĝ0+

dεR(f)

Rcr
= −

∑
faces
f∈ Ĝ0+

dε logR(f)

This leads to 6.9 and to Proposition 9.

6.2. Second order variations.
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Principle of the calculation. The second order term of the variation is of the general
form

(6.26) − 1

2
tr
[ (
δO · O−1

cr

)2 ] with O−1
cr the critical Green’s function

This term is bilinear in δO hence it is bi-local. As explained in the introduction, we
shall mainly be interested in the large distance part of this bilocal term. To isolate
this term, as stated in Theorem 1, we shall consider a two-parameter deformation
of the isoradial, Delaunay graph of the form

(6.27) zε(v) := zcr(v) + ε1F1(v) + ε2F2(v)

where F1, F2 ∈ CV(Gcr) are two functions with disjoint compact support Ω1 := ΩF1

and Ω2 := ΩF2
in C. We will assume that the distance d between the two supports

is large, i.e. d� Rcr where

(6.28) d = dist
(
Ω1,Ω2

)
:= inf

{∣∣zcr(w1)− zcr(w2)
∣∣ ∣∣∣ w1 ∈ Ω1 , w2 ∈ Ω2

}
We consider here the coefficient of ε1 ε2 in the perturbative expansion of log detO
which can be expressed as the following trace:

− tr
[
dε1O · O−1

cr · dε2O · O−1
cr

]
= −

∑
u,v∈Ω1
p,q∈Ω2

[
dε1O

]
uv

[
O−1

cr

]
vp

[
dε2O

]
pq

[
O−1

cr

]
qu(6.29)

where dε1O and dε2O are the first order variations of the Laplace-like operator O
as defined in Sect. 5.1 with respect to the independent displacements F1 or F2

respectively, using the notations of Sect. 5.2. The sum on the left hand side is
taken over vertices u, v, p, q in the weak Delaunay graph G0+ such that both
matrix entries

[
dε1O

]
uv

and
[
dε2O

]
pq

are non-zero. In particular this implies that uv
is an edge in G0+ with vertices u, v ∈ Ω1. Likewise pq must be an edge in G0+ with
vertices p, q ∈ Ω2.

Provided the two zones of support Ω1 and Ω are far enough apart, the matrix
entries

[
O−1

cr

]
vp

and
[
O−1

cr

]
qu

of the critical Green’s function will only involve pairs
of vertices with |zcr(v)− zcr(p)| ' d and |zcr(q)− zcr(u)| ' d. Under these circum-
stances we may estimate the contributions made by these matrix entries using the
asymptotic expansion 1.19 for the Green’s function.

It will be convenient to complete the deformed Delaunay graph Gε to a weak
Delaunay triangulation Ĝε as discussed in Remark 27. This will allow us to use
the variational formulae 5 and 6 for the Laplace-Beltrami and Kähler operators. In
general such a completion Ĝε will not be unique. Nevertheless Ĝ

•
ε = Gε and Ĝ

•
0+ =

G0+ regardless of the choice of completion, and by Remark 27 the Laplace-Beltrami
operator, Kähler operator, and the conformal Laplacian will not be affected this
choice.

The Laplace-Beltrami operator.
The simplest case is the Laplace-Beltrami ∆ operator. We shall need two interme-
diate results.

Lemma 11. Let f = (v1, v2, v3) be a c.c.w. oriented triangle with circumcenter
zcr(f) and circumradius R = 1. Define eiθj := zcr(vj) − zcr(f) for j = 1, 2, 3. Let
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∇fvj be the matrix elements of the discrete derivative operator ∇, restricted to the
triangle f. For any integer m ∈ Z one has the uniform bound

(6.30)

∣∣∣∣∣∣
3∑
j=1

∇fvj eimθj

∣∣∣∣∣∣ ≤ m(m+ 1)

2
, m ∈ Z

Proof. Using the definition of ∇ 3.10, one can rewrite

3∑
j=1

∇fvj eimθj = det

1 e−iθ1 eimθ1

1 e−iθ2 eimθ2

1 e−iθ3 eimθ3

/ det

1 e−iθ1 eiθ1

1 e−iθ2 eiθ2

1 e−iθ3 eiθ3

(6.31)

For m > 0 rewrite the numerator as

(6.32) e−i(θ1+θ2+θ3) det

1 eiθ1 ei(m+1)θ1

1 eiθ2 ei(m+1)θ2

1 eiθ3 ei(m+1)θ3


The last determinant is a generalization of the Vandermonde determinant, which
is explicitely (in its general form)

(6.33) det

1 z1 zm+1
1

1 z2 zm+1
2

1 z3 zm+1
3

 = (z1 − z2)(z2 − z3)(z3 − z1)Sm−1(z1, z2, z3)

with Sn the homogeneous symmetric polynomial of degree n (a Schur polynomial),

(6.34) Sn(z1, z2, z3) =
∑

p1,p2,p3∈N
p1+p2+p3=n

zp1

1 zp2

2 zp3

3

which is made of (n + 1)(n + 2)/2 monomials. The denominator in the r.h.s. of
6.31 is the same object for m = 1. Hence we get when m > 0

(6.35)
3∑
j=1

∇fvj eimθj = Sm−1(eiθ1 , eiθ2 , eiθ3)

and it is clear that we have the bound.

(6.36) |Sm−1(eiθ1 , eiθ2 , eiθ2)| ≤ m(m+ 1)/2

which is saturated when θ1 = θ2 = θ3.
When m < 0, we can rewrite by the same trick

(6.37)
3∑
j=1

∇fvj eimθj = S|m|−2(e−iθ1 , e−iθ2 , e−iθ3)

with a similar bound. We thus get 6.30. �

We can now get uniform asymptotics estimates for the discrete derivatives of the
Green function.

Lemma 12. Let ∆−1
cr be the critical Green’s function on an isoradial, Delaunay

graph Gcr, let f and g be two faces (triangles) of a triangulation Ĝ0+ completing
the limit graph G0+ , and let zcr(f) and zcr(g) be the complex coordinate of their
respective circumcenters of and og. Let d = |zcr(f)−zcr(g)| be the distance between
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the centers. Then the discrete double derivatives of the Green function have the
following large distance asymptotics
(6.38)[
∇ ∆−1

cr ∇
>]

fg
=

1

4π

( ∏
v∈g e

iθv(
zcr(f)− zcr(g)

)3 − ∏
u∈f e

−iθu(
z̄cr(f)− z̄cr(g)

)3
)

+ O(d−4)

[
∇ ∆−1

cr ∇>
]
fg

=
1

4π

( ∏
v∈g e

−iθv(
z̄cr(f)− z̄cr(g)

)3 − ∏
u∈f e

iθu(
zcr(f)− zcr(g)

)3
)

+ O(d−4)

and [
∇ ∆−1

cr ∇>
]
fg

= − 1

4π

1

(zcr(f)− zcr(g))2
+ O(d−3)[

∇ ∆−1
cr ∇

>]
fg

= − 1

4π

1

(z̄cr(f)− z̄cr(g))2
+ O(d−3)

(6.39)

Proof. Let f = (123) and g = (456) be the vertices of f and g respectively. G is
isoradial, hence denote zcr(u)− zcr(f) = eiθu (u = 1, 2, 3) and zcr(v)− zcr(g) = eiθv

(v = 4, 5, 6). Use 1.19 to separate the Green function
[
∆−1

cr

]
uv

into its leading large
distance term (continuous limit term) of order log d, its subleading large distance
correction of order d−2, and the rest of its large distance expansion of order d−4.

(6.40)
[
∆−1

cr

]
uv

= G(0)
uv +G(2)

uv +G(4)
uv

with

G(0)
uv =− 1

2π
(log(2|zcr(u)− zcr(v)|) + γeuler)

G(2)
uv =− 1

24π

(
p3(u, v)

(zcr(u)− zcr(v))3
+

p̄3(u, v)

(z̄cr(u)− z̄cr(v))3

)
G(4)

uv = O
(
|zcr(u)− zcr(v)|−4

)(6.41)

Begin by writing

(6.42) (zcr(u)− zcr(v)) = (zcr(f)− zcr(g)) + eiθu − eiθv

and expand the logs and powers of (zcr(u)−zcr(v)) and (z̄cr(u)− z̄cr(v)) in formulae
6.41 as asymptotic series in (zcr(f)−zcr(g)) and (z̄cr(f)− z̄cr(g)) where d = |zcr(f)−
zcr(g)| � 1 is large. For example:

G(0)
uv = − 1

2π

(
log
(
2|zcr(f)−zcr(g)|

)
+ γeuler

)
+

1

2π
Re
∑
r≥1

1

r

(
eiθv − eiθu

zcr(f)− zcr(g)

)r
The coefficients in these asymptotic expansions are expressed as a Laurent poly-
nomials in eiθu and eiθv and so the matrix entries in formulae 6.38 and 6.39 can be
computed using the basic identities

(6.43)
∑
u∈f
∇fu eiθu = 1 and

∑
u∈f
∇fu e−iθu =

∑
u∈f
∇fu = 0

along with values of ∇fu, ∇fu and ∇>vg = ∇gv, ∇†vg = ∇gv explicitly given in 3.10
and 3.12). As illustration:
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[
∇G(0)∇>

]
fg

=
∑
u∈f

∑
v∈g
∇fu∇gvG

(0)
uv

=



1

4π

( ∏
u∈f e

iθu(
zcr(f)− zcr(g)

)3 −
∏

v∈g e
−iθv(

z̄cr(f)− z̄cr(g)
)3
)

+

1

2π

∑
r≥4

∑
u∈f

∑
v∈g
∇fu∇gv

1

r
Re
( eiθv − eiθu

zcr(f)− zcr(g)

)r
The vanishing of the coefficients of order r ≤ 2 is straight forward. We present the
calculation of the coefficient of (zcr(f)− zcr(g))−3 occurring in

[
∇G(0)∇>

]
fg

here:

1

3

∑
u∈f

∑
v∈g
∇fu∇gv

(
eiθv − eiθu

)3

=



1

3

vanishes︷ ︸︸ ︷(∑
u∈f
∇fu

)
·
(∑

v∈g
∇gv e

3iθv
)

−

equals 1︷ ︸︸ ︷(∑
u∈f
∇fu e

iθu
)
·

−
∏

v∈g e
iθv︷ ︸︸ ︷(∑

v∈g
∇gv e

2iθv
)

+
(∑

u∈f
∇fu e

2iθu
)
·

vanishes︷ ︸︸ ︷(∑
v∈g
∇gv e

iθv
)

− 1

3

(∑
u∈f
∇fu e

3iθu
)
·

vanishes︷ ︸︸ ︷(∑
v∈g
∇gv

)
and thanks to the general Lemma 11 (or in this case through a direct estimate) its
norm is uniformly bounded by a constant independently of the shape of the faces.

For G(0), which is a smooth function of the vertex coordinates, these calculations
amount to replacing ∇ and ∇ by their corresponding continuous derivatives ∂ and
∂̄, up to subdominant terms of order 0(d−3). This is in agreement with the general
Lemma 2. The result is that the asymptotics 6.38 and 6.39 are valid for G(0) alone.

To end the proof of the lemma, one must show that the corresponding derivative
terms for G(2) and G(4) are O(d−3). This is clear for G(4), which is itself O(d−4),
hence its discrete derivatives are also O(d−4). But this is not obvious for G(2) which
is only O(d−2). We must use the explicit form of G(2). Let us consider the term∑

u∈f

∑
v∈g
∇fu

(
p3(u, v)

(zcr(u)− zcr(v))3

)
∇>vg

which appears in ∇G(2)∇>. One has

p3(u, v) = p3(of, og) + e−3iθu − e−3iθv
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So we have to consider three terms. The first term is∑
u∈f

∑
v∈g
∇fu

(
p3(of, og)

(zcr(u)− zcr(v))3

)
∇>vg

= p3(of, og)
∑
u∈f

∑
v∈g
∇fu

(
1

(zcr(u)− zcr(v))3

)
∇>vg

= p3(of, og)

(
−12

(zcr(f)− zcr(g))5
+O(d−6)

)
= O(d−4)

In the last step we used the uniform bound from Lemma 5

|p3(of, og)| ≤ 3 |zcr(f)− zcr(g)| = 3d

The second term is∑
u∈f

∑
v∈g
∇fu

(
e−3iθu

(zcr(u)− zcr(v))3

)
∇>vg =

∑
u∈f
∇fu

(
3 e−3iθu

(zcr(f)− zcr(g))4
+ O(d−5)

)

= 3

(∑
u∈f
∇fu e

−3iθu

)
1

(zcr(f)− zcr(g))4
+ O(d−5)

From Lemma 11 ∣∣∣∣∣∑
u∈f
∇fu e

−3iθu

∣∣∣∣∣ ≤ 6

hence the second term is of order O(d−4). By the same argument, the third term
is

−
∑
u∈f

∑
v∈g
∇fu

(
e−3iθv

(zcr(u)− zcr(v))3

)
∇>vg = O(d−4)

This ends the derivation of 6.39 (the second equation is the c.c.). The derivation
of 6.38 goes along the same line. �

We are now in a position to state the main result.

Proposition 10. The second order variation for the Laplace-Beltrami operator ∆
on an isoradial, Delaunay graph Gcr is

tr
[
dε1∆ ·∆−1

cr · dε2∆ ·∆−1
cr

]
=

1

π2

∑
f∈Ω1

∑
g∈Ω2

A(f)A(g)

[
∇F1(f)∇F2(g)(
zcr(f)− zcr(g)

)4 +
∇F̄1(f)∇F̄2(g)(
z̄cr(f)− z̄cr(g)

)4
]

+ O(d−5)

(6.44)

where the double sum it taken over pairs of faces f, g ∈ F(Ĝ0+) such that zcr(u) ∈ Ω1

and zcr(v) ∈ Ω2 at least one vertex u ∈ f and one vertex v ∈ g.

Proof. We start from the local form of the ∆ operator 3.18, which implies that the
first order variation on ∆ is

dε∆ = 2
(
dε∇
>
A∇+∇>dεA∇+∇>A dε∇+ dε∇>A∇+∇>dεA∇+∇>A dε∇

)
We use the formula for the variation of A

dεA = A(∇F +∇F̄ )
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and for the variations of the ∇ and ∇ operators given by 5.11, which read

dε∇ = −
(
∇F ∇+∇F̄ ∇

)
dε∇ = −

(
∇F̄ ∇+∇F ∇

)
to get

(6.45) dε∆ = −4
(
∇>(∇F̄ )A∇+∇>(∇F )A∇

)
One uses this and the cyclicity of the trace to rewrite the second order variation as

tr
[
dε1∆ ·∆−1

cr ·dε2∆·∆−1
cr

]
= 16

[
tr
(
A∇F̄1 · ∇∆−1

cr ∇
>·A∇F̄2 · ∇∆−1

cr ∇
>)

+ tr
(
A∇F1 · ∇∆−1

cr ∇
> ·A∇F̄2 · ∇∆−1

cr ∇>
)

+ tr
(
A∇F̄1 · ∇∆−1

cr ∇> ·A∇F2 · ∇∆−1
cr ∇

>)
+ tr

(
A∇F1 · ∇∆−1

cr ∇> ·A∇F2 · ∇∆−1
cr ∇>

) ]
Note that the trace on the l.h.s. is a sum over vertices, while the trace on the
r.h.s. is a sum over faces (triangles) Using the large distances asymptotics 6.38 and
6.39, and writing the trace explicitely as a double sum over faces f and g gives the
theorem.

�

We now consider the other operators. The case of the conformal laplacian is
more complicated, so let us first discuss the Kähler operator.

The Kähler operator D.

Proposition 11. The second order variation for the Kähler operator D on an
isoradial, Delaunay graph Gcr is of the same form as for the laplacian ∆

tr
[
dε1D · D−1

cr · dε2D · D−1
cr

]
=

1

π2

∑
f∈Ω1

∑
g∈Ω2

A(f)A(g)

[
∇F1(f)∇F2(g)(
zcr(f)− zcr(g)

)4 +
∇F̄1(f)∇F̄2(g)(
z̄cr(f)− z̄cr(g)

)4
]

+ O(d−5)

(6.46)

where the double sum it taken over pairs of faces f, g ∈ F(Ĝ0+) such that zcr(u) ∈ Ω1

and zcr(v) ∈ Ω2 at least one vertex u ∈ f and one vertex v ∈ g.

Proof. The derivation goes along the same line. We start from Prop. 6 which gives
the explicit form 5.4 of the first order variation of D and from the fact that all
circumradii are equal R(f) = Rcr on an isoradial graph.

Dcr = R−2
cr ∆cr

This implies that for the deformation of Gcr the first order variation of D has a
special form

(6.47) dεD = R−2
cr dε∆− 4R−2

cr ∇
> (
A(∇F +∇F̄ ) + C∇F + C̄∇F̄

)
∇

with C and C̄ defined by 5.5. Repeating the analysis done for Theorem 10, which
relies on the asymptotics of Lemma 12, one can check that the new term does not
change the asymptotics 6.44 obtained for ∆, and leads to the theorem. �

6.3. The case of the conformal Laplacian: the anomalous term.
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Second order variation for the conformal laplacian ∆.
When deforming an isoradial, Delaunay graph, we have seen in the proof 6.1 of
Proposition 8 that the contribution made by regular edges e ∈ E(G•0+) to the first
order variation dε∆ of the conformal Laplacian is identical to the variation dε∆ of
the Laplace-Beltrami laplacian. There is, however, an additional term in the first
order variation dε∆ coming from the chords of G0+ . We call this the “anomalous”
term and denote it δA:

(6.48) dε∆ = dε∆ + dεA

The non-diagonal elements of dεA are non-zero only for chords. From 6.18, for
vertices u 6= v, they are
(6.49)

dεA(~e ) :=
[
dεA
]
uv

=


1
2

(
dεθn(~e ) tan2 θn(~e ) + dεθs(~e ) tan2 θs(~e )

) if e = uv is a
chord in E(G0+)

0 otherwise.

Here e = uv is an edge of G0+ and ~e = (u, v) is an orientation. Bear in mind that
G0+ since the graph is isoradial and weakly Delaunay and so θn(~e ) = ± θs(~e ) for
any edge e in G0+ . In particular tan2 θn(~e ) = tan2 θs(~e ) and so dεA(~e ) = dεA(~e ∗)
where ~e ∗ = (v, u) is the opposite orientation. For the diagonal terms

(6.50)
[
dεA
]
uu

= −
∑
v6=u

[
dεA
]
uv

In the case of a chord ~e we may use 5.13 for the angle variations dεθn(~e ) and dεθs(~e )
and re-express the anomalous term dεA(~e ) given in formula 6.49 as

(6.51) dεA(~e ) =
1

2
Im
[
∇F (fn) En(~e ) tan2 θn(~e ) +∇F (fs) Es(~e ) tan2 θs(~e )

]
where the functions En(~e) and Es(~e) are defined in 5.14 and where fn and fs are
the respective north and south triangles abutting ~e in the triangulation Ĝ0+ which
completes G0+ .

The second order variation

(6.52) tr
[
dε1∆ ·∆−1

cr · dε2∆ ·∆−1
cr

]
is the sum of the second order variation made by the Laplace-Beltrami laplacian,
namely

(6.53) tr
[
dε1∆ ·∆−1

cr · dε2∆ ·∆−1
cr

]
along with three anomalous trace terms which we can express (in light of 6.50) as
follows:
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(6.54)
tr
[
dε1A ·∆−1

cr · dε2∆ ·∆−1
cr

]︸ ︷︷ ︸
chord-edge term

=
∑

chords ~e1 ∈G0+

edges ~e2 ∈ Ĝ0+

dε1A(~e1)K(~e1,~e2) dε2∆(~e2)K(~e2,~e1)

tr
[
dε1∆ ·∆−1

cr · dε2A ·∆−1
cr

]︸ ︷︷ ︸
edge-chord term

=
∑

edges ~e1 ∈ Ĝ0+

chords ~e2 ∈G0+

dε1∆(~e1)K(~e1,~e2) dε2A(~e2)K(~e2,~e1)

tr
[
dε1A ·∆−1

cr · dε2A ·∆−1
cr

]︸ ︷︷ ︸
chord-chord term

=
∑

chords
~e1,~e2 ∈G0+

dε1A(~e1) K(~e1,~e2) dε2A(~e2) K(~e2,~e1)

where ~e1 = (u1, v1) and ~e2 = (u2, v2) are oriented edges of the triangulation Ĝ0+

whose vertices u1, v1 and u2, v2 lie in Ω1 and Ω2 respectively and where

(6.55) K(~e1,~e2) :=
[
∆−1

cr

]
v1v2
−
[
∆−1

cr

]
u1v2
−
[
∆−1

cr

]
v1u2

+
[
∆−1

cr

]
u1u2

Note that K(~e1,~e2) = K(~e2,~e1) = −K(~e ∗1 ,~e2) where ~e ∗1 = (v1, u1) has the reverse
orientation. Applying two rounds of formula 3.14 we obtain

(6.56)

K(~e1,~e2) =



p1(u2, v2)
[
∆−1

cr ∇>
]
u1f2

− p1(u2, v2)
[
∆−1

cr ∇>
]
v1f2

+

p1(u2, v2)
[
∆−1

cr ∇
>]

u1f2

− p1(u2, v2)
[
∆−1

cr ∇
>]

v1f2

= 2Re


p1(u1, v1) p1(u2, v2)

[
∇∆−1

cr ∇>
]
f1f2

+

p1(u1, v1) p1(u2, v2)
[
∇∆−1

cr ∇
>]

f1f2


where fi is a triangle of Ĝ0+ , north or south, containing the edge ~ei for i = 1, 2.
By assumption Ω1 and Ω2 are separated by a large distance d� Rcr and so we can
estimate K(~e1,~e2) as presented in formula 6.56 using asymptotic expansions 6.38
and 6.39 of Lemma 12. We end up with

(6.57) K(~e1,~e2) =
1

2π
Re

[
p1(u1, v1) p1(u2, v2)(
zcr(f1)− zcr(f2)

)2
]

+ O

(
1∣∣zcr(f1)− zcr(f2)

∣∣3
)

where p1(u, v) = zcr(v)− zcr(u) as introduced in Definition 14.

The chord-chord term. Let’s begin by examining the chord-chord term of 6.54. It
involves the contribution of two (oriented) chords ~e1 = (u1, v1) and ~e2 = (u2, v2)
whose vertices of u1, v1 and u2, v2 are contained in Ω1 and Ω2 respectively. Since
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~ei = (ui, vi) is a chord for i = 1, 2 in G0+ the corresponding north and south trian-
gles fin and fis in Ĝ0+ are concyclic and therefore share a common circumcenter
whose complex coordinate we denote Z cr(~ei) = z(fin) = z(fis). This is depicted
in Fig 18. Putting things together, we see that the contribution made by a pair of
(oriented) chords (~e1,~e2) to the chord-chord anomalous trace term in 6.54 is

Figure 18. Two far apart chords ~e1 = (u1v1) and ~e2 = (u2v2) at
distance d� 1

(6.58)

1

16π2
dε1A(~e1) dε2A(~e2)

(
Re

[
p1(u1, v1) p1(u2, v2)(
Z cr(~e1)− Z cr(~e2)

)2
])2

+ O

(
1∣∣Z cr(~e1)− Z cr(~e2)

∣∣5
)

with dε1A(~e1) and dε2A(~e2) given by 6.51, that we recall for completeness.

dεA(~e ) =
1

2
Im
[
∇F (fn) En(~e ) tan2 θn(~e ) +∇F (fs) Es(~e ) tan2 θs(~e )

]
with

En(~e ) =
z(v)− z(n)

z(v)− z(n)
− z(u)− z(n)

z(u)− z(n)
=

−4A(fn)(
z(v)− z(n)

)(
z(u)− z(n)

)
and a similar form for Es(~e ). Any triangulation Ĝ0+ which completes the limit graph
G0+ is itself isoradial and weakly Delaunay consequently tan2 θn(~e ) = tan2 θs(~e )
the value of which is given by 3.8.

The result 6.58 for the anomalous chord-chord contribution to the variation of
log det ∆ does not have the same for than the “regular” contribution 6.53 which is
similar to the variation of the Laplace-Beltrami operator ∆, which is a sum over
triangles of terms

A(f1)A(f2)
∇F1(f1) · ∇F2(f2)

(zcr(f1)− zcr(f2))4
+ c.c.

First, besides harmonic terms in the coordinate of the circumcenters of the form(
Z cr(~e1)− Z cr(~e2)

)−4 and
(
Z cr(~e1)− Z cr(~e2)

)−4

it contains non harmonic term of the form∣∣Z cr(~e1)− Z cr(~e2)
∣∣−4

problematic with conformal invariance and an interpretation in term of CFT, as
will be discussed in Sect. 9.
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Second, from the form of dε1A(~e1) and dε2A(~e2), it does not contains only terms
of the form

∇F1(f1) · ∇F2(f2) and ∇F̄1(f2) · ∇F̄2(f2)

but also terms of the form

∇F1(f1) · ∇F̄2(f2) and ∇F̄1(f2) · ∇F2(f2)

Third, the geometric terms associated to the faces (the triangles f1 and f2)
are not simply the area terms A(f1) and A(f2), but they depend of the detailled
geometry and orientation of the chords and the triangles through the terms En/s(~e )

and tan2 θn/s(~e ) .

The chord-edge term. We now discuss briefly the chord-edge term present in 6.54
which involves the anomalous variation term [dε1A]u1v1

of a chord ~e1 = (u1, v1) and
the ordinary variation term [dε2∆]u2v2

of an edge ~e2 = (u2, v2). It will be simpler to
group together the terms made by a single chord ~e1 = ~e = (u, v) and the edges ~e2

forming the boundary of a fixed (counter-clockwise oriented) triangle f and then
sum the contributions as the chord ~e in G0+ and triangle f in Ĝ0+ both vary; see
the illustration in Fig. 19. Accordingly, the contribution made by a chord-triangle
pair (~e, f) is found to be

Figure 19. A chord e = (12) and a triangle g = (1′2′3′) at dis-
tance d

(6.59)
1

4π2
dε1A(~e )Re

[
p2

1(u, v)A(f)∇F2(f)(
Z cr(~e )− zcr(f)

)4
]

+ O

(
1∣∣Z cr(~e)− zcr(f)

∣∣5
)

This term is again different from the regular term. Now it is harmonic in the
coordinates ov the circumcenters, since it does not contain the non harmonic term∣∣Z cr(~e1)− Z cr(~e2)

∣∣−4

However, it still contains the terms of the form

∇F1(f1) · ∇F̄2(f2) and ∇F̄1(f2) · ∇F2(f2)

and it depends on the detailled geometry and orientation of the chord, as for the
chord-chord term discussed previously.
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A simplification for specific deformations.
Finally, let us note that the anomalous term dεA(~e ) for a chord ~e 6.51 takes a
simpler form in the special case where the discrete derivatives of F coincides on the
north and south triangles fn(~e ) and fs(~e ) thanks to the following lemma,

Lemma 13. Consider two triangles N = (v1, v2, v3) and S = (v2, v1, v4) sharing
the edge v1v2 and the flipped triangles E = (v3, v4, v2) and W = (v4, v3, v1) sharing
the edge v3v4 as depicted on Fig. 6.3. Let v 7→ F (v) be a function defined on the
vertices. Then the four following equalities are equivalent

(6.60) ∇F (N) = ∇F (S) , ∇F (E) = ∇F (W) , ∇F (N) = ∇F (S) , ∇F (E) = ∇F (W)

Note that the four points are not necessarily concyclic.

Proof. The proof follows from the definitions 3.10 and 3.12, and it is left to the
reader. It has a simple geometric interpretation. Again, note that this is valid for
any pair of triangles sharing an edge. �

Figure 20. N, S, E and W triangles

In this case, to a cocyclic configuration of points, namely a simple cyclic polygon
P = (z1, z2, · · · zk) (k ≥ 4), is associated a single pair of discrete derivatives of F
attached to the circumcenter c of P , (∇F (c),∇F (c)). Then the variation dε1A(~e )
for a chord ~e is simply

(6.61) dε1A(~e ) =
1

2
Im
[
∇F (c)

(
En(~e ) + Es(~e )

)]
tan2 θn/s(~e )

6.4. Curvature dipoles and the anomalous chord term. Let us discuss a pos-
sible explanation of the anomalous terms corresponding to deformations of cocyclic
configurations of points which undergo flips (the chords) of the triangulation. The
adjective "anomalous" reflects the face that these contributions are not present for
either the Laplace-Beltrami operator ∆ or the Kähler operator D, both of which
admits a smooth continuum limit consistent with the predictions of conformal in-
variance.

As discussed in [DE14] and Subsection 1.2 the conformal laplacian ∆ for a De-
launay graph G can be considered as the discretized Laplace-Beltrami operator on
a curved surface S♦

G
. The construction of S♦

G
is illustrated in Fig. 21 for an isoradial

Delaunay graph G and in Fig. 22 for a generic (non-isoradial) Delaunay triangula-
tion G.
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Figure 21. A regular edge e = (12) of a critical triangulation G
(left) and its associated rhombic lattice G♦ (right), the curvature
K associated to each face of G, i.e. its white õ-vertices of G♦, is
zero.

Figure 22. A O(ε) deformation of G. The Gauss curvatures K
of the N and S faces are non-zero, but of order O(ε).

It is easy to that the surface S♦
G

is piecewise flat, with curvature defects (i.e.
conical singularities) localized at the vertices õf associated to circumcenters of faces
f in G. The defect angle K(f) corresponds to a localized curvature defect at õf
and its value is given in term if the conformal angles θ(e) of the edges forming the
boundary of the face f. Recall from 2.3 that the associated scalar curvature Rscal(õf)
at a vertex õf is twice the measure of the defect angle around the circumcenter of
of the face f, namely

(6.62) Rscal(õf) = 4π − 2
∑
e∈∂f

(
π − 2θ(e)

)
or equivalently the Gauss curvature

(6.63) K(f) := 2π −
∑
e∈f

(
π − 2θ(e)

)
︸ ︷︷ ︸

discrete Gauss curvature

For an isoradial Delaunay graph G the rhombic surface S♦
G
coincides with the planar

kite graph G♦ whose faces, in this case, are all rhombs. Furthermore, the scalar
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curvature Rscal(õf) associated to each face f in G is zero. For a generic Delau-
nay graph G the scalar curvature Rscal(õf) will be non-zero (see Fig. 22). Indeed,
consider a cyclic quadrilateral face f in an isoradial triangulation Gcr depicted in
Fig. 23 and the effects of a generic deformation Gcr → Gε depicted in Fig. 24. In
S
♦
Gcr

four lozenges meet at õf where the scalar curvature Rscal(õf) vanishes.

Figure 23. A cocylic face P = (1423) of a critical triangulation
Gcr (left) and its associated rhombic lattice G♦ (right), the curva-
ture K associated to each face of G, i.e. its white o -vertices of G♦,
is zero.

However, as soon as we deform this cyclic quadrilateral, generically a diago-
nal edge e emerges in Gε (infinitesimally a chord e in G0+) which subdivides the
quadrilateral f into two triangles fn and fs, while the circumcenter of splits into
two circumcenters on and os. In the deformed rhombic surface S♦

Gε
a new lozenge

appears between õn and õs. However now this new lozenge is “flat” i.e. its angles at
first order in (ε 0, π, 0, π) ! To first order in ε the defect saclar curvatures Rscal(õn)
and Rscal(õs) for these two faces are found to be of order O(1) and opposite, not of
order O(ε)

(6.64) K(fn) = −2θn(~e ) + O(ε) , K(fs) = −2θs(~e ) + O(ε)

Thus the chord e is associated to a curvature dipole, i.e. neighboring curvature
defects with non-zero but opposite signs. In this way the smooth deformation
Gcr → Gε manifests itself as a discontinuity of the curvature. with respect to a
smooth deformation. Generically when one deforms a cyclic face f of Gcr with four
or more vertices, i.e. when the deformation implies a flip for the triangulation, a
curvature dipole appears, and the smooth deformation of Gcr → Gε corresponds to
a non-smooth deformation of curvatures.

Finally, let us stress that a curvature dipole appears if the anomalous term dεA(~e )
discussed above in 6.3 is non-zero. Indeed this anomalous term is proportional
to tan2 θn(~e ), while the dipole is proportional to θn(~e ). Thus if for the chord
θn(~e ) = θs(~e ) = 0, no anomalous term is present and no curvature dipole appears
at first order in the deformation. The variation term for the chord ~e is the same
for ∆ and for ∆. One should note that this occurs iff the circumcenter of of
the face f lies on the edge e. If f is a quadrilateral (as on Fig. 24) and if both
e = (12) and the flipped edge e∗ = (34) share this property (θn(~e∗ ) = θs(~e

∗ ) = 0,
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Figure 24. A O(ε) deformation of the cocyclic configuration.
The Delaunay condition select a chord e = (12), which splits the
face P = (1423) into two triangles N = (123) and S = (214).
A flat lozenge (1S2N) appear in the rhombic lattice G♦. The
curvatures K of the N and S faces are non-zero, but of order O(1)
and opposite. N and S form a “curvature dipole”.

then the face f is a rectangle. Then to first order in the deformation parameter ε,
the deformation is isoradial → isoradial, not isoradial → non− isoradial.
These isoradial→ isoradial deformations are the one considered by Kenyon in
the seminal paper [Ken02].

Of course these considerations extend to concyclic configurations involving more
that four points.
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7. The scaling limit of variations

Rescaling the deformations.

7.1. Rescaling smooth deformations. As explained in the introduction we in-
corporate a scaling factor factor ` > 0 into the deformation in order to define and
study a continuum limit. We may view the scaling parameter ` > 0 as imparting
a resolution on the critical graph, i.e. we get a rescaled embedding z1/̀

cr := zcr/` of
Gcr, under which vertices become closer and denser in any compact region of the
plane as ` > 0 increases. In particular the area A(f) of a face f ∈ F(Gcr) shrinks
by a factor of 1/`2 under the rescaled embedding while its circumcenter coordinate
zcr(f) is rescaled by a factor of 1/`. In this way, the scaling parameter ` > 0 allows
us to interpret the critical graph as a planar partition and can be used to define
a Riemann sum. More specifically, given any continuous complex-valued function
H : C −→ C with compact support Ω = suppH then

(7.1) lim
`→∞

∑
x∈F(Gcr)

A(x)/`2 ·H
(
zcr(x)/`

)
=

ˆ
Ω

d2xH(x)

Given a smooth complex-valued function F : C −→ C with compact support, and
` > 0 a scaling real parameter, we set F`(z) := `F (z/`). When deforming a critical
isoradial Delaunay graph Gcr (with unit circumradius Rcr = 1), we shall consider
the restriction of F` to (the coordinates of) the vertices of the critical graph. By
abuse of notation we shall write F`(v) := ` F

(
zcr(v)/`

)
for each vertex v ∈ V(Gcr).

We use F` to displace the coordinates of the critical graph and define a deformed
embedding, namely

zε,`(v) := zcr(v) + ε F`
(
v
)

7.2. Rescaling bi-local deformations. Our analysis of second order variations
(for the log-determinants which we consider) involve a bi-local deformation im-
plemented by two smooth, complex-valued functions F1 and F2 : C −→ C whose
respective supports Ω1 and Ω2 are compact and have closures Ω1 and Ω2 which are
disjoint. Set

d := dist(Ω1,Ω2) = inf
{
|w1 − w2|

∣∣wi ∈ Ωi
}

to be the distance between the supports Ω1 and Ω2. Obviously 0 < d < ∞. The
corresponding deformed embedding zε,` : V(Gcr) −→ C of the critical lattice is
given by

zε,`(v) := zcr(v) + ε1F1;`(v) + ε2F2;`(v)

where ε = (ε1, ε2) is a pair of deformation parameters ε1, ε2 ≥ 0 and where we use
the notation Fi;`(z) := `Fi(z/`) and by abuse of notation Fi;`(v) := Fi;`

(
zcr(v)

)
for

a vertex v ∈ V(Gcr) and i = 1, 2. The results of Lemma 10 still hold for the bi-local
deformed embedding zε,`; simply apply the Lemma to F1 and F2 independently
and take ε̃F = min(ε̃F1 , ε̃F2). Let us denote by Gε,` the Delaunay graph uniquely
determined by the vertex set V(Gε,`) := V(Gcr) together with the deformed em-
bedding zε,`. As we have seen, the one-sided limit εi → 0+ for i = 1, 2 induces the
structure of a weak Delaunay graph G0+,` on the vertex set V(Gcr) with respect to
the critical embedding zcr. In general, the edge set E(G0+,`) will vary as the scaling
parameter ` > 0 evolves; nevertheless E(Gcr) ⊆ E(G0+,`) for all 0 < ` ≤ ∞. For
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each value of ` > 0 select a weak Delaunay triangulation Ĝ0+,` which completes
G0+,`. Because E(Gcr) ⊆ E(G0+,`) ⊆ E(Ĝ0+,`) for each 0 < ` ≤ ∞ we may always
perform the following resummation

(7.2)
∑

x∈F(Ĝ0+,`)

A(x)H(zcr(x)) =
∑

y∈F(Gcr)

A(y)H
(
zcr(y)

)

where we combine terms on the left hand side involving triangles of Ĝ0+,` which
share a common circumcenter and where H

(
x
)
is any quantity which depends

only upon the circumcenter zcr(x) of x ∈ F(Ĝ0+,`). Consequently the choice of
triangulation Ĝ0+,` completing G0+,` will not affect our calculations.

7.3. Scaling limit and derivation of Theorem 3. We now are in a position to
study the scaling limit of the bilocal deformation terms 6.44 (Prop. 10) and 6.46
(Prop. 11)) and to derive Theorem 3. For G = Gcr or G = Ĝ0+,` let FΩi(`)(G)
denote the subset of faces x of G each of which contains at least one vertex whose
coordinate lies inside Ωi(`) := suppFi;` for i = 1, 2.

The initial ` finite term. Let O denote either the Laplace-Beltrami operator ∆ or
the Kähler operator D on the Delaunay graph Gε,`. From prop. 10 and 11 the ε1ε2
cross-term of the variation of det log[O] is given by the trace term

(7.3) dε1ε2det log[O] = − tr
[
dε1O ·∆−1

cr · dε2O ·∆−1
cr

]

which can be expressed as the following double sum over triangles in Ĝ0+,`

(7.4)

− 2

π2

∑
x1∈FΩ1(`) (Ĝ0+,`)

x2∈FΩ2(`) (Ĝ0+,`)

A(x1)A(x2)

(
Re

[
∇F1;`(x1)∇F2;`(x2)(
zcr(x1)− zcr(x2)

)4
]

+O
( ∣∣zcr(x1)−zcr(x2)

∣∣−5
))

where zcr(xi) is the circumcenter of xi for i = 1, 2. Both F1 and F2 have compact
support so by Lemma 2 we have that ∇Fi;`(x) = ∂Fi

(
zcr(x)/`

)
+ Rcr/` · Ei(x)

where
∣∣Ei(x)

∣∣ is bounded by a constant Bi > 0 independent of both x and ` > 0.
We begin by breaking 7.4 into two pieces and evaluate their large ` limits separately.
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The subleading term. The large ` limit of the second part of 7.4, vanishes as the
following computation shows:

∣∣∣ ∑
x1∈FΩ1(`) (Ĝ0+,`)

x2∈FΩ2(`) (Ĝ0+,`)

A(x1)A(x2) ·O
( ∣∣zcr(x1)− zcr(x2)

∣∣−5
)∣∣∣

≤
∑

x1∈FΩ1(`) (Ĝ0+,`)

x2∈FΩ2(`) (Ĝ0+,`)

A(x1)A(x2) ·
∣∣∣O( ∣∣zcr(x1)− zcr(x2)

∣∣−5
)∣∣∣

≤
∑

x1∈FΩ1(`) (Gcr)

x2∈FΩ2(`) (Gcr)

A(x1)A(x2) ·
∣∣∣O( ∣∣zcr(x1)− zcr(x2)

∣∣−5
)∣∣∣

≤ 1

d

1

`

∑
x1∈FΩ1(`) (Gcr)

x2∈FΩ2(`) (Gcr)

A(x1)/`2A(x2)/`2 ·
∣∣∣O( ∣∣zcr(x1)/`− zcr(x2)/`

∣∣−4
)∣∣∣

(7.5)

In the large ` limit the sum over the triangles becomes a standard Riemann integral

≤ lim
`→∞

∑
x1∈FΩ1(`) (Gcr)

x2∈FΩ2(`) (Gcr)

A(x1)/`2A(x2)/`2 ·
∣∣∣O( ∣∣zcr(x1)/`− zcr(x2)/`

∣∣−4
)∣∣∣

=

¨
Ω1×Ω2

d2x1 d
2x2 ·

∣∣∣O( ∣∣x1 − x2

∣∣−4
)∣∣∣ = O(1)

(7.6)

Hence

(7.7) lim
`→∞

∑
x1∈FΩ1(`) (Gcr)

x2∈FΩ2(`) (Gcr)

A(x1)A(x2) ·O
( ∣∣zcr(x1)− zcr(x2)

∣∣−5
)

= 0

The leading term. To evaluate the first part in 7.4 we consider the norm of the
difference between the original term with discrete derivative and the corresponding
term with continuous derivatives, and use the previous results to get the bounds

∣∣∣∣∣∣∣∣∣∣
∑

x1∈FΩ1(`) (Ĝ0+,`)

x2∈FΩ2(`) (Ĝ0+,`)

A(x1)A(x2)Re

[
∇F1;`(x1)∇F2;`(x2)− ∂F1

(
zcr(x1)/`

)
∂F2

(
zcr(x2)/`

)(
zcr(x1)− zcr(x2)

)4
] ∣∣∣∣∣∣∣∣∣∣
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≤



Rcr

`

∑
x1∈FΩ1(`) (Ĝ0+,`)

x2∈FΩ2(`) (Ĝ0+,`)

A(x1)/`2A(x2)/`2
∣∣E1(x1)

∣∣ · ∣∣∂F2

(
zcr(x2)/`

)∣∣∣∣zcr(x1)/`− zcr(x2)/`
∣∣4

+
Rcr

`

∑
x1∈FΩ1(`) (Ĝ0+,`)

x2∈FΩ2(`) (Ĝ0+,`)

A(x1)/`2A(x2)/`2
∣∣∂F1

(
zcr(x1)/`

)∣∣ · ∣∣E2(x2)
∣∣∣∣zcr(x1)/`− zcr(x2)/`

∣∣4

+
R2

cr

`2

∑
x1∈FΩ1(`) (Ĝ0+,`)

x2∈FΩ2(`) (Ĝ0+,`)

A(x1)/`2A(x2)/`2
∣∣E1(x1)

∣∣ · ∣∣E2(x2)
∣∣∣∣zcr(x1)/`− zcr(x2)/`
∣∣4

≤



Rcr

`

∑
x1∈FΩ1(`) (Ĝ0+,`)

x2∈FΩ2(`) (Ĝ0+,`)

A(x1)/`2A(x2)/`2
B1·
∣∣∂F2

(
zcr(x2)/`

)∣∣∣∣zcr(x1)/`−zcr(x2)/`
∣∣4

+
Rcr

`

∑
x1∈FΩ1(`) (Ĝ0+,`)

x2∈FΩ2(`) (Ĝ0+,`)

A(x1)/`2A(x2)/`2
∣∣∂F1

(
zcr(x1)/`

)∣∣ ·B2∣∣zcr(x1)/`− zcr(x2)/`
∣∣4

+
R2

cr

`2

∑
x1∈FΩ1(`) (Ĝ0+,`)

x2∈FΩ2(`) (Ĝ0+,`)

A(x1)/`2A(x2)/`2
B1 ·B2∣∣zcr(x1)/`− zcr(x2)/`

∣∣4

≤



Rcr

`

∑
x1∈FΩ1(`) (Gcr)

x2∈FΩ2(`) (Gcr)

A(x1)/`2A(x2)/`2
B1 ·

∣∣∂F2

(
zcr(x2)/`

)∣∣∣∣zcr(x1)/`− zcr(x2)/`
∣∣4

+
Rcr

`

∑
x1∈FΩ1(`) (Gcr)

x2∈FΩ2(`) (Gcr)

A(x1)/`2A(x2)/`2
∣∣∂F1

(
zcr(x1)/`

)∣∣ ·B2∣∣zcr(x1)/`− zcr(x2)/`
∣∣4

+
R2

cr

`2

∑
x1∈FΩ1(`) (Gcr)

x2∈FΩ2(`) (Gcr)

A(x1)/`2A(x2)/`2
B1 ·B2∣∣zcr(x1)/`− zcr(x2)/`

∣∣4

(7.8)
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In the large ` limit the sums over triangles becomes Riemann integrals, hence
the large ` limit of the l.h.s. of 7.8 is bounded by

(7.9)
≤



lim
`→∞

c

2π2

B1Rcr

`
·
¨

Ω1×Ω2

dx1 dx2∣∣x1 − x2

∣∣4 ∣∣∂F2(x2)
∣∣

+ lim
`→∞

c

2π2

B2Rcr

`
·
¨

Ω1×Ω2

dx1 dx2∣∣x1 − x2

∣∣4 ∣∣∂F1(x1)
∣∣

+ lim
`→∞

c

2π2

B1B2R
2
cr

`2
·
¨

Ω1×Ω2

dx1 dx2∣∣x1 − x2

∣∣4
= 0

Summing up. From this it follows that

lim
`→∞

∑
x1∈FΩ1(`) (Ĝ0+,`)

x2∈FΩ2(`) (Ĝ0+,`)

A(x1)A(x2) Re

[
∇F1;`(x1)∇F2;`(x2)(
zcr(x1)− zcr(x2)

)4
]

lim
`→∞

∑
x1∈F(Ĝ0+,`)

x2∈F(Ĝ0+,`)

A(x1)A(x2) Re

[
∇F1;`(x1)∇F2;`(x2)(
zcr(x1)− zcr(x2)

)4
]

= lim
`→∞

∑
x1∈F(Ĝ0+,`)

x2∈F(Ĝ0+,`)

A(x1)/`2A(x2)/`2 Re

[
∂F1

(
zcr(x1)/`

)
∂F2

(
zcr(x2)/`

)(
zcr(x1)/`− zcr(x2)/`

)4
]

= lim
`→∞

∑
x1∈F(Gcr)
x2∈F(Gcr)

A(x1)/`2A(x2)/`2 Re

[
∂F1

(
zcr(x1)/`

)
∂F2

(
zcr(x2)/`

)(
zcr(x1)/`− zcr(x2)/`

)4
]

=

¨
Ω1×Ω2

dx1 dx2 Re

[
∂F1(x1) ∂F2(x2)

(x1 − x2)4

]

(7.10)

Thus we have

(7.11) lim
`→∞

tr
[
dε1O ·∆−1

cr ·dε2O ·∆−1
cr

]
=

2

π2

¨
Ω1×Ω2

dx1 dx2 Re

[
∂F1(x1) ∂F2(x2)

(x1 − x2)4

]
This settles the proof of Theorem 3 by establishing eq. 1.18 .

7.4. Controlling the geometry of the lattice for small deformations.

The limits we considered. Let us summarize what we did previously, up to sect. 7.3.
Gcr is an infinite critical graph, F2 and F2 deformation functions with disjoint,
compact supports. Through the deformation zcr → zcr +ε1F1 +ε2F2 one constructs
the deformed Delaunay graph Gε along with a corresponding deformed operator Oε
where ε = (ε1, ε2). Since the supports of F1 and F2 are disjoint, the corresponding
variations of the matrix elements of Oε are independent for small values of ε1 and ε2,
so that one can write the total variation as the sum of the two independent variations
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δOε = Oε − Ocr = δOε1 + δOε2 with δOε1 = Oε1,0 − Ocr and δOε2 = O0,ε2 − Ocr.
The bi-local deformation term tr

[
δOε1 · O−1

cr · δOε2 · O−1
cr

]
is replaced by its linear

approximation at ε = 0 through δOε1 → ε1 dε1O, δOε2 → ε2 dε2O reducing the
problem to studying the bi-local term

(7.12) tr
[
dε1O · O−1

cr · dε2O · O−1
cr

]
defined on the weak Delaunay graph Ĝ0+ (the isoradial refinement of the initial
graph Gcr relative to the deformation). We then rescale the deformation by ` and
consider the family of deformations zcr → zcr + ε1F1;` + ε2F2;` and show the scaling
limit `→∞ of 7.12 exists and is independent of the choice of initial critical graph
Gcr. Stated simply, we study the nested limit

(7.13) lim
`→∞

lim
ε1→0
ε2→0

(
tr

[
dε1Oε1 · O−1

cr · dε2Oε2 · O−1
cr

])
An interesting question is whether these two limits can be interchanged. A

positive answer would be a first step in understanding if one can define a continuum
limit of (the total variation of) log detO starting from an infinite Delaunay graph
which is not isoradial, but rather obtained by a small, smooth deformation of a
Delaunay graph which is isoradial. A simpler question is the following: We know
that for a given critical graph Gcr, the limit 7.13 makes sense when ε1, ε2 → 0. Is
the convergence uniform w.r.t. all critical graphs Gcr ? We return to this issue in
Section 8.

The problem with flips. The geometrical effects of a finite ε-deformation of a Delau-
nay graph G have already been discussed in Sections 5.3 and 5.4. Lemmas 9 and 10
ensure that, for a given initial graph Gcr and a given deformation F (with compact
support), there exist a strictly positive bound 0 < ε̃F such that no flip occurs in the
interval 0 < ε < ε̃F . However ε̃F depends non-trivially on F and on the geometry
of Gcr. Furthermore it is clear that such a bound cannot be made uniform w.r.t.
all critical graphs Gcr. This means that given any small value ε > 0 of the defor-
mation parameter flips will occur in Gε for some critical graph Gcr within the class
of all critical graphs. Consequently the operators (theirs matrix elements) dεOε are
discontinuous functions of ε, and it will be difficult to control them as ε varies.

7.5. A simple restriction to control small deformations: enforcing a global
lower bound on the edge angles. A simple but brutal way to manage the “flip
problem” is to consider only a subclass of graphs Gcr such that the bound ε̃F
can be controlled explicitely, so that no flip occurs. Similar constraints 7.16 on
the geometry of Gcr have been used in the literature for other problems involving
isoradial lattices, see e.g. the paper by U. Bücking [Büc08]. Our solution is given
by the following Lemma.

Lemma 14. Let F : C −→ C be a non-zero, smooth complex-valued function with
compact support ΩF . We define

(7.14) M̌F = max
z∈C
|∂F (z)|+ max

z∈C
|∂F (z)|

This is a simple modification of the definition of the bound MF in Lemmas 8 and
9, which does not depend on a specific graph. For a generic Delaunay triangulation
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T we define in analogy with ϑF in Lemma 9

(7.15) ϑ̌(T) = inf
{
θ(e)

∣∣∣e ∈ E(T)
}

For a fixed, strictly positive ϑ̌ > 0, let us consider the set Tϑ̌ of all isoradial
Delaunay triangulations T of the plane such that

(7.16) ϑ̌(T) ≥ ϑ̌ > 0

Then, there exists a strictly positive bound on ε given by

(7.17) ε̌F =
sin ϑ̌

2M̌F (1 + M̌F )

such that, for any triangulation T ∈ Tϑ̌ and any ` > 0, the deformation z → zε;` =
z + εF` of T preserves all the edges of T if 0 < ε ≤ ε̌F , i.e. no flip occurs.

(7.18) 0 < ε ≤ ε̌F , ` > 0 and T ∈ Tϑ̌ =⇒ E(Tε;`) = E(T)

Proof. The mapping zε,` : V(Tε,`) −→ C is an embedding provided there are no
“collisions”, that is zε,`(u) 6= zε,`(v) whenever u 6= v are distinct vertices in V(Tcr).
Equivalently 1 + ε dF(`)(u, v) must not vanish. Apply the fundamental theorem of
calculus using γuv(τ) := τzcr(u)/`+ (1− τ)zcr(v)/`.∣∣dF`(u, v)

∣∣ =

∣∣∣∣∣F
(
zcr(u)/`

)
− F

(
zcr(v)/`

)
zcr(u)/`− zcr(v)/`

∣∣∣∣∣
=

1

|zcr(u)/`− zcr(v)/` |
·
∣∣∣∣ˆ 1

0

dτ
d

dτ
F
(
γuv(τ)

) ∣∣∣∣
=

∣∣∣∣ˆ 1

0

dτ ∂F (γuv(τ)) +
zcr(u)− zcr(v)

zcr(u)− zcr(v)

ˆ 1

0

dτ ∂F
(
γuv(τ)

) ∣∣∣∣
≤
∣∣∣∣ˆ 1

0

dτ ∂F
(
γuv(τ)

) ∣∣∣∣ +

∣∣∣∣ zcr(u)− zcr(v)

zcr(u)− zcr(v)

∣∣∣∣ · ∣∣∣∣ˆ 1

0

dτ ∂F
(
γuv(τ)

) ∣∣∣∣
≤ max

∣∣∂F ∣∣ + max
∣∣∂F ∣∣ = M̌F

If we take ε < εF < M̌−1
F , then clearly ε

∣∣dF`(u, v)
∣∣ < 1. Therefore the quantity

1+ε dF(`)(u, v) cannot vanish. The assertion that uv ∈ E(Tε,`) whenever uv ∈ E(T)
mirrors the proof of Lemma 9 except that we must carry out the same argument
after replacing κε(uv ; w) by

κε,`
(
uv ; w

)
:= Re

[
zε,`(u)− zε,`(w)

zε,`(v)− zε,`(w)

]
To avoid any dependence on the scaling parameter ` > 0 we also substitute the
role played by ϑF with ϑ̌F , and therefore E(Tε;`) ⊂ E(T). Finally, since T is a
triangulation, no chord appears and T0+ = T, hence E(Tε;`) = E(T). We stress that
this bound on ε is valid for and independent of all values of the scaling parameter
` > 0 including ` =∞. �
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8. Finite ε variations, beyond the linear approximation

8.1. Introduction. In this section we look for uniform bounds on the variation
of the operators ∆ and D for small but finite deformation parameter ε. In order
to get uniform bounds w.r.t. the geometry (i.e. isoradius) of the initial critical
lattice Gcr, we need to fully examine generic deformations and take into account
the situation where edges Gcr may flip, unlike the linear approximation studied in
the previous sections. This will leads us to uniform bounds on the variations of
∆ and D (prop. 13). We deduce strong results on the uniform convergence of the
scaling limit for ∆ (prop. 15) and of the scaling limit of the second order bilocal
term (leading to the OPE) (prop. 16). We show that there is a qualitative difference
between ∆ and D, and we obtain a weaker but interesting result for the scaling limit
of second order bilocal term for D (prop. 20).

8.2. Deforming triangulations with and without flips.

Geometric Deformations: Deforming with flips. We start from an isoradial Delau-
nay graph Gcr and then deform its embedding v 7→ zcr(v) using a smooth function
F : C −→ C with compact support to obtain a mapping

(8.1) v 7→ zε(v) = zcr(v) + εF (zcr(v))

for vertices v of Gcr. The mapping v 7→ zε(v) defines an embedding of the vertex
set V(Gcr) as long as ε is small enough, namely:

(8.2) |ε| < (max(|∂F |) + max(|∂̄F |))−1

which ensures that zε(u) 6= zε(v) if u 6= v.
A Delaunay graph Gε is obtained by applying the Delaunay construction to

the set of deformed coordinates zε(v) for v ∈ Gcr. The vertices of Gε and Gcr

are identical by definition, however the edges and the faces of Gε may differ from
those of Gcr since the Delaunay constraints may force flips to occur during the
deformation. Unlike the set-up of section 5.3, the inclusion E(Gcr) ⊂ E(Gε) of
Lemma 9 may now fail. Generically Gε will be a triangulation whenever the critical
graph Gcr is.

∆ε, Dε and ∆ε are the Laplacian operators relative to the lattice Gε. Note that
these operators acts on the same space of functions CV(Gε) = CV(Gcr) irrespective
of ε since, by definition, the vertex sets V(Gε) = V(Gcr) agree. Similarly, we denote
by ∇ε and ∇ε the discrete derivative operators relative to the faces of Gε, both of
which are operators CV(Gε) → CF(Gε). Note that, in general, the set of deformed
and critical faces differ, i.e. F(Gε) 6= F(Gcr). Similarly we denote by Aε and Rε the
area and circumradius functions for the faces of Gε.

A simple but illustrative example of such a deformation of a triangulation T→ Tε

is depicted on Fig. 25. Note that the basis of the triangles b can be made arbitrary
small b� ε so that an arbitrary number of flips may occur.

Formal Back-Deformation. Given a smooth function F : C −→ C with compact
support consider the formal deformation of the embedding of a (weak) Delaunay
graph G as explained in Section 5.1, namely
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ϵ = 0. ϵ = 0.02 ϵ = 0.04 ϵ = 0.06 ϵ = 0.08 ϵ = 0.1

Figure 25. Deformation of a periodic isoradial Delaunay trian-
gulation T0 → Tε by a global shear z → z + ε Imz, keeping it
Delaunay. On this example, the base and the height of the trian-
gles are respectively b = 1/10 and h = 1, so that a flip occur for
ε = b/2 = 1/20, and we choose ε = b = 1/10. Since there is a a
flip, an original face of T0 (in red) does not stay a face after the
flip.

(8.3) v 7→ zε(v) = z(v) + εF (z(v))

for v ∈ V(G). Let Gε:0 denote the graph whose vertex, edge, and face sets are
identical to those of G but whose embedding is given by v 7→ zε(v). Keep in mind
that when the deformation parameter ε is specialized Gε:0 may not be (weakly)
Delaunay.

Define the back-deformation Gε:0 to be the graph whose vertex set and embed-
ding are identical to those of our initial (weak) Delaunay graph G but whose edge
and vertex sets coincide with those of the graph Gε obtained from G by the geo-
metric deformation. The construction of Gε:0 can be seen in two stages: First Gε is
constructed from G using a geometric deformation (with w 7→ w+ εF (w)) and then
Gε:0 is subsequently constructed by a formal deformation (with w 7→ w− εF (w)) of
Gε. Schematically

(8.4) G
geometric−→ Gε

formal−→ Gε:0

8.3. Full variation of operators without flips.

Variation of the area. Consider the variation of the triangulation T→ Tε given by
deforming the embedding z(u) → zε(u) = z(u) + εF (u) without flips (so that in
fact Tε should be denoted T0:ε with the notations of the previous section). For a
triangle f the full variation of its area is from 3.4 and 3.14

(8.5) A→ Aε = A
(
1 + ε(∇F + ∇̄F̄ ) + ε2(∇F ∇̄F̄ − ∇̄F ∇F̄ )

)
For brevity D(ε;F ) will denote the scaling factor

(8.6) D(ε;F ) = 1 + ε(∇F + ∇̄F̄ ) + ε2(∇F ∇̄F̄ − ∇̄F ∇F̄ )
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ϵ = 0.1 ϵ = 0.08 ϵ = 0.06 ϵ = 0.04 ϵ = 0.02 ϵ = 0.

Figure 26. The back-deformation of this triangulation Tε → Tε:0

by same shear, keeping the edges and faces of the triangulations
fixed (no-flips). An original face of Tε (in blue) stays a face of Tε:0.
However Tε:0 is not Delaunay.

Variation of the discrete derivatives. The vertex sets V(T) and V(Tε) are, by defi-
nition, identical and the face sets F(T) and F(Tε) agree so long as no flips occur in
the deformation T → Tε. Consequently the nabla operators ∇ and ∇ε (and their
conjugates ∇̄ and ∇̄ε) share a common range and domain. Accordingly we have:

∇ → ∇ε =
1 + ε∇̄F̄
D(ε;F )

∇− ε∇F̄
D(ε;F )

∇̄

∇̄ → ∇̄ε =
1 + ε∇F
D(ε;F )

∇̄ − ε∇̄F
D(ε;F )

∇
(8.7)

A word of caution: deformations of functions. Recall that we may restrict a smooth,
complex-valued function G : C −→ C to the vertex set of the triangulation T using
its graph embedding z : V(T) −→ C. Bearing some abuse of notation, we define
and denote this restriction by G(v) := G(z(v)) for vertices v ∈ V(T). Some care
is needed when restricting a smooth function G to the deformed triangulation Tε.
The vertex sets of T and Tε are identical but of course their respective embeddings
z and zε are not, and consequently the functions v 7→ G(z(v)) and v 7→ G(zε(v)) do
not agree. In order to side step this discrepancy we introduce a deformed, smooth
function Gε : C −→ C defined implicitly by

(8.8) Gε
(
w + εF (w)

)
= G(w)

for all w ∈ C, where ε ≥ 0 is fixed and sufficiently small. By construction,

(8.9) Gε(zε(v)) = G(z(v)) =: G(v)

To stress the role of the deformed embedding zε we shall define and denote Gε(v) :=
Gε(zε(v)) for v ∈ V(Tε). When G = F this allows us to write

(8.10) zε+ε′(v) = z(v) + (ε+ ε′)F (z(v)) = zε + ε′Fε(zε(v))
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Variation of the circumradii. The full variation of the circumradius R(f) of a face
is more complicated. For a face with vertices labelled 1, 2, 3 i.e. f = (123) using
3.6 we get

(8.11) R2 → R2
ε = R2 N12(ε;F )N23(ε;F )N31(ε;F )

D(ε;F )2

with
Nuv(ε;F ) = 1 + ε

(
∇F + ∇̄F̄ + C̄uv∇F̄ + Cuv∇̄F

)
+ ε2

(
∇F ∇̄F̄ + ∇̄F ∇F̄ + C̄uv∇F ∇F̄ + Cuv∇̄F ∇̄F̄

)(8.12)

where Cuv for an (unoriented) edge uv denotes

(8.13) Cuv =
z̄(u)− z̄(v)

z(u)− z(v)

Variation of the operators. Thus we get the variation of the Laplacian operators
from

(8.14) ∆→ ∆ε = 2
(
∇>ε Aε∇ε + ∇̄>ε Aε ∇̄ε

)
(8.15) D → Dε = 4∇̄>ε

Aε
R2
ε

∇ε

that we do not write explicitly. Note that all the expression we got are rational
functions in ε, and that when keeping only the first order in ε in a series expansion,
we recover the results of Sect. 5.1.

8.4. Full variation of operators under Delaunay deformations (with flips).
Here we address the case of a critical triangulation T = Tcr with isoradius R0 > 0
whose embedding undergoes a deformation

z → zε := z + εF

where flips are allowed, so that the deformed graph Tε remains Delaunay. As
before the displacement function F is the (restriction) of a smooth complex-valued
function on the plane with compact support. We consider the full variation of the
operators associated to the deformation Tcr → Tε, namely

(8.16) δ∆(ε) = ∆ε −∆cr , δD(ε) = Dε −Dcr

instead of the instantaneous, first order terms dε∆ and dεD in the respective ε-
expansions as done in Sect. 5.1 and 6. We shall need uniform estimates for the ε→ 0
limit of terms related to the variations δ∆(ε) and δD(ε) which are independent of
the initial critical lattice Tcr. Furthermore uniform estimates for the R0 → 0 limit
will be needed, as this is synonymous with the `→∞ scaling limit.

Unfortunately the exact results of the previous section 8.3 cannot be directly ap-
plied, since flips generically occur within the continuous family of Delaunay graphs
Tε as the deformation parameter ε moves from zero to ε > 0. Nevertheless, we may
write each variation as the integral of a derivative, and then try to get uniform
bounds on the derivatives. This is what we discuss in the remaining part of this
Appendix.

Let us first consider the simpler case of the Laplace-Beltrami operator ∆. We
can write

(8.17) δ∆(ε) =

ˆ ε

0

dε∆′(ε) with ∆′(ε) =
d

dε
∆ε = dε∆ε
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Indeed, since F is smooth with compact support, there is a finite (possibly large)
number of flips as ε increases, and we know that ∆ε is a continuous function of ε,
and its derivative exits and is continuous in the interval between the flips. Therefore
the derivative ∆′(ε) is bounded and piecewise continuous, so that the integral 8.17
makes sense. For a given value ε ≥ 0, the first order term in formula 5.3 extends
to the case of ∆ε defined on Tε and w.r.t. the transported displacement function
Fε in the plane.

(8.18) ∆′(ε) = ∇>ε ·Aε·Dε·∇ε +∇>ε ·Aε·Dε·∇ε
with

(8.19) Dε = −4∇εFε , Dε = −4∇εF̄ε
Similarly, we can write the variation of the Kähler operator as

(8.20) δD(ε) =

ˆ ε

0

dεD′(ε) , D′(ε) =
d

dε
Dε = dεDε

The results of Section 5.1 give for the derivative of D

(8.21) D′(ε) = ∇>ε AεKε∇ε +∇>ε AεHε∇ε +∇>ε AεHε∇ε
with

Kε = − 4

R2
ε

(
∇εFε +∇εF̄ε + Cε∇εFε + C̄ε∇εF̄ε

)
Hε = − 4

R2
ε

∇εFε , Hε = − 4

R2
ε

∇εF̄ε
(8.22)

and with the Cε and C̄ε defined by 5.5 for faces the triangulation Tε, namely for a
face f = (123),

(8.23) C(f) = C123 =
z̄1 − z̄2

z1 − z2
+
z̄2 − z̄3

z2 − z3
+
z̄3 − z̄1

z3 − z1

Note that for such a face f = (123), C(f) reads in term of the Cuv of 8.13 (associated
to edges of f) as C(123) = C12 + C23 + C31.

8.5. Uniform bounds under Delaunay deformations (with flips).

Bounds on continuous derivatives. Now we study wether it is possible to give uni-
form bounds w.r.t. ε and Tε on the various coefficients Aε, Rε, Eε and Fε, and
on the operators ∇ε and ∇̄ε. From now on, let F : C → C be a given smooth
deformation function with compact support. Let

M1 = sup
z∈C

max
{
|∂F (z)|, |∂̄F (z)|

}
M2 = sup

z∈C
max

{
|∂2F (z)|, |∂∂̄F (z)|, |∂̄2F (z)|

}(8.24)

We will consider the transported function Fε defined by 8.10, and the transported
version of 8.24

M1(ε) = sup
z∈C

max
[
|∂Fε(z)|, |∂̄Fε(z)|

]
M2(ε) = sup

z∈C
max

[
|∂2Fε(z)|, |∂∂̄Fε(z)|, |∂̄2Fε(z)|

](8.25)
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By differentiating the functional relation 8.10 between F and Fε, one gets the
general inequalities

(8.26) M1(ε) ≤M1(ε) =
M1

1− 2εM1
, M2(ε) ≤M2(ε) =

M2

(1− 2εM1)3

valid as long as ε is small enough, namely

(8.27) 0 ≤ ε < ε̌F = 1/(2M1)

which ensures that Fε is not multivalued (and stays smooth with compact support).

Bounds on discrete derivatives. Let Tcr be a critical (Delaunay isoradial) triangu-
lation with isoradius R0, and Tε be the Delaunay triangulation Tε obtained by the
ε-deformation z → z + εF . We shall establish bounds on the norm of the discrete
derivatives of Fε on the triangulation Tε, as well as inequalities on the radii R(f)
of the faces of Tε.

First be define for a generic triangulation T and a generic smooth function with
compact support G

(8.28) BG(T) = sup
faces f∈T

max
(
|∇G(f)|, |∇G(f)|

)
We use Lemma 2, which gives a bound on the difference between the discrete
derivative ∇G(f) and the continuous derivate ∂G of G at the circumcenter of f.
This bound involves the circumradius of f and the max of the second derivative of
G inside the circumcircle. Denote the max of the circumradii of the faces f of a
triangulation T

(8.29) Rmax(T) = max
f∈T

R(f)

For the initial critical triangulation Tcr Lemma 2 implies

(8.30) BF (Tcr) ≤M1 + 4M2R0

but for Tε it becomes

(8.31) BF (Tε) ≤M1(ε) + 4M2(ε)Rmax(Tε)

and we need an estimate of Rmax(Tε).

8.6. Inequalities for general variations of circumradii (with or without
flips).

The problem. In order to get a bound on Rmax(Tε), we now derive a bound on the
variation of the circumradius of the faces, of a triangulation under a deformation
z → z + εF .

Let us consider the following general problem. We start from a general (not
isoradial) initial triangulation T0. We deform T0 by z → z + εF from ε = 0 to
a final ε. If the circumradii R(f1) and R(f2) of two neighboring faces f1 and f2

agree at any stage of the deformation, we may either (i) perform an edge flip, so
that f1, f2 become two new faces f′1 and the graph remains Delaunay, f′2, or (2)
not perform the flip, so that the local configuration ceases to be Delaunay. Thus
we get a family of triangulations {Tε : ε ∈ [0, ε}, a priori not Delaunay, but with
the same set of vertex embeddings {zε(u) : u ∈ V (T0)} as if they were Delaunay all
along.

Now consider an initial face (triangle) f0 of T0, with initial circumradius R(0) =
R0(f0). When deforming Tε from 0 to ε, we can continuously follow the face f0, and
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when it sustains a flip, we choose one of the two faces created by the flip. In this
way we get a “continuous” family of faces {fε ∈ Tε : ε ∈ [0, ε]}, so that ε 7→ R(fε)
is a continuous, piecewise differentiable function (this is the crucial point for the
following argument).

Bounds on the derivative of R and consequences. Now, in between the flips, from
5.8, 5.9 the derivative of the circumradius R(fε) of this face fε is
(8.32)

R′(fε) =
d

dε
R(fε) =

R(fε)

2

(
∇εFε(fε) +∇εF̄ε(fε) + Cε(fε)∇εFε(fε) + C̄ε(fε)∇εF̄ε(fε)

)
Using Lemma 2 again, for this face fε of the triangulation Tε we get the bound

(8.33) |∇εFε(fε)| and
∣∣∇̄εFε(fε)∣∣ ≤ M1(ε) + 4R(fε)M2(ε)

and from the definition of C 8.23 we have

(8.34) |Cε(fε)| ≤ 3

We thus get the bound

(8.35)
∣∣∣∣ ddεR(fε)

∣∣∣∣ ≤ 4M1(ε)Rε(f) + 16M2(ε)R(fε)
2

Remember that the functions M1(ε) and M2(ε) are explicitly known functions of
ε and the constants M1 and M2 associated to the displacement function F .

M1(ε) =
M1

1− 2 εM1
, M1(ε) =

M2

(1− 2 εM1)3

Bounds on R. We can integrate the bound 8.35 from 0 to ε to get explicit inequal-
ities for the radius R(fε) of the face fε. Consider the function R̄+(ε, R0) defined
by the ODE which saturates the upper bound 8.35

(8.36)
dR̄+(ε, R0)

dε
= Q(R̄+(ε, R0), ε) , R̄+(0) = R0

where

(8.37) Q(R, ε) = 4M1(ε)R+ 16M2(ε)R2

whose solution is

(8.38) R̄+(ε, R0) =
R0(

1 + M2R0

M1

)
(1− 2M1 ε)

2 − M2R0

M1
(1− 2M1 ε)

−2

Note that R̄+(ε) is a monotonously increasing convex function of ε for 0 ≤ ε <
εmax(R0) which diverges at εmax(R0) given by

(8.39) εmax(R0) =
1

2M1

(
1−

(
1 +

M1

R0M2

)−1/4
)

Similarily, let R̄−(ε, R0) be the function whose derivative saturates the lower bound
given by 8.35. It satisfies the ODE

(8.40)
dR̄−(ε, R0)

dε
= − Q(R̄−(ε, R0), ε) , R̄−(0) = R0
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R̄−(ε, R0) is explicitly

(8.41) R̄−(ε, R0) =
R0 (1− 2M1ε)

2

1 + 8M2R0

M1
log
(

1
1−2M1ε

)
and is a monotonous, decreasing function which vanishes at ε̌F given by 8.27. Then
we have the following general result.

Proposition 12. The radius of the face fε satisfy the inequalities

(8.42) R̄−(ε, R(f0))) ≤ R(fε) ≤ R̄+(ε, R(f0))

valid if

(8.43) 0 ≤ ε < εmax(R(f0))

with εmax(R(f0)) given by 8.39. Note also that in any case, one has 0 < εmax < ε̌F .

Proof. Should be write it ? �

This is the main result of this section. Note that it does not require the initial
triangulation to be Delaunay or isoradial. It is is also completely independent of
whether we perform flips or do not perform flips during the deformation. It depends
only on the deformation function F and on the initial radius of the initial face we
start from.

Notice that when the initial radius of the initial face becomes very small 8.42
implies that

(8.44) (1− 2 εM1)2 ≤ lim
R(f0)→0

R(fε)

R(f0)
≤ (1− 2 εM1)−2

Final estimates. With Prop. 12 we can complete the estimates of the previous
sections 8.5. We start from an initial critical triangulation Tcr with initial radius
R0, and deform it into the Delaunay triangulation Tε. The inequality 8.42 implies
that

(8.45) Rmax(Tε) = max
f∈Tε

R(f) ≤ R̄+(ε, R0)

hence

(8.46) BF (Tε) = max
f∈Tε

(
|∇εFε|, |∇̄εFε|

)
≤ M̄1(ε) + 4 M̄2(ε) R̄+(ε, R0)

We can bound the coefficients in the derivative w.r.t. ε of the Laplace-Beltrami
operator ∆ (in 8.18), and of the Kähler operator D (in 8.21).

|Dε| ≤ 4 M̄1(ε) + 16 M̄2(ε) R̄+(ε, R0)

|Kε| ≤
16M̄1(ε) + 64 M̄2(ε) R̄+(ε, R0)

R̄−(ε, R0)2

|Hε| ≤
4M̄1(ε) + 16 M̄2(ε) R̄+(ε, R0)

R̄−(ε, R0)2

(8.47)

Using the explicit forms of M̄1(ε) and M̄2(ε) given by 8.26, and of R+(ε, R0) and
R̄−(ε, R0) given by 8.38 and 8.41, one deduces that |Dε|, |Kε| and |Hε| are uniformly
bounded. More precisely we can summarize the estimates we obtained into the
following proposition.
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Proposition 13. Let us choose a smooth displacement function F with bounds M1

and M2 associated to its first and second derivatives. Let us also choose εb strictly
smaller than εmax(R0 = 1) given by 8.39

0 < εb < εmax(1) =
1

2M1

(
1−

(
1 +

M1

M2

)−1/4
)

for instance εb = εmax(R0 = 1)/2. Then consider an arbitrary initial critical tri-
angulations (isoradial and Delaunay) T0 with circumradius R0, some ε > 0, the
deformed Delaunay lattice Tε obtained from T0 by the deformation z → z + ε F (z),
and an arbitrary face f of Tε.

Then the factors Dε(f) (given by 8.19), Kε(f) and Hε(f) (given by 8.22) for
the face f are uniformly bounded over the sets of: (i) initial triangulation T0 with
isoradius R0 less or equal to one, (ii) deformation parameter ε smaller or equal to
εb, (iii) and faces f of Tε. Namely, there exist constants D0, K0 and H0 which
depend only of F and on the choice of εb such that

(8.48) |Dε(f)| ≤ D0 , |Kε(f)| ≤ K0 , |Hε(f)| ≤ H0

Similarily, there exists a constant P0(F ; εb), which depends only of F and on εb,
which uniformly bounds the variation of the radius of the faces

(8.49) |(R(fε)−R0)/R0| ≤ ε P0(F ; εb)

8.7. Consequence for the control of the scaling limit of ∆.

The Laplace-Beltrami operator ∆. To simplify, we use a 2×2 block matrix notation.
The ∆ operator and its ε-derivative ∆′ on the deformed lattice Tε reads
(8.50)

∆(ε) = 2

(
∇ε
∇ε

)†(
Aε 0
0 Aε

)(
∇ε
∇ε

)
, ∆′(ε) = −4

(
∇ε
∇ε

)†(
0 Aε∇εF ε

Aε∇εFε 0

)(
∇ε
∇ε

)
Remember that Aε, ∇εF ε and ∇εFε are defined for the faces of the deformed trian-
gulation Tε, whose vertices have positions zε = z+εF (z), while ∆(ε) and ∆′(ε) acts
on the functions defined on the vertices of Tε. Since Tε is obtained by deforming an
initial critical lattice T0 = Tcr, let us rewrite them in terms on objects defined for
the “back-deformed” lattice Tε:0 defined by the procedure 8.4 (depicted in Fig. ??).

Tcr = T0
Delaunay−→ Tε

no flip−→ Tε:0

Again, Tε:0 has the same vertices as T0, but the edges and faces of Tε. In other
word, Tε is obtained from Tε:0 by the deformation z → zε = z+ εF (z), but without
flips. We can therefore express the objects relative to the faces of Tε in terms of
those relative to the faces of Tε:0. The area Aε of a face fε of Tε is related to the
area A of the corresponding face f = fε:0 of Tε:0 by 8.5, namely

(8.51) Aε = D(ε;F )A

with from 8.6

(8.52) D(ε;F ) = 1 + ε(∇F +∇F̄ ) + ε2(∇F ∇F̄ −∇F ∇F̄ )

Note that the operators ∇ and ∇̄ refer now to faces of Tε:0. In a strict sense they
should be denoted ∇ε:0 and ∇̄ε:0. We omit the subscript to simplify notation. The
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discrete derivative operators on Tε are expressed in term of those on Tε:0 by 8.7,
which can be expressed in the block matrix notation as

(8.53)
(
∇ε
∇ε

)
=

1

D(ε;F )

(
1 + ε∇F −ε∇F
−ε∇F 1 + ε∇F

)(
∇
∇

)
In particular

(8.54)
(
∇εFε
∇εFε

)
=

1

D(ε;F )

(
1 + ε∇F −ε∇F
−ε∇F 1 + ε∇F

)(
∇F
∇F

)
Again the discrete ∇ and ∇ refer now to faces of Tε:0. Including this in 8.50 one
gets

(8.55) ∆′(ε) =

(
∇
∇

)†
A D(ε;F )

(
∇
∇

)
with D the 2× 2 block matrix

D(ε;F ) =

(−4)

D(ε;F )
2

 −ε∇F ∇F (2 + ε(∇F +∇F )
)
∇F

(
(1 + ε∇F )

2 − ε2∇F ∇F
)

∇F
(

(1 + ε∇F )
2 − ε2∇F ∇F

)
−ε∇F ∇F

(
2 + ε(∇F +∇F )

)


(8.56)

Scaling limit for ∆(ε). We can now study the scaling limit of the deformed operator
∆(ε). We proceed as follows. As before, we choose a smooth displacement function
F with compact support F : C → C. For each r ∈ (0, 1] (or simply a decreasing
sequence of (rn)n∈N converging to 0), we associate an arbitrary critical triangulation
of the plane Trcr = T

r
0 with isoradius r. Finally we choose a finite bound ε′b such

that

(8.57) 0 < ε′b <
1

2
εmax(1)

for the deformation parameter ε where εmax is defined by 8.39 above. The calcu-
lations leading to the bounds of Prop. 13 for the deformation T0 → Tε can be
easily repeated for the double deformations Tr0 → T

r
ε → T

r
ε,0. In particular, the

circumradius of each face f of Trε,0 is bounded uniformly by

(8.58) ε ≤ εb , r ≤ 1 =⇒ |R(f)− r| ≤ ε r P0(F ; 2 ε′b)

with P0 defined in Prop. 13. This allows us to uniformly control the r → 0 limit
of the discrete derivatives ∇ and ∇ by using Lemma 2 combined with the previous
ingredients. Stir (do not shake)..

Proposition 14. Let F be a smooth displacement function with compact support,
fix ε, and let F = {Tr0} be a family of critical triangulations as above. To each point
z ∈ C and to each r we associate the face frε:0(z) of the deformed triangulation Trε:0
which contains z. Note that the set of z which are either vertices or else belong to
an edge of the triangulation is a set measure zero and can be ignored). Then in the
limit r → 0, the discrete derivative operators ∇ and ∇ for the face frε:0(z) converge
uniformly towards the continuum partial derivative ∂ and ∂̄ at the point z. More
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precisely let φ be a smooth function (or at least of class C2) with compact support
Ω of the plane. Then

(8.59) lim
r→0
∇φ(frε:0(z)) = ∂φ(z) , lim

r→0
∇φ(frε:0(z)) = ∂̄φ(z)

Moreover, the limit is uniform, namely there is a constant C independent of z ∈ Ω,
of the choice of family F of triangulations and of the value of ε ∈ [0, ε′b] (but
depending of F , of ε′b and of φ), such that

(8.60) |∇φ(frε:0(z))− ∂φ(z)| and
∣∣∇φ(frε:0(z))− ∂̄φ(z)

∣∣ ≤ C r

It follows that the full variation of the discrete Laplace-Beltrami operator δ∆(ε) =
∆(ε)−∆ converges uniformly towards a local Laplace-like operator which depend
on ε and F , in the following sense.

Proposition 15. Let F , ε and F = {Tr0} as in Prop. 14 and φ be a smooth
function (or at least of class C2) with compact support Ω of the plane. Then

(8.61) φ · δ∆(ε) · φ =
∑

u,v∈Tr0

φ̄(u) (δ∆(ε))uv φ(v)

converges uniformly when r → 0 towards the local quadratic form

(8.62)
ˆ

Ω

d2z

(
∂φ
∂̄φ

)†
E(ε;F )

(
∂φ
∂̄φ

)
with E(ε;F ) the 2× 2 matrix

E(ε;F ) =

ˆ ε

0

dε E′(ε;F ) with

E′(ε;F ) =
−4

((1 + ε ∂F )(1 + ε ∂̄F̄ )− ε2 ∂̄F ∂F̄ )2
× −ε∂F̄ ∂̄F (2 + ε(∂F + ∂̄ F̄ )

)
∂F̄
(

(1 + ε ∂F )
2 − ε2∂̄F ∂F̄

)
∂̄F
(

(1 + ε ∂̄ F̄ )
2 − ε2∂F̄ ∂̄F

)
−ε∂F̄ ∂̄F

(
2 + ε(∂F + ∂̄ F̄ )

)


(8.63)

Proof. One just writes δ∆(ε) as

δ∆(ε) = δ∆(ε) =

ˆ ε

0

dε∆′(ε)

and use the explicit representation 8.55 8.56 for ∆′(ε) to write

(8.64) φ ·∆′(ε) · φ =
∑

f∈Trε:0

A(f)

(
∇φ(f)
∇φ(f)

)†
·
[
D(ε;F )

]
(f) ·

(
∇φ(f)
∇φ(f)

)
which is a Riemann sum. Then 8.58 and Prop. 14 ensures that in the r → 0
limit this converges uniformly towards an ordinary integral involving continuous
derivatives of φ and F (D becoming E). One thus recover 8.62. �

Scaling limit for the bilocal deformation of tr log ∆. This can be repeated for study-
ing the scaling limit of the bilocal term

(8.65) tr
[
δ1∆(ε1) ·∆−1

cr · δ2∆(ε2) ·∆−1
cr

]
For finite deformation parameters ε1 and ε2. Again we consider two smooth defor-
mation fonctions F1 and F2 with disjoint compact suppports Ω1 and Ω2. δ1∆(ε1) =
∆(ε1)−∆cr (resp. δ2∆(ε2) = ∆(ε2)−∆cr) is the variation of the Laplace-Beltrami
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operator under the deformation z → z+ε1 F1(z) (resp. z → z+ε2 F2(z)). As above,
instead of considering a fixed initial critical lattice Tcr with isoradius R0 = 1, and
rescaled deformation functions F`(z) = ` F (z/`), with `→∞ a rescaling parameter,
we consider a family F = {Tr} of critical lattices with isodradii r, fixed deformation
functions F ’s, and study the limit r → 0. This is equivalent since by a change of
variable r ∼ 1/`.

For a finite 0 < r ≤ 1, deforming the initial Trcr critical lattice, the bilocal
deformation term reads as a double sum over the faces of the two non-isoradial
lattices Trε1:0 and Trε2:0, which share the same vertices, but not the same faces, with
T
r
cr, of the explicit form

Tr
[
∆′(ε1) ·∆−1

cr ·∆′(ε2) ·∆−1
cr

]
=

∑
f1∈Trε1:0

∑
f2∈Trε2:0

A(f1) A(f2)

tr

([
D(ε1;F1)

]
(f1) ·

[(
∇
∇

)
∆−1

cr

(
∇
∇

)†]
f1f2

·
[
D(ε2;F2)

]
(f2) ·

[(
∇
∇

)
∆−1

cr

(
∇
∇

)†]
f2f1

)
(8.66)

The trace Tr [ ] in the l.h.s. of 8.66 is the “big trace” over the infinite set of vertices
of the critical lattice. The trace tr ( ) in the r.h.s of 8.66 is a finite trace over a
product of 2 × 2 matrices. This appears again as a double Riemann discrete sum
over the faces of the triangulations Trε1:0 and Trε2:0.

Studying the scaling limit r → 0 might seem similar to what was done above for
∆. There is however a delicate point. ∆−1

cr is the critical propagator on the critical
lattice Trcr, given by the explicit Kenyon integral representation. But its elements[
∆−1

cr

]
u,v

are not given by the restriction of a smooth function of the positions of
the vertices G(z(u), z(v)).

Indeed, the large distance asymptotics of ∆−1
cr on a critical lattice with isoradius

R0 = 1 given by Prop. 4 implies that the propagator ∆−1
cr on a lattice Trcr can be

separated in a dominant smooth part Gs and a subdominant non-smooth part Gns.

(8.67)
[
∆−1

cr

]
u,v

= Gs(u, v) +Gns(u, v)

The smooth part is the continuum propagator (note now the r dependence)

(8.68) Gs(u, v) = − 1

2π
(log (2 |z(u)− z(v)| /r) + γeuler)

The non-smooth part is
(8.69)

Gns(u, v) =
1

2π

 ∑
m≥d≥1

(−1)d(2m+ d− 1)!Re

(
cm,d(u, v)

(
r/2

z(v)− z(u)

)2m
)

with the cm,d(u, v) defined by 4.11, from the u1+2s(u, v) defined by 4.9, where
the p1+2s(u, v) are defined by 4.6, with the θj ’s the arguments of the successive
vectors (with iso-modulus r) of a path v = (u, · · · , v) on the rhombic lattice Tr0

♦

associated to the critical (isoradial Delaunay) lattice Tr0. Note that now p1(u, v) =
(z(v) − z(u))/r. From Lemma 5 the cm,d’s are of order O(1), so the sum of the
terms given by a fixed m > 0 is bounded by a O(r2m) in the scaling r → 0 limit,
and is indeed subdominant.
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In 8.66 in the scaling limit r → 0, the sum over triangles becomes a Riemann
integral

(8.70)
∑

f1∈Trε1:0

∑
f2∈Trε2:0

A(f1) A(f2) −→
ˆ

Ω1

d2z1

ˆ
Ω2

d2z2

The D(εa;Fa)(fa) (a = 1, 2) are easy to control since as above from Pro. 8.66
we know that they converge uniformly towards the E′(εa;Fa)(za) given by 8.63.
Controling the scaling limit of the discrete derivatives of the smooth part of the
propagator is also easy through Lemma 2. We get the uniform limit

(8.71)

[(
∇
∇

)
Gs

(
∇
∇

)†]
f1f2

−−−−→
r→0

− 1

4π

(
0 (z1 − z2)−2

(z̄1 − z̄2)−2 0

)
The non-trivial point is to get a uniform bound on the scaling limit of the left+right
discrete derivatives of the non-smooth part of the propagator, and to show that it
is subdominant. This issue has been discussed in detail in Sect. 6.2 through Lem-
mas 11 and 12. However Lemma 11 relies on the fact that the discrete derivatives
∇ and ∇ are relative to the faces f of an isoradial triangulation T0. This is not
the case anymore here, since the discrete derivatives are relative to the faces of a
non-isoradial triangulation Trε:0 derived from an isoradial one Tr0 by flips of edges,
without moving the position of the vertices.

We can repeat the analysis of Sect. 6.2 for this more general case. Again the
dangerous contribution which could give a term of order |z1 − z2|−2 is the m = 1
term in 8.69, which is explicitely proportional to the real part of

p3(u, v) r3

(z(u)− z(v))3

Again, the most dangerous contribution comes from applying left+right discrete
derivatives to p3(u, v)). Generically a naive dimensional analysis shows that each
discrete derivative applied on p3 will bring a term of order r−1, so that we will get
for a pair of triangles f1 ∈ Trε1:0 ∩ Ω1, f2 ∈ Trε2:0 ∩ Ω2∑

u1∈f1

∑
u2∈f2

(
∇
∇

)
f1,u1

p3(u1, u2)

(
∇
∇

)†
u2,f1

∼ cst. r−2

However, we shall see that this estimate is genericaly not uniform. Namely, the
cst. in this estimate can be arbitrarily large ! remember that from Lemma 11 if f1

and f2 are faces of the original isoradial triangulation T0 then this cst. is bounded
by cst. ≤ 9.

This is a technical point which comes from the fact that generically, if we start
from an isoradial Delaunay triangulation T0 with isoradius r, and consider an ar-
bitrary triangle t = (u1, u2, u3) which is not a face f of T0, this triangle may have
a circumradius R(t) very large (R(t) � r), and an area A(t) arbitrarily small
(A(t)� r2). “Experimental mathematics” studies of such singular cases and some
analytical estimates leads us to make the following conjecture.

Conjecture 1. Let T0 be an isoradial Delaunay triangulation Tr0 of the plane with
isoradius r, and p3(u, v) the function defined for any pair of points (u, v) of T0 by

p3(u, v) =

2n∑
i=1

ei3θi , θi = arg(zi − zi−1)
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where v = (z0, z1, · · · , z2n−1, z2n) is a path on the rhombic lattice Tr0
♦ obtained from

T
r
0, going from u (z0 = z(u)) to v (z2n = z(v)).
For any non degenerate triangle t = (u1, u2, u3) in Tr0 , let ∇p3(t) and ∇p3(t)

be the discrete derivatives w.r.t. u taken at the face t (note, this is independent of
v). Then there is a uniform bound

(8.72) |∇p3(t)| and |∇p3(t)| ≤ cst. R(t)/r2

with cst. a number of order O(1) independent on the choice of critical triangulation
T
r
0 and of the triangle t. On the examples we have studied, we found cst. = 6.

Assuming the validity of the conjecture, it is easy to adapt the arguments of
Sect. 6.2, and to use that fact that the circumradii of the faces f1 and f2 of the
deformed-back-deformed non-isoradial triangulations Trε1:0 and Trε2:0 are uniformly
bounded for ε1 and ε2 small enough by 8.58. This leads to

Lemma 15. Assuming Conjecture 1, the left-right discrete derivative of the non-
smooth part of the propagator is uniformly bounded in the scaling limit r → 0
by

(8.73)

∣∣∣∣∣
[(
∇
∇

)
Gns

(
∇
∇

)†]
f1f2

∣∣∣∣∣ ≤ cst.
r

|z(f1)− z(f2)|3

It is therefore subdominant when compared to the contribution of the smooth part
of the propagator given by 8.71.

Combining everything, we get the final result for the scaling limit of the bilocal
term

Proposition 16. Assuming that Conjecture 1 allows to control the derivatives of
the non-smooth part of the propagator, the bilocal term Tr

[
∆′(ε1) ·∆−1

cr ·∆′(ε2) ·∆−1
cr

]
defined on critical triangulations Tr0 converges uniformy in the scaling limit r → 0
towards the bilocal termˆ

Ω1

d2z1

ˆ
Ω2

d2z2 tr

[
E′(ε1;F1)(z1) ·

(
0 (z1 − z2)−2

(z̄1 − z̄2)−2 0

)
·

E′(ε2;F2)(z2) ·
(

0 (z1 − z2)−2

(z̄1 − z̄2)−2 0

)](8.74)

Note that this term depends on the fours derivatives ∂F1, ∂̄F1, ∂F2, ∂̄F2 and
their c.c., and contains both the analytic term (z1 − z2)−4, the anti-analytic term
(z̄1 − z̄2)−4, and the mixed term (z1 − z2)−2(z̄1 − z̄2)−2.

Finally, from the explicit expression 8.63, the limit ε → 0 of E′(ε;F ) exists and
is uniform.

(8.75) lim
ε→0

E′(ε;F ) =

(
0 −4 ∂F̄

−4 ∂̄F 0

)
Together with Prop. 16, this leads to the commutation of limits result for ∆.

Proposition 17. Under the assumptions of the previous propositions, the limit
ε → 0 and the scaling limit r → 0 for the bilocal term exist, are uniform, and
commute. One recovers the result obtained previously for the scaling limit of the
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OPE on the lattice for ∆.

lim
ε→0

lim
r→0

Tr
[
∆′(ε1) ·∆−1

cr ·∆′(ε2) ·∆−1
cr

]
= lim

r→0
lim
ε→0

Tr
[
∆′(ε1) ·∆−1

cr ·∆′(ε2) ·∆−1
cr

]
=

1

π2

ˆ
Ω1

d2z1

ˆ
Ω2

d2z2
∂̄F1(z1) ∂̄F2(z2)

(z1 − z2)4
+

∂F̄1(z1) ∂F̄2(z2)

(z̄1 − z̄2)4

(8.76)

8.8. About the scaling limit of the Kähler operator D. We now discuss
briefly the deformations of the Kähler operator, without giving details of the cal-
culations. In the block matrix representation, the Kähler operator D and its ε-
derivative read
(8.77)

D(ε) = 4

(
∇ε
∇ε

)†(
Aε/R

2
ε 0

0 0

)(
∇ε
∇ε

)
, D′(ε) =

(
∇ε
∇ε

)†(
AεRε Aε Hε
Aε Hε 0

)(
∇ε
∇ε

)
with Aε and Rε the areas and circumradii of the faces of the deformed lattice Tε,
while Rε and Hε are given by 8.22 and 8.23. In order to study D(ε) at finite epsilon
and to compare it to D(0) = Dcr, and its scaling limit, one can try to repeat
the argument for ∆ presented in the previous section. It is enough to consider
D′(ε). We start from a critical lattice Tr0 with isoradius r, perform the deformation
z → z + εF (z), and reexpress D′(ε), defined on the deformed Delaunay lattice Trε ,
on the back-deformed lattice Trε:0. We can thus rewrite D′(ε) under a block form
similar to 8.55

(8.78) D′(ε) =

(
∇
∇

)†
A ·F′(ε;F )

(
∇
∇

)
with F′(ε;F ) a 2 × 2 block matrix made of diagonal matrices relative to the faces
f of Trε:0, defined implicitely by 8.78. The 2 × 2 matrix extracted of F′ relative to
a face f, [F′(ε;F )] (f), can be computed explicitly out of the ∇F (f) and ∇F (f),
and of the geometry of the face f, but the result will be quite long and not very
illuminating at this stage. The difference with the previous case of ∆ is that for a
face f (let us denote its vertices (123)) F′ will depend explicitely of the circumradius
R(f) of the face, and of the phases Ce associated to the unoriented edges e = (12),
(23) and (31) of f, defined by 8.13. Indeed the coefficient H(f) depends explicitely
of R(f), and the coefficient R(f) depends also of the coefficients C(f) =

∑
e∈f Ce.

Moreover the variation of these coefficients under the backdeformation Tε:0 ↔ Tε

depends also of these Ce.
We can now use Pro. 13 which bound the H(f) and R(f) and R(f), and the fact

that since the Ce are phases so that |Ce| = 1, to bound uniformly the coefficients of
the matrices [F′(ε;F )] (f)’s w.r.t the deformation parameter ε (small enough) and
the triangulations Tr0. More precisely

Proposition 18. Let F be a deformation function, F = {Tr0 : r ∈ (0, 1]} a family
of critical triangulations labelled by their isoradius r, and ε ∈ (0, ε′b] with ε′b defined
by 8.57. There is a constant Cst. which depends only on F and the choice of ε′b such
that there is a uniform bound for the matrix elements of the [F′(ε;F )] (f) matrices

(8.79) ‖ [F′(ε;F )] (f) ‖ ≤ Cst. r−2

with ‖ · ‖ the standard operator norm on matrices (for instance).
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Proof. The proof relies on writing explicitely the matrix F′. This is lengthy but
not difficult. Note that the r−2 factor, where r is the isoradius of the initial lattice
T
r
0, comes from the A/R2

0 in the initial definition of D 8.77. �

If we look now at the limit r → 0, keeping ε fixed, denoting as in proposition14
frε:0(z) the face of Trε:0 which contains the point z, there is for a generic family
F = {Trε:0} no reason that the ratio R̄(frε:0(z)) = R(frε:0(z))/r and the coefficients
Ce(f

r
ε:0(z)) and C(frε:0(z)) converge towards fixed values R̄(z; ε), C(z; ε), Ce(z; ε) in

the scaling limit r → 0. Indeed, these quantities depend explicitely on the detailed
local geometrical structure of the lattices Tr0 in the neighborhood of the point z,
for each values of r. Only for some very specific sequences of Tr0, for instance
iterative isoradial refinements of the initial lattice for r = 1, can we expect strong
correlations leading to the existence of a r → 0 limit for theses quantities. We can
therefore state:

Proposition 19. Under the hypothesis of Prop. 18 the matrix F′(ε;F )/r2 has
generically no local scaling limit for ε finite when r → 0.

(8.80) lim
r→0

[F′(ε;F )] (frε:0(z))/r
2 does not exist

Of course one must have z ∈ Ω = supp(F ), since othewise this limit exists and is
zero. The same is obviously true for the non existence of the r → 0 limit of the
bilocal term at finite ε1, ε2
(8.81) lim

r→0
Tr
[
D′(ε1) · D−1

cr · D′(ε2) · D−1
cr

]
does not exist

Therefore, the existence of a scaling limit for D could make sense in a much more
limited setting than for ∆. Remember that we want to compare (i) the limit ε→ 0,
which, for D′ as well as for ∆′, has the effect of keeping only the terms linear in
∇F , ∇F and their c.c.; (ii) the scaling limit r → 0; which allows to replace the
discrete derivatives ∇, ∇ by continuous derivatives ∂ and ∂̄, and in particular 8.71.
In fact the best result we obtain so far is as follows.

Proposition 20. Let F be a deformation function, F = {Tr0 : r ∈ (0, 1]} a family
of critical triangulations labelled by their isoradius r, and ε′b defined by 8.57. We
consider the “simultaneous limit" where

(8.82) r → 0 , εa = ε(r) = r ca with 0 ≤ ca ≤ ε′b for a = 1, 2

Then the bilocal term of 8.81 converges uniformly towards its continuum limit given
in Th. 3.

lim
r→0

ε1/r=c1

ε2/r=c2

Tr
[
D′(ε1) · D−1

cr · D′(ε2) · D−1
cr

]
=

1

π2

ˆ
Ω1

d2z1

ˆ
Ω2

d2z2

(
∂̄F1(z1) ∂̄F2(z2)

(z1 − z2)4
+
∂F̄(z1) ∂F̄2(z2)

(z̄1 − z̄2)4

)(8.83)
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9. Discussion and Perspectives

9.1. The aim of the study.
Firstly, let us remind the purpose of this work: study some of the properties of the
measure over triangulations of the plane introduced in [DE14], in view of a better
understanding of the relations between this discrete model of random geometry on
the plane, and the continuum models of random geometries on the plane given by
Conformal Field Theories (CFT), in particular the Quantum Liouville Theory. The
model is defined as an integral over the space of all Delaunay triangulations of the
plane. This paper is devoted to a particular and somehow limited study. We do not
study as a whole the global properties of this integral, and of the associated measure.
We rather study the measure in the neighborhood of very specific (subspace of)
triangulations, namely isoradial triangulations. Our motivation is twofold : (i)
isoradial triangulations can be viewed as a discretization of flat geometry, so that
this should amount to some “semiclassical limit"; (ii) deforming the geometry is one
way to associate a stress-energy tensor to a statistical model, whose properties are
crucial for conformal theories.

The measure of the model is a Kähler mesure (in fact equivalent to the Weil-
Petersson measure) and its density can be written as the determinant of a Laplacian-
like Kähler operator D (defined on the Delaunay traingulations), with specific global
conformal invariance properties under PSL(2,C) transformations. In order to com-
pare our result with other case, we have studied in parallel the Kähler operator D,
the ordinary discrete Laplace-Beltrami operator ∆ (which is not PSL(2,C) invari-
ant), and a variation of the discrete ∆, that we introduce here, ∆, which shares
with D the global PSL(2,C) invariance property.

9.2. The first order variations and discretized CFT.

The Laplace-Beltrami operator ∆.
The calculation for the first order variation for the discretized Laplace-Beltrami ∆
is easy to discuss in the framework of discretized CFT on the lattice. We refer
to Appendix A for a reminder of the definitions and properties of CFT which are
needed in this discussion. Our result 6.4 in Prop. 7 is

(9.1) dε log det(∆) = −
∑
faces
f∈ Ĝ0+

4A(f)
(
∇F (f)Q(f) + c.c.

)

with

(9.2) Q(f) = [∇∆−1∇>]ff =
∑
u,v

∇fu∇fv [∆−1
cr ]uv

It reads as the discretized version of the first order variation of the partition function
under a diffeomorphism for a CFT (see A.10) given by

dε log(Z) =− 1

π

ˆ
d2x

(
∂F̄ (x) 〈T̄ (x)〉+ ∂̄F (x) 〈T (x)〉

)
the sum over faces being the discrete version of the integral over the plane, and the
discrete derivatives ∇F̄ and ∇F being the discrete versions of ∂F̄ and ∂̄F .

(9.3)
∑
f

A(f) ↔
ˆ
d2x , ∇F̄ ↔ ∂F̄ , ∇F ↔ ∂̄F
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The term Q(f) is given by the v.e.v. of the discretised stress-energy tensor T for
the discretized theory with Grassmann fields (Φ, Φ̄) attached to the vertices of the
triangulation Gcr, with discretized action S

(9.4) S[Φ, Φ̄] = Φ·∆Φ̄ =
∑

vertices
u,v∈Gcr

Φu∆uvΦ̄v

and discrete stress-energy tensor T
∆

attached to the faces (triangles) of the trian-
gulation Gcr

(9.5) T∆(f) = −4π∇Φ(f)∇Φ̄(f) = −4π
∑
u,v∈ f

∇fuΦu∇fvΦ̄v

through the relation

(9.6) 4πQ(f) = 〈T
∆

(f)〉

Note that this definition 9.5 for the discrete stress energy tensor follows directly
from 9.4 and the variation of the discrete Laplace-Beltrami operator ∆ given by
Prop. 5 and eq. 5.3.

The above discussion is valid regardless of whether we consider the variation of
the Laplace-Bletrami operator defined on an isoradial Delaunay graph Gcr or instead
on a general Delaunay graph G. Indeed, 9.5 follows from the general equation 5.3
for the variation of ∆ on generic triangulations. Note also that the absence of a
∇F+∇F̄ term in the variation of ∆ means Tr(T) = T zz̄ = T z̄z is zero, and that the
discrete Laplace-Beltrami operator ∆ has a discrete conformal invariance property.

The interesting result, relevant for the discussion here, is that for an isoradial
Delaunay graph Gcr the term Q(f), i.e. the v.e.v. of the discretized stress energy
tensor T , depends only on the local geometry of the graph, i.e. on the shape of the
triangle f, as stated in prop. 7. This is not true when G is not isoradial; in that
case, 〈T (f)〉 will depend on the full geometry of the lattice.

The Kähler operator D.
The first order variation for the Kähler operator D is given by 6.8 in Prop. 9. The
first term in 6.8 is the same as the first order variation for ∆ in 6.2, which is rewritten
in 9.1 as a sum over the triangles of the lattice involving the discrete derivatives
of the deformation ∇F and ∇F̄ . The second term in 6.8 involves the first order
variation dεR(f) of the circumradii R(f, ε) of a face, which can be obtained from
5.8 and 5.9. The final result is

(9.7) dε log det(D) = −
∑
faces
f∈Ĝ0+

((
4A(f)Q(f) +

1

2
C(f)

)
∇F (f) +

1

2
∇F (f) + c.c.

)

with the geometrical factor C(f) for a triangle f given by 5.5, while Q(f) is given
by 9.2, and corresponds to the v.e.v. of the discretized stress energy tensor T

∆
(f)

defined by 9.5 for the Laplace-Beltrami theory.
Like the Laplace-Beltrami theory, the variation 9.7 can be written in term of a

discretized stress energy tensor TD for a theory with discretized action

(9.8) SD[Φ, Φ̄] = Φ·DΦ̄
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dε log det(D) = tr
[
dεD · D−1

]
=− 1

π

∑
f

A(f)
(
∇F (f)〈TD(f)〉+∇F̄ (f)〈T̄D(f)〉

)
+

1

2

∑
f

A(f)
(
∇F (f) +∇F̄ (f)

)
〈tr TD(f)〉

(9.9)

where the components of the discretized stress energy-tensor are

TD = − 4π
1

R2

(
∇Φ∇Φ̄ + C∇Φ ∇Φ̄

)
T̄D = − 4π

1

R2

(
∇Φ∇Φ̄ + C̄∇Φ ∇Φ̄

)
tr TD = 8

1

R2

(
∇Φ∇Φ̄

)(9.10)

One should note the non zero (∇F +∇F̄ )/2 term in 9.7 and the non-vanishing of
the v.e.v. of the trace of a discrete stress energy tensor tr TD . This follows from
the fact that the length dimension of the matrix elements of D is length−2.

The definition 9.10 and the variation formula 9.9 remailn valid if we replace
the isoradial Delaunay graph Gcr by a generic Delaunay graph G. The additional
term C(f) in 9.10, which depends explicitely on the local geometry of the graph
in the neighborhood of the triangle f. This term cannot be written simply in the
continuum limit ` → ∞ in terms of continuous derivatives ∂ and ∂̄ of a “smooth”
complex Grassmann field Φ(x) in the flat continuum plane R2. This implies that
TD hase no direct interpretation in a continuum field theory setting, at variance
with T∆.

Again, the interesting explicit local form given in Prop. 9 and in Remark 31 are
only valid for the variation of an isoradial Delaunay graph Gcr.

The conformal Laplacian ∆.
The result given by Prop. 8 for ∆ admits a similar interpretation. Again the absence
of a ∇F + ∇̄F̄ term signals the conformal invariance of ∆, which in this case is
ensured from start, before one takes the scaling limit. The first order variation can
still be written as a sum over triangles, of the form

(9.11) dε log det(∆) = −
∑
faces
f∈Ĝ0+

4A(f)
(
∇F (f)Q

conf
(f) + c.c.

)

but now the local face term Q
conf

(f) differs from Q(f) when one or several of the
edges of the triangle f are chords, owing to the additional terms in 6.5. More
precisely, the contribution for a chord can be separated into equal contributions for
its adjacent “north” and “south” triangles, so that one writes

(9.12) A(f)Q
conf

(f) = A(f)Q(f) +H
anom.

(f)

with the anomalous term Hanom.(f) for a (counter-clockwise oriented) face f ex-
pressed as a sum over its (oriented) edges ~e which are chords

(9.13) Hanom.(f) :=
∑

chords
~e∈ ∂f

H(~e, f) with H(~e, f) :=
1

8πi
θn(~e ) cot θn(~e ) En(~e )
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and where En(~e ) is defined in 5.14. These explicit results are valid when deforming
an isoradial Delaunay graph Gcr.

Again for the deformation of a generic triangulation Gcr, the variation 9.11 can
be written in term of a discretized stress-energy tensor T∆ a theory for a Grassmann
field (Φ, Φ̄) with action S

conf
= Φ·∆Φ̄

dε log det(∆) =− 1

π

∑
f

A(f)
(
∇F (f)〈T∆(f)〉+∇F̄ (f)〈T̄∆(f)〉

)
+

1

2

∑
f

A(f)
(
∇F (f) +∇F̄ (f)

)
〈tr(T∆(f))〉

(9.14)

One has generically tr(T∆) = 0 (conformal invariance). The discretized analytic
and anti-analytic components T∆ and T̄∆ can be written explicitely, using Section
5.1 and in particular 5.13 in Remark 23. We get a generic form for T∆ involving all
possible binomials of discrete derivatives of the fields

(9.15) T∆ = A∇Φ∇Φ̄ + B∇Φ∇Φ̄ + C∇Φ∇Φ̄ + D∇Φ∇Φ̄

The coefficients A(f), B(f), C(f), D(f) for a given face (triangle) f of the triangu-
lation Ĝ0+ turn out to depend not only of the geometry of the triangle f, but of
its three neighbours f′, f′′ and f′′′, since they depend explicitely of the conformal
angles θ(e) of the three edges e′, e′′ and e′′′ of f. See Fig. 27. So the discrete
stress energy tensor T∆ is still local in the fields (Φ, Φ̄) than T

∆
, but is less local in

the geometry of the lattice, and less analytic, since T∆ does not involves only the
term ∇Φ∇Φ̄ which a simple A(f), as for T

∆
. From the general discussion of Sec-

tion 5.1, the anomalous terms will always be present in a discretized T∆ as soon as
we consider the deformation of a generic non-critical (non-isoradial) triangulation
Gcr. This will have important effect when discussing the second order variation,
owing to Appendix C.

Figure 27. A face f (triangle) and its neighbours
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9.3. The second order variations and discretized CFT.
We now discuss along the same line our result for the second order variation and
its scaling limit.

The Laplace-Beltrami operator ∆. Here we consider the Beltrami-Laplace operator
of the Delaunay graph Gε obtained through a bi-local deformation zε(v) := zcr(v)+
ε1F1(v) + ε2F2(v) of the critical embedding of an isoradial Delaunay graph Gcr.
The ε1ε2 cross-term of log det ∆ can be calculated exactly using Proposition 5.3
and expressed using the limit graph G0+ and any weak Delaunay triangulation Ĝ0+

which completes it. This gives

(9.16)
dε1dε2 log det ∆

= − tr
[
dε1∆ ·∆−1

cr · dε2∆ ·∆−1
cr

]

= −64 tr

[
Re
[
∇>(∇F̄1)A∇

]
·∆−1

cr ·Re
[
∇>(∇F̄2)A∇

]
·∆−1

cr

]

=



−
∑

triangles
x1,x2 ∈ Ĝ0+

32A(x1)A(x2)Re

[
∇F1(x1)∇F2(x2)

[
∇∆−1

cr ∇>
]2
x1x2

]

+

−
∑

triangles
x1,x2 ∈ Ĝ0+

32A(x1)A(x2)Re

[
∇F1(x1)∇F̄2(x2)

[
∇∆−1

cr ∇
>]2

x1x2

]

Using formula 9.5 for the discrete stress-energy tensor T∆ and applying Wick’s
theorem we can express the two-point v.e.v.’s

(9.17)

1

32π2

〈
T∆(x1)T∆(x2)

〉
conn.

=
[
∇∆−1

cr ∇>
]2
x1x2

1

32π2

〈
T∆(x1)T∆(x2)

〉
conn.

=
[
∇∆−1

cr ∇
>]2

x1x2

and the c.c. So far we do not require the initial graph to be isoradial: We may
in fact replace the critical graph Gcr with any Delaunay graph G0 equipped with
its corresponding Beltrami-Laplace operator ∆0 and Green’s function ∆−1

0 and the
variational formula 9.16 and double correlator identity 9.17 remain valid. If, how-
ever, we incorporate a scaling parameter ` > 0 and consider the bi-local smoothly
deformed embedding zε;`(v) := zcr(v) + ε1`F1;`(v) + ε2`F2;`(v) then the isoradial
property (as manifest in the asymptotic expansion 1.19 for the critical Green’s func-
tion ∆−1

cr ) is sufficient to establish the convergence of the scaling limit of formula
9.16 which is consistent the OPE of the CFT with the expected central charge
c = −2, namely

(9.18) lim
`→∞

dε1dε2 log det ∆ =
c

π2

¨
Ω1×Ω2

dx2
1 dx

2
2 Re

[
∂̄F1(x1) ∂̄F2(x2)

(x1 − x2)4

]



100 FRANÇOIS DAVID AND JEANNE SCOTT

As we have seen ∇∆−1
0 ∇> and ∇∆−1

0 ∇
>

(and their complex conjugates) must
decay in accordance with Lemma 12 in order for 9.18 to hold. Our result is of course
not surprising, and should be viewed as a check of the validity of our approach.

The Kähler operator D. Prop. 11 and its scaling limit given in Section 7.3 are the
news and interesting results of the paper. They states that the scaling limit of the
bilocal second order variation for tr[logD] is similar to the one for ∆.

(9.19) − 1

π2

¨
Ω1×Ω2

dx1 dx2

(
∂̄F1(x1) ∂̄F2(x2)

(x1 − x2)4
+
∂F̄1(x1) ∂F̄2(x2)

(x̄1 − x̄2)4

)
This is interesting for two reasons.

The D operator has a different form and even a different scaling dimension
than ∆. Its variation 5.4 and the associated stress-energy tensor 9.10 are different.
However the second order variation has exactly the same OPE form than the variatio
for for ∆, and it corresponds to a CFT with the same central charge

c = −2 .

This value for the central charge is in our opinion somehow unexpected, and this
is interesting per se. Indeed it was suggesetd by one of us (F.D.) in the original
paper [DE14] that the measure over triangulations given by det(D) (later shown in
[CDE19] to coincide with the Weil-Petersson metric over marked complex curve),
had a direct relation with the gauge fixing Fadeev-Popov determinant in two di-
mensional quantum gravity. If true, it should be related to the so called b-c ghosts
system in Polyakov’s formulation as Liouville theory of 2D gravity and non-critical
strings (see [Fri84]). Then one could have expected a different value for the central
charge, since the central charge for the b-c system is c = −26, and the central charge
for the corresponding Liouville quantum gravity (at Q = 5/

√
6 i.e. γ =

√
8/3) is

c = 26.

The conformal laplacian ∆.
For the conformal Laplacian operator ∆, we do not have such a simple result,

and the corresponding OPE cannot be interpreted as coming from a CFT. There
are additional contributions that comes from the chords, which have been studied
in section 6.3, and are the chord-chord term given by 6.58 and the chord-edge term
given by 6.59. The later chord-edge term has the expected harmonic form (depend-
ing only on (x−x′)−4 and its c.c.), but with a local geometry dependent coefficient
involving both ∇F1∇F2 and ∇F̄1∇F2 terms. The chord-chord term is even more
involved and contains a non-harmonic term, proportional to |x−x′|−4, with a more
complicated geometrical dependence in the geometry of the faces and the chords.
In Appendix C we give an explicit example of a critical lattice with a finite density
of chords where these addditional “anomalous” terms give a macroscopic anoma-
lous contribution to the second order variation, which precludes an interpretation
in terms of conformal field theory in the scaling limit. Of course this comes from
the anomalous terms in the expression of the discretized stress-energy tensor Tconf

(of general schematic form given in 9.15), which does not have a simple universal
field theoretical interpretation in the scaling limit. This is also a new - although
somehow negative - result.
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9.4. Relations and differences with other discrete models.
The operators that we study here are defined on planar isoradial Delaunay graphs.
Isoradial graph embeddings play a very important role in the study of two dimen-
sional models of statistical mechanics in theoretical physics and in mathematics.
In particular they are an essential tool in the proof of the conformal invariance of
the Ising model at its critical point, and in the study of the conformal invariance of
other critical models. They are very important in our study too, since they afford
control of the large distance properties of the respective Greens functions.

However, we stress that there is an important difference in term of perspective.
In studies of critical statistical models on such graphs, the underlying graph is fixed
and the proofs of the existence of a scaling limit and of its conformal invariance are
undertaken for a fixed lattice. The random triangulation model of [DE14] is a statis-
tical model of planar graphs, rather than on a planar graph. The planar isoradial
graphs that we consider here are just some special “semi-classical” configurations,
which minimize a “local curvature functional”, as discussed in the introduction in
1.2.

There are nevertheless relations between our work and some recent works, espe-
cially in regard to defining a notion of a discrete stress-energy tensor. Let us briefly
discuss two of them.

Discrete stress-energy tensor in the loop model of Chelkak et al. In [CGS18] Chelkak,
Glazman and Smirnov study the famous critical O(n) loop model [DMNS81] [Nie87]
[Kos89] on abstract discrete surfaces with boundaries (denotes Gδ) made by gluing
together equilateral triangles4 and rhombs ♦(θ) of unit length δ where each rhomb
has an independent acute angle θ selected in the range 0 < θ ≤ π

2 . See Fig. 28. The
surface has in general conical singularities at all of its vertices. In general a discrete
surface may admit more than one tessellation into triangles and rhombs if some ver-
tices are flat (no conical defect). Two tessellations are equivalent (i.e. they describe
the same surface) if one can be transformed into the other by applying a sequence
of the following three kinds of local operations: (i) Yang-Baxter transformations
which flips a flat hexagon made up of three rhombs sharing a common vertex, (ii)
pentagonal transformations which interchange a triangle and a rhomb which form
a flat pentagon with a triangle and two rhombs, (iii) split transformations which
dissect a rhomb ♦(π3 ) into a pair of equilateral triangles sharing a common edge.
See Fig. 29.

θθθθθ

Figure 28. The triangles and rhombs of [CGS18]

The states of the O(n) loop model for a tessellated surface Gδ are configurations
γ consisting of non-crossing loops and strands (joining boundary components, if
present) drawn on the surface Gδ which can be obtained by concatenating local
arrangements of arcs, one for each triangle and rhomb in Gδ. A local weight wγ(f)
is associated to each face f of Gδ which depends on the configuration of the loops
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←→ , ←→

←→

Figure 29. Yang-Baxter, pentagonal and split moves of [CGS18];
white vertices # have to be flat (no conical singularity)

on f, the geometry of the face (hence of angle θ if f = ♦(θ) is a rhomb), and on a
parameter s (related to the temperature). A factor n (loop fugacity) is associated
to each closed loop. The local weight wγ(f) (that we do not discuss here) are taken
to have a very specific form in order to satisfy the Yang-Baxter and Pentagonal
relations ensuring that the model is the same for equivalent tessellations of the
surface.

The partition function Zb(Gδ) for the O(n) loop model on a fixed surface Gδ
equipped with a boundary condition b (specifying which boundary edges are joined
by arcs), is given by the sum over states (loops+arcs configurations γ) by

(9.20) Zb(Gδ) :=
∑

b-configurations γ

n#loops(γ)
∏
faces
f∈Gδ

wγ(f)

In addition, when the specific relation between n (the loop fugacity) and s (the
temperature parameter)

n = − cos(4π s/3)

holds, then the loop model is critical.
In [CGS18] Chelkak et al. consider a planar version without conical defects

where all rhombs have angle θ = π
3 , and such that the discrete surface Gδ is a

compact, connected domain Ω of the triangular lattice. In this planar case, they
define a discrete stress-energy tensor as the response of the model to an infinitesimal
ε-deformation of the original planar surface into a non-planar surface with conical
defects. More precisely, two deformations are considered: (i) replacing two adjacent
equilateral triangles (forming a rhomb ♦(π/3)) by a rhomb ♦(θ) with angle θ =
π
3 + ε, (ii) replacing two aligned edges by a “almost flat” rhomb ♦(ε) (see Fig. 30).
The variation of the logarithm of the partition function under such ε-deformations
defines the e.v. of discrete stress-energy tensor Te|m associated to edges e or to
midlines m (of the honeycomb lattice built from the original triangular lattice),
and out of these related real objects, a discrete complex stress-energy tensor T
can be associated to the vertices and the faces of the lattice (with relations). In
[CGS18] it is conjectured that this object is approximately discrete-holomorphic
and converges to the stress-energy tensor of the corresponding CFT in the scaling
limit.
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−→

−→

Figure 30. The ε-deformations of rhombs in [CGS18]

Similarities and differences. There are similarities but also important differences
with the approach and results of our study. The discrete conformal Laplacian
∆ defined in 1.8 is also defined with respect to a rhombic tessellated surface S♦

G

naturally associated to a Delaunay graph G in the plane (see Sect. 2.1 and especially
Def. 13). However S♦

G
is constructed only out of rhombs ♦(e) associated to edges

e of G, and contains no equilateral triangles. Morover, the rhombic surface S♦
G

is bipartite: whose black and white vertices correspond to vertices and faces of G
respectively. Finally, and most importantly, the black vertices of S♦

G
must be flat

(they do not carry a conical singularity), while the white vertices carry in general
a conical singularity (corresponding to a non-zero Ricci curvature given by 2.3),
see Fig. 31. Thus our model considers only a subspace of the space of tessellated

flat

curvature

Figure 31. The rhombs which build the tessellated surface S♦
G
in

this paper

surfaces of [CGS18].
Like [CGS18], the stress-energy tensor in our study is defined in terms of defor-

mations. However an important difference is that we consider deformations of S♦
G

which are induced from deformations of the underlying Delaunay graph G in the
plane. This space of deformations differs from those considered in [CGS18] in two
respects. First, our deformations preserve the flatness of the black vertices of S♦

G
.

Second, and this is essential, our discrete stress-energy tensor has a specific invari-
ance properties under global continuous analytic transformations of the plane, i.e.
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Moebius transformations. This holds a priori, independent of the specific geometry
of the Delaunay graph G.

In [CGS18] as well as in other studies, the framework is different. One looks for a
discrete stress energy tensor on an isoradial critical graph G which has some specific
invariance properties under the discrete analytic and anti-analytic transformations
of G. Discrete analyticity is a very special and powerful property, but it depends
explicitly on the critical graph considered. It is only in the scaling limit that discrete
analyticity can be shown to “converge” (this is a crude presentation of beautiful and
precise results) towards the usual analyticity in the continuum (i.e. in the complex
plane C).

Another difference is that our deformation setting include deformations of “flat
rhombs” (corresponding to chords) which are not deformations of aligned edges, as
the deformations considered in [CGS18] and depicted in Fig. 30. These deforma-
tions induce the appearance of the “curvature dipoles” discussed in Sect. 6.4, which
complicate the analysis of the deformations of ∆.

The overlap between our work and the results of [CGS18] is restricted to the
case of the ∆ operator, which is related to the GFF. Strictly speaking the authors
of [CGS18] consider the critical O(n) loop model for n ∈ [−2, 2], but it is known
that the GFF can be related to the n = 2 model, and that there is some relation
between the Laplace-Beltrami operator on a graph and the n = −2 model.

On the other hand, the Laplace-Beltrami operator ∆ and the Kähler operator D,
which we would like to study on general Delaunay graph G, are not defined in term
of the abstract rhombic surface S♦

G
. We do not know how to relate precisely, and

in general, their corresponding discrete stress-energy tensors to the construction of
a stress-energy tensor of [CGS18].

Stress-energy tensor constructions through lattice representations of Virasoro alge-
bra. In an approach taken by Hongler et. al. in [HKV19], a stress-energy tensor for
some lattice models is defined implicitly by identifying its modes through an action
of the Virasora algebra on an appropriately defined vector space F := Floc/Fnull of
lattice local fields (modulo null fields) supported on the graph. This construction
avoids interpreting the stress-energy tensor as a response to a deformation of the
graph embedding. Instead an intermediate action of the Heisenberg algebra is in-
troduced using a discrete holomorphic current along with a technique of discrete
contour integration and a notion of discrete half-integer power functions. Only
the special cases of the discrete GFF and of the Ising model on the square lattice
G = Z2

δ with mesh size δ are handled in [HKV19]. However, we expect that most
of their technology (e.g. the notions of medial and corner graphs, discrete power
functions, and discrete contour integration) is readily adaptable to arbitrary isora-
dial graphs (and their rhombic graphs where the theory of discrete holomorphicity
is well-behaved). The space of lattice local fields Floc of [HKV19] depends on the
translation properties of G = Z2

δ . Specifically Floc consists of fields which can be
constructed as polynomial expressions of elementary fields φδ(z) together with their
translates φδ(z + xδ) for x in some fixed, finite set V ⊂ Z2 of admissible displace-
ments. For a general isoradial graph one would need to specify an adequate vector
space of lattice local fields Floc on which a representation of the Virasora algebra
could be supported. Bearing this, it would be natural to examine whether the
stress-energy tensor(s) for the operator(s) considered in our paper can be realized
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by such putative Virasora algebra action(s). For older references of representations
of Virasoro algebra in lattice models, see the references in [HKV19].

9.5. Open questions and possible extensions.

1: We would like to reiterate the problem of settling Conjecture 1 of Sect. 8.6, or
in lieu of that finding another adequate bound on R(f)

−1∇p3(f) uniform in the
faces f of T(r)

0 and the scaling parameter ` (or r = 1/`), in order do complete the
proof of props. 16 and 17 as well as 20.

2: Instead of using an isoradial Delaunay graph, we could instead begin with a
Delaunay graph which is “smoothly non-isoradial”, in the sense that the circumradii
of the faces R(f) vary slowly with the position of the faces in the plane. Studying
the Laplace-like operators ∆, ∆ and D and their deformations on such a graph
is an interesting problem which might entail finding asymptotic expansions of the
corresponding Green functions.

3: The properties that make an general isoradial graph G so useful as a starting
point in our analysis are a reflection of the underlying notion of discrete analyticity
supported on the lozenge graph G♦. Chelkak, Smirnov and others [Che18] have
introduced the concept of s-holomorphicity and s-embeddings of graphs, and one
can try to develop a theory of deformations for such graphs and their associated
operators.

4: In the scaling limit, random planar graphs are known to be related to Liouville
conformal field theory. Finding a notion of discrete Liouville local field, with good
properties in the scaling limit, for the model of random Delaunay triangulations
is still an open problem. A solution could lead to an alternative discrete stress
energy tensor on a Delaunay graph, different from the one considered here, and
with different properties under geometrical deformations of the graphs; in particular
having a discrete central charge different from c = −2 (possibly c = −26).

5: It should be also interesting to study the existence and description of a stress
energy tensor for other discrete models on Delaunay graphs, such as Dirac Fermions,
the Ising model, the O(N) model, etc. using the approach of our work. It would be
fruitful to compare the results with the approaches taken in [HKV19] and [CGS18]
(see section 9.4).
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Appendix A. Reminders: the stress-energy tensor in QFT and the
central charge in 2D CFT

A.1. The stress-energy tensor. For completeness, we recall some textbook ma-
terial of QFT and CFT, which can be found for instance in [DFMS97]. A cen-
tral concept in field theory is the stress-energy tensor T = (Tµν) (also denoted
the energy-momentum tensor in the literature). Firstly, T can be viewed (in flat
space) as the conserved current Jν = (T ν

µ ) associated to space-time translation in-
variance, and is defined through Noether’s theorem by the action of an infinitesimal
local change of coordinates

(A.1) xν → xν + ξν(x)

on the action S (classical or quantum) of the theory. Secondly T can be viewed (in
a general curved space) as the “response of the theory” to an infinitesimal variation
of the classical “background metric” g = (gµν)

(A.2) gµν → gµν + δgµν

of the space-timeM where the theory “lives”. More precisely T is defined classically
by the functional derivative of the action S

(A.3) Tµν(x) = − 2√
g(x)

δS
δgµν(x)

For a quantum theory (i.e. a local QFT), T is now a quantum operator. Its
vacuum expectation value (the vacuum-vacuum matrix element) is given by the
first order variation of the logarithm of the partition function Z of the QFT under
an infinitesimal variation of the metric δgµν

(A.4) δ logZ =
1

2

ˆ
M
dx
√
g(x) δgµν(x) 〈Tµν(x)〉 + · · ·

Similarily the first order variation of the vacuum expectation of an observable O,
for instance a product of local operators O1(x1) · · · On(xn), gives by the connected
correlator of T times O

(A.5) δ〈O〉 =
1

2

ˆ
M
dx
√
g(x) δgµν

(
〈Tµν(x)O〉conn. + contact terms

)
+ · · ·

where the so-called “contact terms” are present in A.5 when the position x of T
coincides with that of some local operators in O.

These two definitions of the stress-energy tensor T are closely related, and in fact
equivalent (with the proper definitions of T), since a diffeomorphism A.1 induces a
change of metric

(A.6) δgµν = Dµξν +Dνξµ

with Dµ the covariant derivative and ξν = gνρξ
ρ.

These definitions extend to higher order terms in the expansion in the infinites-
imal variation δgµν , which give expectation values of products of T (correlators).
For instance the second order term in the variation of logZ gives the two point
correlator
(A.7)

− 1

8

ˆ
M
dx
√
g(x) δgµν(x)

ˆ
M
dy
√
g(y) δgρσ(y) 〈Tµν(x)T ρσ(y)〉conn. + contact terms

and so on.
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A.2. The stress-energy tensor in two dimensional CFT. In two dimensions,
it is standard to work in complex coordinates z = x1 + ix2, z̄ = x1 − ix2, so that
the flat metric is

gzz = gz̄z̄ = 0 , gzz̄ = gz̄z = 1/2 .

An infinitesimal diffeomorphism z 7→ z + ε F (z, z̄) thus amounts to a variation of
the metric

(A.8) δgzz = ε ∂F̄ , δgz̄z̄ = ε ∂̄F , δgzz̄ = δgz̄z = ε (∂F + ∂̄F̄ )/2

For QFT’s in two dimension (in particular for CFT’s), especially important are
the holomorphic and antiholomorphic components of the stress energy tensor T,
which are denoted T and T̄ in the litterature (see e.g. [DFMS97]). In the flat
metric they are

(A.9) T = −π
2
T z̄z̄ = −2π Tzz , T̄ = −π

2
T zz = −2π Tz̄z̄

The variation of logZ A.4 reads

δ log(Z) =− ε

π

ˆ
d2x

(
∂F̄ (x) 〈T̄ (x)〉+ ∂̄F (x) 〈T (x)〉

)
+
ε

2

ˆ
d2x

(
∂F (x) + ∂̄F̄ (x)

)
〈tr T(x)〉 + · · ·

(A.10)

where tr T = Tµµ = Tµνgνµ = T zz̄ = T z̄z.
Conformal invariance in 2D implies that T zz̄ = T z̄z = tr T = 0 identically

vanishes. For a quantum theory (a CFT) this requires a proper definition of the
renormalized stress energy-tensor, and this identity is valid up to very specific
contact terms. The law of conservation for the current ∂µTµν = 0 reduces to ∂̄T =
0, ∂T̄ = 0, hence the terminology holomorphic and antiholomorphic components.
This is valid for a CFT in a flat metric.

For a 2D CFT defined one a general surface with a non flat metric g, one can
still use conformal coordinates where the metric reads ds2 = ρ(z, z̄) dzdz̄, so that
the analyticity property of T and T̄ are preserved. ρ is the conformal factor of the
metric. A most important property is that the trace of the stress-energy tensor
does not vanish anymore. Its expectation value is given by the trace anomaly

(A.11) 〈tr T(x)〉 = gµν(x)〈Tµν(x)〉 =
c

24π
Rscal(x)

where Rscal(x) is the local scalar curvature of the metric, with c the central charge
of the theory. The trace anomaly is a quantum effect, caused by short distance
quantum fluctuations and renormalization effects. See e.g. [Fri84] for a derivation.

Finally, another very important feature of 2D CFT is the short distance operator
product expansion (OPE) for the stress energy tensor, which takes the form

(A.12) T (z)T (z′) =
c

2

1

(z − z′)4
+ subdominant terms

with again c the central charge of the considered CFT. A.11 and A.12 are of course
not unrelated.

For a discrete statistical model, corresponding to a lattice regularized QFT,
conformal invariance is expected only at a critical point and in the large distance
scaling limit ( a famous example is the Ising model). The scaling limit of the model
corresponds to a CFT. The discretized stress-energy tensor Treg. can be defined, but
it contains in general short distance UV divergent terms, proportional to negatives
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powers and logarithms of the short distance regulator a (the lattice mesh) or powers
the high momentum/energy cut-off Λ ∼ 1/a. By dimensional analysis

(A.13) Treg. ∝ Λ2 ∼ a−2

The definition of the continuum limit a → 0 (Λ → ∞) requires a renormalization
prescription in order to define a renormalized stress-energy tensor T with the correct
properties for conformal invariance (OPE, trace anomaly).

A.3. The two dimensional boson and the ∆ theory. Finally we recall that our
results for the Laplace-Beltrami operator ∆ can be interpreted in the framework
of the standard free boson CFT with central charge c = 1. Indeed, classically,
the action Sboson and the stress energy tensor for the free boson are (on a closed
Riemannian manifold)

(A.14) Sboson[φ] =
1

2

ˆ
M
d2x
√
g ∂µφ g

µν ∂νφ =
1

2

ˆ
M

d2x
√
g φ(x)∆gφ(x),

with stress-energy tensor

(A.15) Tµν =
(
− 1

2
gµνgρσ + gρµgσν

)
∂ρφ∂σφ

In two dimensional flat space, using complex coordinates, ∆g = −4 ∂∂̄. The action
and the components of the stress-energy tensor are

(A.16) Sboson[φ] = 2

ˆ
d2x ∂φ ∂̄φ

(A.17) T = −2π(∂φ)2 , T̄ = −2π(∂̄φ)2 , tr T = T zz̄ = T z̄z = 0

The last identity shows that 2d free boson is indeed conformally invariant. The
partition function for the boson is related to the determinant of ∆g by the functional
integral

(A.18) Zboson =

ˆ
D[φ] e−S[φ] = det(∆g)

−1/2

with “ det ” the properly defined functional determinant (taking into account the
normalization problems and the treatement of the zero mode).

Formally det(∆g) = Z−2
boson is the partition function of the “n =−2 components”

free boson CFT, with c = −2. Equivalently, a standard trick is to write det(∆g) as
the partition function of a theory for a scalar complex Grassmann field (a spin zero
field obeying Fermi-Dirac statistics) described by a pair of conjugate Grassmann
(anti-commuting) fields (Φ, Φ̄), where the Φ(x)’s and Φ̄(x)’s are the generators of
an infinite dimensional Grassmann (or exterior) algebra. The partition function Z∆

is given by the Berezin functional integral (see e.g. [DFMS97], [DEF+99] and more
seriously [Ber66]) written (using the Berezin integration rules)

(A.19) Z∆ = det ∆g =

ˆ
D[Φ,Φ̄] e−S[Φ,Φ̄] , D[Φ,Φ̄] =

∏
x

dΦ(x)dΦ̄(x)

with the action S∆ (here a degree 2 element of the Grassmann algebra) which is
simply the Grassmann version of the action for a complex bosonic scalar field

(A.20) S∆[Φ, Φ̄] = 4

ˆ
d2x ∂Φ ∂̄Φ̄ =

ˆ
d2x Φ·∆gΦ̄
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Of course, unlike the bosonic case, the Berezin functional integral cannot be thought
in term of probabilistic averages over random real or complex fields “living” on a
space-time manifold, but as an algebraic construction. In the fermionic theory, the
two point functions (the propagator) are (note the anti-commutivity)

(A.21) 〈Φ̄(x)Φ(y)〉 = −〈Φ(x)Φ̄(y)〉 =
[
∆−1
g

]
xy
, 〈Φ(x)Φ(y)〉 = 〈Φ̄(x)Φ̄(y)〉 = 0

The stress energy-tensor components are

(A.22) T
∆

= −4π ∂Φ ∂Φ̄ , T̄
∆

= −4π ∂̄Φ ∂̄Φ̄ , tr T
∆

= 0

As explained in the discussion section 9, our results for the variations of the dis-
cretized laplacians ∆, ∆ and the Kähler operator D (defined on a triangulation T)
can be easily formulated in term of discretized stress-energy tensors attached to the
faces of T. However, only for the Laplace-Beltrami operator ∆ can the discretized
stress energy tensor be given a simple continuum limit formulation as the stress
energy tensor of a continuum QFT.
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Appendix B. Proof of Lemma 2

Proof. For j = 2, 3 introduce interpolations zj(t) := tzj + (1− t)z1 between zj and
z1. In addition set z(s, t) := sz3(t) + (1− s)z2(t). We start from the definition of ∇

(B.1) ∇φ(f) =

[
φ(z2)− φ(z1)

][
z3 − z1

]
−
[
φ(z3)− φ(z1)

][
z2 − z1

]
−4iA(f)

where by formula 3.6 we have for the area of the triangle f

(B.2) 4A(f) = |z1 − z2| |z2 − z3| |z3 − z1| /R(f)

The numerator can be expressed by
(B.3) [

φ(z2)− φ(z1)
][
z3 − z1

]
−
[
φ(z3)− φ(z1)

][
z2 − z1

]
=

ˆ 1

0

dt
d

dt

[
φ
(
z2(t)

)[
z3 − z1

]
− φ

(
z3(t)

)[
z2 − z2

]]

=



ˆ 1

0

dt

[[
z2 − z1

][
z3 − z1

]
∂φ
(
z2(t)

)
−
[
z3 − z1

][
z2 − z1

]
∂φ
(
z3(t)

)]
∗-integral

+ˆ 1

0

dt

[[
z2 − z1

][
z3 − z1

][
∂φ
(
z2(t)

)
− ∂φ

(
z3(t)

)]]
∗∗-integral

Apply the fundamental theorem of calculus once again, the ∗-integral in B.3 can be
expressed as a double integral
(B.4)

−
ˆ 1

0

ˆ 1

0

dt ds
d

ds

[
∂φ
(
z(s, t)

)(
s[z3 − z1]

[
z2 − z1

]
+ (1− s)[z2 − z1]

[
z3 − z1

])]

=



ˆ 1

0

ˆ 1

0

dt ds ∂φ
(
z(s, t)

) (
[z2 − z1]

[
z3 − z1

]
− [z3 − z1]

[
z2 − z1

])
︸ ︷︷ ︸

= −4iA(f)

+ˆ 1

0

ˆ 1

0

t dt ds ∂∂φ
(
z(s, t)

)
[z2 − z3]

(
s[z3 − z1]

[
z2 − z1

]
+ (1− s)[z2 − z1]

[
z3 − z1

])
+ˆ 1

0

ˆ 1

0

t dt ds ∂∂φ
(
z(s, t)

)[
z2 − z3

](
s[z3 − z1]

[
z2 − z1

]
+ (1− s)[z2 − z1]

[
z3 − z1

])
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Dividing the ∗-integral in B.3 by (−4ImA(f)) we obtain a first contribution to
∇φ(f), namely
(B.5)

ˆ 1

0

ˆ 1

0

dt ds ∂φ
(
z(s, t)

)
+

iR(f)

ˆ 1

0

ˆ 1

0

tdt ds ∂∂φ
(
z(s, t)

) z2 − z3

|z2 − z3|

(
s
z3 − z1

|z3 − z1|
z2 − z1

|z2 − z1|
+ (1− s) z2 − z1

|z2 − z1|
z3 − z1

|z3 − z1|

)
+

iR(f)

ˆ 1

0

ˆ 1

0

tdt ds ∂∂φ
(
z(s, t)

) z2 − z3

|z2 − z3|

(
s
z3 − z1

|z3 − z1|
z2 − z1

|z2 − z1|
+ (1− s) z2 − z1

|z2 − z1|
z3 − z1

|z3 − z1|

)
Again, by the fundamental theorem of calculus, we can transform the ∗∗-integral
B.3 and obtain
(B.6)ˆ 1

0

dt

([
z2 − z1

][
z3 − z1

][
∂φ
(
z2(t)

)
− ∂φ

(
z3(t)

)])

= −
[
z2 − z1

][
z3 − z1

] ˆ 1

0

ˆ 1

0

dt ds
d

ds

(
∂φ
(
z(s, t)

))

=
[
z2 − z1

][
z3 − z1

] ˆ 1

0

ˆ 1

0

t dt ds

(
[z2 − z3] ∂∂φ

(
z(s, t)

)
+ [z2 − z3] ∂∂φ

(
z(s, t)

))
Dividing the ∗∗-integral in B.3 by (−4ImA(f)) we obtain a second contribution to
∇φ(f), namely

(B.7)

iR(f)
z2 − z1

|z2 − z1|
z3 − z1

|z3 − z1|

ˆ 1

0

ˆ 1

0

t dt ds

(
z2 − z3

|z2 − z3|
∂∂φ

(
z(s, t)

)
+

z2 − z3

|z2 − z3|
∂∂φ

(
z(s, t)

))
So we end up with

∇φ(f)−
ˆ 1

0

ˆ 1

0

dt ds ∂φ
(
z(s, t)

)

=



iR(f)

ˆ 1

0

ˆ 1

0

t dt ds ∂∂φ
(
z(s, t)

) z2 − z3

|z2 − z3|

(
s
z3 − z1

|z3 − z1|
z2 − z1

|z2 − z1|
+ (1− s) z2 − z1

|z2 − z1|
z3 − z1

|z3 − z1|

)
+

iR(f)

ˆ 1

0

ˆ 1

0

t dt ds ∂∂φ
(
z(s, t)

) z2 − z3

|z2 − z3|

(
s
z3 − z1

|z3 − z1|
z2 − z1

|z2 − z1|
+ (1− s) z2 − z1

|z2 − z1|
z3 − z1

|z3 − z1|

)
+

iR(f)
z2 − z1

|z2 − z1|
z3 − z1

|z3 − z1|

ˆ 1

0

ˆ 1

0

t dt ds

(
z2 − z3

|z2 − z3|
∂∂φ

(
z(s, t)

)
+

z2 − z3

|z2 − z3|
∂∂φ

(
z(s, t)

))

(B.8)

Thus we can bound the norm of the r.h.s. of B.8 by

(B.9) R(f)

ˆ 1

0

ˆ 1

0

t dt ds
(
|∂∂φ(z(s, t)|+ 2|∂∂̄φ(z(s, t)|+ |∂̄∂̄φ(z(s, t)|

)
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Thus we have
(B.10)∣∣∣∣∇φ(f)−

ˆ 1

0

ˆ 1

0

dt ds ∂φ
(
z(s, t)

)∣∣∣∣ ≤ R(f)

(
1

2
sup
z∈f

∣∣∣∂∂φ(z)
∣∣∣+ sup

z∈f

∣∣∣∂∂φ(z)
∣∣∣+ 1

2
sup
z∈f

∣∣∣∂∂φ(z)
∣∣∣)

Finally we come to bound the difference between the ∂φ
(
z(s, t)

)
and ∂φ(zf) where

zf is the circumcenter of f. Again, by the fundamental theorem of calculus, defining

z(p, s, t) = p z(s, t) + (1− p)zf
we write

∂φ
(
z(s, t)

)
− ∂φ(zf) =

ˆ 1

0

dp
d

dp
∂φ
(
z(p, s, t)

)
=

ˆ 1

0

dp
(
(z(s, t)− zf)∂∂φ(z(p, s, t)) + (z̄(s, t)− z̄f)∂∂̄φ(z(p, s, t))

)(B.11)

Since z(s, t) is inside the triangle f, it is also in the disk Bf of radius R(f) with
center zf, hence |z(s, t)− zf| ≤ R(f) and we get the bound

(B.12) |∂φ
(
z(s, t)

)
− ∂φ(zf)| ≤ R(f)

(
sup
z∈Bf

∣∣∣∂∂φ(z)
∣∣∣ + sup

z∈Bf

∣∣∣∂∂φ(z)
∣∣∣)

which when averaged becomes

(B.13)∣∣∣∣∣
ˆ 1

0

ˆ 1

0

dt ds ∂φ
(
z(s, t)

)
− ∂φ(zf)

∣∣∣∣∣ ≤ R(f)

(
sup
z∈Bf

∣∣∣∂∂φ(z)
∣∣∣ + sup

z∈Bf

∣∣∣∂∂φ(z)
∣∣∣)

Combining the bounds B.10 and B.13 we get the final result of lemma 2

(B.14)
∣∣∣∇φ(f)− ∂φ(zf)

∣∣∣ ≤ R(f)

(
3

2
sup
z∈Bf

∣∣∂2φ
∣∣ + 2 sup

z∈Bf

∣∣∂∂φ∣∣ +
1

2
sup
z∈Bf

∣∣∂2
φ
∣∣)
�

Remark 32. For a general point w ∈ Bf we have |z(s, t) − w| ≤ 2R(f) and after
modifying our estimates by a factor of 2 we obtain

(B.15)
∣∣∣∇φ(f)− ∂φ(w)

∣∣∣ ≤ R(f)

(
5

2
sup
z∈Bf

∣∣∂2φ
∣∣ + 3 sup

z∈Bf

∣∣∂∂φ∣∣ +
1

2
sup
z∈Bf

∣∣∂2
φ
∣∣)
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Appendix C. Continuum Limits of Anomalies: Example arising from a
bi-periodic tiling of the plane using a single cyclic

quadrilateral

In this appendix we present an example of an isoradial Delaunay graph Gcr for
which the chord-to-chord Ach×ch and edge-to-chord Aed×ch anomalous terms of the
associated conformal Laplacian (as explained in formulae 6.58 and 6.59 of Section
6.3) have well-defined, non-trivial ` → ∞ scaling limits. Unlike the continuum
limits addressed in Corollary 1.18, the anomalous limit values computed in Claim 2
of this section reflect features of the underlying geometry of the initial critical graph
Gcr — specifically the choice of fundamental quadrilateral Q used to construct Gcr.

Begin with four angles α1 < α2 < α3 < α4 in the interval [0, 2π) and con-
struct the cyclic quadrilateral Q whose vertices are the unit complex numbers
zk := exp(iαk) with k ∈ {1, 2, 3, 4}. We will require that the origin is contained in
the interior of Q; achieved whenever α3−α1 > π or α4−α2 > π. This constraint is
to insure that the tiling we are about to construct is Delaunay. Let Qop denote the
quadrilateral obtained by rotating Q by 180 degrees. A cyclic quadrilateral with
associated angles α1 = π/3, α2 = 5π/7, α3 = 13π/9, and α4 = 21π/11 is illustrated
in Figure 32.

α1

α2

α3 α4÷/ I1-

\±⇐*-AIµ
Figure 32. Fundamental quadrilateral Q

Construct a doubly periodic, quadrilateral tiling Gcr of the plane using trans-
lations of Q and Qop. Clearly Gcr will be isoradial and Delaunay in the sense of
Section 2.1; by construction each face of Gcr is a cyclic quadrilateral. Figure 33
depicts such a tiling.

For each quadrilateral face q of Gcr let zq denote the complex coordinate of its
center; with respect to this center, the four vertices vq(k) of q, with k ∈ {1, 2, 3, 4},
have complex coordinates z(vq(k)) = zq ± zk where the sign is + if q is a translation
of Q and − if q is a translation of Qop. Let e+

q denote the chord of the quadrilateral
q joining vertices vq(2) and vq(4) while e−q will denote the chord joining vq(1) and
vq(3). Up to a sign, the corresponding north angles are given by ϑ+ := α2 − α4

and ϑ− := α1 − α3 respectively. Define z+ := z2 − z4 and z− := z1 − z3. Let AQ
denote the area of Q.

Let F (z) be a smooth complex-valued function with compact support together
with deformation and scaling parameter values ε > 0 and ` > 0. Let Tε,` denote
graph obtained by deforming the embedding of Gcr by the perturbation z 7→ z +
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Figure 33. Fragment of a tiling Gcr by a cyclic quadrilateral q

ε `F (z/`) and by adjoining the edge e+
q or e−q to each quadrilateral face q of Gcr

according to whether θε,`(e+
q ) > 0 or θε,`(e−q ) > 0; these conditions are mutually

exclusive, as the signs of θε,`(e+
q ) and θε,`(e−q ) are opposite. Neither edge is selected

if both conformal angles are zero. As long as ε > 0 lies within the range 0 < ε < εF
as prescribed by Claim ?? the graph Gε,` will remain Delaunay.

As an example consider the following "mollified" shear of Gcr. For simplicity we
consider the case where the support of F has one connected component (in partic-
ular, it is a disk D with unit radius):

F (z) :=


exp

(
iφ +

|z|2

|z|2 − 1

)
Im[z] if |z| ≤ 1

0 otherwise

Figure 34 depicts the effect of of the corresponding deformation z 7→ z + ε`F (z/`).
The reader will notice that the support of F(`) : z 7→ `F (z/`) is partitioned roughly
into three "unidirectional" zones consisting of deformed quadrilaterals whose diag-
onals share the same alignment. In general, for any smooth compactly supported
perturbation z 7→ z + ε `F (z/`), the support of F` will be partitioned into such
zones of constant alignment. If we ignore the quadrilaterals q for which θ′0,`(e

+
q )

vanishes then the remaining set of quadrilaterals can be partitioned into zones over
which the sign of θ′0,`(e

+
q ) is constant. For ` >> 0 large, the interfaces between

these zones approximate the level curves of Im
[
∂F(`) E

]
= 0 within the disk D` of

radius ` where
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E := e12 − e23 + e34 − e14 and emn :=
zm − zn
zm − zn

for m,n ∈ {1, 2, 3, 4}.

This convergence is a manifestation of the existence of the scaling limit of the
anomaly formalized in Claims 1 and 2. In the case of the mollified-shear example
the corresponding level curves are depicted in red by Figure 34.

Figure 34. mollified-shear with angle value φ = −π5 , deformation
parameter value ε = 0.1, and scaling parameter value ` = 22

In order to analyze the anomalous terms arising in the second order variation of
the conformal Laplacian the reader will recall that we use a bi-local perturbation:
Begin with two smooth complex-valued functions F1(z) and F2(z) whose supports
Ω1 and Ω2 are compact and disjoint together with two deformation parameters
ε1, ε2 > 0. We consider the smooth function F (z) obtained by superimposing F1(z)
and F2(z), i.e.

(C.1) F (z) :=

 F1(z) if z ∈ Ω1

F2(z) if z ∈ Ω2

0 otherwise

We economize the notation for the bi-local perturbation and write z 7→ z+ε`F (z/`)
where ε = εj depending on whether or not z/` ∈ Ωj .

Given p ∈ C and a value of the scaling parameter ` > 0 center a copy of the
fundamental quadrilateral Q about the dialated point `p ∈ C. The coordinates of
its vertices are q`(p; k) = `p+ zk for k ∈ {1, 2, 3, 4}. The perturbation will displace
these vertices by q`(p; k) 7→ qε,`(p; k) where qε,`(p; k) = q`(p; k) + ε`F

(
q`(p; k)/`

)
.

The conformal angle κε,`(p), its ε-derivative κ′0,`(p), and its infinitesimal conformal
angle κε,∞(p) at p ∈ C are accordingly defined by:

(C.2) κε,`(p) = Im log

[(
qε,`(p; 4)− qε,`(p; 3)

) (
qε,`(p; 2)− qε,`(p; 1)

)(
qε,`(p; 4)− qε,`(p; 1)

) (
qε,`(p; 2)− qε,`(p; 3)

)]
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(C.3)

κ′0,`(p) =
d

dε

∣∣∣∣∣
ε=0

κε,`(p)

=


Im
[
∇F(`)

(
`p+ z1, `p+ z2, `p+ z4

)(
e12 − e14

)]
+

Im
[
∇F(`)

(
`p+ z2, `p+ z3, `p+ z4

)(
e34 − e23

)]
= Im

[
∂F (p) E

]
+ O

(
1/`
)

(C.4)

κε,∞(p) = lim
l→∞

Im log

[(
qε,`(p; 4)− qε,`(p; 3)

) (
qε,`(p; 2)− qε,`(p; 1)

)(
qε,`(p; 4)− qε,`(p; 1)

) (
qε,`(p; 2)− qε,`(p; 3)

)]

= Im log


(

1 + e34
ε∂F (p)

1 + ε∂F (p)

)(
1 + e12

ε∂F (p)

1 + ε∂F (p)

)
(

1 + e14
ε∂F (p)

1 + ε∂F (p)

)(
1 + e23

ε∂F (p)

1 + ε∂F (p)

)


= ε Im
[
∂F (p) E

]
+ O(ε2)

Claim 1. Fix a value of the scaling parameter ` > 0, then for any pair of points
p, z ∈ suppF with |z − p| < 1/`

(C.5)
∣∣∣κ′0,`(z)− Im

[
∂F (p)E

]∣∣∣ ≤ 4/`M(z, `) where

(C.6)
M(z, `) := max

|w−z|< 1/`

∣∣∂2F (w)
∣∣ + 2 max

|w−z|< 1/`

∣∣∂∂F (w)
∣∣ + max

|w−z|< 1/`

∣∣∂2
F (w)

∣∣
Definition 19. For a fixed value of the scaling parameter ` > 0 and any (continu-
ous) function φ : C −→ C let us introduce the following piecewise abridgment

(C.7)
〈
φ
〉
`
(p) :=



φ
(
zq/`

) whenever `p ∈ int
(
q
)

for a quadrilateral q

1

2

2∑
k=1

φ
(
zqk/`

) whenever `p ∈ int
(
∂q1 ∩ ∂q2

)
for

a pair of quadrilaterals q1 and q2

1

4

4∑
k=1

φ
(
zqk/`

) whenever `p ∈ ∂q1 ∩ ∂q2 ∩ ∂q3 ∩ ∂q4

for quadrilaterals q1, q2, q3, and q4
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Remark 33. Let χ` :=
〈
κ′0,`

〉
`
then χ` −→ Im

[
∂F · E

]
uniformly as ` → ∞.

Furthermore χ±` −→ Im±
[
∂F ·E

]
uniformly as `→∞ where g+(p) := max (g(p), 0)

and g−(p) := −min (g(p), 0) for any real-valued function g : C −→ R.

Claim 2. For signs σ, τ ∈ {+,−} define

(C.8)

J (σ,τ) :=
tan2 ϑσ tan2 ϑτ

16π2A2
Q

¨

Ω1×Ω2

d2x d2y Imσ
[
∂F (x) E

] [
Re

zσ zτ(
x− y

)2
]2

Imτ
[
∂F (y) E

]

J (1)
σ :=

tan2 ϑσ
8π2AQ

¨

Ω1×Ω2

d2x d2y Imσ
[
∂F (x) E

]
Re

[
z2
σ ∂F (y)(
x− y

)4
]

J (2)
σ :=

tan2 ϑσ
8π2AQ

¨

Ω1×Ω2

d2x d2y Re

[
∂F (x) z2

σ(
x− y

)4
]
Imσ

[
∂F (y) E

]
The continuum limits of the edge-to-chord Aed×ch

` , chord-to-edge Ach×ed
` , and chord-

to-chord Ach×ch
` anomalies exist and their values are:

(C.9)

lim
`→∞

Aed×ch
` = J

(2)
+ + J

(2)
−

lim
`→∞

Ach×ed
` = J

(1)
+ + J

(1)
−

lim
`→∞

Ach×ch
` = J (+,+) + J (+,−) + J (−,+) + J (−,−)

Proof. We’ll verify the claim in the case of the chord-to-chord anomaly Ach×ch
` and

leave the remaining cases to the reader. Begin with a pair of signs σ, τ ∈ {±}. For
(x, y) ∈ Ω1 × Ω2 let’s introduce the following step-function

(C.10)

Φσ,τ` (x, y) :=


[
κ′0,`(zx/`)

]σ
·

[
Re

zσ zτ(
zx − zy

)2
]2

·
[
κ′0,`(zy/`)

]τ `x ∈ int(x)
`y ∈ int(y)
x, y ∈ F(Gcr)

bounded noise otherwise

Note that Ach×cr
` = J(+,+)

` + J(+,−)

` + J(−,+)

` + J(−,−)

` where where

(C.11) J(σ,τ)
` =

tan2 ϑσ tan2 ϑτ
16π2

∑
X ∈F(Gcr)
X ∩Ω1(`)6=∅

∑
y∈F(Gcr)

y∩Ω2(`)6=∅

Φσ,τ`

(
zx/`, zy/`

)

It follows from Claim 1 that Φσ,τ` (x, y)→ Φσ,τ (x, y) converges uniformly on Ω1×Ω2

as `→∞ where



PERTURBING ISORADIAL TRIANGULATIONS 119

Φσ,τ (x, y) := Imσ
[
∂F (x) E

]
·

[
Re

zσ zτ(
x− y

)2
]2

· Imτ
[
∂F (y) E

]

(C.12)

J (σ,τ) =
tan2 ϑσ tan2 ϑτ

16π2A2
Q

¨

Ω1×Ω2

d2x d2y Φσ,τ (x, y)

=
tan2 ϑσ tan2 ϑτ

16π2A2
Q

lim
`→∞

¨

Ω1×Ω2

d2x d2y Φσ,τ` (x, y)

=
tan2 ϑσ tan2 ϑτ

16π2
lim
`→∞

∑
x∈F(Gcr)
x∩Ω1(`)6=∅

∑
y∈F(Gcr)

y∩Ω2(`) 6=∅

Φσ,τ`

(
zx/`, zy/`

)

= lim
`→∞

J(σ,τ)
`

�
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