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We evaluate the viscous damping of anisotropic flow in heavy-ion collisions for arbitrary
temperature-dependent shear and bulk viscosities. We show that the damping is solely determined
by effective shear and bulk viscosities, which are weighted averages over the temperature. We
determine the relevant weights for nucleus-nucleus collisions at

√
sNN = 5.02 TeV and 200 GeV, cor-

responding to the maximum LHC and RHIC energies, by running ideal and viscous hydrodynamic
simulations. The effective shear viscosity is driven by temperatures below 210 MeV at RHIC, and
below 280 MeV at the LHC, with the largest contributions coming from the lowest temperatures,
just above freeze-out. The effective bulk viscosity is driven by somewhat higher temperatures, cor-
responding to earlier stages of the collision. We show that at a fixed collision energy, the effective
viscosity is independent of centrality and system size, and that the variation of viscous damping is
determined by Reynolds number scaling.

I. INTRODUCTION

Determining the transport coefficients of the quark-
gluon plasma, such as its shear (η) and bulk (ζ) viscosi-
ties, is one of the goals of heavy-ion physics. One of the
motivations is the early recognition that the quark-gluon
plasma produced in heavy-ion collisions has a very low
shear viscosity over entropy (η/s) ratio [1], implying the
formation of a strongly-coupled fluid [2]. Shear viscosity
is now included in the vast majority of state-of-the art hy-
drodynamic simulations of heavy-ion collisions [3]. It has
been shown that bulk viscosity must also be taken into
account in order to quantitatively explain experimental
data [4].

Ab-initio calculations of transport coefficients with lat-
tice techniques pose serious numerical and theoretical
challenges [5]. There is nevertheless a theoretical consen-
sus that they depend strongly on temperature [6, 7], both
in the hadronic phase [8] and in the deconfined phase [9].
Over the last decade, several efforts have been made to
incorporate this temperature dependence into hydrody-
namic calculations [10–12]. An important question is
how this temperature dependence can be constrained us-
ing experimental data [13, 14]. A recent study shows
that η/s is most constrained in the temperature range
T ∼ 150− 220 MeV [15].

The phenomenon that allows one to best constrain η/s
and ζ/s is anisotropic flow [3], by which the distribution
of outgoing particles breaks azimuthal symmetry. The
azimuthal anisotropy, which is characterized by Fourier
coefficients vn, builds up gradually as a result of the col-
lective expansion [16]. Viscosity makes the expansion less
collective, thus reducing vn.

We carry out a systematic investigation of this decrease
for the two largest harmonics, v2 [1] and v3 [17]. In
Sec. II, we show that the reduction in vn due to viscosity
can be written as a weighted integral of the temperature-
dependent η/s and ζ/s. We define effective viscosities,
which encapsulate the information on viscosity that one
can gain from anisotropic flow. In Sec. III, we deter-

mine the weights that define the effective viscosities by
running hydrodynamic simulations of central Pb+Pb col-
lisions at

√
sNN = 5.02 TeV. In Sec. IV, we check that

the order of magnitude of viscous damping is compatible
with expectations from dimensional analysis. In Sec. V,
we show that the effective viscosity is an excellent pre-
dictor of the viscous suppression of vn for a wide range
of temperature-dependent shear and bulk viscosities. In
Sec. VI, we check that the centrality and system-size de-
pendence of the viscous damping follows the 1/R scal-
ing expected from dimensional analysis, where R is the
transverse size. The dependence on collision energy is
illustrated in Sec. VII where we carry out calculations
at
√
sNN = 200 GeV, corresponding to the top RHIC

energy.

II. EFFECTIVE VISCOSITY

We define effective bulk and shear viscosities of hot
quark and gluon matter, which determine the damping
of anisotropic flow.

A hydrodynamic simulation starts from an initial con-
dition, corresponding typically to the entropy density
profile at an early time. One then solves the equations of
hydrodynamics, which model the expansion of the sys-
tem into the vacuum. We study the effect of viscosity
by evolving the same initial profile through ideal hydro-
dynamics (η/s = ζ/s = 0) and viscous hydrodynamics.
The fluid eventually fragments into individual hadrons,
and we evaluate vn from the distribution of outgoing par-
ticles in both cases. We use the following quantity as a
measure of the viscous damping:

∆n ≡ ln

(
vn(viscous)

vn(ideal)

)
. (1)

If |∆n| � 1, then, ∆n is the relative change of vn due to
viscosity, ∆n ' vn(viscous)/vn(ideal)− 1. One typically
expects viscosity to reduce vn [1], resulting in a negative
∆n.
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Our study is limited to v2 and v3 because their de-
pendence on the initial density profile is, to a good ap-
proximation [18], a linear response to the corresponding
initial anisotropy εn [19], both in ideal and viscous hydro-
dynamics, so that the dependence cancels when taking
the ratio in Eq. (1). Therefore, even though we eval-
uate ∆n with a specific, smooth density profile, which
will be specified in Sec. III, we expect the result to be
universal to a good approximation. This should however
be checked explicitly when initial-state fluctuations are
present [20–22]. We plan to do this in a future work.

We now derive the general expression of ∆n in the limit
of small viscosities. ∆n is a functional of (η/s)(T ) and
(ζ/s)(T ), which vanishes by construction if (η/s)(T ) =
(ζ/s)(T ) = 0. Transport coefficients enter the equations
of viscous hydrodynamics as two separate linear contri-
butions [23] Therefore, for small (η/s)(T ) and (ζ/s)(T ),
∆n must be a linear functional of these quantities [24]:

∆n =

∫ ∞
Tf

η

s
(T )w(η)

n (T )dT +

∫ ∞
Tf

ζ

s
(T )w(ζ)

n (T )dT, (2)

where Tf is the lowest value of the temperature, called

the freeze-out temperature, and w
(η)
n (T ) and w

(ζ)
n (T ) are

weight functions for shear and bulk viscosity. These
weight functions quantify the effect of viscosity on
anisotropic flow at a given temperature.

We define the effective shear and bulk viscosities rele-
vant for vn by:

(η
s

)
n,eff

=

∫∞
Tf

(η/s)(T )w
(η)
n (T )dT∫∞

Tf
w

(η)
n (T )dT(

ζ

s

)
n,eff

=

∫∞
Tf

(ζ/s)(T )w
(ζ)
n (T )dT∫∞

Tf
w

(ζ)
n (T )dT

. (3)

Then, Eq. (2) expresses the damping of vn as

∆n = W (η)
n ×

(η
s

)
n,eff

+W (ζ)
n ×

(
ζ

s

)
n,eff

, (4)

where

W (η,ζ)
n ≡

∫ ∞
Tf

w(η,ζ)
n (T )dT. (5)

Equation (4) implies that for any temperature-dependent
viscosity, the damping of vn is solely determined by the
effective shear and bulk viscosities defined by Eq. (3).
This result holds in the limit of small viscosity. Note,
however, that the validity of hydrodynamics itself re-
quires that viscosity has a small relative effect on ob-
servables, since viscous hydrodynamics is the first term
in a systematic gradient expansion [25]. We therefore
postulate that our result is general, and that the damp-
ing of vn is always determined by the effective viscosities.
This will be checked explicitly in Sec. V.

The effective viscosity (3) is a weighted average of
the temperature-dependent viscosity. It is similar to the

quantity recently introduced by Paquet et al. [24], but
applied to different observables (anisotropic flow, as op-
posed to entropy), so that weights are different. We
determine the relevant weights for anisotropic flow in
Sec. III. We then test the validity of Eq. (4) in Sec. V.

III. DETERMINING THE WEIGHTING
FUNCTIONS

In this Section, we determine the weighting functions

w
(η)
n (T ) and w

(ζ)
n (T ), which define the effective viscosity

(3), for central Pb+Pb collisions at the top LHC energy√
sNN = 5.02 TeV. We carry out two separate sets of

hydrodynamic simulations, one with only shear viscosity
and one with only bulk viscosity. In order to isolate the
effect of the viscosity in a specific temperature range, we
implement a viscosity profile which is a narrow window
of width σ, centered around a temperature T0:

η

s
(T ) =

(η
s

)
max

exp

(
− (T − T0)2

2σ2

)
, (6)

where (η/s)max the maximum value of η/s. We carry
out simulations for a large number of values of T0, which
span the range of temperatures in a heavy-ion collision.
The exact same procedure is repeated for bulk viscosity,
replacing η/s with ζ/s.

The first thought would be to use a window as narrow
as possible. If σ is too small, however, there are large er-
rors for the following reason: The viscosity varies steeply
with the temperature, which itself depends on space-
time coordinates. This results in large pressure gradi-
ents, while they should always be small in hydrodynam-
ics [25]. These gradients are proportional to (η/s)max/σ.
When gradients are too large, we find that instabilities
occur, which appear as numerical errors (e.g., vn jump-
ing up and down upon small variations of T0). We have
adjusted the values of parameters so that results are sta-
ble. Our simulations are carried out with σ = 16 MeV,
(η/s)max = 0.04 (Fig. 1 (a)) and (ζ/s)max = 0.02 (Fig. 1
(b)).

Our hydrodynamic simulation uses boost-invariant [26]
initial conditions, with a starting time τ0 = 0.6 fm/c.
The transverse velocity at τ0 is set to zero, that is, initial
flow [27, 28] is neglected. The initial entropy density
profile is a deformed Gaussian [17]:

s(x, y) = s(r cosφ, r sinφ)

= s0 exp

(
− r

2

R2
0

(
1 + ε2 cos 2φ+

4

5
ε3 cos 3φ

))
.(7)

In this equation, ε2 and ε3 are the initial eccentrici-
ties [29],1 which produce elliptic flow and triangular flow
after hydrodynamic expansion.

1 ε2 and ε3 in Eq. (7) correspond to the usual eccentricities [30]
only in the limit where they are much smaller than unity, more
precisely, to first order in ε2 and ε3.
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FIG. 1. (Color online) Effect of a temperature-dependent shear (η) or bulk (ζ) viscosity on v2 and v3 in central Pb+Pb collisions
at
√
sNN = 5.02 TeV. Shear corresponds to the left panels (a) and (c), bulk to the right panels (b) and (d). The upper panels

dispay the (η/s) and (ζ/s) profiles used in our caculation. They are defined by Eq. (6), with σ = 16 MeV, (η/s)max = 0.04
(a) and (ζ/s)max = 0.02 (b), and each curve corresponds to a different value of T0. The vertical lines indicate the freeze-out
temperature Tf = 156.5 MeV. The symbols in panels (c) and (d) display the corresponding values of ∆n, defined by Eq. (1),
as a function of T0. Lines are fits using Eqs. (2) and (8).

We fix the parameters of Eq. (7) as follows: We eval-
uate R0 by matching the rms radius to a model of ini-
tial conditions that reproduces well the mean transverse
momentum 〈pt〉 [31], since 〈pt〉 is determined by the ini-
tial radius in hydrodynamics [32, 33]. We then fix the
normalization constant s0 in such a way that the mul-
tiplicity matches that measured in Pb+Pb collisions at√
sNN = 5.02 TeV [34]. Since the multiplicity is propor-

tional to the final entropy, which is larger than the ini-
tial entropy in viscous hydrodynamics [35], the normal-
ization s0 must be lowered in viscous hydrodynamics.2

2 In practice, we choose s0 for viscous hydrodynamics so that the
final multiplicity is close to the expected value. We then evalu-
ate vn in ideal hydrodynamics for the corresponding final multi-
plicity by linear interpolation between calculations run with two
different values of s0.

Finally, we evaluate ε2 and ε3 from a model of initial con-
ditions [36] which reproduces well the measured values of
v2 and v3.3 The resulting density profile is represented
in Fig. 2 (a) for central collisions.

We then evolve this initial condition using the MUSIC
hydrodynamic code [37–39] with a realistic equation of
state inspired by lattice QCD [40]. We evaluate v2 and
v3 at the freeze-out temperature Tf = 156.5 MeV [41].
The viscous corrections to the momentum distribution
at freeze out are evaluated using the usual quadratic
ansatz [42, 43]. We take into account hadronic decays,
but we neglect rescatterings in the hadronic phase. For
the sake of simplicity, we evaluate v2 and v3 (averaged

3 This is not crucial as our final results are independent of ε2 and
ε3.
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FIG. 2. (Color online) Initial entropy density profile used
in our ideal hydrodynamic calculation, defined by Eq. (7),
with parameters tuned to match Pb+Pb collisions at

√
sNN =

5.02 TeV. (a) 0-5% centrality window (Secs. III—V): s0 =
438 fm−3, R0 = 4.18 fm, ε2 = 0.085, ε3 = 0.075. (b) 20-30%
centrality window (Sec. VI): s0 = 337 fm−3, R0 = 2.97 fm,
ε2 = 0.35, ε3 = 0.12. The profile is identical for the viscous
hydrodynamic calculation, except for the overall normaliza-
tion (see text).

over all transverse momenta pt), in the same pseudora-
pidity window |η| < 0.5 used to measure the multiplic-
ity [34]. The fact that experiments use different pseu-
dorapidity cuts [44] matters little, since these kinematic
cuts typically multiply vn by a constant factor, which
cancels when evaluating ∆n using Eq. (1).
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FIG. 3. (Color online) Weights wζ2(T ) (full line), wζ3(T )
(dashed line), wη2 (T ) (dot-dashed line), wη3 (T ) (dotted line),
defining the effective viscosities (3) at

√
sNN = 5.02 TeV.

They are obtained by fitting the hydrodynamic results in
Fig. 1 using Eq. (8). The shaded boxes to the left are meant
to represent the discrete part wfδ(T −Tf ): Their area is |wf |
(see numbers in Table I).

The values of ∆n are displayed in Fig. 1 (c) and (d)
for shear and bulk viscosity, as a function of the temper-
ature T0 in Eq. (6). ∆n is mostly negative, which means

that viscosity decreases anisotropic flow [1]. ∆2 and ∆3

have similar variations as a function of T0, but the over-
all magnitude of ∆3 is larger, both for shear and bulk
viscosity: As expected, damping is stronger for higher
harmonics [17, 45]. Large negative values of ∆n are ob-
tained for values of T0 around 200 MeV, corresponding
to the late stages of the hydrodynamic evolution. For
T0 > 300 MeV, corresponding to a viscosity which is
only present during the early stages, ∆n is much smaller.
Interestingly, for shear viscosity, ∆n changes sign and be-
comes positive for T0 > 330 MeV (see the zoom in Fig. 1
(c)). This implies that shear viscosity at high temper-
ature increases vn, although by a very modest amount.
The physical interpretation is that when the longitudinal
expansion dominates, shear viscosity reduces the longi-
tudinal pressure and increases the transverse pressure,
leading to an increased transverse flow in general, and
anisotropic flow in particular.

Using the results for ∆n, we then infer w
(η,ζ)
n (T ) de-

fined by Eq. (2). One would naively expect w
(η,ζ)
n (T )

to be a smooth function of T . However, one must re-
member that viscosity enters a hydrodynamic simulation
in two different places: (1) In the equations of hydrody-
namics themselves; (2) At the final stage when the fluid
is transformed into particles. The effect of viscosity on
the hydrodynamic flow [46] builds up throughout the ex-
pansion, and one expects the resulting contribution to

w
(η,ζ)
n (T ) to be smooth. On the other hand, the vis-

cous correction to the momentum distribution at freeze-
out [42, 43, 47] only involves the viscosity at Tf . There-

fore, we decompose w
(η,ζ)
n (T ) as the sum of a smooth

function, which we approximate by a rational function
(Padé approximant), and a discrete contribution in the
form of a Dirac peak at Tf :

w(T ) = wfδ(T − Tf ) +
a0 + a1T + a2T

2

1 + b1T + b2T 2 + b3T 3
(8)

where we have used the shortcut w(T ) for w
(η,ζ)
n (T ). The

parameters wf , ai and bi are fitted to the ∆n results
using Eq. (2). The fits are shown as lines in panels (c)
and (d) of Fig. 1. In order to better constrain the relative
magnitudes of the discrete and the smooth contributions,
we have carried out a few simulations where T0 is lower
than the freeze-out temperature Tf (see Fig. 1 (a) and
(b)). In these simulations, the discrete term dominates
the viscous correction.

The smooth parts of the weighting functions w
(η,ζ)
n (T )

are displayed in Fig. 3.4 For shear viscosity, the lowest
values of T get the largest weights in absolute value. This

4 Note that the variation of w
(η,ζ)
n (T ) as a function of T follows

that of ∆n in Fig. 1 as a function of T0, except for the values of T0
close to the freeze-out temperature. This can be understood eas-
ily: In the limit where T0−Tf � σ, inserting Eq. (6) into Eq. (2)

and assuming that w
(η,ζ)
n (T ) varies little over a temperature
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n wf W ≡
∫
T−
f
w(T )dT

shear 2 −0.07 −1.34

bulk 2 0.15 −1.30

shear 3 −0.49 −2.33

bulk 3 0.21 −2.61

TABLE I. Values of wf (Eq. (8)) and W (Eq. (5)) for elliptic
(n = 2) and triangular (n = 3) flows, and for shear and bulk
viscosity, in central Pb+Pb collisions at

√
sNN = 5.02 TeV.

explains the conclusion from a recent Bayesian study
that η/s is best constrained in the range 150 < T <
220 MeV [15]. For bulk viscosity, on the other hand, the
weight has a peak for intermediate values of the temper-
ature, around 230 MeV for v2, and 190 MeV for v3. The
discrete part wf of the viscous correction, corresponding
to the first term in Eq. (8), is given in Table I. It origi-
nates from the viscous correction to the thermal momen-
tum distribution [42]. This correction depends on the mi-
croscopic dynamics at freeze-out [47], which is not well
understood. By constrast, the smooth part of Eq. (8),
which is the viscous correction that builds up during the
hydrodynamic evolution, solely involves the equations of
hydrodynamics and is more robust. Looking at the num-
bers in Table I, one sees that wf is a small fraction of the
integral W , which implies that freeze-out only accounts
for a small fraction of the viscous suppression: 5% for v2,
21% for v3, in the case of a constant η/s. Note also that
the bulk viscosity gives a small but positive contribution
to vn at freeze-out.5 The fact that wf is small guarantees
that the determination of ∆n in viscous hydrodynamics
is fairly robust with respect to model uncertainties. Note
that this is because we have evaluated the pt-integrated
vn, which is largely determined by the energy-momentum
tensor. In a specific pt range, the dependence on the mo-
mentum distribution would typically be larger. As we
shall see in Sec. VII, wf represent a much larger fraction
of the viscous correction at lower energies.

range of order σ, one can approximate w
(η,ζ)
n (T ) ' w

(η,ζ)
n (T0),

and one obtains:

w
(η)
n (T0) '

∆n(T0)

(η/s)maxσ
√

2π
, (9)

and a similar formula for bulk viscosity. For temperatures close
to the freeze-out temperature Tf = 156.5 MeV, there are differ-
ences between the variations of ∆n and wn, which are apparent
in particular for shear viscosity, where the leftmost point for ∆2,3

goes up, while the variation of w
(η)
2,3(T ) is monotonic down to Tf .

The reason is that for these values of T0, part of the Gaussian
profile is cut at Tf (see Fig. 1 (a) and (b)), resulting in a smaller
value of ∆n.

5 This can be inferred from the observation that ∆n > 0 for T0 <
Tf in Fig. 1 (d).

IV. ORDERS OF MAGNITUDE AND
DIMENSIONAL ANALYSIS

Before we embark on quantitative tests of the “effective
viscosity” approach, we analyze the order of magnitude
of the viscous suppression. For a constant shear viscosity
over entropy ratio η/s = 0.08 [2], Eq. (4) together with
the numerical values in Table I gives ∆2 = −0.11 and
∆3 = −0.19, corresponding to 10% and 17% reductions
in v2 and v3, respectively, according to Eq. (1).

We now check that these numbers are compatible with
expectations from dimensional analysis. The inverse
Reynolds number Re−1 governs the magnitude of vis-
cous effects. It is defined as the ratio of the viscous
force, which is η∆v for shear viscosity, to the inertia,
which is (ε + P )dv/dt for a relativistic fluid. Assuming
that space-time derivatives are of order 1/R, where R is
the rms radius of the initial density profile, and using
ε+ P = Ts, one obtains:

Re−1 =
(η/s)

TR
. (10)

In this equation, is it natural to replace (η/s) by the effec-
tive viscosity (η/s)eff . T should be a typical temperature
at which viscous effects operate, that is T ∼ 200 MeV.

In the specific case of anisotropic flow, one can guess
the order of magnitude of ∆n with the guidance of ex-
act solutions [49], which give an extra factor of n2 [45].
The dimensional analysis is the same for bulk viscosity.
Hence, the back-of-the-envelope estimate of ∆n is

∆n ∼ −n2 (η/s)eff + (ζ/s)eff

TR
. (11)

Comparing with Eq. (4), the expected order of magnitude

of the prefactor W
(η,ζ)
n is:

W (η,ζ)
n ∼ −n2 1

TR
. (12)

With the value R ' 4.2 fm of our initial condition
(Fig. 2 (a)) and T ∼ 200 MeV' 1 fm−1, Eq. (12) gives

W
(η)
2 ∼ W

(ζ)
2 ∼ −1.0 and W

(η)
3 ∼ W

(ζ)
3 ∼ −2.1. The

numerical values in Table I are of the expected order of
magnitude. In particular, they confirm the expectation
that shear and bulk viscosity have similar effects, and
that the damping is stronger by a factor ∼ 2 for v3 than
for v2.

V. EFFECTIVE VISCOSITY AS A PREDICTOR
OF THE DAMPING OF vn

We now test the hypothesis that the effective viscosities
(3) are good predictors of the viscous suppression ∆n.

Using the weights w
(η,ζ)
n (T ) determined in Sec. III, we

can evaluate the effective shear and bulk viscosities for
any temperature-dependent viscosity, and then predict
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FIG. 4. (Color online) (a) Various (η/s)(T ) profiles which are used to test Eq. (2). They are defined by (η/s)(T ) = C (full
lines), (η/s)(T ) = CT/T0 (dashed lines) or (η/s)(T ) = CT0/T , with T0 = 225 MeV, and C = 0.08, 0.16, or 0.24. Panels (b)
and (c) display ∆n defined by Eq. (1), as a function of ∆n defined by Eq. (4). Each symbol in panels (b) and (c) corresponds to
one of the profiles in panel (a). Full symbols correspond to the 0−5% centrality window (Sec. V) and open symbols correspond
to the 20− 30% centrality window (Sec. VI). The full lines in panels (b) and (c) are the diagonals y = x, while the dash-dotted
lines represent the prediction for 20− 30% centrality from Reynolds number scaling, y = 1.32x (see text).
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FIG. 5. (Color online) Same as Fig. 4 for bulk viscosity alone, and shear+bulk. The (ζ/s)(T ) profiles are represented in panel
(a). They are defined by (ζ/s)(T ) = C (full lines), (ζ/s)(T ) = CT/T0 (dashed lines), with T0 = 225 MeV, and C = 0.04, 0.08,
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to the profiles in panel (a). The stars represent a calculation done with a constant shear viscosity over entropy η/s = 0.04, on
top of the Duke parametrization of bulk viscosity.

the value of the viscous damping ∆n using Eq. (4). In
order to check the validity of this prediction, we carry
out viscous hydrodynamic simulations with nine different
(η/s)(T ) profiles, which are represented in Fig. 4 (a), and
seven different (ζ/s)(T ) profiles, which are represented in
Fig. 5 (a). These profiles span a wide range of possibilities
concerning the variation and magnitude of η/s and ζ/s.

For each of these profiles, panels (b) and (c) of Figs. 4
and 5 display the value of ∆2 and ∆3 computed nu-
merically in viscous hydrodynamics using Eq. (1), as a
function of the value predicted using Eq. (4). When
only bulk or shear viscosity is present, the quantity on
the x axis is the effective viscosity (η/s)n,eff (Fig. 4) or
(ζ/s)n,eff (Fig. 5), multiplied by the corresponding con-

stant W
(η,ζ)
n . Note that the effective viscosity is not

strictly identical for n = 2 and n = 3, because the weights
for n = 2 and n = 3 in Fig. 3 are not exactly proportional
to each other. However, they differ only by a few percent
in practice.

For small |∆n|, the calculated value agrees with the
predicted value in all cases: With only shear viscosity
(full symbols in Fig. 4), only bulk viscosity (full squares
and circles in Fig. 5), or with shear and bulk viscosity
simultaneously (stars in Fig. 5). This means that Eq. (2)
holds in the limit of small viscosity, which is precisely the
assumption under which it was derived. In particular,
our calculation shows explicitly that shear viscosity and
bulk viscosity give additive contributions to the damping
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of vn.
For larger values of |∆n|, corresponding to larger values

of η/s, the calculated values (full symbols) start to devi-
ate from the predicted values (full lines). They are above,
which implies that the dependence of vn on (η/s)n,eff or
(ζ/s)n,eff is slower than exponential. These nonlineari-
ties are stronger for bulk viscosity than for shear viscos-
ity. Despite these deviations, all full symbols lie on the
same curve. This means that the effective viscosity is an
excellent predictor of ∆n, even when viscosity suppresses
vn by a factor 2.

We now discuss the compatibility of our results with
those of Niemi et al. [13]. They have carried out ex-
tensive simulations with different η/s(T ) profiles, which
have been chosen in such a way that they yields similar
v2 and v3. We therefore expect that these profiles corre-
spond to similar effective viscosities. Since, furthermore,
one of the profiles is a constant η/s = 0.2, we expect
that (η/s)n,eff ∼ 0.2 for all the other profiles, both for
n = 2 and n = 3. The authors provide the parame-
terization for three of these profiles, which are named
“param1”, “param2” and “param4”. Comparison with
our results is not straightforward because they implement
partial chemical equilibrium (PCE), and run hydrody-
namics down to Tf = 100 MeV. The energy density at
T = 100 MeV with PCE is approximately the same as at
T = 140 MeV without PCE. We try to take this difference
into account, at least approximately, by evaluating the ef-
fective viscosity (3) with a lower value Tf = 140 MeV.

For this purpose, we extrapolate the weights w
(η)
n down

to 140 MeV using Eq. (8), and we neglect the discrete
contribution, which is small but depends on Tf , since we
have not evaluated wf for Tf = 140 MeV. We obtain
(η/s)2,eff = 0.175 and (η/s)3,eff = 0.163 for “param1”,
0.184 and 0.185 for “param2”, and 0.206 and 0.207 for
“param4”. As expected, all effective viscosities are close
to 0.2. The ordering explains the fine splitting observed
in Fig. 14 (a) of Ref. [13], which shows that the damp-
ing is weakest for the “param1” parametrization, and
strongest for the “param4” parametrization.

VI. CENTRALITY AND SYSTEM-SIZE
DEPENDENCE

We show that at a given collision energy, the depen-
dence of ∆n on nuclear size and collision centrality is de-
termined by the 1/R dependence expected from Reynolds
number scaling, Eq. (11), and that the effective viscos-
ity is unchanged. We first present the general argument,
then the numerical results that support it.

The key observation is that the mean transverse mo-
mentum of outgoing hadrons, 〈pt〉, is almost independent
of centrality and system size: Specifically, 〈pt〉 varies by
less than 1% between 0 and 30% centrality in Pb+Pb col-
lisions at 5.02 TeV [50], while the multiplicity decreases
by a factor ∼ 3 [34]. 〈pt〉 also differs by less than 2% in
Pb+Pb and Xe+Xe collisions [50], while the multiplicity

changes by a factor ∼ 1.6.

In ideal hydrodynamics, the mean transverse momen-
tum is unchanged under a uniform scaling of space-time
coordinates, where the entropy density s and the fluid
velocity uν are unchanged:

xµ → λxµ

s(xµ)→ s(λxµ)
uν(xµ)→ uν(λxµ) (13)

The volume and the final multiplicity, which are exten-
sive quantities, are multiplied by λ3, but 〈pt〉, which is
an intensive quantity, remains the same. Reversing the
argument, the observation that the mean transverse mo-
mentum remain constant as one varies centrality or sys-
tem size implies that these variations amount, to a good
approximation, to a uniform scaling [51]. A less central
collision, or a smaller nucleus, goes along with a faster
expansion, but with the same density and temperature.
This statement may seem counter intuitive, as one would
think that more central collisions or larger nuclei imply
a higher density. However, one typically has in mind a
comparison at the same time, while the time coordinate
should also be rescaled in Eq. (13): One should evaluate
the density at an earlier time for the smaller system. A
uniform scaling does not change the fraction of the space-
time history that the system spends at a given tempera-
ture. Therefore, the effective viscosity, which represents
the relative weights of the different temperatures, is un-
changed.

The observation that the density is essentially constant
as a function of centrality or system size is supported by
the following theoretical argument: The multiplicity is
approximately proportional to the number of constituent
quarks [52], which is also proportional to the volume since
the nuclear density is approximately constant. Hence
the ratio multiplicity/volume does not vary significantly.
Note that the shape changes as a function of the collision
centrality (see Fig. 2), so that the scaling is not strictly
isotropic. The anisotropy is responsible for anisotropic
flow, but has a small effect on the mean transverse mo-
mentum.

We simulate mid-central collisions by adjusting the pa-
rameters of the initial density profile (7) in our hydrody-
namic calculation (Fig. 2 (b)). Note that we keep the
same value of the initial time (τ0 = 0.6 fm/c) for both
centralities, while it should also be rescaled for the trans-
formation (13) to be exact. However, this breaking of
scale invariance occurs long before vn develops, and we
will see that it has no effect on the final results. In order
to ensure that 〈pt〉 is the same for both centralities, we
require that, at a time proportional to the the rms radius
R, the entropy density is the same. We therefore choose
s0 in such a way that s0τ0/R is unchanged. s0 and R0

are finally fixed by requesting that the final multiplicity
matches the experimental value, which yields the profile
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n wf W ≡
∫
T−
f
w(T )dT

shear 2 −0.67 −1.56

bulk 2 1.12 −2.33

shear 3 −2.12 −3.40

bulk 3 3.34 −3.81

TABLE II. Same as Table I for
√
sNN = 200 GeV.

in Fig. 2 (b).6

We then evaluate the viscous suppression of vn in
the 20-30% centrality range for the same temperature-
dependent shear viscosities as in Sec. V. Results are dis-
played in Fig. 4 as open symbols. We plot the value of ∆n

calculated numerically with (1), as a function of the value
calculated for central collisions. Therefore, closed and
open symbols, corresponding to central and mid-central
collisions, are vertically aligned. The open symbols are
below the closed symbols, which means that the viscous
suppression is larger for mid-central than for central col-
lisions. The dot-dashed lines represent the prediction
from dimensional analysis, that ∆n is proportional to
1/R (Eq. (11)), implying a uniform increase by a factor
1.32. For small ∆n, the open symbols are in excellent
agreement with this prediction. They deviate from the
prediction for larger |∆n|, but they all fall on the same
curve. This means that the effective shear viscosity de-
termined in central collisions, which is the quantity on
the x axis (up to a multiplicative constant) is still an
excellent predictor of vn in mid-central collisions.

The explicit calculation above is only done for shear
viscosity, for one collision system and one centrality
range, but conclusions are general. As long as 〈pt〉 does
not vary, the effective viscosity should remain the same.
The decrease of 〈pt〉 becomes significant for peripheral
collisions, but this is also the place where the hydrody-
namic description is less reliable.

VII. EFFECTIVE VISCOSITIES AT RHIC

While the effective viscosity is roughly independent
of system size and centrality, it depends on the colli-
sion energy. The lower the collision energy, the lower
the temperature of the quark-gluon matter formed in
the collision [51], and one expects this change to reflect

on the weights w
(η,ζ)
n (T ) entering the effective viscosities

(3). In order to illustrate this dependence on collision
energy, we carry out simulations at the top RHIC en-
ergy

√
sNN = 200 GeV. We single out the dependence on

collision energy by changing only the normalization con-
stant s0 in the initial density profile (7), and keeping all

6 Due to the anisotropies, the rms radius R does not coincide with
the parameter R0 in Eq. (7). For the profile in Fig. 2 (b), for
instance, R0 = 2.97 fm, while R = 3.19 fm.

other parameters (R, ε2, ε3) constant. For ideal hydro-
dynamics, we choose s0 = 173 fm−3, which ensures that
the charged multiplicity per nucleon matches the value
measured in central Au+Au collisions [53].

The calculation is done exactly as in Sec. III. Fig. 6 is
the equivalent of Fig. 1, but at the lower energy, where
the temperature is ∼ 25% smaller. Results for ∆n are
comparable, except for the overall temperature scale, and
the overall magnitude. In particular, the small increase
of vn due to shear viscosity, which was observed for T0 >
330 MeV in Fig. 1 (c), is now observed for T0 > 250 MeV
(see the zoom in Fig. 6 (c)).

The ∆n results are then fitted using Eqs. (2) and

(8). The integral of the weights W
(η,ζ)
n , which determine

the damping for a given effective viscosity according to
Eq. (4), are larger at RHIC (Table II) than at the LHC
(Table I). This implies that for a given effective viscos-
ity, the damping is somewhat stronger at RHIC than at
LHC. This increase is a natural consequence of the lower
temperature, as shown by the estimate (12) from dimen-
sional analysis.

The main difference with LHC energies is that the dis-
crete contribution wf , corresponding to the viscous cor-
rection at freeze out, is now a sizable fraction of the total
W (Table II). Since, as pointed out in Sec. III, there is a
theoretical uncertainty on wf , it implies that the deter-
mination of the effective viscosity is less robust at RHIC
than at the LHC.

The smooth part of the weights, displayed in Fig. 7,
differs significantly from the result at the higher energy
(Fig. 3), in particular for bulk viscosity. This is some-
what surprising as the results in Fig. 6, from which they
are obtained, are similar to the results in Fig. 1, from
which Fig. 3 is obtained. The difference is likely due to
the separation between the discrete and the smooth con-

tribution. In particular, the large negative value of w
(ζ)
3

just above the freeze-out temperature partially compen-
sates the effect of the large positive contribution at freeze
out.

VIII. CONCLUSIONS

Within the hydrodynamic description of heavy-ion col-
lisions, we have evaluated the dependence of elliptic and
triangular flows on shear and bulk viscosities, for an ar-
bitrary temperature dependence of these transport coef-
ficients. We have assumed that v2 and v3 are determined
by linear response to the initial anisotropies ε2 and ε3,
and studied the dependence of the response on viscosity,
thereby generalizing the study of Teaney and Yan [45],
which was done for a constant η/s. We have shown that
the damping is the sum of contributions from shear and
bulk viscosity. Each of these contributions is determined
by effective shear and bulk viscosities, which are weighted
averages of the temperature-dependent viscosities.

The effective viscosities consist of a discrete part, pro-
portional to the viscosity at freeze out, and a contin-
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FIG. 6. (Color online) Same as Fig. 1, for the collision energy
√
sNN = 200 GeV.

uous part, which is a weighted integral of the viscosity
over temperatures above the freeze-out temperature. The
discrete part originates from the off-equilibrium correc-
tion to the momentum distribution of outgoing particles,
while the continuous part is due to the hydrodynamic ex-
pansion itself. The discrete part is a small contribution at
LHC energies. This guarantees that the determination of
vn in viscous hydrodynamics is robust with respect to un-
certainties on the theoretical description of the hadronic
phase. At RHIC energies, on the other hand, the discrete
and the continuous contributions to the effective viscosi-
ties are of the same order of magnitude, which entails a
large theoretical uncertainty.

The weights defining the effective viscosities are dis-
played in Figs. 3 and 7. Shear viscosity matters in the
range T < 280 MeV at the LHC, T < 210 MeV at RHIC.
For bulk viscosity, the weights decrease less quickly, so
that higher temperatures, corresponding to earlier stages
of the expansion, are comparatively more important. In-
terestingly, shear viscosity at early times, corresponding
to the largest temperatures, results in a small increase of
anisotropic flow.

We have shown that the effective viscosity is indepen-
dent of centrality and system size at a given collision en-
ergy. The dependence of the damping on centrality and
system size follows the 1/R dependence expected on the
basis of Reynolds number scaling, where R is the trans-
verse radius. Furthermore, effective viscosities are very
similar for v2 and v3, which implies that a combined anal-
ysis of all existing v2 and v3 data at a given energy can at
best constrain two numbers: the effective shear and bulk
viscosities at this energy. This in turn implies that the
temperature dependence of transport coefficients cannot
be extracted from LHC data alone, and claims from early
Bayesian analyses [14] must be revisited carefully [54].7

Bayesian analyses should be more efficient if they make
use of the observation that data at a given energy only
give access to the effective viscosity at that energy. De-
tailed information about the temperature dependence of

7 Note that the extraction of the effective viscosity from data re-
lies crucially also involves the detailed modeling of initial condi-
tions [55, 56], which is beyond the scope of the present work.
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transport coefficients can only be obtained by a simulta-
neous fit to RHIC and LHC data, as recognized by the
recent analysis of the JETSCAPE collaboration [57]. If,
for instance, the shear viscosity over entropy ratio was
large only above 200 MeV, damping of anisotropic flow
would be larger at the LHC than at RHIC.
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