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We propose the skewness of mean transverse momentum, 〈pt〉, fluctuations as a fine probe of
hydrodynamic behavior in relativistic nuclear collisions. We describe how the skewness of the 〈pt〉
distribution can be analyzed experimentally, and we use hydrodynamic simulations to predict its
value. We predict in particular that 〈pt〉 fluctuations have positive and nontrivial skew at a given
collision centrality. We elucidate the origin of this result by deriving generic formulas relating the
fluctuations of 〈pt〉 to the fluctuations of the early-time thermodynamic quantities. We thus argue
that the positive skewness of 〈pt〉 fluctuations is a universal prediction of hydrodynamic models.

I. INTRODUCTION

In ultrarelativistic nucleus-nucleus collisions, the mean
transverse momentum, 〈pt〉, of emitted particles fluc-
tuates event to event, for a given collision centrality.
There are trivial statistical fluctuations of 〈pt〉, due to
the fact that the average is evaluated over a finite sam-
ple of particles, but the observed fluctuations are larger.
The excess fluctuations are called dynamical fluctua-
tions, and have been measured in Au+Au collisions at√
sNN = 200 GeV [1] and lower energies [2–4], and in

Pb+Pb collisions at
√
sNN = 2.76 TeV [5]. Dynami-

cal 〈pt〉 fluctuations are thought to originate from event-
to-event fluctuations at the early stage of the collision.
Some hydrodynamic models of particle production, sup-
plemented with the appropriate modeling of the initial
stages, are able to reproduce experimental data on 〈pt〉
fluctuations [6, 7].

In this paper, we argue that, at a given collision cen-
trality, the probability distribution of 〈pt〉 is not Gaus-
sian, but has positive skew. In Sec. II we show that a
hint of this positive skew can be seen in existing STAR
data [2] on Au+Au collisions, while it is clearly visible in
the results of event-by-event hydrodynamic simulations
of Pb+Pb collisions. This constitutes a solid basis for in-
vestigating this phenomenon. We define measures of the
skewness of 〈pt〉 fluctuations in Sec. III, with detailed
explanations about the analysis procedure to measure
them given in Appendix A, and we make quantitative
predictions for these quantities using hydrodynamic cal-
culations in Sec. IV. The resulting skewness is positive,
and also nontrivial, in the sense that it deviates from the
expectation of trivial distributions with positive support.

We investigate, hence, the origin of the skewness. In
Sec. V, we use the idea put forward in Refs. [8, 9] that the
fluctuations of 〈pt〉 at a given centrality originate from
the fluctuations of the total energy in the fluid at the ini-
tial condition, E0. We first show that the distribution of
E0 is indeed positively skewed in our hydrodynamic cal-
culation, and then argue that this is a generic prediction
of hydrodynamics, which does not depend on the specific
setup used in this paper. This is done in Sec. VI, where
we derive a generic formula relating the skewness of the

E0 distribution to the statistical properties of the initial
density field in a perturbative approach [10, 11].

II. SKEWNESS IN DATA AND IN
HYDRODYNAMICS

Figure 1 displays the histogram of the distribution
of 〈pt〉 measured by the STAR collaboration in central
Au+Au collisions [2], where 〈pt〉 is evaluated by aver-
aging the transverse momenta of the charged particles
observed in the detector. As mentioned in the Introduc-
tion, this quantity has trivial fluctuations due to the fi-
nite number of particles, typically of order 1000, in every
event. The width of the distribution of 〈pt〉 is actually
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FIG. 1. (Color online) Distribution of 〈pt〉 for Au+Au col-
lisions at

√
sNN = 200 GeV in the 0-5% centrality window.

Data from the STAR collaboration [2] are shown as a his-
togram. The solid line is a Gaussian fit to these data. The
lower panel is the ratio between the Gaussian fit and the data.
The data are above the Gaussian to the right, and below the
Gaussian to the left, which hints at a positive skew.
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dominated by these statistical fluctuations, and the dy-
namical fluctuations only represent a modest fraction of
this width. Even though this histogram does not rep-
resent a distribution of dynamical fluctuations, it is in-
structive to see that the distribution is not symmetric.
Comparison with a Gaussian fit, shown as a solid line,
shows that the data points are above the fit to the right,
and below the fit to the left, which is an indication that
the distribution of 〈pt〉 has positive skew.

We present now the distribution of 〈pt〉 in event-by-
event hydrodynamics.

The setup of our hydrodynamic calculation is the same
as in Ref. [12]. 50000 minimum bias Pb+Pb collisions
at
√
sNN = 5.02 TeV are evolved in 2+1 dimensions

through the viscous hydrodynamic code V-USPHYDRO

[13–15], starting from an initial profile of entropy den-
sity given, event-to-event, by the TRENTo model of
initial conditions [16], which has been tuned following
Ref. [17].1 Events are sorted into centrality bins accord-
ing to their total initial entropy (5% bins are used). This
is done to mimic the centrality selection performed in ex-
periments. We neglect the pre-equilibrium dynamics of
the system [18–20], which is evolved hydrodynamically
starting from proper time τ0 = 0.6 fm/c after the colli-
sion [21]. We implement a small specific shear viscosity,
η/s = 0.047 [22], and the 2+1 equation of state from lat-
tice QCD [23]. Fluid elements hadronize [24] when reach-
ing a temperature of 150 MeV. We include all hadronic
resonances in the freezeout process (from the PDG16+
list [25]), and their subsequent strong decays, but we ne-
glect rescattering in the hadronic phase [17, 26, 27].

Each hydrodynamic “event” corresponds to a different
initial condition [28–31]. The output of hydrodynamics is
the continuous probability distribution of the transverse
momentum [32, 33], which one integrates to calculate the
mean value, 〈pt〉. Therefore, the statistical fluctuations
mentioned in the discussion of Fig. 1, due to the finite
event multiplicity, are absent in the hydrodynamic calcu-
lation, so that the event-to-event fluctuations of 〈pt〉 are
the dynamical fluctuations themselves. The histogram
of the distribution of 〈pt〉 is displayed as solid lines in
Fig. 2 for two different centrality windows. Note that
the values of 〈pt〉 are larger than in Fig. 1, because the
collision energy is much higher.2 The width of the 〈pt〉
distribution is comparable in Fig. 1 and in Fig. 2(a), in
agreement with the evolution of dynamical 〈pt〉 fluctua-
tions from 200 GeV to 2.76 TeV collision energy observed
in data [4]. Since the experimental distribution in Fig. 1

1 We use p = 0, corresponding to a geometric average of nuclear
thickness functions. The thickness of a nucleus is a linear super-
imposition of participant nucleon thicknesses, which are taken
as Gaussian profiles of width w = 0.51 fm. The normalization
of each nucleon thickness fluctuates following a gamma distribu-
tion of unit mean and standard deviation 1/

√
k, where we use

k = 1.6.
2 Also, our calculation overestimates 〈pt〉 by a few percent even at

the higher energy, as discussed in Ref. [12].

includes statistical fluctuations on top of the dynamical
ones, one would expect it to be broader than our predic-
tion, while this is not the case. In fact, our model of ini-
tial conditions overestimates the width of dynamical fluc-
tuations by about a factor 2, which is a common discrep-
ancy between hydrodynamic models and data [34, 35].
The distributions of 〈pt〉 in Fig. 2 are clearly asymmet-
ric, with a long tail on the right. This positive skew is
more pronounced in peripheral collisions [panel (b)] than
in central collisions [panel (a)].

A few remarks are in order. The qualitative predic-
tion that the skewness is positive is to some extent triv-
ial when fluctuations are large. The reason is that the
transverse momentum is positive by construction, so that
there is a strict lower bound on 〈pt〉, but no upper bound.
This naturally produces the left-right asymmetry seen in
Fig. 2(b), in particular in small systems, where fluctu-
ations are large (see e.g. Fig. 3 of Ref. [36] for an il-
lustration).3 Additionally, if one consider that a large
system is given by the superimposition of statistically in-
dependent smaller clusters, then the positive skewness is
carried over from the small systems to the larger one, be-
cause cumulants (to be defined in Sec. III) are additive.

We conclude that it is crucial to have quantitative mea-
sures of the skewness, and to assess how large its value
should be in order for it to be considered non trivial.

III. MEASURING THE SKEWNESS

A quantitative measure of the skewness of a random
variable x is the third centered moment, 〈(x − 〈x〉)3〉,
where angular brackets denote an average value with re-
spect to the probability distribution of x. It is usually
positive when the tail is larger to the right than to the
left, as in Figs. 1 and 2. The skewness is the third term in
a systematic cumulant expansion, whose first and second
terms are the mean and the variance, respectively.

A. Experimental analysis

We first recall how the mean value of the pt distribu-
tion in a centrality class, which we denote by 〈〈pt〉〉, is
evaluated in heavy-ion experiments. There are two ways
of defining it, depending on whether one first averages
over particles in an event [2], and then over all events,
or whether one does both averages simultaneously [5].

3 Similarly, the upper bound on initial anisotropies, εn < 1, nat-
urally generates non-Gaussian fluctuations that are crucial to
understand experimental data in anisotropic flow fluctuations in
peripheral nucleus-nucleus collisions [37–39] and in small sys-
tems [40, 41].
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FIG. 2. (Color online) Solid lines: Distribution of 〈pt〉 in event-by-event hydrodynamic simulations of Pb+Pb collisions at√
sNN = 5.02 TeV [12], for charged particles in the transverse momentum interval 0.2 < pt < 3 GeV and in the pseudorapidity

interval |η| < 0.8. Dash-dotted line: Distribution of E0/S, where E0 and S are, respectively, the total energy and total entropy
in the fluid at the beginning of the hydrodynamic evolution (see Sec. V). In order to facilitate the comparison, the value of E0/S
has been multiplied by a constant in each panel so that the mean matches that of the 〈pt〉 distribution. (a) 5-10% centrality.
(b) 50-55% centrality.

Specifically, the STAR collaboration defines [2]:

〈〈pt〉〉STAR ≡
〈∑Nch

i=1 pi
Nch

〉
, (1)

where Nch denotes the number of charged particles in an
event, pi is the transverse momentum of the ith particle,
and angular brackets denote an average over events in a
centrality class. On the other hand, the ALICE collabo-
ration defines [5]:

〈〈pt〉〉ALICE ≡

〈∑Nch

i=1 pi

〉
〈Nch〉

. (2)

These definitions are almost equivalent, but not strictly
equivalent when the multiplicity Nch fluctuates event to
event.

Either convention can be used when analyzing the vari-
ance of dynamical pt fluctuations. We denote this vari-
ance by 〈∆pi∆pj〉, where the subscripts i, j are meant to

remind that it is constructed from pair correlations, with
i 6= j. The STAR collaboration defines it as [2]:

〈∆pi∆pj〉STAR ≡
〈∑

i,j 6=i (pi − 〈〈pt〉〉) (pj − 〈〈pt〉〉)
Nch (Nch − 1)

〉
,

(3)
where 〈〈pt〉〉 is defined by Eq. (1), while the ALICE col-
laboration defines it as [5]:

〈∆pi∆pj〉ALICE ≡

〈∑
i,j 6=i (pi − 〈〈pt〉〉) (pj − 〈〈pt〉〉)

〉
〈Nch (Nch − 1)〉 ,

(4)
where 〈〈pt〉〉 is defined by Eq. (2). Note that even though
Eqs. (3) and (4) involve double sums over i and j,
they can be expressed in terms of simple sums, which
are much faster to compute. The corresponding formu-
las for Eq. (3) are derived in Appendix A. The skew-
ness is the third centered moment, which we denote by
〈∆pi∆pj∆pk〉. It is defined by straightforward general-
izations of Eqs. (3) and (4):

〈∆pi∆pj∆pk〉STAR ≡
〈∑

i,j 6=i,k 6=i,j (pi − 〈〈pt〉〉) (pj − 〈〈pt〉〉) (pk − 〈〈pt〉〉)
Nch (Nch − 1) (Nch − 2)

〉
, (5)

where 〈〈pt〉〉 is defined by Eq. (1), and

〈∆pi∆pj∆pk〉ALICE ≡

〈∑
i,j 6=i,k 6=i,j (pi − 〈〈pt〉〉) (pj − 〈〈pt〉〉) (pk − 〈〈pt〉〉)

〉
〈Nch (Nch − 1) (Nch − 2)〉 , (6)

where 〈〈pt〉〉 is defined by Eq. (2). An efficient way of com- puting Eq. (5) is detailed in Appendix A. Note that the
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ATLAS collaboration follows the same convention as the
STAR collaboration in its recent analysis of transverse
momentum fluctuations [42].

B. Dimensionless observables

We now define two dimensionless measures of the skew-
ness, which should have less sensitivity to analysis details,
in particular the acceptance in pt, which varies depend-
ing on the detector. The first measure is the standardized
skewness, γ [37], here defined by:

γpt
≡ 〈∆pi∆pj∆pk〉
〈∆pi∆pj〉3/2

. (7)

While this is a dimensionless quantity, one expects it to
depend on centrality and system size, as measured by the
number of participant nucleons, Npart, for the following
reasons. If one assumes that dynamical fluctuations scale
with the multiplicity in the same way as statistical fluctu-
ations4, then the variance is approximately proportional
to 1/Npart, and the skewness to 1/N2

part [44]. Hence, one
expects the standardized skewness to be proportional to
1/
√
Npart.

5 Therefore, this quantity should be larger
for peripheral collisions than for central collisions, which
can be actually seen by eye in the comparison between
Fig. 2(a) and Fig. 2(b). The fact that the standardized
skewness decreases with Npart is in fact a consequence of
the central limit theorem, which states that fluctuations
are more Gaussian for a large system.

In order to eliminate this trivial size dependence, we
introduce a second measure of the skewness, which we
dub the intensive skewness, and denote by Γ:

Γpt
≡ 〈∆pi∆pj∆pk〉 〈〈pt〉〉

〈∆pi∆pj〉2
. (8)

With the above scaling rules, Γpt
is independent of Npart.

This intensive measure of the skewness allows us address
the comment raised at the end of Sec. II, that a positive
skewness is to some extent trivial because 〈pt〉 is itself
positive. The typical trivial continuous distribution with
positive support is the gamma distribution, which can
be viewed as the equivalent of the Gaussian distribution
for a random variable which is positive [45]. For the
gamma distribution, the intensive skewness is a universal
constant, Γ = 2.6 This value is a useful baseline: An
intensive skewness significantly larger than 2 should be
considered nontrivial.

4 This is approximately true in the Glauber Monte Carlo
model [43], where dynamical fluctuations originate from the po-
sitions of participant nucleons, and the multiplicity, responsible
for the statistical fluctuations, it itself roughly proportional to
Npart.

5 These scaling rules are verified in a toy model in Appendix B.
6 Similarly, one obtains Γ = 1 for the discrete Poisson distribution.

IV. HYDRODYNAMIC PREDICTIONS

Evaluating the skewness in event-by-event hydrody-
namics is much simpler than in experiment. As explained
above, one evaluates 〈pt〉 for each initial condition by in-
tegrating the continuous momentum distribution result-
ing from the hydrodynamic expansion. The mean trans-
verse momentum in a centrality class, 〈〈pt〉〉, is obtained
by averaging 〈pt〉 over initial conditions. The variance
and the skewness are then defined by:

〈∆pi∆pj〉hydro =
〈

(〈pt〉 − 〈〈pt〉〉)2
〉

〈∆pi∆pj∆pk〉hydro =
〈

(〈pt〉 − 〈〈pt〉〉)3
〉
, (9)

where the outer angular brackets denote an average over
initial conditions.

Figure 3 presents our prediction for the standardized
skewness [panel (a)], and the intensive skewness [panel
(b)] for Xe+Xe and Pb+Pb collisions, as a function of
the centrality percentile, using the same hydrodynamic
calculation as in Sec. II.

The standardized skewness in panel (a) increases as a
function of the centrality percentile, as already observed
in Fig. 2, reflecting the fact that larger centrality im-
plies a smaller number of participant nucleons. One also
expects the standardized skewness to be larger in the
smaller system, Xe+Xe, although, within our numerical
precision, this is not observed in all the centrality bins.
It is interesting to compare γpt

to the standardized skew-
ness of elliptic flow fluctuations in the reaction plane, say
γv2 , measured in Refs. [38, 39]. One notes in particular
that γpt

is in magnitude twice as large as γv2 , even in
peripheral collisions, where the distribution of v2 origi-
nates from a distribution of initial eccentricity, ε2, which
is strongly skewed due to the upper bound ε2 < 1 [37].

The intensive skewness in panel (b) is instead approxi-
mately independent of both the collision species and the
collision centrality. It is in the range 7 < Γpt < 10,
much larger than the baseline Γpt = 2 for a gamma dis-
tribution. The predictive value of our hydrodynamic cal-
culation is limited by the fact that it overestimates the
variance of 〈pt〉 fluctuations, as mentioned in Sec. II. A
broader distribution is typically more skewed, therefore,
we expect that our calculation will overestimate future
experimental data on the standardized skewness. We ex-
pect on the other hand that much of this error cancels
in the intensive skewness, which should represent a more
solid prediction. Thus, we expect the intensive skewness,
Γpt

, in 5.02 TeV Pb+Pb collisions to lie between 7 and
10. We stress that this value implies a nontrivial distri-
bution of 〈pt〉.

V. ORIGIN OF THE SKEWNESS

We now investigate the origin of the large positive
skewness of 〈pt〉 fluctuations found in hydrodynamic cal-
culations. As it was shown in Refs. [8, 9], if one looks at
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FIG. 3. (Color online) Hydrodynamic predictions for: (a) the standardized skewness, γpt , defined by Eq. (7); (b) the intensive
skewness, Γpt , defined by Eq. (8), in Pb+Pb collisions at

√
sNN = 5.02 TeV (open symbols) and Xe-Xe collisions at

√
sNN =

5.44 TeV (full symbols), as a function of the centrality percentile. Error bars represent the statistical error, due to the finite
number of hydrodynamic events, estimated via jackknife resampling. The open and full symbols have been slightly shifted to
the left and to the right, respectively, for the sake of readability. Lines are the same quantities as symbols, where one replaces
〈pt〉 with the value of E0/S at the beginning of the hydrodynamic evolution (Sec. V). The dotted line in panel (b) represents
the expected baseline for the intensive skewness, i.e., the intensive skewness of a gamma distribution.

events with the same initial entropy (which experimen-
tally can be achieved to a good approximation by fixing
the final-state multiplicity), then 〈pt〉 is tightly correlated
with the total energy of the fluid at the beginning of the
hydrodynamic evolution, E0. Intuitively, this is due to
the fact that the momentum is a function of the energy,
and thus, if the number of particles is fixed, it is the
energy that determines the mean transverse momentum.
The nontrivial aspect of this correspondence is that the
correlation of 〈pt〉 is tighter with the initial energy, E0,
than with the energy at freeze-out [8], even though par-
ticles are emitted at freeze-out. The goal of this section
is to show that, at fixed centrality, one expects the skew-
ness of 〈pt〉 fluctuations to be driven by the skewness of
E0 fluctuations.

Although the relation between 〈pt〉 and E0 is not quite
linear, we can relate their fluctuations in a simplified,
effective hydrodynamic description [46]. This descrip-
tion replaces the space-time evolution of the quark-gluon
plasma with an equivalent uniform gas at an effective
temperature, T , that contains the same total entropy and
total energy as the quark-gluon plasma at freezeout. In
this effective description, the final-state 〈pt〉 is propor-
tional to T , whereas E0 is proportional to ε/s, where the
energy density, ε, and the entropy density, s, are evalu-
ated at temperature T . The fluctuations of E0 and those
of 〈pt〉 can be then related through the equation of state.

Let us first derive a relation between the relative varia-
tion of 〈pt〉 and that of E0 in the regime of small fluctua-
tions. First note that the relative 〈pt〉 variation is related

to that of the entropy density, s, through:

d ln〈pt〉 = d lnT = c2sd ln s, (10)

where cs = (d lnT/d ln s)1/2 is the speed of sound at
temperature T . Similarly, the relative variation of E0 is
given by:

d lnE0 = d ln
( ε
s

)
=
dε

ε
− ds

s

=
Tds

ε
− ds

s
=

(ε+ P )ds− εds
εs

=(P/ε)d ln s, (11)

where we have used the thermodynamic identities dε =
Tds and ε+ P = Ts. Combining the last two equations,
one predicts

σ(〈pt〉)
〈〈pt〉〉

= c2s
ε

P

σ(E0)

〈E0〉
' 1.24

σ(E0)

〈E0〉
(12)

where σ(〈pt〉) and σ(E0) denote, respectively, the stan-
dard deviation of 〈pt〉 and E0, and, in the last equal-
ity, we have used T = 222 MeV for 5.02 TeV Pb+Pb
collisions [46], at which we have evaluated the thermo-
dynamic quantities using the lattice QCD equation of
state [23]. Note that the relative fluctuations of E0 is
equal to that of E0/S, where S is the total entropy, when
S is kept fixed. To correct for potential effects of finite-
sized centrality intervals, or entropy production due to
viscosity, one should replace E0 by E0/S in Eq. (12).
To prove that the latter equation provides a meaningful
prediction, we show in Fig. 2 the distribution of E0/S,
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multiplied by an appropriate factor so that it presents
the same mean value as the 〈pt〉 distribution. One sees
by eye that the distribution of 〈pt〉 is broader than that of
E0/S in relative value, more precisely, by a factor 1.3 in
panel (a) and by a factor 1.6 in panel (b). Equation (12)
thus correctly predicts that the fluctuations of 〈pt〉 are
larger than those of E0/S, albeit not quantitatively.

Let us move then to the skewness. An analogous
derivation of the standardized skewness, γ, and of the
intensive skewness, Γ, in the effective framework yields
γpt ' γE0 , and Γpt ' 0.8ΓE0 . These relations imply that
the skewness of 〈pt〉 fluctuations is indeed expected to be
driven by that of E0 fluctuations. Figure 3 displays the
standardized skewness and the intensive skewness of the
distribution of E0/S, which in practice is obtained by re-
placing 〈pt〉 with E0/S in the right-hand side of Eq. (9).
We note that the standardized skewness [Fig. 3(a)] of
E0/S fluctuations is indeed positive, and of order 0.25 in
central collisions. In more peripheral collisions it is some-
what smaller than the skewness of 〈pt〉 fluctuations. Note
that γE0

is larger in Xe+Xe collisions than in Pb+Pb col-
lisions, as expected from the smaller system size. Mov-
ing to the intensive skewness in Fig. 3(b), it is almost
identical for E0/S and for 〈pt〉, which implies that the
distribution of E0 in the TRENTo model is nontrivial.
As expected, the intensive skewness of E0 is essentially
independent of system size, i.e., of the centrality.

On the whole, the predictions of the effective frame-
work are qualitatively correct, and we conclude that the
main features displayed by the skewness of 〈pt〉 fluctua-
tions stem from the skewness of the initial energy, E0.
Note that a more quantitative understanding may be
achieved by improving the initial-state predictor. In a re-
cent preprint Schenke, Shen and Teaney [47] studied the
goodness of various estimators of 〈pt〉, and found that an
improved predictor, especially for peripheral collisions,
can be obtained by adding a dependence on the ellipti-
cal area of the system [6]. We do not investigate this
possibility here.

VI. RELATING THE SKEWNESS TO INITIAL
DENSITY FLUCTUATIONS

The results of the previous section show that the skew-
ness of 〈pt〉 fluctuations originates from the skewness of
E0 fluctuations. The fact that the latter skewness is pos-
itive, though, is specific to the model used in the numeri-
cal evaluation, i.e., a TRENTo parametrization tuned to
reproduce some sets of experimental data. In this sec-
tion, we argue that the prediction that 〈pt〉 fluctuations
have positive skewness is more general, and does not rely
on a specific model of initial conditions. For this purpose,
we derive formulas for the variance and the skewness of
E0 fluctuations for a generic fluctuating initial density
profile.

A. Formalism

Our study is limited to boost-invariant ideal hydro-
dynamics for simplicity, and neglects initial transverse
flow [18, 20]. The hydrodynamic evolution is then de-
termined by the entropy density field at the initial con-
dition, s(x), where x denotes a point in the transverse
plane. We consider an ensemble of events with the same
geometry (same positions of incoming nuclei) and same
total entropy,

∫
s(x)dx. The fluctuations of the field s(x)

within this ensemble of events can be characterized by its
n-point correlation functions. We assume that, for any
event, s(x) can be decomposed as a fluctuation on top
of a background: s(x) = 〈s(x)〉 + δs(x), where 〈s(x)〉,
or 1-point function, is the average value of s(x) for a
fixed x, and δs(x) is the fluctuation. Observables are
evaluated through a perturbative expansion in powers of
the fluctuation. This approach is identical to that of
Refs. [10, 36, 44, 48], the only difference being that we
take now s(x) as the fundamental field instead of the
energy density, ε(x).

The condition that the total entropy is fixed implies:∫
x

δs(x) = 0, (13)

where we use the shortcut
∫
x

for the integration over
the transverse plane, which is a double integral. The
connected 2-point function is the average over events of
δs(x1)δs(x2). It characterizes how fluctuations at differ-
ent points x1 and x2 are correlated with one another. We
assume that all fluctuations are local, which implies that
correlations are short ranged. Under this condition, one
can write the two-point function in the form [36]:

〈δs(x1)δs(x2)〉 = κ2(x1)δ(x1−x2)− κ2(x1)κ2(x2)∫
x
κ2(x)

, (14)

where we assimilate the short range correlation to a Dirac
peak, δ(x1−x2), with a positive x-dependent amplitude,
κ2(x), which represents the density of variance of the
entropy field. Equation (13) implies that the two-point
function must vanish upon integration over x1 or x2. This
is guaranteed by the last term in the right-hand side of
Eq. (14).

To evaluate the skewness, we shall also need the three-
point function of the density field. As shown in Ref. [36],
for short-range correlations the three-point function at
fixed total entropy can be written in the form:

〈δs(x1)δs(x2)δs(x3)〉 = κ3(x1)δ(x1 − x2)δ(x1 − x3)

− κ3(x1)δ(x1 − x2)κ2(x3) + perm.∫
x
κ2(x)

+
κ3(x1)κ2(x2)κ2(x3) + perm.(∫

x
κ2(x)

)2
−

∫
x
κ3(∫

x
κ2
)3κ2(x1)κ2(x2)κ2(x3),

(15)
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where the second and third lines must be summed over
circular permutations of x1, x2, x3. The first term in
the right-hand side is the contribution of the short-range
correlation, and κ3(x) is the “density of skewness”, in
the same way as κ2(x) is the density of variance. Note
that κ3(x) is typically positive everywhere (e.g. for Pois-
son fluctuations), even though this is not a mathematical
requirement. The additional terms in Eq. (15) are contri-
butions from the condition that all events have the same
total entropy. This expression is consistent with the sum
rule (13), as can be checked upon integration over x1 (or
x2 or x3, by symmetry). Note that the three-point func-
tion involves both κ2(x) and κ3(x), and it is linear in
κ3(x).

B. Variance of initial energy fluctuations

Equipped with this formalism, we evaluate the fluctu-
ations of the initial energy, E0. This quantity is given by
the integral of the energy density, ε(x), which is related
to s(x) through the equation of state:

E0 =

∫
x

ε (s(x)) . (16)

We then write s(x) = 〈s(x)〉 + δs(x), and expand in
powers of δs(x). To first order in δs(x), one can write
E0 = 〈E0〉+ δE0, with

〈E0〉 =

∫
x

ε(〈s(x)〉),

δE0 =

∫
x

T (x)δs(x), (17)

where T (x) is the temperature corresponding to the aver-
age entropy density, 〈s(x)〉, and we have used the thermo-
dynamic identity dε = Tds. The variance of the energy
is:

〈δE2
0〉 =

∫
x1,x2

T (x1)T (x2)〈δs(x1)δs(x2)〉. (18)

Using the expression (14) of the two-point function, one
obtains

〈δE2
0〉 =

∫
x

T (x)2κ2(x)−
(∫

x
T (x)κ2(x)

)2∫
x
κ2(x)

, (19)

where the last term in the right-hand side comes from
the condition that the total entropy is fixed. We define
an average temperature, T̄ , by:

T̄ ≡
∫
x
T (x)κ2(x)∫
x
κ2(x)

. (20)

With this notation, Eq. (19) can be rewritten as

〈δE2
0〉 =

∫
x

(T (x)− T̄ )2κ2(x). (21)

Note that the condition that all events have the same
total entropy results in the substitution T (x)→ T (x)−T̄ .

Let us comment on the physical implication of Eq. (21).
In this equation, T (x) denotes the temperature profile at
the beginning of the hydrodynamic expansion, that is,
when the temperature is the highest, and T̄ its value av-
eraged over x. The difference T (x)− T̄ is a temperature
difference, which is proportional to c2s. Therefore, one
expects the relative fluctuation of E0 to be itself propor-
tional to c2s, where cs is the velocity of sound at the begin-
ning of the hydrodynamic calculation. This is checked by
an explicit calculation in Appendix B 2. This correspon-
dence only holds in ideal hydrodynamics, and viscous
corrections are large at early times, therefore, its rele-
vance to the phenomenology is questionable. However, it
suggests that the physics of 〈pt〉 fluctuations might open
a window onto early-time thermodynamics.

C. Skewness of initial energy fluctuations

We now evaluate the skewness of the distribution of
E0. This is a higher-order quantity, therefore, we need
to expand the energy density to order 2 in δs:

ε(s(x)) = ε(〈s(x)〉) + T (x)δs(x) +
1

2
T ′(x)δs(x)2, (22)

where we define

T ′(x) ≡ dT

ds
= c2s(x)

T (x)

〈s(x)〉 , (23)

where cs(x) is the speed of sound at the temperature
T (x). With the second order term taken into account,
Eq. (17) is replaced by:

〈E0〉 =

∫
x

ε(〈s(x)〉) +
1

2

∫
x

T ′(x)〈δs(x)2〉,

δE0 =

∫
x

T (x)δs(x) +
1

2

∫
x

T ′(x)
(
δs(x)2 − 〈δs(x)2〉

)
.

(24)

The skewness is the third centered moment, that is,
〈δE3

0〉. To leading order in the fluctuations, one must
keep all terms of order 3 and 4 in δs, which contribute to
the same order after averaging over events. We write

〈δE3
0〉 = 〈δE3

0〉3 + 〈δE3
0〉4, (25)

where we separate the contributions of terms of order δs3

and δs4.
The contribution of order δs3 is obtained by keeping

only the first term in the second line of Eq. (24):

〈δE3
0〉3 =

∫
x1,x2,x3

T (x1)T (x2)T (x3)〈δs(x1)δs(x2)δs(x3)〉.
(26)



8

It involves the three-point function of the density field.
Inserting Eq. (15) into Eq. (26), one obtains, after some
algebra, a compact result:

〈δE3
0〉3 =

∫
x

(
T (x)− T̄

)3
κ3(x), (27)

where T̄ is defined by Eq. (20). As in Eq. (21), the condi-
tion that all events have the same entropy results in the
substitution T (x)→ T (x)− T̄ .

We finally evaluate 〈δE3〉4, which is the contribution
obtained by expanding two factors of δE to order δs and
the third factor to order δs2. One is led to evaluate the
average value of quantities such as:

A(x1, x2, x3) ≡ δs(x1)δs(x2)
(
δs(x3)2 − 〈δs(x3)2〉

)
,

(28)
where four-point averages can be computed using Wick’s
theorem, which gives:

〈A(x1, x2, x3)〉 = 2〈δs(x1)δs(x3)〉〈δs(x2)δs(x3)〉, (29)

where the right-hand side involves the 2-point function,
Eq. (14). After some algebra, one obtains

〈δE3
0〉4 = 3

∫
x

(T (x)− T̄ )2T ′(x)κ2(x)2. (30)

The integrand is everywhere positive, so that 〈δE3
0〉4

is positive. It is interesting to note that the intermediate
calculations involve the variance of the entropy density
at a given point, i.e., the term 〈δs(x)2〉 in Eq. (24). This
quantity is sensitive to the scale of inhomogeneities [15],
that is, to the transverse size of the “hot spots” in the
initial density profile. However, this dependence can-
cels in Eq. (29), and the final results depend only on the
functions κn(x), which are integrated over the relative
distance. This implies that both the width of 〈pt〉 fluc-
tuations and their skewness should have limited sensitiv-
ity to short-range, subnucleonic fluctuations, in the same
way as anisotropic flow fluctuations [15, 49–51]. They are
on the other hand potentially useful probes of early-time
thermodynamics, as suggested at the end of Sec. VI B.

To conclude, let us write down our final formula for
the skewness, Eq. (25). It is the sum of the contributions
(27) and (30):

〈δE3
0〉 =

∫
x

(
T (x)− T̄

)3
κ3(x)

+ 3

∫
x

(T (x)− T̄ )2T ′(x)κ2(x)2. (31)

The second term is always positive, while the first contri-
bution is typically negative, but smaller in magnitude. In
Appendix B we check explicitly that, in the simple case
of identical, localized sources with a Gaussian distribu-
tion, where all integrals can be carried out analytically,
the second term indeed dominates over the first term
so that the skewness is positive. The contribution (30)
provides, thus, a model-independent explanation for the
positive skewness of E0 fluctuations, and consequently of
〈pt〉 fluctuations.

VII. CONCLUSIONS

Hydrodynamics predicts that the event-by-event fluc-
tuations of the mean transverse momentum, 〈pt〉, have
positive skew. This prediction could be verified straight-
forwardly in experiments, following the analysis proce-
dures explained in this manuscript. Along with the stan-
dardized skewness, we have introduced a new dimension-
less measure, the intensive skewness, which, on the basis
of hydrodynamic calculations, should lie between 7 and
10 in nucleus-nucleus collisions, and be approximately in-
dependent of the collision centrality and of the size of the
colliding nuclei. We have shown that these predictions
are generic, and can be traced back to the fact that 〈pt〉
fluctuations result from fluctuations of the energy of the
fluid when the hydrodynamic expansion starts. This con-
firms in particular that dynamical 〈pt〉 fluctuations are a
collective effect, much in the same way as anisotropic
flow. It also implies, more specifically, that they are
sensitive to the early temperature. The average trans-
verse momentum itself has proven able to give insight
about the thermodynamics of the quark-gluon plasma,
at a temperature around T ∼ 220 MeV in 5.02 TeV Pb-
Pb collisions [46]. Our preliminary study suggests that,
on the other hand, higher-order cumulants, such as the
skewness, might serve as detailed probes of QCD ther-
modynamics at higher temperatures, achieved during the
early stages of the collision.
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Appendix A: Coding the skewness analysis

In this Appendix, we explain how to efficiently com-
pute the skewness. We choose the first definition, Eq. (5),
but similar algebraic manipulations can be carried out to
simplify the second definition, Eq. (6). In every event,
one evaluates the moments of the pt distributions, defined
by

Qn =

Nch∑
i=1

(pi)
n, (A1)

where n = 1, 2, 3, pi is the transverse momentum of par-
ticle i, and the sum runs over all the charged particles
detected in the event. Sums over pairs and triplets of
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particles can be expressed simply in terms of these mo-
ments: ∑

i,j 6=i

pipj = (Q1)2 −Q2,∑
i,j 6=i,k 6=i,j

pipjpk = (Q1)3 − 3Q2Q1 + 2Q3. (A2)

These equations express the multiple sums in the left-
hand side in terms of simple sums, which are faster to
evaluate. They are specific cases of Eqs. (11) and (14)
of Ref. [52] in the case of a unique set of particles, A1 =
A2 = A3.

With these notations, Eqs. (1) and (3) can be rewritten

in the form:

〈〈pt〉〉STAR =

〈
Q1

Nch

〉
,

〈∆pi∆pj〉STAR =

〈
(Q1)2 −Q2

Nch (Nch − 1)

〉
−
〈
Q1

Nch

〉2

,

(A3)

where angular brackets denote an average value over
events in a narrow centrality bin. Note that these expres-
sions are strictly equivalent to those used by the STAR
collaboration (Eqs. (1)-(4) of Ref. [2]), even though they
are written in a different form.

Finally, Eq. (5) can be rewritten in the form:

〈∆pi∆pj∆pk〉STAR =

〈
(Q1)3 − 3Q2Q1 + 2Q3

Nch (Nch − 1) (Nch − 2)

〉
− 3

〈
(Q1)2 −Q2

Nch (Nch − 1)

〉〈
Q1

Nch

〉
+ 2

〈
Q1

Nch

〉3

.

This equation expresses the skewness in terms of the sim-
ple sums in Eq. (A1), which are much faster to compute
than the multiple sums in Eq. (5). It has been advo-
cated [47] that the analysis of 〈pt〉 fluctuations should be
done by enforcing rapidity gaps between the particles i,
j, k, in the same way as analyses of anisotropic flow [53],
in order to suppress correlations due to decay kinematics
and other “nonflow” effects. The skewness is likely to be
less affected by nonflow effects than the variance as it is
a higher-order cumulant [54], but rapidity gaps can be
easily implemented [52].

Appendix B: Simple model of density fluctuations

In this appendix, we present an explicit application of
the perturbative approach of Sec. VI by working out a
simple example, and we assess its validity by showing
the comparison between perturbative results and exact
results coming from a Monte Carlo calculation.

1. Identical sources

We model the entropy density at the beginning of the
hydrodynamic evolution as the sum of N identical con-
tributions [49], in the spirit of the Glauber modeling [43]:

s(x) =

N∑
i=1

∆(x− ri), (B1)

where ri are the positions of “sources”, whose positions
in the transverse plane are independent random variables
with a probability distribution p(ri), and ∆(x) is a nar-
row peak centered around the origin. The total entropy is

∫
x
s(x) = N

∫
x

∆(x). Therefore, fixing the total entropy
amounts to fixing the number of sources, N .

The n-point functions of this model can be evaluated
explicitly in terms of N , p(x) and ∆(x) [55]. The 1-point
function is:

〈s(x)〉 = N

∫
r

p(r)∆(x− r), (B2)

while the 2-point function is:

〈δs(x1)δs(x2)〉 = N

∫
r

p(r)∆(x1 − r)∆(x2 − r)

−N
∫
r

p(r)∆(x1 − r)
∫
r′
p(r′)∆(x2 − r′).

(B3)

If the width of the function ∆(r) is much smaller than
the scale over which p(x) varies, one can neglect the vari-
ation of p(x) across the extension of the source, and these
equations simplify to:

〈s(x)〉 = Np(x)

∫
r

∆(r), (B4)

and

〈δs(x1)δs(x2)〉= Np(x1)

∫
r

∆(x1 − r)∆(x2 − r)

−Np(x1)p(x2)

(∫
r

∆(r)

)2

. (B5)

Note that the latter equation is a specific case of Eq. (14),
with

κ2(x) = Np(x)

(∫
r

∆(r)

)2

, (B6)
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which amounts to assimilating the sources to Dirac delta
peaks. A similar calculation [36] shows that the 3-point
function has the same form as in Eq. (15), with

κ3(x) = Np(x)

(∫
r

∆(r)

)3

. (B7)

Note that both κ2(x) and κ3(x) depend on the integral
of ∆(x) over the plane and, thus, are independent of the
actual shape of this function. This confirms somewhat
more explicitly the previous argument that the variance
and the skewness are indeed not sensitive to short-scale
structures.

2. Gaussian density profile, constant cs

To move forward, we need to specify the functional
form of p(ri) and an equation of state. To obtain compact
analytic expressions, we consider for simplicity that the
distribution of sources in the transverse plane is Gaus-
sian:

p(x) =
1

πσ2
exp

(
−x

2

σ2

)
. (B8)

Then, according to Eq. (B4), the average entropy density
profile is also Gaussian form. The energy density requires
the knowledge of the equation of state. For simplicity, we
consider a power-law equation of state:

T = sc
2
s ,

ε =
s1+c2s

1 + c2s
, (B9)

where c2s is the velocity of sound. At early times (or high
temperatures), c2s ' 1

3 in ideal hydrodynamic calcula-
tions using the lattice QCD equation of state.

We can thus proceed to the evaluation of the average
temperature T̄ . If we denote by T0 the temperature in
the center, the average entropy density and the corre-
sponding temperature profiles are given by:

〈s(x)〉 = T
1/c2s
0 exp

(
−x

2

σ2

)
,

T (x) = T0 exp

(
−c

2
sx

2

σ2

)
. (B10)

Identifying the first of these equations with Eq. (B4), one
obtains: ∫

r

∆(r) =
πσ2T

1/c2s
0

N
. (B11)

This expression can be used to express κ2(x) and κ3(x),
defined by Eqs. (B6) and (B7), as a function of N , cs and
T0. Equation (20) then gives:

T̄ =
T0

1 + c2s
. (B12)

Finally, we can evaluate the mean, the variance, and
the skewness of the initial energy, E0, analytically using
Eqs. (17), (21), (27), and (30). One obtains:

〈E0〉 =
πσ2

(1 + c2s)2
T

1+c−2
s

0 ,

〈δE2
0〉 =

1

N

(
c2s(1 + c2s)

)2
(1 + 2c2s)

〈E0〉2,

〈δE3
0〉3 = − 1

N2
(2− 2c2s)

(
c2s(1 + c2s)

)3
(1 + 5c2s + 6c4s)

〈E0〉3,

〈δE3
0〉4 =

1

N2
(3 + 3c2s + 6c4s)

(
c2s(1 + c2s)

)3
(1 + 5c2s + 6c4s)

〈E0〉3.
(B13)

The variance and the skewness are proportional to 1/N
and 1/N2, respectively, as anticipated from the discus-
sion in Sec. III B. The two contributions to the skewness
in Eq. (25) are of the same order of magnitude. The first
is negative while the second is positive, and larger in mag-
nitude for any value of c2s. Note that, for a typical speed
of sound, c2s = 1/3, we find that 〈δE3

0〉4 is larger than
〈δE3

0〉3 by a factor 3. The positive term thus dominates.
This is a clear indication that the positive skewness of
E0 fluctuations is generic, and that one can safely expect
to observe it in any model of the initial state.

Finally, the relative standard deviation, the standard-
ized skewness, and the intensive skewness are given, re-
spectively, by:√

〈δE2
0〉

〈E0〉
=

1√
N

c2s(1 + c2s)√
1 + 2c2s

,

γE0 =
1√
N

(
1 + 2c2s

)3/2
,

ΓE0
=

(1 + 2c2s)2

c2s(1 + c2s)
. (B14)

A few comments are in order. As anticipated in the dis-
cussion at the end of Sec. VI B, the relative fluctuation of
E0 is roughly proportional to c2s. The intensive skewness
is independent ofN , and inversely proportional to c2s. For
c2s = 1

3 , its value is 6.25, which is actually close to the
intensive skewness of the more sophisticated TRENTo
calculation presented in Fig. 3(b).

3. Monte Carlo calculations

We check now the validity of the perturbative results
by carrying out Monte Carlo simulations. To reproduce
the model outlined in the previous section, the only addi-
tional ingredient to specify is the shape of a single source,
∆(x), appearing in Eq. (B1). One can use any function
whose integral over the transverse plane is finite, since
the final results do not depend on this choice, as argued
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FIG. 4. (Color online) Symbols: Results of Monte Carlo (MC)
simulations (see text). Lines: leading order perturbative ex-
pression given by Eq, (B14). Panels (a), (b) and (c) dis-
play the quantities corresponding to the three lines of these
equations, respectively: relative standard deviation, stan-
dardized skewness, intensive skewness. The speed of sound
is cs = 1/

√
3 for the closed symbols and solid lines, while

cs = 1/
√

6 for the open symbols and dashed lines.

previously. For simplicity, we choose a Gaussian:

∆(x) ∝ exp

(
− x

2

w2

)
. (B15)

The validity of the perturbative calculation relies on two
conditions. First, the width of ∆(x), w, must be small

compared to the typical transverse extent of one event
(as determined by the positions of N sources), which is
in turn proportional to σ in Eq. (B8). Second, the stan-
dard deviation of the entropy density at a given point,
obtained as the square root of Eq. (B5) after setting
x2 = x1, must be smaller than the average density (B4)
at the same point, in order for the Taylor expansion in
Eq. (22) to be valid. Since in this source model the fluc-
tuation of local quantities are determined by the density
of sources at a given point, this is naturally a condition
on the value of N . In formulas, the conditions we need
to fulfill are:

w

σ
� 1,

σ

w
√
N
� 1. (B16)

We simply define w by:

w = N−1/4σ, (B17)

so that both conditions (B16) are satisfied in the limit
N � 1.

We generate a large number of Monte Carlo events.
For each event, we sample the positions of N sources,
where N is the same for all events, according to the dis-
tribution (B8). The initial entropy density in the event is
then defined by Eqs. (B1) and (B15). We then compute
the corresponding energy density, ε(x), using the equa-
tion of state, Eq. (B9). Since the equation of state is scale
invariant, the final results are independent of the normal-
ization constant in Eq. (B15). We carry out two sets of
calculations, using two different values of the speed of
sound: c2s = 1

3 corresponding to the quark-gluon plasma
at high temperature, and a value twice smaller, in order
to check that the analytic results capture the dependence
of fluctuation observables on cs. The total energy, E0, is
evaluated by integrating the energy density, E0 ≡

∫
x
ε(x).

Its cumulants (mean, variance, skewness) are finally eval-
uated by averaging over the ensemble of events.

Figure 4 displays our results for the relative fluctua-
tion, the standardized skewness, and the intensive skew-
ness, together with the perturbative results of Eqs. (B14).
Agreement is not perfect, which shows that a leading-
order perturbative calculation is not accurate enough
even with a few hundred sources. Nevertheless, the per-
turbative results capture the order of magnitude and the
dependence on c2s: In particular, Monte Carlo results con-
firm that a softer equation of state results in narrower
fluctuations, with a larger intensive skewness.
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